nrl-tracker 0.22.5__py3-none-any.whl → 1.7.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/METADATA +57 -10
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/RECORD +84 -69
- pytcl/__init__.py +4 -3
- pytcl/assignment_algorithms/__init__.py +28 -0
- pytcl/assignment_algorithms/gating.py +10 -10
- pytcl/assignment_algorithms/jpda.py +40 -40
- pytcl/assignment_algorithms/nd_assignment.py +379 -0
- pytcl/assignment_algorithms/network_flow.py +371 -0
- pytcl/assignment_algorithms/three_dimensional/assignment.py +3 -3
- pytcl/astronomical/__init__.py +104 -3
- pytcl/astronomical/ephemerides.py +14 -11
- pytcl/astronomical/reference_frames.py +865 -56
- pytcl/astronomical/relativity.py +6 -5
- pytcl/astronomical/sgp4.py +710 -0
- pytcl/astronomical/special_orbits.py +532 -0
- pytcl/astronomical/tle.py +558 -0
- pytcl/atmosphere/__init__.py +43 -1
- pytcl/atmosphere/ionosphere.py +512 -0
- pytcl/atmosphere/nrlmsise00.py +809 -0
- pytcl/clustering/dbscan.py +2 -2
- pytcl/clustering/gaussian_mixture.py +3 -3
- pytcl/clustering/hierarchical.py +15 -15
- pytcl/clustering/kmeans.py +4 -4
- pytcl/containers/__init__.py +24 -0
- pytcl/containers/base.py +219 -0
- pytcl/containers/cluster_set.py +12 -2
- pytcl/containers/covertree.py +26 -29
- pytcl/containers/kd_tree.py +94 -29
- pytcl/containers/rtree.py +200 -1
- pytcl/containers/vptree.py +21 -28
- pytcl/coordinate_systems/conversions/geodetic.py +272 -5
- pytcl/coordinate_systems/jacobians/jacobians.py +2 -2
- pytcl/coordinate_systems/projections/__init__.py +1 -1
- pytcl/coordinate_systems/projections/projections.py +2 -2
- pytcl/coordinate_systems/rotations/rotations.py +10 -6
- pytcl/core/__init__.py +18 -0
- pytcl/core/validation.py +333 -2
- pytcl/dynamic_estimation/__init__.py +26 -0
- pytcl/dynamic_estimation/gaussian_sum_filter.py +434 -0
- pytcl/dynamic_estimation/imm.py +14 -14
- pytcl/dynamic_estimation/kalman/__init__.py +30 -0
- pytcl/dynamic_estimation/kalman/constrained.py +382 -0
- pytcl/dynamic_estimation/kalman/extended.py +8 -8
- pytcl/dynamic_estimation/kalman/h_infinity.py +613 -0
- pytcl/dynamic_estimation/kalman/square_root.py +60 -573
- pytcl/dynamic_estimation/kalman/sr_ukf.py +302 -0
- pytcl/dynamic_estimation/kalman/ud_filter.py +410 -0
- pytcl/dynamic_estimation/kalman/unscented.py +8 -6
- pytcl/dynamic_estimation/particle_filters/bootstrap.py +15 -15
- pytcl/dynamic_estimation/rbpf.py +589 -0
- pytcl/gravity/egm.py +13 -0
- pytcl/gravity/spherical_harmonics.py +98 -37
- pytcl/gravity/tides.py +6 -6
- pytcl/logging_config.py +328 -0
- pytcl/magnetism/__init__.py +7 -0
- pytcl/magnetism/emm.py +10 -3
- pytcl/magnetism/wmm.py +260 -23
- pytcl/mathematical_functions/combinatorics/combinatorics.py +5 -5
- pytcl/mathematical_functions/geometry/geometry.py +5 -5
- pytcl/mathematical_functions/numerical_integration/quadrature.py +6 -6
- pytcl/mathematical_functions/signal_processing/detection.py +24 -24
- pytcl/mathematical_functions/signal_processing/filters.py +14 -14
- pytcl/mathematical_functions/signal_processing/matched_filter.py +12 -12
- pytcl/mathematical_functions/special_functions/bessel.py +15 -3
- pytcl/mathematical_functions/special_functions/debye.py +136 -26
- pytcl/mathematical_functions/special_functions/error_functions.py +3 -1
- pytcl/mathematical_functions/special_functions/gamma_functions.py +4 -4
- pytcl/mathematical_functions/special_functions/hypergeometric.py +81 -15
- pytcl/mathematical_functions/transforms/fourier.py +8 -8
- pytcl/mathematical_functions/transforms/stft.py +12 -12
- pytcl/mathematical_functions/transforms/wavelets.py +9 -9
- pytcl/navigation/geodesy.py +246 -160
- pytcl/navigation/great_circle.py +101 -19
- pytcl/plotting/coordinates.py +7 -7
- pytcl/plotting/tracks.py +2 -2
- pytcl/static_estimation/maximum_likelihood.py +16 -14
- pytcl/static_estimation/robust.py +5 -5
- pytcl/terrain/loaders.py +5 -5
- pytcl/trackers/hypothesis.py +1 -1
- pytcl/trackers/mht.py +9 -9
- pytcl/trackers/multi_target.py +1 -1
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/LICENSE +0 -0
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/WHEEL +0 -0
- {nrl_tracker-0.22.5.dist-info → nrl_tracker-1.7.5.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: nrl-tracker
|
|
3
|
-
Version:
|
|
3
|
+
Version: 1.7.5
|
|
4
4
|
Summary: Python port of the U.S. Naval Research Laboratory's Tracker Component Library for target tracking algorithms
|
|
5
5
|
Author: Original: David F. Crouse, Naval Research Laboratory
|
|
6
6
|
Maintainer: Python Port Contributors
|
|
@@ -34,10 +34,13 @@ Requires-Dist: nrl-tracker[astronomy,dev,geodesy,optimization,signal,visualizati
|
|
|
34
34
|
Provides-Extra: astronomy
|
|
35
35
|
Requires-Dist: astropy>=5.0; extra == "astronomy"
|
|
36
36
|
Requires-Dist: jplephem>=2.18; extra == "astronomy"
|
|
37
|
+
Provides-Extra: benchmark
|
|
38
|
+
Requires-Dist: pytest-benchmark>=4.0.0; extra == "benchmark"
|
|
37
39
|
Provides-Extra: dev
|
|
38
40
|
Requires-Dist: pytest>=7.0.0; extra == "dev"
|
|
39
41
|
Requires-Dist: pytest-cov>=4.0.0; extra == "dev"
|
|
40
42
|
Requires-Dist: pytest-xdist>=3.0.0; extra == "dev"
|
|
43
|
+
Requires-Dist: pytest-benchmark>=4.0.0; extra == "dev"
|
|
41
44
|
Requires-Dist: hypothesis>=6.0.0; extra == "dev"
|
|
42
45
|
Requires-Dist: black>=23.0.0; extra == "dev"
|
|
43
46
|
Requires-Dist: isort>=5.12.0; extra == "dev"
|
|
@@ -60,15 +63,17 @@ Requires-Dist: plotly>=5.15.0; extra == "visualization"
|
|
|
60
63
|
|
|
61
64
|
# Tracker Component Library (Python)
|
|
62
65
|
|
|
63
|
-
[](https://pypi.org/project/nrl-tracker/)
|
|
64
67
|
[](https://www.python.org/downloads/)
|
|
65
68
|
[](https://en.wikipedia.org/wiki/Public_domain)
|
|
66
69
|
[](https://github.com/psf/black)
|
|
67
|
-
[](https://github.com/nedonatelli/TCL)
|
|
71
|
+
[](docs/gap_analysis.rst)
|
|
72
|
+
[](mypy.ini)
|
|
68
73
|
|
|
69
74
|
A Python port of the [U.S. Naval Research Laboratory's Tracker Component Library](https://github.com/USNavalResearchLaboratory/TrackerComponentLibrary), a comprehensive collection of algorithms for target tracking, estimation, coordinate systems, and related mathematical functions.
