noshot 4.0.0__py3-none-any.whl → 6.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/XAI/Q1.ipynb +377 -0
- noshot/data/ML TS XAI/XAI/Q2.ipynb +362 -0
- noshot/data/ML TS XAI/XAI/Q3.ipynb +637 -0
- noshot/data/ML TS XAI/XAI/Q4.ipynb +206 -0
- noshot/data/ML TS XAI/XAI/Q5.ipynb +1018 -0
- {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/METADATA +1 -1
- noshot-6.0.0.dist-info/RECORD +14 -0
- noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +0 -269
- noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +0 -155
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -139
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +0 -181
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +0 -228
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +0 -117
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +0 -165
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +0 -251
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +0 -78
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +0 -115
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +0 -159
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +0 -200
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +0 -112
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -153
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +0 -208
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -260
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +0 -238
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +0 -8124
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +0 -625
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +0 -715
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +0 -151
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +0 -210
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +0 -19020
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +0 -3826
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +0 -73
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +0 -158
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
- noshot-4.0.0.dist-info/RECORD +0 -40
- {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/WHEEL +0 -0
- {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/top_level.txt +0 -0
@@ -1,73 +0,0 @@
|
|
1
|
-
behavior_sexualRisk,behavior_eating,behavior_personalHygine,intention_aggregation,intention_commitment,attitude_consistency,attitude_spontaneity,norm_significantPerson,norm_fulfillment,perception_vulnerability,perception_severity,motivation_strength,motivation_willingness,socialSupport_emotionality,socialSupport_appreciation,socialSupport_instrumental,empowerment_knowledge,empowerment_abilities,empowerment_desires,ca_cervix
|
2
|
-
10,13,12,4,7,9,10,1,8,7,3,14,8,5,7,12,12,11,8,1
|
3
|
-
10,11,11,10,14,7,7,5,5,4,2,15,13,7,6,5,5,4,4,1
|
4
|
-
10,15,3,2,14,8,10,1,4,7,2,7,3,3,6,11,3,3,15,1
|
5
|
-
10,11,10,10,15,7,7,1,5,4,2,15,13,7,4,4,4,4,4,1
|
6
|
-
8,11,7,8,10,7,8,1,5,3,2,15,5,3,6,12,5,4,7,1
|
7
|
-
10,14,8,6,15,8,10,1,3,4,2,14,8,7,2,7,13,9,6,1
|
8
|
-
10,15,4,6,14,6,10,5,3,7,2,7,13,3,3,15,3,3,5,1
