nrl-tracker 0.22.5__py3-none-any.whl → 1.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/METADATA +57 -10
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/RECORD +84 -69
- pytcl/__init__.py +4 -3
- pytcl/assignment_algorithms/__init__.py +28 -0
- pytcl/assignment_algorithms/gating.py +10 -10
- pytcl/assignment_algorithms/jpda.py +40 -40
- pytcl/assignment_algorithms/nd_assignment.py +379 -0
- pytcl/assignment_algorithms/network_flow.py +371 -0
- pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
- pytcl/astronomical/__init__.py +104 -3
- pytcl/astronomical/ephemerides.py +14 -11
- pytcl/astronomical/reference_frames.py +865 -56
- pytcl/astronomical/relativity.py +6 -5
- pytcl/astronomical/sgp4.py +710 -0
- pytcl/astronomical/special_orbits.py +532 -0
- pytcl/astronomical/tle.py +558 -0
- pytcl/atmosphere/__init__.py +43 -1
- pytcl/atmosphere/ionosphere.py +512 -0
- pytcl/atmosphere/nrlmsise00.py +809 -0
- pytcl/clustering/dbscan.py +2 -2
- pytcl/clustering/gaussian_mixture.py +3 -3
- pytcl/clustering/hierarchical.py +15 -15
- pytcl/clustering/kmeans.py +4 -4
- pytcl/containers/__init__.py +24 -0
- pytcl/containers/base.py +219 -0
- pytcl/containers/cluster_set.py +12 -2
- pytcl/containers/covertree.py +26 -29
- pytcl/containers/kd_tree.py +94 -29
- pytcl/containers/rtree.py +200 -1
- pytcl/containers/vptree.py +21 -28
- pytcl/coordinate_systems/conversions/geodetic.py +272 -5
- pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
- pytcl/coordinate_systems/projections/__init__.py +1 -1
- pytcl/coordinate_systems/projections/projections.py +2 -2
- pytcl/coordinate_systems/rotations/rotations.py +10 -6
- pytcl/core/__init__.py +18 -0
- pytcl/core/validation.py +333 -2
- pytcl/dynamic_estimation/__init__.py +26 -0
- pytcl/dynamic_estimation/gaussian_sum_filter.py +434 -0
- pytcl/dynamic_estimation/imm.py +14 -14
- pytcl/dynamic_estimation/kalman/__init__.py +30 -0
- pytcl/dynamic_estimation/kalman/constrained.py +382 -0
- pytcl/dynamic_estimation/kalman/extended.py +8 -8
- pytcl/dynamic_estimation/kalman/h_infinity.py +613 -0
- pytcl/dynamic_estimation/kalman/square_root.py +60 -573
- pytcl/dynamic_estimation/kalman/sr_ukf.py +302 -0
- pytcl/dynamic_estimation/kalman/ud_filter.py +410 -0
- pytcl/dynamic_estimation/kalman/unscented.py +8 -6
- pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
- pytcl/dynamic_estimation/rbpf.py +589 -0
- pytcl/gravity/egm.py +13 -0
- pytcl/gravity/spherical_harmonics.py +98 -37
- pytcl/gravity/tides.py +6 -6
- pytcl/logging_config.py +328 -0
- pytcl/magnetism/__init__.py +7 -0
- pytcl/magnetism/emm.py +10 -3
- pytcl/magnetism/wmm.py +260 -23
- pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
- pytcl/mathematical_functions/geometry/geometry.py +5 -5
- pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
- pytcl/mathematical_functions/signal_processing/detection.py +24 -24
- pytcl/mathematical_functions/signal_processing/filters.py +14 -14
- pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
- pytcl/mathematical_functions/special_functions/bessel.py +15 -3
- pytcl/mathematical_functions/special_functions/debye.py +136 -26
- pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
- pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
- pytcl/mathematical_functions/special_functions/hypergeometric.py +81 -15
- pytcl/mathematical_functions/transforms/fourier.py +8 -8
- pytcl/mathematical_functions/transforms/stft.py +12 -12
- pytcl/mathematical_functions/transforms/wavelets.py +9 -9