|
|
70
75
|
|
|
71
|
-
**
|
|
76
|
+
**1,070+ functions** | **153 modules** | **1,988 tests** | **100% MATLAB parity**
|
|
72
77
|
|
|
73
78
|
## Overview
|
|
74
79
|
|
|
@@ -76,12 +81,15 @@ The Tracker Component Library provides building blocks for developing target tra
|
|
|
76
81
|
|
|
77
82
|
- **Coordinate Systems**: Conversions between Cartesian, spherical, geodetic, and other coordinate systems
|
|
78
83
|
- **Dynamic Models**: State transition matrices for constant velocity, coordinated turn, and other motion models
|
|
79
|
-
- **Estimation Algorithms**: Kalman filters (EKF, UKF,
|
|
80
|
-
- **Assignment Algorithms**: Hungarian algorithm, auction algorithms,
|
|
84
|
+
- **Estimation Algorithms**: Kalman filters (EKF, UKF, CKF, H-infinity), particle filters, smoothers, and batch estimation
|
|
85
|
+
- **Assignment Algorithms**: Hungarian algorithm, auction algorithms, 3D/ND assignment, k-best assignments
|
|
86
|
+
- **Data Association**: Global Nearest Neighbor, JPDA, MHT for multi-target tracking
|
|
81
87
|
- **Mathematical Functions**: Special functions, statistics, numerical integration, and more
|
|
82
|
-
- **Astronomical Code**:
|
|
83
|
-
- **
|
|
84
|
-
- **
|
|
88
|
+
- **Astronomical Code**: SGP4/SDP4 propagation, TLE parsing, special orbits (parabolic/hyperbolic), ephemerides, relativistic corrections
|
|
89
|
+
- **Reference Frames**: GCRF, ITRF, TEME, TOD, MOD with full transformation chains
|
|
90
|
+
- **Navigation**: Geodetic calculations, INS mechanization, GNSS utilities, INS/GNSS integration
|
|
91
|
+
- **Geophysical Models**: Gravity (WGS84, EGM96/2008), magnetism (WMM, IGRF), atmosphere, tides, terrain
|
|
92
|
+
- **Signal Processing**: Digital filters, matched filtering, CFAR detection, transforms (FFT, STFT, wavelets)
|
|
85
93
|
|
|
86
94
|
## Installation
|
|
87
95
|
|
|
@@ -201,7 +209,46 @@ pytcl/
|
|
|
201
209
|
|
|
202
210
|
- [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
|
|
203
211
|
- [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
|
|
204
|
-
- [Examples](examples/)
|
|
212
|
+
- [Examples](examples/) - 29 validated example scripts
|
|
213
|
+
- [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
|
|
214
|
+
|
|
215
|
+
## Examples & Tutorials
|
|
216
|
+
|
|
217
|
+
The library includes 39 runnable code examples demonstrating all major features:
|
|
218
|
+
|
|
219
|
+
### Examples (29 files in `/examples/`)
|
|
220
|
+
|
|
221
|
+
Comprehensive demonstrations of library functionality:
|
|
222
|
+
- **Tracking & Estimation**: Kalman filters, particle filters, smoothers
|
|
223
|
+
- **Assignment**: Hungarian algorithm, k-best assignments, 3D assignment
|
|
224
|
+
- **Coordinates**: Frame conversions, transformations, geodetic calculations
|
|
225
|
+
- **Dynamics**: State models, motion models, dynamic systems
|
|
226
|
+
- **Filtering**: Uncertainty visualization, multi-target tracking
|
|
227
|
+
- **Astronomy**: Ephemerides, orbital mechanics, relativistic corrections
|
|
228
|
+
- **Navigation**: INS/GNSS integration, geophysical modeling
|
|
229
|
+
- **Signal Processing**: Detection, filtering, transforms
|
|
230
|
+
- **Terrain & Atmosphere**: Elevation models, atmospheric properties
|
|
231
|
+
|
|
232
|
+
**Status**: ✅ All 29 examples validated and passing (100% execution success)
|
|
233
|
+
|
|
234
|
+
### Tutorials (10 modules in `/docs/tutorials/`)
|
|
235
|
+
|
|
236
|
+
Interactive learning modules with visualizations:
|
|
237
|
+
- Assignment algorithms and 3D assignment problems
|
|
238
|
+
- Atmospheric and geophysical models
|
|
239
|
+
- Dynamical systems and reference frames
|
|
240
|
+
- Filtering and smoothing techniques
|
|
241
|
+
- Sensor fusion and advanced filtering
|
|
242
|
+
- Special functions and mathematical tools
|
|
243
|
+
|
|
244
|
+
**Status**: ✅ All 10 tutorials validated and passing (100% execution success)
|
|
245
|
+
|
|
246
|
+
## Documentation
|
|
247
|
+
|
|
248
|
+
- [API Reference](https://pytcl.readthedocs.io/en/latest/api/)
|
|
249
|
+
- [User Guides](https://pytcl.readthedocs.io/en/latest/user_guide/)
|
|
250
|
+
- [Examples](examples/) - 29 validated example scripts
|
|
251
|
+
- [Tutorials](docs/tutorials/) - 10 interactive tutorial modules