|
9
|
-
8,12,9,10,10,5,10,5,5,5,2,10,9,13,2,9,8,7,12,1
|
10
|
-
10,15,7,2,15,6,10,1,3,5,2,9,15,13,10,15,13,15,15,1
|
11
|
-
7,15,7,6,11,8,8,5,3,3,4,15,3,8,2,9,3,4,4,1
|
12
|
-
7,15,7,10,14,7,9,1,3,8,2,4,3,7,9,13,8,3,9,1
|
13
|
-
10,15,8,9,15,7,10,1,3,7,2,15,3,3,6,13,7,5,9,1
|
14
|
-
10,15,12,10,15,6,10,1,3,3,2,4,3,3,2,15,13,6,11,1
|
15
|
-
9,12,14,9,15,10,9,3,6,3,2,15,15,3,10,15,11,3,11,1
|
16
|
-
2,15,15,6,13,8,9,1,3,3,4,15,3,7,6,7,7,7,3,1
|
17
|
-
10,15,7,6,14,8,8,4,8,10,2,3,3,3,2,5,5,5,3,1
|
18
|
-
10,15,9,7,6,8,8,1,12,5,4,5,4,3,3,5,7,7,3,1
|
19
|
-
10,12,7,5,10,8,8,1,8,10,4,6,3,3,2,4,4,3,5,1
|
20
|
-
10,11,12,2,10,8,8,2,10,8,7,6,5,3,2,4,4,4,3,1
|
21
|
-
10,12,12,8,10,8,6,2,7,6,2,12,11,9,8,12,10,10,9,1
|
22
|
-
10,15,15,4,15,8,10,5,3,8,3,11,3,3,2,7,8,5,3,1
|
23
|
-
10,12,11,10,15,7,8,3,3,3,2,13,11,10,7,12,12,12,12,0
|
24
|
-
10,13,14,10,15,6,8,1,5,5,2,15,10,12,8,15,15,15,15,0
|
25
|
-
10,15,13,10,15,2,10,1,5,6,2,14,14,14,8,14,15,14,15,0
|
26
|
-
10,12,10,7,15,6,8,2,4,9,2,15,12,10,7,12,14,10,14,0
|
27
|
-
10,15,13,10,15,6,10,1,3,5,2,15,13,9,7,12,15,11,15,0
|
28
|
-
10,13,15,8,13,7,8,3,5,9,2,13,11,12,9,10,12,13,12,0
|
29
|
-
10,15,11,10,15,8,10,1,3,3,2,15,13,13,10,15,15,13,15,0
|
30
|
-
10,11,11,10,14,5,8,1,4,3,4,15,11,13,9,13,13,12,13,0
|
31
|
-
10,14,10,9,15,4,5,2,5,7,3,10,7,4,6,7,5,9,12,0
|
32
|
-
10,8,9,10,15,10,10,1,3,3,2,15,13,11,6,15,15,10,15,0
|
33
|
-
10,15,15,8,9,8,9,4,7,6,4,12,12,14,9,14,13,9,12,0
|
34
|
-
10,10,11,10,15,5,8,1,5,3,6,15,13,13,10,15,13,13,13,0
|
35
|
-
10,11,10,9,15,5,10,3,3,3,2,11,11,9,4,9,15,15,15,0
|
36
|
-
10,15,15,10,15,10,10,1,3,3,2,15,10,10,10,15,15,15,15,0
|
37
|
-
10,3,5,2,9,6,10,1,3,9,6,11,10,9,9,14,6,10,10,0
|
38
|
-
10,15,9,3,15,8,10,1,3,5,6,10,15,13,10,15,15,15,15,0
|
39
|
-
10,10,12,5,7,6,6,4,5,10,4,11,9,11,8,11,11,10,11,0
|
40
|
-
10,9,11,10,15,7,6,1,3,6,2,15,15,15,10,15,15,15,14,0
|
41
|
-
10,14,14,10,11,5,9,1,5,4,2,14,15,11,8,14,13,13,13,0
|
42
|
-
10,12,11,10,15,7,8,3,3,4,2,14,7,9,8,12,15,10,14,0
|
43
|
-
10,15,13,10,15,6,10,1,7,7,2,15,7,3,4,3,11,5,9,0
|
44
|
-
10,15,15,10,15,8,8,5,11,15,10,15,15,15,10,15,15,15,15,0
|
45
|
-
10,15,15,10,15,9,10,5,11,15,10,15,15,15,10,15,15,15,15,0
|
46
|
-
10,11,14,10,15,10,10,5,15,14,10,15,9,9,4,3,14,11,15,0
|
47
|
-
10,15,14,10,11,10,8,5,11,15,10,15,15,15,10,15,15,15,15,0
|
48
|
-
10,14,11,10,15,9,10,5,15,15,10,15,13,6,6,12,15,11,14,0
|
49
|
-
10,15,15,6,11,7,6,5,11,13,10,15,15,11,10,15,11,11,15,0
|
50
|
-
10,15,11,10,15,8,10,1,15,15,10,15,13,3,2,9,15,8,11,0
|
51
|
-
6,15,11,10,12,8,10,5,14,13,10,15,7,5,2,5,13,9,3,0
|
52
|
-
10,11,15,10,11,6,10,5,15,11,10,15,15,15,6,9,15,15,9,0
|
53
|
-
10,15,15,10,15,10,10,5,15,14,9,9,13,12,9,15,15,15,15,0
|
54
|
-
10,9,12,10,14,9,6,5,11,11,9,15,11,3,2,6,13,7,3,0
|
55
|
-
10,13,12,2,15,7,10,5,15,10,2,15,12,11,7,6,10,9,12,0
|
56
|
-
10,15,15,10,11,7,8,5,15,13,10,15,15,11,8,15,15,13,11,0
|
57
|
-
10,9,8,2,15,6,10,1,15,15,8,11,11,13,10,15,13,13,10,0
|
58
|
-
10,10,5,2,15,8,10,5,13,15,10,15,3,3,2,13,15,15,15,0
|
59
|
-
10,11,8,10,15,7,8,5,14,13,8,12,7,4,3,3,4,4,7,0
|
60
|
-
