noshot 4.0.0__py3-none-any.whl → 6.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. noshot/data/ML TS XAI/XAI/Q1.ipynb +377 -0
  2. noshot/data/ML TS XAI/XAI/Q2.ipynb +362 -0
  3. noshot/data/ML TS XAI/XAI/Q3.ipynb +637 -0
  4. noshot/data/ML TS XAI/XAI/Q4.ipynb +206 -0
  5. noshot/data/ML TS XAI/XAI/Q5.ipynb +1018 -0
  6. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/METADATA +1 -1
  7. noshot-6.0.0.dist-info/RECORD +14 -0
  8. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +0 -269
  9. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +0 -155
  10. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -139
  11. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  12. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +0 -228
  13. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +0 -117
  14. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +0 -165
  15. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +0 -251
  16. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +0 -78
  17. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  18. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +0 -115
  19. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +0 -159
  20. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +0 -200
  21. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  22. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -153
  23. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  24. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +0 -208
  25. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -260
  26. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +0 -238
  27. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +0 -8124
  28. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +0 -625
  29. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +0 -715
  30. noshot/data/ML TS XAI/ML/Main/data/iris.csv +0 -151
  31. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +0 -210
  32. noshot/data/ML TS XAI/ML/Main/data/magic04.data +0 -19020
  33. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  34. noshot/data/ML TS XAI/ML/Main/data/rice.arff +0 -3826
  35. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +0 -73
  36. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +0 -179
  37. noshot/data/ML TS XAI/ML/Other Codes.ipynb +0 -158
  38. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  39. noshot-4.0.0.dist-info/RECORD +0 -40
  40. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/WHEEL +0 -0
  41. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  42. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,637 @@
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "raw",
5
+ "metadata": {},
6
+ "source": [
7
+ "1.\tExplore result visualization of post-hoc analysis methods:- \n",
8
+ "Perform Partial dependence plot (PDP) on the fetch_california_housing data set and use the following code.\n",
9
+ "from sklearn.datasets import fetch_california_housing\n",
10
+ "data = fetch_california_housing(as_frame=True)\n",
11
+ "df = data.frame\n",
12
+ "\n",
13
+ "2.\tPerform a LIME-based explanation for a image classification model using the LIME Text Explainer. \n",
14
+ "Use the following dataset\n",
15
+ "from tensorflow.keras.datasets import mnist\n",
16
+ "# Loads the MNIST dataset\n",
17
+ "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
18
+ "Perform minimum of five EDA on the above mentioned data set.\n"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "markdown",
23
+ "metadata": {
24
+ "id": "0cPxrLdh65Uq"
25