|
|
205
252
|
|
|
206
253
|
## Comparison with Original MATLAB Library
|
|
207
254
|
|
|
@@ -1,62 +1,77 @@
|
|
|
1
|
-
pytcl/__init__.py,sha256=
|
|
2
|
-
pytcl/
|
|
1
|
+
pytcl/__init__.py,sha256=k9vpQYy3jGUCAVi6y6m87KltSc7kPBYrWXVlXh6j63E,2030
|
|
2
|
+
pytcl/logging_config.py,sha256=UJaYufQgNuIjpsOMTPo3ewz1XCHPk8a08jTHyP7uoI4,8956
|
|
3
|
+
pytcl/assignment_algorithms/__init__.py,sha256=kUWhmyLhZcs5GiUQA5_v7KA3qETGsvqV6wU8r7paO-k,2976
|
|
3
4
|
pytcl/assignment_algorithms/data_association.py,sha256=tsRxWJZk9aAPmE99BKXGouEpFfZrjPjb4HXvgxFUHhU,11405
|
|
4
|
-
pytcl/assignment_algorithms/gating.py,sha256=
|
|
5
|
-
pytcl/assignment_algorithms/jpda.py,sha256=
|
|
5
|
+
pytcl/assignment_algorithms/gating.py,sha256=AXWn-F_EOGI6qrBc4PN5eFM-ZZGu1WOMi5b5ZsxValU,10910
|
|
6
|
+
pytcl/assignment_algorithms/jpda.py,sha256=8-HoO2VygxJ8FFSCCOIOfbhMAn87jU7PqVvd7lQ3GEY,19797
|
|
7
|
+
pytcl/assignment_algorithms/nd_assignment.py,sha256=RBRoXoJnUY0lB9Vb_dwvQtwh6oI31KfeDqpaNrTNXzk,11344
|
|
8
|
+
pytcl/assignment_algorithms/network_flow.py,sha256=tmNOHdrRfo30T8UXZ0A_icDdVDgQCShdbXEt9HY0p1w,10325
|
|
6
9
|
pytcl/assignment_algorithms/three_dimensional/__init__.py,sha256=1Q40OUlUQoo7YKEucwdrSNo3D4A0Zibvkr8z4TpueBg,526
|
|
7
|
-
pytcl/assignment_algorithms/three_dimensional/assignment.py,sha256=
|
|
10
|
+
pytcl/assignment_algorithms/three_dimensional/assignment.py,sha256=OGcjg3Yr1tYriWYBJ5k6jiRMpOHDISK8FJDY0nTQxxw,19244
|
|
8
11
|
pytcl/assignment_algorithms/two_dimensional/__init__.py,sha256=4Evsn__9hTfI2i8m8Ngl-Zy0Fa2OydKmDKlZlH6jaao,778
|
|
9
12
|
pytcl/assignment_algorithms/two_dimensional/assignment.py,sha256=eh87MBb-uiUSI1MXj4HrreRKB6Z8rxAyDkNQ8-u4SbM,11848
|
|
10
13
|
pytcl/assignment_algorithms/two_dimensional/kbest.py,sha256=yiTToLuP7xWxQlQ8E-fpgXg-5iu0nnXcJXStjUB0nOE,17284
|
|
11
|
-
pytcl/astronomical/__init__.py,sha256=
|
|
12
|
-
pytcl/astronomical/ephemerides.py,sha256=
|
|
14
|
+
pytcl/astronomical/__init__.py,sha256=v0nUgEy5ReHXzpNb1JdwWXv4AtcFksotEOccQnOyVfI,9667
|
|
15
|
+
pytcl/astronomical/ephemerides.py,sha256=nQSbcipQ_IhPv1R-Q0-iPlfTCb4x2KdfVjwc0c_YeeE,16705
|
|
13
16
|
pytcl/astronomical/lambert.py,sha256=Lc8FT1JmpI9WSXsG2s5vIRkSoBSV7r5hd3o2bGh2Ojo,15607
|
|
14
17
|
pytcl/astronomical/orbital_mechanics.py,sha256=8GssRanwTowCl6PJYqmB_SDnNznLUq5gkPa3j6iEo3U,19965
|
|
15
|
-
pytcl/astronomical/reference_frames.py,sha256=
|
|
16
|
-
pytcl/astronomical/relativity.py,sha256=
|
|
18
|
+
pytcl/astronomical/reference_frames.py,sha256=MBqprzBpEvdq3ngRL-_pp-Vnj7AqbuXhjUfGQ98znfc,35616
|
|
19
|
+
pytcl/astronomical/relativity.py,sha256=deuzBIINS4HimCwNU0_mzlHiB2nJ3AW8PnqtpzTw5_I,15534
|
|
20
|
+
pytcl/astronomical/sgp4.py,sha256=iNZrqMRUzR-LFeZiluzlNmkwxeYbIyF2F1cygyeEZVE,21546
|
|
21
|
+
pytcl/astronomical/special_orbits.py,sha256=N54c_wAD7XKk_diDOw2QjUSkmYECMyWQDq2P6EeEBEI,12745
|
|
17
22
|
pytcl/astronomical/time_systems.py,sha256=Jg0Zaq60hc4Ts1aQtb5bK4KSZhz-uQse8gYC89Y0-TA,15243
|
|
18
|
-
pytcl/
|
|
23
|
+
pytcl/astronomical/tle.py,sha256=t3e2-0f3Wiz77q-pC2jfpohkrDfoYOEHacpNgWMNLAk,14638
|
|
24
|
+
pytcl/atmosphere/__init__.py,sha256=Joa6PBEfKun0Moii6BOzyVYG8AOFyvucKdVuY62ArQc,1685
|
|
25
|
+
pytcl/atmosphere/ionosphere.py,sha256=1qC3hY-27pD0XcLBjU735deKYmmi6qnj2fDG1zNbTqg,14681
|
|
19
26
|
pytcl/atmosphere/models.py,sha256=pMLv8D7qoFqLZrlbTHLJJULOdDdhPskJ1m7KVKLV63E,9584
|
|
27
|
+
pytcl/atmosphere/nrlmsise00.py,sha256=jcmAC00G3X0CzfK4eWkvq2tPxHXzMqC8GBHNbFZRq4w,25868
|
|
20
28
|
pytcl/clustering/__init__.py,sha256=bYdhC_XJEt6KUUni9bIPxaddXNEGmIJQvGkA14rK4J8,1697
|
|
21
|
-
pytcl/clustering/dbscan.py,sha256=
|
|
22
|
-
pytcl/clustering/gaussian_mixture.py,sha256=
|
|
23
|
-
pytcl/clustering/hierarchical.py,sha256=
|
|
24
|
-
pytcl/clustering/kmeans.py,sha256=
|
|
25
|
-
pytcl/containers/__init__.py,sha256
|
|
26
|
-
pytcl/containers/
|
|
27
|
-
pytcl/containers/
|
|
28
|
-
pytcl/containers/
|
|
29
|
+
pytcl/clustering/dbscan.py,sha256=WgzYz_f5nDh0T1RPClX9b3xSvFPmLxY6QaI2NCtxJg4,7389
|
|
30
|
+
pytcl/clustering/gaussian_mixture.py,sha256=UAI2_WG2RASA0N2PIZ0EZgqYZ3yly7oJBSJWSJnm_bE,22904
|
|
31
|
+
pytcl/clustering/hierarchical.py,sha256=K7z6bZR4QSDMva9kaqEOjdktl8unMK1wyCJm3cFN8pQ,14292
|
|
32
|
+