10,11,9,6,15,6,8,5,14,11,8,11,7,3,2,3,3,3,3,0
|
61
|
-
10,13,9,10,15,8,8,5,14,8,8,11,3,3,2,3,3,3,3,0
|
62
|
-
10,12,10,10,15,6,8,5,15,11,8,13,7,3,2,3,3,3,3,0
|
63
|
-
10,10,10,10,15,6,6,5,14,13,9,15,9,13,8,14,13,12,12,0
|
64
|
-
10,13,11,6,15,8,10,5,15,7,10,13,7,3,5,3,3,3,3,0
|
65
|
-
10,13,15,10,15,8,10,5,14,6,8,13,7,3,4,3,3,6,3,0
|
66
|
-
10,15,8,6,11,6,10,5,11,15,8,15,7,3,4,11,13,10,15,0
|
67
|
-
10,13,11,6,14,9,10,5,15,15,10,15,3,3,4,7,7,7,11,0
|
68
|
-
10,12,13,10,11,7,7,5,14,15,9,14,10,6,6,6,9,7,11,0
|
69
|
-
10,14,14,10,15,6,7,5,15,14,10,15,13,9,8,12,12,11,9,0
|
70
|
-
10,12,15,10,15,8,8,5,15,14,8,12,14,11,7,13,15,11,14,0
|
71
|
-
10,8,11,6,10,6,4,3,13,9,8,14,12,9,7,11,12,10,10,0
|
72
|
-
9,12,13,10,13,6,6,5,14,13,10,13,12,11,8,12,11,13,15,0
|
73
|
-
10,14,14,6,12,7,8,5,15,12,10,10,13,11,9,14,13,15,15,0
|
@@ -1,179 +0,0 @@
|
|
1
|
-
alcohol,malic_acid,ash,alcalinity_of_ash,magnesium,total_phenols,flavanoids,nonflavanoid_phenols,proanthocyanins,color_intensity,hue,od280/od315_of_diluted_wines,proline,target
|
2
|
-
14.23,1.71,2.43,15.6,127.0,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065.0,0
|
3
|
-
13.2,1.78,2.14,11.2,100.0,2.65,2.76,0.26,1.28,4.38,1.05,3.4,1050.0,0
|
4
|
-
13.16,2.36,2.67,18.6,101.0,2.8,3.24,0.3,2.81,5.68,1.03,3.17,1185.0,0
|
5
|
-
14.37,1.95,2.5,16.8,113.0,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480.0,0
|
6
|
-
13.24,2.59,2.87,21.0,118.0,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735.0,0
|
7
|
-
14.2,1.76,2.45,15.2,112.0,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450.0,0
|
8
|
-
14.39,1.87,2.45,14.6,96.0,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290.0,0
|
9
|
-
14.06,2.15,2.61,17.6,121.0,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295.0,0
|
10
|
-
14.83,1.64,2.17,14.0,97.0,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045.0,0
|
11
|
-
13.86,1.35,2.27,16.0,98.0,2.98,3.15,0.22,1.85,7.22,1.01,3.55,1045.0,0
|
12
|
-
14.1,2.16,2.3,18.0,105.0,2.95,3.32,0.22,2.38,5.75,1.25,3.17,1510.0,0
|
13
|
-
14.12,1.48,2.32,16.8,95.0,2.2,2.43,0.26,1.57,5.0,1.17,2.82,1280.0,0
|
14
|
-
13.75,1.73,2.41,16.0,89.0,2.6,2.76,0.29,1.81,5.6,1.15,2.9,1320.0,0
|
15
|
-
14.75,1.73,2.39,11.4,91.0,3.1,3.69,0.43,2.81,5.4,1.25,2.73,1150.0,0
|
16
|
-
14.38,1.87,2.38,12.0,102.0,3.3,3.64,0.29,2.96,7.5,1.2,3.0,1547.0,0
|
17
|
-
13.63,1.81,2.7,17.2,112.0,2.85,2.91,0.3,1.46,7.3,1.28,2.88,1310.0,0
|
18
|
-
14.3,1.92,2.72,20.0,120.0,2.8,3.14,0.33,1.97,6.2,1.07,2.65,1280.0,0
|
19
|
-
13.83,1.57,2.62,20.0,115.0,2.95,3.4,0.4,1.72,6.6,1.13,2.57,1130.0,0
|
20
|
-
14.19,1.59,2.48,16.5,108.0,3.3,3.93,0.32,1.86,8.7,1.23,2.82,1680.0,0
|
21
|
-
13.64,3.1,2.56,15.2,116.0,2.7,3.03,0.17,1.66,5.1,0.96,3.36,845.0,0
|
22
|
-
14.06,1.63,2.28,16.0,126.0,3.0,3.17,0.24,2.1,5.65,1.09,3.71,780.0,0
|
23
|
-
12.93,3.8,2.65,18.6,102.0,2.41,2.41,0.25,1.98,4.5,1.03,3.52,770.0,0
|
24
|
-
13.71,1.86,2.36,16.6,101.0,2.61,2.88,0.27,1.69,3.8,1.11,4.0,1035.0,0
|
25
|
-
12.85,1.6,2.52,17.8,95.0,2.48,2.37,0.26,1.46,3.93,1.09,3.63,1015.0,0
|
26
|
-