+ },
26
+ "source": [
27
+ "**Perform Partial dependence plot (PDP)**"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "code",
32
+ "execution_count": null,
33
+ "metadata": {
34
+ "id": "kUCRkjNG6mLx"
35
+ },
36
+ "outputs": [],
37
+ "source": [
38
+ "from sklearn.datasets import fetch_california_housing\n",
39
+ "from sklearn.ensemble import RandomForestRegressor\n",
40
+ "from sklearn.inspection import PartialDependenceDisplay\n",
41
+ "from sklearn.model_selection import train_test_split\n",
42
+ "import matplotlib.pyplot as plt\n",
43
+ "import pandas as pd\n",
44
+ "import numpy as np"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "code",
49
+ "execution_count": null,
50
+ "metadata": {
51
+ "colab": {
52
+ "base_uri": "https://localhost:8080/",
53
+ "height": 223
54
+ },
55
+ "id": "Q7p6o9_z6qhJ",
56
+ "outputId": "c04efdf3-948e-42e0-a31c-d6fee03a6d7f",
57
+ "scrolled": true
58
+ },
59
+ "outputs": [],
60
+ "source": [
61
+ "df=pd.read_csv('cali.csv')\n",
62
+ "df.head()"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "metadata": {},
69
+ "outputs": [],
70
+ "source": [
71
+ "X=df.drop(columns='target')\n",
72
+ "y=df['target']"
73
+ ]
74
+ },
75
+ {
76
+ "cell_type": "code",
77
+ "execution_count": null,
78
+ "metadata": {
79
+ "colab": {
80
+ "base_uri": "https://localhost:8080/",
81
+ "height": 80
82
+ },
83
+ "id": "auzRXSjU6tR8",
84
+ "outputId": "77452de0-80b8-495a-a3a5-b3a94e1bc17c"
85
+ },
86
+ "outputs": [],
87
+ "source": [
88
+ "X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=42)\n",
89
+ "\n",
90
+ "model=RandomForestRegressor(n_estimators=100,random_state=42)\n",
91
+ "model.fit(X_train,y_train)"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": null,
97
+ "metadata": {
98
+ "colab": {
99
+ "base_uri": "https://localhost:8080/",
100
+ "height": 449
101
+ },
102
+ "id": "a4_Knmz76uyv",
103
+ "outputId": "801f0a25-c327-4f1f-8825-afdd408e1be9"
104
+ },
105
+ "outputs": [],
106
+ "source": [
107
+ "PartialDependenceDisplay.from_estimator(model,X_train,features=['MedInc'],feature_names=df.columns)\n",
108
+ "plt.show()"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": null,
114
+ "metadata": {
115
+ "colab": {
116
+ "base_uri": "https://localhost:8080/",
117
+ "height": 449
118
+ },
119
+ "id": "OHZdRGxM6w3F",
120
+ "outputId": "9e8afefc-b1f7-4fe4-82ee-09c62f8eb8f0",
121
+ "scrolled": true
122
+ },
123
+ "outputs": [],
124
+ "source": [
125
+ "PartialDependenceDisplay.from_estimator(model,X_train,[('MedInc','HouseAge')],feature_names=df.columns)\n",
126
+ "plt.show()"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "markdown",
131
+ "metadata": {
132
+ "id": "GmCsO0lP6-td"
133
+ },
134
+ "source": [
135
+ "**LIME FOR IMAGE**"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": null,
141
+ "metadata": {
142
+ "id": "kKkCLaMW7ANg"
143
+ },
144
+ "outputs": [],
145
+ "source": [
146
+ "from tensorflow.keras.applications.xception import Xception,decode_predictions\n",
147
+ "from tensorflow.keras.datasets import mnist\n",
148
+ "from tensorflow.keras.models import Sequential\n",
149
+ "from tensorflow.keras.layers import Conv2D,MaxPooling2D,Flatten,Dense\n",
150
+ "from tensorflow.keras.utils import to_categorical\n",
151
+ "from lime import lime_image\n",
152
+ "import seaborn as sns\n",
153
+ "from skimage.color import label2rgb\n",
154
+ "import warnings\n",
155
+ "warnings.filterwarnings('ignore')"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {
162
+ "id": "GgZ51IgYBnP2"
163
+ },
164
+ "outputs": [],
165
+ "source": [
166