pytcl/clustering/kmeans.py,sha256=GNvgaGP53LKr4-fh-UajxbjCi0jWCCLJba23EGcQq4I,10712
|
|
33
|
+
pytcl/containers/__init__.py,sha256=jZAZb0VUft5gjQghfg2S9PD-LsA5xgtXkc0mAS_Gnmk,2428
|
|
34
|
+
pytcl/containers/base.py,sha256=UL-RXobVlZCZ5H3Xdo_TzcJQANNsIVQeynKHhLGxRVE,5545
|
|
35
|
+
pytcl/containers/cluster_set.py,sha256=uhfOIpXlYoI1U75TWcLMHjezVavnIZhVEGQHKCDmKo4,22774
|
|
36
|
+
pytcl/containers/covertree.py,sha256=SKiosZnJ9bvAaANDKQSbDUqL2BnIno-1D8TbOWDM3m0,13337
|
|
37
|
+
pytcl/containers/kd_tree.py,sha256=9CKHAzid0DZ879hut8M4dyW_976pIWNLX3uWzELPIu4,18563
|
|
29
38
|
pytcl/containers/measurement_set.py,sha256=87AbdoZIUspn1yJsiMpyQ5LoEVcerUnXefXGGPtFTJg,12654
|
|
30
|
-
pytcl/containers/rtree.py,sha256=
|
|
39
|
+
pytcl/containers/rtree.py,sha256=SGlnEG6q670qxO9P_jDT7yocjYmdal8f22SvEXdvw9E,21857
|
|
31
40
|
pytcl/containers/track_list.py,sha256=6q9Qgcwm-8H_JqtOCsMssF27av4XaSkhfDl-MWb1ABc,12520
|
|
32
|
-
pytcl/containers/vptree.py,sha256=
|
|
41
|
+
pytcl/containers/vptree.py,sha256=eFBX2-sm_lgqON18uM4MEk4I4_sRgoPla29cTJFy_Xo,8800
|
|
33
42
|
pytcl/coordinate_systems/__init__.py,sha256=jwYhu_-9AvOeP9WLG9PYtyDwfe0GjxNZ9-xCqiLymW4,3909
|
|
34
43
|
pytcl/coordinate_systems/conversions/__init__.py,sha256=PkNevB78vBw0BkalydJBbQO91AyiMJxKRrgJNt4HsYc,1100
|
|
35
|
-
pytcl/coordinate_systems/conversions/geodetic.py,sha256=
|
|
44
|
+
pytcl/coordinate_systems/conversions/geodetic.py,sha256=rRRf4MWBkGj3VTN1WRW3lrlw4Yf9a4HH3UCgNOGjbJ0,23460
|
|
36
45
|
pytcl/coordinate_systems/conversions/spherical.py,sha256=q7k9l5mJbVzVdNj9Gcq4ibFxax8z_mVpJfITRBzx630,10812
|
|
37
46
|
pytcl/coordinate_systems/jacobians/__init__.py,sha256=CRGB8GzvGT_sr4Ynm51S7gSX8grqt1pO1Pq1MWmHPTs,890
|
|
38
|
-
pytcl/coordinate_systems/jacobians/jacobians.py,sha256=
|
|
39
|
-
pytcl/coordinate_systems/projections/__init__.py,sha256=
|
|
40
|
-
pytcl/coordinate_systems/projections/projections.py,sha256=
|
|
47
|
+
pytcl/coordinate_systems/jacobians/jacobians.py,sha256=0gpbelZPN4HDtvS1ymc3RIhOfxCVTKpRc-jDJXdM6pQ,11747
|
|
48
|
+
pytcl/coordinate_systems/projections/__init__.py,sha256=TmBiffO5cmazAhsfPIVBaaqnravVSO3JxjGb0MXkucc,2404
|
|
49
|
+
pytcl/coordinate_systems/projections/projections.py,sha256=y_kwcu_zp0HHiKR-wp3v3AvRcY61bleDi1SxwbrnWB0,33179
|
|
41
50
|
pytcl/coordinate_systems/rotations/__init__.py,sha256=nqAz4iJd2hEOX_r7Tz4cE524sShyxdbtcQ5m56RrDLg,1047
|
|
42
|
-
pytcl/coordinate_systems/rotations/rotations.py,sha256=
|
|
43
|
-
pytcl/core/__init__.py,sha256=
|
|
51
|
+
pytcl/coordinate_systems/rotations/rotations.py,sha256=2KK6Lgpfmjac3qfOMvHku_BcwGOgkRC13BZbSCUvfwQ,18314
|
|
52
|
+
pytcl/core/__init__.py,sha256=3GFQX_Q9f7fhmWlA6OQiS6OpM7HWhyT9iQhB8Mhi_kk,1580
|
|
44
53
|
pytcl/core/array_utils.py,sha256=SsgEiAoRCWxAVKq1aa5-nPdOi-2AB6XNObu0IaGClUk,13983
|
|
45
54
|
pytcl/core/constants.py,sha256=lZVDK5zsSR02_4b2Nqx9KDtZT9QaYhkZ9wuoODbifd4,8693
|
|
46
|
-
pytcl/core/validation.py,sha256=
|
|
47
|
-
pytcl/dynamic_estimation/__init__.py,sha256=
|
|
48
|
-
pytcl/dynamic_estimation/
|
|
55
|
+
pytcl/core/validation.py,sha256=9Pjn2wOYmGLJDSA8eS2aGTCGO16o5l2xioOHamNXuIg,23441
|
|
56
|
+
pytcl/dynamic_estimation/__init__.py,sha256=zxmkZIXVfHPv5AHYpQV5nwsI0PA3m-Vw7W0gkJE7j98,5191
|
|
57
|
+
pytcl/dynamic_estimation/gaussian_sum_filter.py,sha256=rxUy_WapTL_pkGimD01DqYE7fElLS_DljnX2yg95Uts,13620
|
|
58
|
+
pytcl/dynamic_estimation/imm.py,sha256=RLSFPTMDsudxSf9Mh6Q5qD852tq9lRoCTvFCGphezhs,22152
|
|
49
59
|
pytcl/dynamic_estimation/information_filter.py,sha256=x7iQwO_iJT1dCSvDws5LqD3yAtjw9QVGUfMPcXn1IA4,17349
|
|
60
|
+
pytcl/dynamic_estimation/rbpf.py,sha256=CaKSD2TC1sxICnHuN1W2v2S7P-Kxi4lxdy4KRq2We3w,17898
|
|
50
61
|
pytcl/dynamic_estimation/smoothers.py,sha256=x2j-nR--EI5JNZvMywPeDHcrfW8b5PYK0DCU4Rmig_g,18914
|
|
51
62
|
pytcl/dynamic_estimation/batch_estimation/__init__.py,sha256=JQ0s76Enov5a7plA4EnUua4t-7etikQrwr5z4WIjUeo,46
|
|
52
|
-
pytcl/dynamic_estimation/kalman/__init__.py,sha256=
|
|
53
|
-
pytcl/dynamic_estimation/kalman/
|
|
63
|
+
pytcl/dynamic_estimation/kalman/__init__.py,sha256=lR-OacfZ5mqnAboEbOel5w_WS_Gmz-1q0l4meKfQsGs,3163
|
|
64
|
+
pytcl/dynamic_estimation/kalman/constrained.py,sha256=Zidzz6_9OvwUyQppEltdmYTMvEeqRKFRkVMwx1TASuw,10960
|
|
65
|
+