13.5,1.81,2.61,20.0,96.0,2.53,2.61,0.28,1.66,3.52,1.12,3.82,845.0,0
|
27
|
-
13.05,2.05,3.22,25.0,124.0,2.63,2.68,0.47,1.92,3.58,1.13,3.2,830.0,0
|
28
|
-
13.39,1.77,2.62,16.1,93.0,2.85,2.94,0.34,1.45,4.8,0.92,3.22,1195.0,0
|
29
|
-
13.3,1.72,2.14,17.0,94.0,2.4,2.19,0.27,1.35,3.95,1.02,2.77,1285.0,0
|
30
|
-
13.87,1.9,2.8,19.4,107.0,2.95,2.97,0.37,1.76,4.5,1.25,3.4,915.0,0
|
31
|
-
14.02,1.68,2.21,16.0,96.0,2.65,2.33,0.26,1.98,4.7,1.04,3.59,1035.0,0
|
32
|
-
13.73,1.5,2.7,22.5,101.0,3.0,3.25,0.29,2.38,5.7,1.19,2.71,1285.0,0
|
33
|
-
13.58,1.66,2.36,19.1,106.0,2.86,3.19,0.22,1.95,6.9,1.09,2.88,1515.0,0
|
34
|
-
13.68,1.83,2.36,17.2,104.0,2.42,2.69,0.42,1.97,3.84,1.23,2.87,990.0,0
|
35
|
-
13.76,1.53,2.7,19.5,132.0,2.95,2.74,0.5,1.35,5.4,1.25,3.0,1235.0,0
|
36
|
-
13.51,1.8,2.65,19.0,110.0,2.35,2.53,0.29,1.54,4.2,1.1,2.87,1095.0,0
|
37
|
-
13.48,1.81,2.41,20.5,100.0,2.7,2.98,0.26,1.86,5.1,1.04,3.47,920.0,0
|
38
|
-
13.28,1.64,2.84,15.5,110.0,2.6,2.68,0.34,1.36,4.6,1.09,2.78,880.0,0
|
39
|
-
13.05,1.65,2.55,18.0,98.0,2.45,2.43,0.29,1.44,4.25,1.12,2.51,1105.0,0
|
40
|
-
13.07,1.5,2.1,15.5,98.0,2.4,2.64,0.28,1.37,3.7,1.18,2.69,1020.0,0
|
41
|
-
14.22,3.99,2.51,13.2,128.0,3.0,3.04,0.2,2.08,5.1,0.89,3.53,760.0,0
|
42
|
-
13.56,1.71,2.31,16.2,117.0,3.15,3.29,0.34,2.34,6.13,0.95,3.38,795.0,0
|
43
|
-
13.41,3.84,2.12,18.8,90.0,2.45,2.68,0.27,1.48,4.28,0.91,3.0,1035.0,0
|
44
|
-
13.88,1.89,2.59,15.0,101.0,3.25,3.56,0.17,1.7,5.43,0.88,3.56,1095.0,0
|
45
|
-
13.24,3.98,2.29,17.5,103.0,2.64,2.63,0.32,1.66,4.36,0.82,3.0,680.0,0
|
46
|
-
13.05,1.77,2.1,17.0,107.0,3.0,3.0,0.28,2.03,5.04,0.88,3.35,885.0,0
|
47
|
-
14.21,4.04,2.44,18.9,111.0,2.85,2.65,0.3,1.25,5.24,0.87,3.33,1080.0,0
|
48
|
-
14.38,3.59,2.28,16.0,102.0,3.25,3.17,0.27,2.19,4.9,1.04,3.44,1065.0,0
|
49
|
-
13.9,1.68,2.12,16.0,101.0,3.1,3.39,0.21,2.14,6.1,0.91,3.33,985.0,0
|
50
|
-
14.1,2.02,2.4,18.8,103.0,2.75,2.92,0.32,2.38,6.2,1.07,2.75,1060.0,0
|
51
|
-
13.94,1.73,2.27,17.4,108.0,2.88,3.54,0.32,2.08,8.9,1.12,3.1,1260.0,0
|
52
|
-
13.05,1.73,2.04,12.4,92.0,2.72,3.27,0.17,2.91,7.2,1.12,2.91,1150.0,0
|
53
|
-
13.83,1.65,2.6,17.2,94.0,2.45,2.99,0.22,2.29,5.6,1.24,3.37,1265.0,0
|
54
|
-
13.82,1.75,2.42,14.0,111.0,3.88,3.74,0.32,1.87,7.05,1.01,3.26,1190.0,0
|
55
|
-
13.77,1.9,2.68,17.1,115.0,3.0,2.79,0.39,1.68,6.3,1.13,2.93,1375.0,0
|
56
|
-
13.74,1.67,2.25,16.4,118.0,2.6,2.9,0.21,1.62,5.85,0.92,3.2,1060.0,0
|
57
|
-
13.56,1.73,2.46,20.5,116.0,2.96,2.78,0.2,2.45,6.25,0.98,3.03,1120.0,0
|
58
|
-
14.22,1.7,2.3,16.3,118.0,3.2,3.0,0.26,2.03,6.38,0.94,3.31,970.0,0
|
59
|
-
13.29,1.97,2.68,16.8,102.0,3.0,3.23,0.31,1.66,6.0,1.07,2.84,1270.0,0
|
60
|
-
13.72,1.43,2.5,16.7,108.0,3.4,3.67,0.19,2.04,6.8,0.89,2.87,1285.0,0
|
61
|
-
12.37,0.94,1.36,10.6,88.0,1.98,0.57,0.28,0.42,1.95,1.05,1.82,520.0,1
|
62
|
-
12.33,1.1,2.28,16.0,101.0,2.05,1.09,0.63,0.41,3.27,1.25,1.67,680.0,1
|
63
|
-
12.64,1.36,2.02,16.8,100.0,2.02,1.41,0.53,0.62,5.75,0.98,1.59,450.0,1
|
64
|
-
13.67,1.25,1.92,18.0,94.0,2.1,1.79,0.32,0.73,3.8,1.23,2.46,630.0,1
|
65
|
-
12.37,1.13,2.16,19.0,87.0,3.5,3.1,0.19,1.87,4.45,1.22,2.87,420.0,1