+ "(x_train,y_train),(x_test,y_test)=mnist.load_data()\n",
167
+ "\n",
168
+ "x_train=x_train.astype('float32')/255.0\n",
169
+ "x_test=x_test.astype('float32')/255.0\n",
170
+ "\n",
171
+ "y_train_cat=to_categorical(y_train,10)\n",
172
+ "y_test_cat=to_categorical(y_test,10)"
173
+ ]
174
+ },
175
+ {
176
+ "cell_type": "code",
177
+ "execution_count": null,
178
+ "metadata": {
179
+ "colab": {
180
+ "base_uri": "https://localhost:8080/"
181
+ },
182
+ "id": "rABd-7nYENlT",
183
+ "outputId": "9441cc1d-b3a0-4f1b-eaec-fd73b26171e3"
184
+ },
185
+ "outputs": [],
186
+ "source": [
187
+ "model = Sequential([\n",
188
+ " Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),\n",
189
+ " MaxPooling2D((2, 2)),\n",
190
+ " Flatten(),\n",
191
+ " Dense(64, activation='relu'),\n",
192
+ " Dense(10, activation='softmax')\n",
193
+ "])\n",
194
+ "\n",
195
+ "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
196
+ "model.fit(x_train, y_train_cat, epochs=2, batch_size=64, validation_split=0.1)\n"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "metadata": {
203
+ "colab": {
204
+ "base_uri": "https://localhost:8080/",
205
+ "height": 1000,
206
+ "referenced_widgets": [
207
+ "af45ee093e934a629a993fba7fe2c10f",
208
+ "a332c8bbfb0b4fb18133490edd5000cb",
209
+ "f626defc1d4544b3a8a67c2c792d8c94",
210
+ "465d9a8a9edd4fccb5f7f88d32b7af3f",
211
+ "08e685b6dec343808ab7a34a444f049e",
212
+ "da56cd3d10b741d5a0b383934153357b",
213
+ "4af04f4f3e24470f93f593f71717ccc1",
214
+ "69f13969e1e34139aef8c39f40524d64",
215
+ "9e7e9389e5ff4e2cad706bda44010e1a",
216
+ "57c6b335e2e942f2b4796548d40aefea",
217
+ "79fceb113bc045dd81cbd0861750aa80"
218
+ ]
219
+ },
220
+ "id": "WN1BnA68FZ3S",
221
+ "outputId": "5b39ffef-b4d9-41e1-844c-8445d152d736"
222
+ },
223
+ "outputs": [],
224
+ "source": [
225
+ "from lime import lime_image\n",
226
+ "from skimage.color import label2rgb\n",
227
+ "import cv2\n",
228
+ "import numpy as np\n",
229
+ "import matplotlib.pyplot as plt\n",
230
+ "explainer = lime_image.LimeImageExplainer()\n",
231
+ "idx = 25\n",
232
+ "test_image = x_test[idx]\n",
233
+ "\n",
234
+ "# Convert LIME's RGB input back to grayscale\n",
235
+ "predict_fn = lambda x: model.predict(\n",
236
+ " np.array([cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) for img in x])[..., np.newaxis]\n",
237
+ ")\n",
238
+ "\n",
239
+ "explanation = explainer.explain_instance(\n",
240
+ " image=test_image.squeeze(), # shape: (28, 28)\n",
241
+ " classifier_fn=predict_fn,\n",
242
+ " top_labels=1,\n",
243
+ " hide_color=0,\n",
244
+ " num_samples=1000\n",
245
+ ")\n",
246
+ "\n",
247
+ "temp, mask = explanation.get_image_and_mask(\n",
248
+ " label=explanation.top_labels[0],\n",
249
+ " positive_only=True,\n",
250
+ " hide_rest=False\n",
251
+ ")\n",
252
+ "\n",
253
+ "plt.imshow(label2rgb(mask, temp, bg_label=0))\n",
254
+ "plt.title(f\"LIME for label: {y_test[idx]}\")\n",
255
+ "plt.axis('off')\n",
256
+ "plt.show()\n"
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "code",
261
+ "execution_count": null,
262
+ "metadata": {},
263
+ "outputs": [],
264
+ "source": []
265
+ }
266
+ ],
267
+ "metadata": {
268
+ "colab": {
269
+ "provenance": []
270
+ },
271
+ "kernelspec": {
272
+ "display_name": "Python 3 (ipykernel)",
273
+ "language": "python",
274
+ "name": "python3"
275
+ },
276
+ "language_info": {
277
+ "codemirror_mode": {
278
+ "name": "ipython",
279
+ "version": 3
280
+ },
281
+ "file_extension": ".py",
282
+ "mimetype": "text/x-python",
283
+ "name": "python",
284
+ "nbconvert_exporter": "python",
285
+ "pygments_lexer": "ipython3",