pytcl/dynamic_estimation/kalman/extended.py,sha256=fxi2-oq8qxnxZqPmjB8-Am03z6_F_R90wwFcOIEk_dg,10459
|
|
66
|
+
pytcl/dynamic_estimation/kalman/h_infinity.py,sha256=rtbYiryJbxzko-CIdNJSHuWXU2wI9T52YGBYq3o92sE,16563
|
|
54
67
|
pytcl/dynamic_estimation/kalman/linear.py,sha256=1Zgg9gZya0Vxs9im7sPUqLj0Luo463vS-RSa6GCReFI,12248
|
|
55
|
-
pytcl/dynamic_estimation/kalman/square_root.py,sha256=
|
|
56
|
-
pytcl/dynamic_estimation/kalman/
|
|
68
|
+
pytcl/dynamic_estimation/kalman/square_root.py,sha256=pDEDstYIQht5e7ahD6x13UfSVIUWMe4jRR4z6j687vw,13457
|
|
69
|
+
pytcl/dynamic_estimation/kalman/sr_ukf.py,sha256=xlKRML6QOHD99P-urIeBZsBDc_DY1_U73W3eDkiqRRY,8737
|
|
70
|
+
pytcl/dynamic_estimation/kalman/ud_filter.py,sha256=j56gw-piKJaMtoHWRkr2MiBjOC9tGSguIgFregOMJOs,10269
|
|
71
|
+
pytcl/dynamic_estimation/kalman/unscented.py,sha256=G3Ks6fa_Z-MxUdOEiiHqQ1wYJzOgfuipiP32at6Mv8o,15505
|
|
57
72
|
pytcl/dynamic_estimation/measurement_update/__init__.py,sha256=8rlyJwVpxf0fZj-AFo1hlewvryZRhUzcy3F8uMe6I8c,48
|
|
58
73
|
pytcl/dynamic_estimation/particle_filters/__init__.py,sha256=-DRF5rVF2749suLlArmkTvVkqeMcV_mIx0eLeTj6wNU,906
|
|
59
|
-
pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=
|
|
74
|
+
pytcl/dynamic_estimation/particle_filters/bootstrap.py,sha256=6KSLZROxfrldExpDL1GaGhd75IXO5KA8iC-kmhuUBkg,13531
|
|
60
75
|
pytcl/dynamic_models/__init__.py,sha256=Cd8MyyYuB8gMnepkPA-HSwTaKFPThnqoKOhdjVOsXWg,2783
|
|
61
76
|
pytcl/dynamic_models/continuous_time/__init__.py,sha256=dAkfEddLkfMvDalK9v2GRBvaZV1KgqYpFBLOnoiFClw,1023
|
|
62
77
|
pytcl/dynamic_models/continuous_time/dynamics.py,sha256=CDwqn-66eUwXA5xfIjaG6A4EDBqtOyQ3aWarJr9QH4g,12858
|
|
@@ -70,52 +85,52 @@ pytcl/dynamic_models/process_noise/polynomial.py,sha256=natfpsdN3qM9VzPeXF_nBpsb
|
|
|
70
85
|
pytcl/dynamic_models/process_noise/singer.py,sha256=lsJDT6xOvcS_qQKFtgHX0L7Ukpy4D7HgvPT8Q3I0ibU,3901
|
|
71
86
|
pytcl/gravity/__init__.py,sha256=5xNdQSrrkt7-1-JPOYqR38CqvNJ7qKlPyMK36DGm6-I,3693
|
|
72
87
|
pytcl/gravity/clenshaw.py,sha256=1BdxzU8IfGGd68H_U35soIJkiOHphY35e9mLElhPTOg,15364
|
|
73
|
-
pytcl/gravity/egm.py,sha256=
|
|
88
|
+
pytcl/gravity/egm.py,sha256=47I8nyXNhXUKPkufXahs4JGsBcqhM-9z2xGz0X4JPmU,18422
|
|
74
89
|
pytcl/gravity/models.py,sha256=rdY3Do4M1eRFO74gu3xy-bBn7tox3zM49wYbfnsIQWw,11159
|
|
75
|
-
pytcl/gravity/spherical_harmonics.py,sha256=
|
|
76
|
-
pytcl/gravity/tides.py,sha256=
|
|
77
|
-
pytcl/magnetism/__init__.py,sha256=
|
|
78
|
-
pytcl/magnetism/emm.py,sha256=
|
|
90
|
+
pytcl/gravity/spherical_harmonics.py,sha256=FV_cFp0lx6uGw-dxNFRpehaAn28QImX9z7PFdyRbEJI,16549
|
|
91
|
+
pytcl/gravity/tides.py,sha256=nu9_L12aBd2EpmTMh3UulmYCUxQ9wC4kOpdSIn7f0Z8,27785
|
|
92
|
+
pytcl/magnetism/__init__.py,sha256=pBASOzCPHNnYqUH_XDEblhGtjz50vY9uW2KS25A0zQQ,2701
|
|
93
|
+
pytcl/magnetism/emm.py,sha256=iIdxSL0uGGIf8nfA-c_SmHvg9_J7HwRA2-qbQIUW6IE,22380
|
|
79
94
|
pytcl/magnetism/igrf.py,sha256=3g0PsH8IdbwQQS28OR5XWD-g-QxvfUva7jOkKToxndQ,13384
|
|
80
|
-
pytcl/magnetism/wmm.py,sha256=
|
|
95
|
+
pytcl/magnetism/wmm.py,sha256=7YsxnBmxeH5WnTTZ3VE91gr55Qq-OvVmBRAMbqlhGVg,23479
|
|
81
96
|
pytcl/mathematical_functions/__init__.py,sha256=zeJ1ffRRl83k2NHn3HTn-fgtFoWNPq6LCALc3xRo4Do,3767
|
|
82
97
|
pytcl/mathematical_functions/basic_matrix/__init__.py,sha256=kZv3kMAEHBdVxhbyMxTyM0s-4XJP1tK6po82UsIE4tc,1318
|
|
83
98
|
pytcl/mathematical_functions/basic_matrix/decompositions.py,sha256=PWJsFDiXM2T78RHdxBJZPFnl8kFbNZQpHrbpw0mhE00,12268
|
|
84
99
|
pytcl/mathematical_functions/basic_matrix/special_matrices.py,sha256=kOozwP2CHAj4qyO7Z9ct6GwDMkmHkk1bQa0e9G98FgA,13499
|
|
85
100
|
pytcl/mathematical_functions/combinatorics/__init__.py,sha256=byuHI0WkxOkQF8egrfjEr-awB2visWDXlGMnDux5IBg,1043
|
|
86
|
-
pytcl/mathematical_functions/combinatorics/combinatorics.py,sha256=
|
|
101
|
+
pytcl/mathematical_functions/combinatorics/combinatorics.py,sha256=LzVxY3E5_pnpVl9XlcRdQjWhSSY8Fa1JUVYA6J25fro,12354
|
|
87
102
|
pytcl/mathematical_functions/continuous_optimization/__init__.py,sha256=lck60eeCUOsRpEzPHBY3kiLKwNz_fhmYoUGP3lTmTwk,55
|
|
88
103
|
pytcl/mathematical_functions/geometry/__init__.py,sha256=DhCmux9-6zxYRzlhQ9du18kvUL-leiiZwdd3Cmb5WX0,1092
|
|
89
|
-
pytcl/mathematical_functions/geometry/geometry.py,sha256=
|
|
104
|
+