|
66
|
-
12.17,1.45,2.53,19.0,104.0,1.89,1.75,0.45,1.03,2.95,1.45,2.23,355.0,1
|
67
|
-
12.37,1.21,2.56,18.1,98.0,2.42,2.65,0.37,2.08,4.6,1.19,2.3,678.0,1
|
68
|
-
13.11,1.01,1.7,15.0,78.0,2.98,3.18,0.26,2.28,5.3,1.12,3.18,502.0,1
|
69
|
-
12.37,1.17,1.92,19.6,78.0,2.11,2.0,0.27,1.04,4.68,1.12,3.48,510.0,1
|
70
|
-
13.34,0.94,2.36,17.0,110.0,2.53,1.3,0.55,0.42,3.17,1.02,1.93,750.0,1
|
71
|
-
12.21,1.19,1.75,16.8,151.0,1.85,1.28,0.14,2.5,2.85,1.28,3.07,718.0,1
|
72
|
-
12.29,1.61,2.21,20.4,103.0,1.1,1.02,0.37,1.46,3.05,0.906,1.82,870.0,1
|
73
|
-
13.86,1.51,2.67,25.0,86.0,2.95,2.86,0.21,1.87,3.38,1.36,3.16,410.0,1
|
74
|
-
13.49,1.66,2.24,24.0,87.0,1.88,1.84,0.27,1.03,3.74,0.98,2.78,472.0,1
|
75
|
-
12.99,1.67,2.6,30.0,139.0,3.3,2.89,0.21,1.96,3.35,1.31,3.5,985.0,1
|
76
|
-
11.96,1.09,2.3,21.0,101.0,3.38,2.14,0.13,1.65,3.21,0.99,3.13,886.0,1
|
77
|
-
11.66,1.88,1.92,16.0,97.0,1.61,1.57,0.34,1.15,3.8,1.23,2.14,428.0,1
|
78
|
-
13.03,0.9,1.71,16.0,86.0,1.95,2.03,0.24,1.46,4.6,1.19,2.48,392.0,1
|
79
|
-
11.84,2.89,2.23,18.0,112.0,1.72,1.32,0.43,0.95,2.65,0.96,2.52,500.0,1
|
80
|
-
12.33,0.99,1.95,14.8,136.0,1.9,1.85,0.35,2.76,3.4,1.06,2.31,750.0,1
|
81
|
-
12.7,3.87,2.4,23.0,101.0,2.83,2.55,0.43,1.95,2.57,1.19,3.13,463.0,1
|
82
|
-
12.0,0.92,2.0,19.0,86.0,2.42,2.26,0.3,1.43,2.5,1.38,3.12,278.0,1
|
83
|
-
12.72,1.81,2.2,18.8,86.0,2.2,2.53,0.26,1.77,3.9,1.16,3.14,714.0,1
|
84
|
-
12.08,1.13,2.51,24.0,78.0,2.0,1.58,0.4,1.4,2.2,1.31,2.72,630.0,1
|
85
|
-
13.05,3.86,2.32,22.5,85.0,1.65,1.59,0.61,1.62,4.8,0.84,2.01,515.0,1
|
86
|
-
11.84,0.89,2.58,18.0,94.0,2.2,2.21,0.22,2.35,3.05,0.79,3.08,520.0,1
|
87
|
-
12.67,0.98,2.24,18.0,99.0,2.2,1.94,0.3,1.46,2.62,1.23,3.16,450.0,1
|
88
|
-
12.16,1.61,2.31,22.8,90.0,1.78,1.69,0.43,1.56,2.45,1.33,2.26,495.0,1
|
89
|
-
11.65,1.67,2.62,26.0,88.0,1.92,1.61,0.4,1.34,2.6,1.36,3.21,562.0,1
|
90
|
-
11.64,2.06,2.46,21.6,84.0,1.95,1.69,0.48,1.35,2.8,1.0,2.75,680.0,1
|
91
|
-
12.08,1.33,2.3,23.6,70.0,2.2,1.59,0.42,1.38,1.74,1.07,3.21,625.0,1
|
92
|
-
12.08,1.83,2.32,18.5,81.0,1.6,1.5,0.52,1.64,2.4,1.08,2.27,480.0,1
|
93
|
-
12.0,1.51,2.42,22.0,86.0,1.45,1.25,0.5,1.63,3.6,1.05,2.65,450.0,1
|
94
|
-
12.69,1.53,2.26,20.7,80.0,1.38,1.46,0.58,1.62,3.05,0.96,2.06,495.0,1
|
95
|
-
12.29,2.83,2.22,18.0,88.0,2.45,2.25,0.25,1.99,2.15,1.15,3.3,290.0,1
|
96
|
-
11.62,1.99,2.28,18.0,98.0,3.02,2.26,0.17,1.35,3.25,1.16,2.96,345.0,1
|
97
|
-
12.47,1.52,2.2,19.0,162.0,2.5,2.27,0.32,3.28,2.6,1.16,2.63,937.0,1
|
98
|
-
11.81,2.12,2.74,21.5,134.0,1.6,0.99,0.14,1.56,2.5,0.95,2.26,625.0,1
|
99
|
-
12.29,1.41,1.98,16.0,85.0,2.55,2.5,0.29,1.77,2.9,1.23,2.74,428.0,1
|
100
|
-
12.37,1.07,2.1,18.5,88.0,3.52,3.75,0.24,1.95,4.5,1.04,2.77,660.0,1
|
101
|
-
12.29,3.17,2.21,18.0,88.0,2.85,2.99,0.45,2.81,2.3,1.42,2.83,406.0,1
|
102
|
-
12.08,2.08,1.7,17.5,97.0,2.23,2.17,0.26,1.4,3.3,1.27,2.96,710.0,1
|
103
|
-
12.6,1.34,1.9,18.5,88.0,1.45,1.36,0.29,1.35,2.45,1.04,2.77,562.0,1
|
104
|
-
12.34,2.45,2.46,21.0,98.0,2.56,2.11,0.34,1.31,2.8,0.8,3.38,438.0,1
|
105
|
-
11.82,1.72,1.88,19.5,86.0,2.5,1.64,0.37,1.42,2.06,0.94,2.44,415.0,1