286
+ "version": "3.12.4"
287
+ },
288
+ "widgets": {
289
+ "application/vnd.jupyter.widget-state+json": {
290
+ "08e685b6dec343808ab7a34a444f049e": {
291
+ "model_module": "@jupyter-widgets/base",
292
+ "model_module_version": "1.2.0",
293
+ "model_name": "LayoutModel",
294
+ "state": {
295
+ "_model_module": "@jupyter-widgets/base",
296
+ "_model_module_version": "1.2.0",
297
+ "_model_name": "LayoutModel",
298
+ "_view_count": null,
299
+ "_view_module": "@jupyter-widgets/base",
300
+ "_view_module_version": "1.2.0",
301
+ "_view_name": "LayoutView",
302
+ "align_content": null,
303
+ "align_items": null,
304
+ "align_self": null,
305
+ "border": null,
306
+ "bottom": null,
307
+ "display": null,
308
+ "flex": null,
309
+ "flex_flow": null,
310
+ "grid_area": null,
311
+ "grid_auto_columns": null,
312
+ "grid_auto_flow": null,
313
+ "grid_auto_rows": null,
314
+ "grid_column": null,
315
+ "grid_gap": null,
316
+ "grid_row": null,
317
+ "grid_template_areas": null,
318
+ "grid_template_columns": null,
319
+ "grid_template_rows": null,
320
+ "height": null,
321
+ "justify_content": null,
322
+ "justify_items": null,
323
+ "left": null,
324
+ "margin": null,
325
+ "max_height": null,
326
+ "max_width": null,
327
+ "min_height": null,
328
+ "min_width": null,
329
+ "object_fit": null,
330
+ "object_position": null,
331
+ "order": null,
332
+ "overflow": null,
333
+ "overflow_x": null,
334
+ "overflow_y": null,
335
+ "padding": null,
336
+ "right": null,
337
+ "top": null,
338
+ "visibility": null,
339
+ "width": null
340
+ }
341
+ },
342
+ "465d9a8a9edd4fccb5f7f88d32b7af3f": {
343
+ "model_module": "@jupyter-widgets/controls",
344
+ "model_module_version": "1.5.0",
345
+ "model_name": "HTMLModel",
346
+ "state": {
347
+ "_dom_classes": [],
348
+ "_model_module": "@jupyter-widgets/controls",
349
+ "_model_module_version": "1.5.0",
350
+ "_model_name": "HTMLModel",
351
+ "_view_count": null,
352
+ "_view_module": "@jupyter-widgets/controls",
353
+ "_view_module_version": "1.5.0",
354
+ "_view_name": "HTMLView",
355
+ "description": "",
356
+ "description_tooltip": null,
357
+ "layout": "IPY_MODEL_57c6b335e2e942f2b4796548d40aefea",
358
+ "placeholder": "​",
359
+ "style": "IPY_MODEL_79fceb113bc045dd81cbd0861750aa80",
360
+ "value": " 1000/1000 [00:16<00:00, 64.22it/s]"
361
+ }
362
+ },
363
+ "4af04f4f3e24470f93f593f71717ccc1": {
364
+ "model_module": "@jupyter-widgets/controls",
365
+ "model_module_version": "1.5.0",
366
+ "model_name": "DescriptionStyleModel",
367
+ "state": {
368
+ "_model_module": "@jupyter-widgets/controls",
369
+ "_model_module_version": "1.5.0",
370
+ "_model_name": "DescriptionStyleModel",
371
+ "_view_count": null,
372
+ "_view_module": "@jupyter-widgets/base",
373
+ "_view_module_version": "1.2.0",
374
+ "_view_name": "StyleView",
375
+ "description_width": ""
376
+ }
377
+ },
378
+ "57c6b335e2e942f2b4796548d40aefea": {
379
+ "model_module": "@jupyter-widgets/base",
380
+ "model_module_version": "1.2.0",
381
+ "model_name": "LayoutModel",
382
+ "state": {
383
+ "_model_module": "@jupyter-widgets/base",
384
+ "_model_module_version": "1.2.0",
385
+ "_model_name": "LayoutModel",
386
+ "_view_count": null,
387
+ "_view_module": "@jupyter-widgets/base",
388
+ "_view_module_version": "1.2.0",
389
+ "_view_name": "LayoutView",
390
+ "align_content": null,
391
+ "align_items": null,
392
+ "align_self": null,
393
+ "border": null,
394
+ "bottom": null,
395
+ "display": null,
396
+ "flex": null,
397
+ "flex_flow": null,
398
+ "grid_area": null,
399
+ "grid_auto_columns": null,
400