pytcl/mathematical_functions/geometry/geometry.py,sha256=iLKqTlLEGm8IScEDHEWOBQz5xfj-fflzIOzZaJ8fPtE,16522
|
|
90
105
|
pytcl/mathematical_functions/interpolation/__init__.py,sha256=lK4Rs0Ds_fzf9q0n6id5epdN0U8V7yD87dS-w1hvN8I,741
|
|
91
106
|
pytcl/mathematical_functions/interpolation/interpolation.py,sha256=2cXMDgWBjWDGHnK1K_lawFlJL8oPl5AQGf9MNgsESfo,12610
|
|
92
107
|
pytcl/mathematical_functions/numerical_integration/__init__.py,sha256=iXiHzyV_KIhCv7tXErXlN1_fUEACN6yN3CYDHRA7esw,974
|
|
93
|
-
pytcl/mathematical_functions/numerical_integration/quadrature.py,sha256=
|
|
108
|
+
pytcl/mathematical_functions/numerical_integration/quadrature.py,sha256=3MwNCjdMfopgtJjXWxn-q9VyawI1IArkNBXqa_kRMj4,15716
|
|
94
109
|
pytcl/mathematical_functions/polynomials/__init__.py,sha256=WJWZcoQhnvy5f59-kncMTgD9mCtgwfDgULvDYYHS5ys,43
|
|
95
110
|
pytcl/mathematical_functions/signal_processing/__init__.py,sha256=_SzzBVtxmSvP8FKeogRdNmFo8FOVDDoexVOqd-lE7do,2325
|
|
96
|
-
pytcl/mathematical_functions/signal_processing/detection.py,sha256=
|
|
97
|
-
pytcl/mathematical_functions/signal_processing/filters.py,sha256=
|
|
98
|
-
pytcl/mathematical_functions/signal_processing/matched_filter.py,sha256=
|
|
111
|
+
pytcl/mathematical_functions/signal_processing/detection.py,sha256=1Uok0p82t2zB7BWZB6GEkUCwuoM3WB8SRykTrVRdsIo,30612
|
|
112
|
+
pytcl/mathematical_functions/signal_processing/filters.py,sha256=xiB8VSFqTFkBCAom0yIWw7pK3Zjm6l-VZ_DAtwJMxFA,23676
|
|
113
|
+
pytcl/mathematical_functions/signal_processing/matched_filter.py,sha256=El7XcUbunmXA7s-btXX_R4fgNx8d6QNa86GJETg4zAQ,23134
|
|
99
114
|
pytcl/mathematical_functions/special_functions/__init__.py,sha256=AJBCKj32daQxdahUQckW0bWowzOoapxni2eZnVXERdg,3859
|
|
100
|
-
pytcl/mathematical_functions/special_functions/bessel.py,sha256=
|
|
101
|
-
pytcl/mathematical_functions/special_functions/debye.py,sha256=
|
|
115
|
+
pytcl/mathematical_functions/special_functions/bessel.py,sha256=Xe62y2vrDwdJy3fR4U8_e8TAgisXIWJ94J7wu_xk0kI,14603
|
|
116
|
+
pytcl/mathematical_functions/special_functions/debye.py,sha256=eH7Y5qq5j-AMKKx7y8uMS_l_pb6z9_3SG6Igvnc1Fdg,9626
|
|
102
117
|
pytcl/mathematical_functions/special_functions/elliptic.py,sha256=WyzBkrfZufIR5dUmCKGcxp6KNpVDrU89NGLDyRrZOqQ,7418
|
|
103
|
-
pytcl/mathematical_functions/special_functions/error_functions.py,sha256=
|
|
104
|
-
pytcl/mathematical_functions/special_functions/gamma_functions.py,sha256=
|
|
105
|
-
pytcl/mathematical_functions/special_functions/hypergeometric.py,sha256=
|
|
118
|
+
pytcl/mathematical_functions/special_functions/error_functions.py,sha256=24-XRcAW-KF6ixEU5V7iB7brD8UVPPQ0b4Zz8gscRdw,6321
|
|
119
|
+
pytcl/mathematical_functions/special_functions/gamma_functions.py,sha256=XB7NHVgKzOEVKpUScqvG3L220bvwIRuUnm_ayO7lJRk,10243
|
|
120
|
+
pytcl/mathematical_functions/special_functions/hypergeometric.py,sha256=mCBf5NPl0mOkwvIwAUp-sbXshin5HyGsdqEeGbYt3wQ,11428
|
|
106
121
|
pytcl/mathematical_functions/special_functions/lambert_w.py,sha256=ivRc4KH5Lwoxb_yijrJEwG0ITa0hhcYF7_gCfVBBNW4,6855
|
|
107
122
|
pytcl/mathematical_functions/special_functions/marcum_q.py,sha256=OZ5QjIB1e_XvRG8A-3dbZ13YXHtdk2EYVEPaqtgVr14,9580
|
|
108
123
|
pytcl/mathematical_functions/statistics/__init__.py,sha256=dfypStgmnFmOrnWcm-3CEvLinONHraFgx9O66_37bqw,1278
|
|
109
124
|
pytcl/mathematical_functions/statistics/distributions.py,sha256=icfFIIKCEFzkpFHuYGWL197nm8wvS7UPJlr9kd_uEgw,19373
|
|
110
125
|
pytcl/mathematical_functions/statistics/estimators.py,sha256=TLnYXSwk5MzBakZrzDBupbOB3ONmJI7q1-oB2xuSVQM,10831
|
|
111
126
|
pytcl/mathematical_functions/transforms/__init__.py,sha256=SPXSKHjqR6B_8pvgtbtOnEiCpU-u0JF2s7hAlhb0BbI,2343
|
|
112
|
-
pytcl/mathematical_functions/transforms/fourier.py,sha256=
|
|
113
|
-
pytcl/mathematical_functions/transforms/stft.py,sha256=
|
|
114
|
-
pytcl/mathematical_functions/transforms/wavelets.py,sha256=
|
|
127
|
+
pytcl/mathematical_functions/transforms/fourier.py,sha256=yD1CcH7sdPlrOmBgL7JoMiPNgN8ee7bTwvblgRRf7l4,20823
|
|
128
|
+
pytcl/mathematical_functions/transforms/stft.py,sha256=olDzNH02Nta5GoeEdsdX1tTVKODr6OxLEYt_h3ZtMgA,18878
|
|
129
|
+
pytcl/mathematical_functions/transforms/wavelets.py,sha256=g7ra-uk-HnQmJRCj1VvJuuz8t8FW55kCENUkx0vPrP4,21807