|
106
|
-
12.51,1.73,1.98,20.5,85.0,2.2,1.92,0.32,1.48,2.94,1.04,3.57,672.0,1
|
107
|
-
12.42,2.55,2.27,22.0,90.0,1.68,1.84,0.66,1.42,2.7,0.86,3.3,315.0,1
|
108
|
-
12.25,1.73,2.12,19.0,80.0,1.65,2.03,0.37,1.63,3.4,1.0,3.17,510.0,1
|
109
|
-
12.72,1.75,2.28,22.5,84.0,1.38,1.76,0.48,1.63,3.3,0.88,2.42,488.0,1
|
110
|
-
12.22,1.29,1.94,19.0,92.0,2.36,2.04,0.39,2.08,2.7,0.86,3.02,312.0,1
|
111
|
-
11.61,1.35,2.7,20.0,94.0,2.74,2.92,0.29,2.49,2.65,0.96,3.26,680.0,1
|
112
|
-
11.46,3.74,1.82,19.5,107.0,3.18,2.58,0.24,3.58,2.9,0.75,2.81,562.0,1
|
113
|
-
12.52,2.43,2.17,21.0,88.0,2.55,2.27,0.26,1.22,2.0,0.9,2.78,325.0,1
|
114
|
-
11.76,2.68,2.92,20.0,103.0,1.75,2.03,0.6,1.05,3.8,1.23,2.5,607.0,1
|
115
|
-
11.41,0.74,2.5,21.0,88.0,2.48,2.01,0.42,1.44,3.08,1.1,2.31,434.0,1
|
116
|
-
12.08,1.39,2.5,22.5,84.0,2.56,2.29,0.43,1.04,2.9,0.93,3.19,385.0,1
|
117
|
-
11.03,1.51,2.2,21.5,85.0,2.46,2.17,0.52,2.01,1.9,1.71,2.87,407.0,1
|
118
|
-
11.82,1.47,1.99,20.8,86.0,1.98,1.6,0.3,1.53,1.95,0.95,3.33,495.0,1
|
119
|
-
12.42,1.61,2.19,22.5,108.0,2.0,2.09,0.34,1.61,2.06,1.06,2.96,345.0,1
|
120
|
-
12.77,3.43,1.98,16.0,80.0,1.63,1.25,0.43,0.83,3.4,0.7,2.12,372.0,1
|
121
|
-
12.0,3.43,2.0,19.0,87.0,2.0,1.64,0.37,1.87,1.28,0.93,3.05,564.0,1
|
122
|
-
11.45,2.4,2.42,20.0,96.0,2.9,2.79,0.32,1.83,3.25,0.8,3.39,625.0,1
|
123
|
-
11.56,2.05,3.23,28.5,119.0,3.18,5.08,0.47,1.87,6.0,0.93,3.69,465.0,1
|
124
|
-
12.42,4.43,2.73,26.5,102.0,2.2,2.13,0.43,1.71,2.08,0.92,3.12,365.0,1
|
125
|
-
13.05,5.8,2.13,21.5,86.0,2.62,2.65,0.3,2.01,2.6,0.73,3.1,380.0,1
|
126
|
-
11.87,4.31,2.39,21.0,82.0,2.86,3.03,0.21,2.91,2.8,0.75,3.64,380.0,1
|
127
|
-
12.07,2.16,2.17,21.0,85.0,2.6,2.65,0.37,1.35,2.76,0.86,3.28,378.0,1
|
128
|
-
12.43,1.53,2.29,21.5,86.0,2.74,3.15,0.39,1.77,3.94,0.69,2.84,352.0,1
|
129
|
-
11.79,2.13,2.78,28.5,92.0,2.13,2.24,0.58,1.76,3.0,0.97,2.44,466.0,1
|
130
|
-
12.37,1.63,2.3,24.5,88.0,2.22,2.45,0.4,1.9,2.12,0.89,2.78,342.0,1
|
131
|
-
12.04,4.3,2.38,22.0,80.0,2.1,1.75,0.42,1.35,2.6,0.79,2.57,580.0,1
|
132
|
-
12.86,1.35,2.32,18.0,122.0,1.51,1.25,0.21,0.94,4.1,0.76,1.29,630.0,2
|
133
|
-
12.88,2.99,2.4,20.0,104.0,1.3,1.22,0.24,0.83,5.4,0.74,1.42,530.0,2
|
134
|
-
12.81,2.31,2.4,24.0,98.0,1.15,1.09,0.27,0.83,5.7,0.66,1.36,560.0,2
|
135
|
-
12.7,3.55,2.36,21.5,106.0,1.7,1.2,0.17,0.84,5.0,0.78,1.29,600.0,2
|
136
|
-
12.51,1.24,2.25,17.5,85.0,2.0,0.58,0.6,1.25,5.45,0.75,1.51,650.0,2
|
137
|
-
12.6,2.46,2.2,18.5,94.0,1.62,0.66,0.63,0.94,7.1,0.73,1.58,695.0,2
|
138
|
-
12.25,4.72,2.54,21.0,89.0,1.38,0.47,0.53,0.8,3.85,0.75,1.27,720.0,2
|
139
|
-
12.53,5.51,2.64,25.0,96.0,1.79,0.6,0.63,1.1,5.0,0.82,1.69,515.0,2
|
140
|
-
13.49,3.59,2.19,19.5,88.0,1.62,0.48,0.58,0.88,5.7,0.81,1.82,580.0,2
|
141
|
-
12.84,2.96,2.61,24.0,101.0,2.32,0.6,0.53,0.81,4.92,0.89,2.15,590.0,2
|
142
|
-
12.93,2.81,2.7,21.0,96.0,1.54,0.5,0.53,0.75,4.6,0.77,2.31,600.0,2
|
143
|
-
13.36,2.56,2.35,20.0,89.0,1.4,0.5,0.37,0.64,5.6,0.7,2.47,780.0,2
|
144
|
-
13.52,3.17,2.72,23.5,97.0,1.55,0.52,0.5,0.55,4.35,0.89,2.06,520.0,2
|
145
|