+ "grid_auto_flow": null,
401
+ "grid_auto_rows": null,
402
+ "grid_column": null,
403
+ "grid_gap": null,
404
+ "grid_row": null,
405
+ "grid_template_areas": null,
406
+ "grid_template_columns": null,
407
+ "grid_template_rows": null,
408
+ "height": null,
409
+ "justify_content": null,
410
+ "justify_items": null,
411
+ "left": null,
412
+ "margin": null,
413
+ "max_height": null,
414
+ "max_width": null,
415
+ "min_height": null,
416
+ "min_width": null,
417
+ "object_fit": null,
418
+ "object_position": null,
419
+ "order": null,
420
+ "overflow": null,
421
+ "overflow_x": null,
422
+ "overflow_y": null,
423
+ "padding": null,
424
+ "right": null,
425
+ "top": null,
426
+ "visibility": null,
427
+ "width": null
428
+ }
429
+ },
430
+ "69f13969e1e34139aef8c39f40524d64": {
431
+ "model_module": "@jupyter-widgets/base",
432
+ "model_module_version": "1.2.0",
433
+ "model_name": "LayoutModel",
434
+ "state": {
435
+ "_model_module": "@jupyter-widgets/base",
436
+ "_model_module_version": "1.2.0",
437
+ "_model_name": "LayoutModel",
438
+ "_view_count": null,
439
+ "_view_module": "@jupyter-widgets/base",
440
+ "_view_module_version": "1.2.0",
441
+ "_view_name": "LayoutView",
442
+ "align_content": null,
443
+ "align_items": null,
444
+ "align_self": null,
445
+ "border": null,
446
+ "bottom": null,
447
+ "display": null,
448
+ "flex": null,
449
+ "flex_flow": null,
450
+ "grid_area": null,
451
+ "grid_auto_columns": null,
452
+ "grid_auto_flow": null,
453
+ "grid_auto_rows": null,
454
+ "grid_column": null,
455
+ "grid_gap": null,
456
+ "grid_row": null,
457
+ "grid_template_areas": null,
458
+ "grid_template_columns": null,
459
+ "grid_template_rows": null,
460
+ "height": null,
461
+ "justify_content": null,
462
+ "justify_items": null,
463
+ "left": null,
464
+ "margin": null,
465
+ "max_height": null,
466
+ "max_width": null,
467
+ "min_height": null,
468
+ "min_width": null,
469
+ "object_fit": null,
470
+ "object_position": null,
471
+ "order": null,
472
+ "overflow": null,
473
+ "overflow_x": null,
474
+ "overflow_y": null,
475
+ "padding": null,
476
+ "right": null,
477
+ "top": null,
478
+ "visibility": null,
479
+ "width": null
480
+ }
481
+ },
482
+ "79fceb113bc045dd81cbd0861750aa80": {
483
+ "model_module": "@jupyter-widgets/controls",
484
+ "model_module_version": "1.5.0",
485
+ "model_name": "DescriptionStyleModel",
486
+ "state": {
487
+ "_model_module": "@jupyter-widgets/controls",
488
+ "_model_module_version": "1.5.0",
489
+ "_model_name": "DescriptionStyleModel",
490
+ "_view_count": null,
491
+ "_view_module": "@jupyter-widgets/base",
492
+ "_view_module_version": "1.2.0",
493
+ "_view_name": "StyleView",
494
+ "description_width": ""
495
+ }
496
+ },
497
+ "9e7e9389e5ff4e2cad706bda44010e1a": {
498
+ "model_module": "@jupyter-widgets/controls",
499
+ "model_module_version": "1.5.0",
500
+ "model_name": "ProgressStyleModel",
501
+ "state": {
502
+ "_model_module": "@jupyter-widgets/controls",
503
+ "_model_module_version": "1.5.0",
504
+ "_model_name": "ProgressStyleModel",
505
+ "_view_count": null,
506
+ "_view_module": "@jupyter-widgets/base",
507
+ "_view_module_version": "1.2.0",
508
+ "_view_name": "StyleView",
509
+ "bar_color": null,
510
+ "description_width": ""
511
+ }
512
+ },
513
+ "a332c8bbfb0b4fb18133490edd5000cb": {
514
+ "model_module": "@jupyter-widgets/controls",
515
+ "model_module_version": "1.5.0",
516
+ "model_name": "HTMLModel",
517
+ "state": {
518
+ "_dom_classes": [],
519
+ "_model_module": "@jupyter-widgets/controls",
520
+ "_model_module_version": "1.5.0",