|
|
115
130
|
pytcl/misc/__init__.py,sha256=SCHf_lQVfdl2gwUluHBiIloTF8HRH8EkgYfbNr7zOug,33
|
|
116
131
|
pytcl/navigation/__init__.py,sha256=k1_x_FnnPrIzGeNu7zejPtPubIhweBgCfwqlZJEMw0I,6042
|
|
117
|
-
pytcl/navigation/geodesy.py,sha256=
|
|
118
|
-
pytcl/navigation/great_circle.py,sha256=
|
|
132
|
+
pytcl/navigation/geodesy.py,sha256=zrpFhPFLr3N1byeE1pxXh-SmPixjuuoGK3_izEnAAdw,19719
|
|
133
|
+
pytcl/navigation/great_circle.py,sha256=u8iqMV6RNsAyzATzjJU11QFGA2pGEaiFJRakQwxTTs0,23326
|
|
119
134
|
pytcl/navigation/ins.py,sha256=OIi8_RjrgEYl0MFpJEFMjIlpgX8DYGTEhdLEvqG-ABU,31151
|
|
120
135
|
pytcl/navigation/ins_gnss.py,sha256=euKF5JGgwmVBsw3jBf7_wa2z1BpZeVbSNmBuwzhGS6c,30157
|
|
121
136
|
pytcl/navigation/rhumb.py,sha256=lr1c3iEXfoOSfIyyXSRWv6He5TlaxEHbJy-dhqM1gRw,18224
|
|
@@ -124,27 +139,27 @@ pytcl/performance_evaluation/estimation_metrics.py,sha256=X1ZCpp8m6DV14N2wbMvlRw
|
|
|
124
139
|
pytcl/performance_evaluation/track_metrics.py,sha256=Nd3royJkAelZV-Qggl8i72e7WocCxWomgliArvVAEkc,13342
|
|
125
140
|
pytcl/physical_values/__init__.py,sha256=SGbg6b0d4dWebE3baW4OlJshL00grG5E4wABw6jxl20,44
|
|
126
141
|
pytcl/plotting/__init__.py,sha256=YtYnKYHL5lN6EaT_bwwR3h89NW0HSMToIWHhHBxcidY,3126
|
|
127
|
-
pytcl/plotting/coordinates.py,sha256=
|
|
142
|
+
pytcl/plotting/coordinates.py,sha256=lTNBwlq_4hnQx_w6RIX6X35Ke3YMFvqV_huJrcFCvNs,17362
|
|
128
143
|
pytcl/plotting/ellipses.py,sha256=bcns6dfNK4bwA_QBshscYhbAz_5wegwyqjDzzoUdWsQ,12465
|
|
129
144
|
pytcl/plotting/metrics.py,sha256=zbJr5P2kQg7-rGpGHsN7rC02S0JLOpPUZeoscQem7uQ,18148
|
|
130
|
-
pytcl/plotting/tracks.py,sha256=
|
|
145
|
+
pytcl/plotting/tracks.py,sha256=3V_78oPEGi7lsTNk-lhYRffXWNHH0-Lj2oNw2HIKRJQ,23054
|
|
131
146
|
pytcl/scheduling/__init__.py,sha256=jTqMSKcsCrWU_Fh6WaT6BW5WatNHyyEYjFbsv6X18Oc,39
|
|
132
147
|
pytcl/static_estimation/__init__.py,sha256=sSEhqq35jq_MpRLnBtWjKXwGZ9dqIw71iwji-TNwXmc,2222
|
|
133
148
|
pytcl/static_estimation/least_squares.py,sha256=8ouOyRGC7K-W8fynZMWlc2-KAFojvTbuzcqi5uS_sVA,13432
|
|
134
|
-
pytcl/static_estimation/maximum_likelihood.py,sha256=
|
|
135
|
-
pytcl/static_estimation/robust.py,sha256=
|
|
149
|
+
pytcl/static_estimation/maximum_likelihood.py,sha256=nt1WShfZ0PlT_eA4gu2WcLiz9zZO9r90m_1PhWqDDgY,21821
|
|
150
|
+
pytcl/static_estimation/robust.py,sha256=mpDUcc3-8F42SVGxXMv20huzekoGWattAa4px9tAZNM,18623
|
|
136
151
|
pytcl/terrain/__init__.py,sha256=e7plNQI5Y_jpZ24r82AgqdX0ChmmyYoeT7HReclnGXc,3228
|
|
137
152
|
pytcl/terrain/dem.py,sha256=rg2o0h0ZDrfxvtYhnE2A5tdzRnCmqcihu4w1uNJdH3Y,20814
|
|
138
|
-
pytcl/terrain/loaders.py,sha256=
|
|
153
|
+
pytcl/terrain/loaders.py,sha256=FGRnyzKh03LrpXICocbIK3MhTW7o9nsVvsm3iuIUqK4,27066
|
|
139
154
|
pytcl/terrain/visibility.py,sha256=nIJr9AVk7C8GCpJV4UDvUjhmAieycWD8BLepAMUBMIQ,22739
|
|
140
155
|
pytcl/trackers/__init__.py,sha256=Gw79xlSIUzdPV8bN1slNWUlGxE3d-NsVmbMygkYVV20,1151
|
|
141
|
-
pytcl/trackers/hypothesis.py,sha256=
|
|
142
|
-
pytcl/trackers/mht.py,sha256=
|
|
143
|
-
pytcl/trackers/multi_target.py,sha256=
|
|
156
|
+
pytcl/trackers/hypothesis.py,sha256=ubK-q89cYayahSHIw5sVYD1fpRUEB0XvC6rQnI1WACA,17361
|
|
157
|
+
pytcl/trackers/mht.py,sha256=osEOXMaCeTt1eVn_E08dLRhEvBroVmf8b81zO5Zp1lU,20720
|
|
158
|
+
pytcl/trackers/multi_target.py,sha256=RDITa0xnbgtVYAMj5XXp4lljo5lZ2zAAc02KZlOjxbQ,10526
|
|
144
159
|
pytcl/trackers/single_target.py,sha256=Yy3FwaNTArMWcaod-0HVeiioNV4xLWxNDn_7ZPVqQYs,6562
|
|
145
160
|
pytcl/transponders/__init__.py,sha256=5fL4u3lKCYgPLo5uFeuZbtRZkJPABntuKYGUvVgMMEI,41
|
|
146
|
-
nrl_tracker-
|
|
147
|
-
nrl_tracker-
|
|
148
|
-
nrl_tracker-
|
|
149
|
-
nrl_tracker-
|
|
150
|
-
nrl_tracker-
|
|
161
|
+
nrl_tracker-1.7.5.dist-info/LICENSE,sha256=rB5G4WppIIUzMOYr2N6uyYlNJ00hRJqE5tie6BMvYuE,1612
|
|
162
|
+
nrl_tracker-1.7.5.dist-info/METADATA,sha256=VaT708s9KWzDJuK9iwP-dqOVZ-CLp0T2IDLXfXWoFRw,12452
|
|
163
|
+
nrl_tracker-1.7.5.dist-info/WHEEL,sha256=pL8R0wFFS65tNSRnaOVrsw9EOkOqxLrlUPenUYnJKNo,91
|
|
164
|
+
nrl_tracker-1.7.5.dist-info/top_level.txt,sha256=17megxcrTPBWwPZTh6jTkwTKxX7No-ZqRpyvElnnO-s,6
|
|
165
|
+
nrl_tracker-1.7.5.dist-info/RECORD,,
|
pytcl/__init__.py
CHANGED
|
@@ -6,7 +6,8 @@ systems, dynamic models, estimation algorithms, and mathematical functions.