-
13.62,4.95,2.35,20.0,92.0,2.0,0.8,0.47,1.02,4.4,0.91,2.05,550.0,2
|
146
|
-
12.25,3.88,2.2,18.5,112.0,1.38,0.78,0.29,1.14,8.21,0.65,2.0,855.0,2
|
147
|
-
13.16,3.57,2.15,21.0,102.0,1.5,0.55,0.43,1.3,4.0,0.6,1.68,830.0,2
|
148
|
-
13.88,5.04,2.23,20.0,80.0,0.98,0.34,0.4,0.68,4.9,0.58,1.33,415.0,2
|
149
|
-
12.87,4.61,2.48,21.5,86.0,1.7,0.65,0.47,0.86,7.65,0.54,1.86,625.0,2
|
150
|
-
13.32,3.24,2.38,21.5,92.0,1.93,0.76,0.45,1.25,8.42,0.55,1.62,650.0,2
|
151
|
-
13.08,3.9,2.36,21.5,113.0,1.41,1.39,0.34,1.14,9.4,0.57,1.33,550.0,2
|
152
|
-
13.5,3.12,2.62,24.0,123.0,1.4,1.57,0.22,1.25,8.6,0.59,1.3,500.0,2
|
153
|
-
12.79,2.67,2.48,22.0,112.0,1.48,1.36,0.24,1.26,10.8,0.48,1.47,480.0,2
|
154
|
-
13.11,1.9,2.75,25.5,116.0,2.2,1.28,0.26,1.56,7.1,0.61,1.33,425.0,2
|
155
|
-
13.23,3.3,2.28,18.5,98.0,1.8,0.83,0.61,1.87,10.52,0.56,1.51,675.0,2
|
156
|
-
12.58,1.29,2.1,20.0,103.0,1.48,0.58,0.53,1.4,7.6,0.58,1.55,640.0,2
|
157
|
-
13.17,5.19,2.32,22.0,93.0,1.74,0.63,0.61,1.55,7.9,0.6,1.48,725.0,2
|
158
|
-
13.84,4.12,2.38,19.5,89.0,1.8,0.83,0.48,1.56,9.01,0.57,1.64,480.0,2
|
159
|
-
12.45,3.03,2.64,27.0,97.0,1.9,0.58,0.63,1.14,7.5,0.67,1.73,880.0,2
|
160
|
-
14.34,1.68,2.7,25.0,98.0,2.8,1.31,0.53,2.7,13.0,0.57,1.96,660.0,2
|
161
|
-
13.48,1.67,2.64,22.5,89.0,2.6,1.1,0.52,2.29,11.75,0.57,1.78,620.0,2
|
162
|
-
12.36,3.83,2.38,21.0,88.0,2.3,0.92,0.5,1.04,7.65,0.56,1.58,520.0,2
|
163
|
-
13.69,3.26,2.54,20.0,107.0,1.83,0.56,0.5,0.8,5.88,0.96,1.82,680.0,2
|
164
|
-
12.85,3.27,2.58,22.0,106.0,1.65,0.6,0.6,0.96,5.58,0.87,2.11,570.0,2
|
165
|
-
12.96,3.45,2.35,18.5,106.0,1.39,0.7,0.4,0.94,5.28,0.68,1.75,675.0,2
|
166
|
-
13.78,2.76,2.3,22.0,90.0,1.35,0.68,0.41,1.03,9.58,0.7,1.68,615.0,2
|
167
|
-
13.73,4.36,2.26,22.5,88.0,1.28,0.47,0.52,1.15,6.62,0.78,1.75,520.0,2
|
168
|
-
13.45,3.7,2.6,23.0,111.0,1.7,0.92,0.43,1.46,10.68,0.85,1.56,695.0,2
|
169
|
-
12.82,3.37,2.3,19.5,88.0,1.48,0.66,0.4,0.97,10.26,0.72,1.75,685.0,2
|
170
|
-
13.58,2.58,2.69,24.5,105.0,1.55,0.84,0.39,1.54,8.66,0.74,1.8,750.0,2
|
171
|
-
13.4,4.6,2.86,25.0,112.0,1.98,0.96,0.27,1.11,8.5,0.67,1.92,630.0,2
|
172
|
-
12.2,3.03,2.32,19.0,96.0,1.25,0.49,0.4,0.73,5.5,0.66,1.83,510.0,2
|
173
|
-
12.77,2.39,2.28,19.5,86.0,1.39,0.51,0.48,0.64,9.899999,0.57,1.63,470.0,2
|
174
|
-
14.16,2.51,2.48,20.0,91.0,1.68,0.7,0.44,1.24,9.7,0.62,1.71,660.0,2
|
175
|
-
13.71,5.65,2.45,20.5,95.0,1.68,0.61,0.52,1.06,7.7,0.64,1.74,740.0,2
|
176
|
-
13.4,3.91,2.48,23.0,102.0,1.8,0.75,0.43,1.41,7.3,0.7,1.56,750.0,2
|
177
|
-
13.27,4.28,2.26,20.0,120.0,1.59,0.69,0.43,1.35,10.2,0.59,1.56,835.0,2
|
178
|
-
13.17,2.59,2.37,20.0,120.0,1.65,0.68,0.53,1.46,9.3,0.6,1.62,840.0,2
|
179
|
-
14.13,4.1,2.74,24.5,96.0,2.05,0.76,0.56,1.35,9.2,0.61,1.6,560.0,2
|
@@ -1,158 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "raw",
|
5
|
-
"id": "bd639ea6-be49-4b3a-bebd-632493381a46",
|
6
|
-
"metadata": {},
|
7
|
-
"source": [
|
8
|
-
"1. Design a custom 4-layer feed forward neural network for the weather prediction dataset. Modify your model to include L2 regularization on all hidden layers."