- pytcl/navigation/geodesy.py +246 -160
- pytcl/navigation/great_circle.py +101 -19
- pytcl/plotting/coordinates.py +7 -7
- pytcl/plotting/tracks.py +2 -2
- pytcl/static_estimation/maximum_likelihood.py +16 -14
- pytcl/static_estimation/robust.py +5 -5
- pytcl/terrain/loaders.py +5 -5
- pytcl/trackers/hypothesis.py +1 -1
- pytcl/trackers/mht.py +9 -9
- pytcl/trackers/multi_target.py +1 -1
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/LICENSE +0 -0
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/WHEEL +0 -0
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/top_level.txt +0 -0
|
@@ -5,7 +5,7 @@ The UKF uses the unscented transform to propagate the mean and covariance
|
|
|
5
5
|
through nonlinear functions without requiring Jacobian computation.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import Callable, NamedTuple, Optional, Tuple
|
|
8
|
+
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numpy.typing import ArrayLike, NDArray
|
|
@@ -226,7 +226,7 @@ def unscented_transform(
|
|
|
226
226
|
def ukf_predict(
|
|
227
227
|
x: ArrayLike,
|
|
228
228
|
P: ArrayLike,
|
|
229
|
-
f: Callable[[NDArray], NDArray],
|
|
229
|
+
f: Callable[[NDArray[Any]], NDArray[Any]],
|
|
230
230
|
Q: ArrayLike,
|
|
231
231
|
alpha: float = 1e-3,
|
|
232
232
|
beta: float = 2.0,
|
|
@@ -292,7 +292,7 @@ def ukf_update(
|
|
|
292
292
|
x: ArrayLike,
|
|
293
293
|
P: ArrayLike,
|
|
294
294
|
z: ArrayLike,
|
|
295
|
-
h: Callable[[NDArray], NDArray],
|
|
295
|
+
h: Callable[[NDArray[Any]], NDArray[Any]],
|
|
296
296
|
R: ArrayLike,
|
|
297
297
|
alpha: float = 1e-3,
|
|
298
298
|
beta: float = 2.0,
|
|
@@ -382,7 +382,9 @@ def ukf_update(
|
|
|
382
382
|
)
|
|
383
383
|
|
|
384
384
|
|
|
385
|
-
def ckf_spherical_cubature_points(
|
|
385
|
+
def ckf_spherical_cubature_points(
|
|
386
|
+
n: int,
|
|
387
|
+
) -> tuple[NDArray[np.floating], NDArray[np.floating]]:
|
|
386
388
|
"""
|
|
387
389
|
Generate cubature points for Cubature Kalman Filter.
|
|
388
390
|
|
|
@@ -418,7 +420,7 @@ def ckf_spherical_cubature_points(n: int) -> Tuple[NDArray, NDArray]:
|
|
|
418
420
|
def ckf_predict(
|
|
419
421
|
x: ArrayLike,
|
|
420
422
|
P: ArrayLike,
|
|
421
|
-
f: Callable[[NDArray], NDArray],
|
|
423
|
+
f: Callable[[NDArray[Any]], NDArray[Any]],
|
|
422
424
|
Q: ArrayLike,
|
|
423
425
|
) -> KalmanPrediction:
|
|
424
426
|
"""
|
|
@@ -487,7 +489,7 @@ def ckf_update(
|
|
|
487
489
|
x: ArrayLike,
|
|
488
490
|
P: ArrayLike,
|
|
489
491
|
z: ArrayLike,
|
|
490
|
-
h: Callable[[NDArray], NDArray],
|
|
492
|
+
h: Callable[[NDArray[Any]], NDArray[Any]],
|
|
491
493
|
R: ArrayLike,
|
|
492
494
|
) -> KalmanUpdate:
|
|
493
495
|
"""
|
|
@@ -5,7 +5,7 @@ This module provides particle filtering algorithms for nonlinear/non-Gaussian
|
|
|
5
5
|
state estimation.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import Callable, NamedTuple, Optional, Tuple
|
|
8
|
+
from typing import Any, Callable, NamedTuple, Optional, Tuple
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numba import njit
|
|
@@ -102,9 +102,9 @@ def resample_systematic(
|
|
|
102
102
|
|
|
103
103
|
@njit(cache=True)
|
|
104
104
|
def _resample_residual_deterministic(
|
|
105
|
-
particles: np.ndarray,
|
|
106
|
-
floor_Nw: np.ndarray,
|
|
107
|
-
) -> Tuple[np.ndarray, int]:
|
|
105
|
+
particles: np.ndarray[Any, Any],
|
|
106
|
+
floor_Nw: np.ndarray[Any, Any],
|
|
107
|
+
) -> Tuple[np.ndarray[Any, Any], int]:
|
|
108
108
|
"""JIT-compiled deterministic copy portion of residual resampling."""