|
|
|
6
6
|
|
|
7
7
|
This is a Python port of the U.S. Naval Research Laboratory's Tracker Component
|
|
8
8
|
Library originally written in MATLAB.
|
|
9
|
-
|
|
9
|
+
**Current Version:** 1.7.4 (January 4, 2026)
|
|
10
|
+
**Status:** Production-ready, 2,057 tests passing, 76% line coverage
|
|
10
11
|
Examples
|
|
11
12
|
--------
|
|
12
13
|
>>> import pytcl as pytcl
|
|
@@ -20,7 +21,7 @@ References
|
|
|
20
21
|
no. 5, pp. 18-27, May 2017.
|
|
21
22
|
"""
|
|
22
23
|
|
|
23
|
-
__version__ = "
|
|
24
|
+
__version__ = "1.7.5"
|
|
24
25
|
__author__ = "Python Port Contributors"
|
|
25
26
|
__original_author__ = "David F. Crouse, Naval Research Laboratory"
|
|
26
27
|
|
|
@@ -44,7 +45,7 @@ from pytcl import (
|
|
|
44
45
|
|
|
45
46
|
# Version tuple for programmatic access
|
|
46
47
|
# Handle dev/alpha/beta/rc suffixes by extracting only numeric parts
|
|
47
|
-
def _parse_version(version_str):
|
|
48
|
+
def _parse_version(version_str: str) -> tuple[int, ...]:
|
|
48
49
|
"""Parse version string into tuple of integers."""
|
|
49
50
|
import re
|
|
50
51
|
|
|
@@ -32,6 +32,21 @@ from pytcl.assignment_algorithms.jpda import (
|
|
|
32
32
|
jpda_probabilities,
|
|
33
33
|
jpda_update,
|
|
34
34
|
)
|
|
35
|
+
from pytcl.assignment_algorithms.nd_assignment import (
|
|
36
|
+
AssignmentNDResult,
|
|
37
|
+
auction_assignment_nd,
|
|
38
|
+
detect_dimension_conflicts,
|
|
39
|
+
greedy_assignment_nd,
|
|
40
|
+
relaxation_assignment_nd,
|
|
41
|
+
validate_cost_tensor,
|
|
42
|
+
)
|
|
43
|
+
from pytcl.assignment_algorithms.network_flow import (
|
|
44
|
+
FlowStatus,
|
|
45
|
+
MinCostFlowResult,
|
|
46
|
+
assignment_to_flow_network,
|
|
47
|
+
min_cost_assignment_via_flow,
|
|
48
|
+
min_cost_flow_successive_shortest_paths,
|
|
49
|
+
)
|
|
35
50
|
from pytcl.assignment_algorithms.three_dimensional import (
|
|
36
51
|
Assignment3DResult,
|
|
37
52
|
assign3d,
|
|
@@ -91,4 +106,17 @@ __all__ = [
|
|
|
91
106
|
"jpda_update",
|
|
92
107
|
"jpda_probabilities",
|
|
93
108
|
"compute_likelihood_matrix",
|
|
109
|
+
# N-Dimensional Assignment (4D+)
|
|
110
|
+
"AssignmentNDResult",
|
|
111
|
+
"validate_cost_tensor",
|
|
112
|
+
"greedy_assignment_nd",
|
|
113
|
+
"relaxation_assignment_nd",
|
|
114
|
+
"auction_assignment_nd",
|
|
115
|
+
"detect_dimension_conflicts",
|
|
116
|
+
# Network Flow-Based Assignment
|
|
117
|
+
"FlowStatus",
|
|
118
|
+
"MinCostFlowResult",
|
|
119
|
+
"assignment_to_flow_network",
|
|
120
|
+
"min_cost_flow_successive_shortest_paths",
|
|
121
|
+
"min_cost_assignment_via_flow",
|
|
94
122
|
]
|
|
@@ -5,7 +5,7 @@ This module provides gating methods to determine which measurements
|
|
|
5
5
|
fall within a validation region around predicted track states.
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
|
-
from typing import List, Tuple
|
|
8
|
+
from typing import Any, List, Tuple
|
|
9
9
|
|
|
10
10
|
import numpy as np
|
|
11
11
|
from numba import njit
|
|
@@ -15,8 +15,8 @@ from scipy.stats import chi2
|
|
|
15
15
|
|
|
16
16
|
@njit(cache=True, fastmath=True)
|
|
17
17
|
def _mahalanobis_distance_2d(
|
|
18
|
-
innovation: np.ndarray,
|
|
19
|
-
S_inv: np.ndarray,
|
|
18
|
+
innovation: np.ndarray[Any, Any],
|
|
19
|
+
S_inv: np.ndarray[Any, Any],
|
|
20
20
|
) -> float:
|
|
21
21
|
"""JIT-compiled Mahalanobis distance for 2D innovations."""
|
|
22
22
|
return innovation[0] * (
|
|
@@ -26,8 +26,8 @@ def _mahalanobis_distance_2d(
|
|
|
26
26
|
|
|
27
27
|
@njit(cache=True, fastmath=True)
|
|
28
28
|
def _mahalanobis_distance_3d(
|
|
29
|
-
innovation: np.ndarray,
|
|
30
|
-
S_inv: np.ndarray,
|
|
29
|
+
innovation: np.ndarray[Any, Any],
|
|
30
|
+
S_inv: np.ndarray[Any, Any],
|
|
31
31
|
) -> float:
|
|
32
32
|
"""JIT-compiled Mahalanobis distance for 3D innovations."""
|
|
33
33
|
result = 0.0
|
|
@@ -39,8 +39,8 @@ def _mahalanobis_distance_3d(
|
|
|
39
39
|
|
|
40
40
|
@njit(cache=True, fastmath=True)
|
|
41
41
|
def _mahalanobis_distance_general(
|
|
42
|
-
innovation: np.ndarray,
|
|
43
|
-
S_inv: np.ndarray,
|
|
42
|
+
innovation: np.ndarray[Any, Any],
|
|
43
|
+
S_inv: np.ndarray[Any, Any],
|
|
44
44
|
) -> float:
|
|
45
45
|
"""JIT-compiled Mahalanobis distance for general dimension."""
|
|
46
46
|
n = len(innovation)
|
|
@@ -341,9 +341,9 @@ def compute_gate_volume(
|
|
|
341
341
|
|
|
342
342
|
@njit(cache=True, fastmath=True, parallel=False)
|
|
343
343
|
def mahalanobis_batch(
|
|
344
|
-
innovations: np.ndarray,
|
|
345
|
-
S_inv: np.ndarray,
|
|
346
|
-
output: np.ndarray,
|
|
344
|
+
innovations: np.ndarray[Any, Any],
|
|
345
|
+
S_inv: np.ndarray[Any, Any],
|
|
346
|
+
output: np.ndarray[Any, Any],
|
|
347
347
|
) -> None:
|
|
348
348
|
"""
|
|
349
349
|
Compute Mahalanobis distances for a batch of innovations.
|