521
+ "_model_name": "HTMLModel",
522
+ "_view_count": null,
523
+ "_view_module": "@jupyter-widgets/controls",
524
+ "_view_module_version": "1.5.0",
525
+ "_view_name": "HTMLView",
526
+ "description": "",
527
+ "description_tooltip": null,
528
+ "layout": "IPY_MODEL_da56cd3d10b741d5a0b383934153357b",
529
+ "placeholder": "​",
530
+ "style": "IPY_MODEL_4af04f4f3e24470f93f593f71717ccc1",
531
+ "value": "100%"
532
+ }
533
+ },
534
+ "af45ee093e934a629a993fba7fe2c10f": {
535
+ "model_module": "@jupyter-widgets/controls",
536
+ "model_module_version": "1.5.0",
537
+ "model_name": "HBoxModel",
538
+ "state": {
539
+ "_dom_classes": [],
540
+ "_model_module": "@jupyter-widgets/controls",
541
+ "_model_module_version": "1.5.0",
542
+ "_model_name": "HBoxModel",
543
+ "_view_count": null,
544
+ "_view_module": "@jupyter-widgets/controls",
545
+ "_view_module_version": "1.5.0",
546
+ "_view_name": "HBoxView",
547
+ "box_style": "",
548
+ "children": [
549
+ "IPY_MODEL_a332c8bbfb0b4fb18133490edd5000cb",
550
+ "IPY_MODEL_f626defc1d4544b3a8a67c2c792d8c94",
551
+ "IPY_MODEL_465d9a8a9edd4fccb5f7f88d32b7af3f"
552
+ ],
553
+ "layout": "IPY_MODEL_08e685b6dec343808ab7a34a444f049e"
554
+ }
555
+ },
556
+ "da56cd3d10b741d5a0b383934153357b": {
557
+ "model_module": "@jupyter-widgets/base",
558
+ "model_module_version": "1.2.0",
559
+ "model_name": "LayoutModel",
560
+ "state": {
561
+ "_model_module": "@jupyter-widgets/base",
562
+ "_model_module_version": "1.2.0",
563
+ "_model_name": "LayoutModel",
564
+ "_view_count": null,
565
+ "_view_module": "@jupyter-widgets/base",
566
+ "_view_module_version": "1.2.0",
567
+ "_view_name": "LayoutView",
568
+ "align_content": null,
569
+ "align_items": null,
570
+ "align_self": null,
571
+ "border": null,
572
+ "bottom": null,
573
+ "display": null,
574
+ "flex": null,
575
+ "flex_flow": null,
576
+ "grid_area": null,
577
+ "grid_auto_columns": null,
578
+ "grid_auto_flow": null,
579
+ "grid_auto_rows": null,
580
+ "grid_column": null,
581
+ "grid_gap": null,
582
+ "grid_row": null,
583
+ "grid_template_areas": null,
584
+ "grid_template_columns": null,
585
+ "grid_template_rows": null,
586
+ "height": null,
587
+ "justify_content": null,
588
+ "justify_items": null,
589
+ "left": null,
590
+ "margin": null,
591
+ "max_height": null,
592
+ "max_width": null,
593
+ "min_height": null,
594
+ "min_width": null,
595
+ "object_fit": null,
596
+ "object_position": null,
597
+ "order": null,
598
+ "overflow": null,
599
+ "overflow_x": null,
600
+ "overflow_y": null,
601
+ "padding": null,
602
+ "right": null,
603
+ "top": null,
604
+ "visibility": null,
605
+ "width": null
606
+ }
607
+ },
608
+ "f626defc1d4544b3a8a67c2c792d8c94": {
609
+ "model_module": "@jupyter-widgets/controls",
610
+ "model_module_version": "1.5.0",
611
+ "model_name": "FloatProgressModel",
612
+ "state": {
613
+ "_dom_classes": [],
614
+ "_model_module": "@jupyter-widgets/controls",
615
+ "_model_module_version": "1.5.0",
616
+ "_model_name": "FloatProgressModel",
617
+ "_view_count": null,
618
+ "_view_module": "@jupyter-widgets/controls",
619
+ "_view_module_version": "1.5.0",
620
+ "_view_name": "ProgressView",
621
+ "bar_style": "success",
622
+ "description": "",
623
+ "description_tooltip": null,
624
+ "layout": "IPY_MODEL_69f13969e1e34139aef8c39f40524d64",
625
+ "max": 1000,
626
+ "min": 0,
627
+ "orientation": "horizontal",
628
+ "style": "IPY_MODEL_9e7e9389e5ff4e2cad706bda44010e1a",
629
+ "value": 1000
630
+ }
631
+ }
632
+ }
633
+ }
634
+ },
635
+ "nbformat": 4,
636
+ "nbformat_minor": 4
637
+ }