|
|
109
109
|
N = particles.shape[0]
|
|
110
110
|
n = particles.shape[1]
|
|
@@ -196,8 +196,8 @@ def effective_sample_size(weights: NDArray[np.floating]) -> float:
|
|
|
196
196
|
|
|
197
197
|
def bootstrap_pf_predict(
|
|
198
198
|
particles: NDArray[np.floating],
|
|
199
|
-
f: Callable[[NDArray], NDArray],
|
|
200
|
-
Q_sample: Callable[[int, Optional[np.random.Generator]], NDArray],
|
|
199
|
+
f: Callable[[NDArray[Any]], NDArray[Any]],
|
|
200
|
+
Q_sample: Callable[[int, Optional[np.random.Generator]], NDArray[Any]],
|
|
201
201
|
rng: Optional[np.random.Generator] = None,
|
|
202
202
|
) -> NDArray[np.floating]:
|
|
203
203
|
"""
|
|
@@ -242,7 +242,7 @@ def bootstrap_pf_update(
|
|
|
242
242
|
particles: NDArray[np.floating],
|
|
243
243
|
weights: NDArray[np.floating],
|
|
244
244
|
z: ArrayLike,
|
|
245
|
-
likelihood_func: Callable[[NDArray, NDArray], float],
|
|
245
|
+
likelihood_func: Callable[[NDArray[Any], NDArray[Any]], float],
|
|
246
246
|
) -> Tuple[NDArray[np.floating], float]:
|
|
247
247
|
"""
|
|
248
248
|
Bootstrap particle filter update step.
|
|
@@ -328,9 +328,9 @@ def bootstrap_pf_step(
|
|
|
328
328
|
particles: NDArray[np.floating],
|
|
329
329
|
weights: NDArray[np.floating],
|
|
330
330
|
z: ArrayLike,
|
|
331
|
-
f: Callable[[NDArray], NDArray],
|
|
332
|
-
h: Callable[[NDArray], NDArray],
|
|
333
|
-
Q_sample: Callable[[int, Optional[np.random.Generator]], NDArray],
|
|
331
|
+
f: Callable[[NDArray[Any]], NDArray[Any]],
|
|
332
|
+
h: Callable[[NDArray[Any]], NDArray[Any]],
|
|
333
|
+
Q_sample: Callable[[int, Optional[np.random.Generator]], NDArray[Any]],
|
|
334
334
|
R: ArrayLike,
|
|
335
335
|
resample_threshold: float = 0.5,
|
|
336
336
|
resample_method: str = "systematic",
|
|
@@ -378,7 +378,7 @@ def bootstrap_pf_step(
|
|
|
378
378
|
particles_pred = bootstrap_pf_predict(particles, f, Q_sample, rng)
|
|
379
379
|
|
|
380
380
|
# Update
|
|
381
|
-
def likelihood_func(z, x):
|
|
381
|
+
def likelihood_func(z: NDArray[Any], x: NDArray[Any]) -> Any:
|
|
382
382
|
z_pred = h(x)
|
|
383
383
|
return gaussian_likelihood(z, z_pred, R)
|
|
384
384
|
|
|
@@ -426,10 +426,10 @@ def particle_mean(
|
|
|
426
426
|
|
|
427
427
|
@njit(cache=True)
|
|
428
428
|
def _particle_covariance_core(
|
|
429
|
-
particles: np.ndarray,
|
|
430
|
-
weights: np.ndarray,
|
|
431
|
-
mean: np.ndarray,
|
|
432
|
-
) -> np.ndarray:
|
|
429
|
+
particles: np.ndarray[Any, Any],
|
|
430
|
+
weights: np.ndarray[Any, Any],
|
|
431
|
+
mean: np.ndarray[Any, Any],
|
|
432
|
+
) -> np.ndarray[Any, Any]:
|
|
433
433
|
"""JIT-compiled core for particle covariance computation."""
|
|
434
434
|
N = particles.shape[0]
|
|
435
435
|
n = particles.shape[1]
|