|
9
|
-
]
|
10
|
-
},
|
11
|
-
{
|
12
|
-
"cell_type": "code",
|
13
|
-
"execution_count": null,
|
14
|
-
"id": "f4c79e75-428d-47dc-91a3-2edadee82436",
|
15
|
-
"metadata": {},
|
16
|
-
"outputs": [],
|
17
|
-
"source": [
|
18
|
-
"from tensorflow.keras.models import Sequential\n",
|
19
|
-
"from tensorflow.keras.layers import Dense\n",
|
20
|
-
"from tensorflow.keras.regularizers import l2\n",
|
21
|
-
"\n",
|
22
|
-
"model = Sequential([\n",
|
23
|
-
" Dense(128, input_shape=(num_features,), activation='relu', kernel_regularizer=l2(0.01)),\n",
|
24
|
-
" Dense(64, activation='relu', kernel_regularizer=l2(0.01)),\n",
|
25
|
-
" Dense(32, activation='relu', kernel_regularizer=l2(0.01)),\n",
|
26
|
-
" Dense(1, activation='linear') # Assuming a regression task\n",
|
27
|
-
"])\n",
|
28
|
-
"\n",
|
29
|
-
"model.compile(optimizer='adam', loss='mse', metrics=['mae'])\n",
|
30
|
-
"model.summary()\n"
|
31
|
-
]
|
32
|
-
},
|
33
|
-
{
|
34
|
-
"cell_type": "raw",
|
35
|
-
"id": "6afa7495-6f81-42cb-97d1-33bb475a3e58",
|
36
|
-
"metadata": {},
|
37
|
-
"source": [
|
38
|
-
"2. Design customized 7-layer CNN architecture to classify the sign images."
|
39
|
-
]
|
40
|
-
},
|
41
|
-
{
|
42
|
-
"cell_type": "code",
|
43
|
-
"execution_count": null,
|
44
|
-
"id": "84acb2a8-4a5a-4ce4-ac57-3890940b43be",
|
45
|
-
"metadata": {},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"from tensorflow.keras.models import Sequential\n",
|
49
|
-
"from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout\n",
|
50
|
-
"\n",
|
51
|
-
"model = Sequential([\n",
|
52
|
-
" Conv2D(32, (3,3), activation='relu', input_shape=(64, 64, 3)), # adjust input shape as needed\n",
|
53
|
-
" Conv2D(32, (3,3), activation='relu'),\n",
|
54
|
-
" MaxPooling2D(pool_size=(2,2)),\n",
|
55
|
-
"\n",
|
56
|
-
" Conv2D(64, (3,3), activation='relu'),\n",
|
57
|
-
" Conv2D(64, (3,3), activation='relu'),\n",
|
58
|
-
" MaxPooling2D(pool_size=(2,2)),\n",
|
59
|
-
"\n",
|
60
|
-
" Flatten(),\n",
|
61
|
-
" Dense(128, activation='relu'),\n",
|
62
|
-
" Dense(num_classes, activation='softmax')\n",
|
63
|
-
"])\n",
|
64
|
-
"\n",
|
65
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
66
|
-
"model.summary()\n"
|
67
|
-
]
|
68
|
-
},
|
69
|
-
{
|
70
|
-
"cell_type": "raw",
|
71
|
-
"id": "eea88c65-1ab3-42fe-9a68-ddb4a8577b3b",
|
72
|
-
"metadata": {},
|
73
|
-
"source": [
|
74
|
-
"3. Build a Feed Forward Neural Network using Keras to classify pistachio types. Your model should include dropout layers to prevent overfitting."
|
75
|
-
]
|
76
|
-
},
|
77
|
-
{
|
78
|
-
"cell_type": "code",
|
79
|
-
"execution_count": null,
|
80
|
-
"id": "e96669fb-25ef-408f-9b00-60f497e33341",
|
81
|
-
"metadata": {},
|
82
|
-
"outputs": [],
|
83
|
-
"source": [
|
84
|
-
"from tensorflow.keras.models import Sequential\n",
|
85
|
-
"from tensorflow.keras.layers import Dense, Dropout\n",
|
86
|
-
"\n",
|
87
|
-
"model = Sequential([\n",
|
88
|
-
" Dense(128, input_shape=(num_features,), activation='relu'),\n",
|
89
|
-
" Dropout(0.3),\n",
|
90
|
-
" Dense(64, activation='relu'),\n",
|
91
|
-
" Dropout(0.3),\n",
|
92
|
-
" Dense(1, activation='sigmoid') # or 'softmax' if more than 2 types\n",
|
93
|
-
"])\n",
|
94
|
-
"\n",
|
95
|
-
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
|
96
|
-
"model.summary()\n"
|
97
|
-
]
|
98
|
-
},
|
99
|
-
{
|
100
|
-
"cell_type": "raw",
|
101
|
-
"id": "8b5fd045-bb5d-449c-8dbe-f1702efd369b",
|
102
|
-
"metadata": {},
|
103
|
-
"source": [
|
104
|
-
"4. Design customized 10-layer CNN architecture to classify the pistachio images."
|
105
|
-
]
|
106
|
-
},
|
107
|
-
{
|
108
|
-
"cell_type": "code",
|
109
|
-
"execution_count": null,
|
110
|
-
"id": "ea1e8b99-13ce-4c79-972d-349189b590ae",
|
111
|
-
"metadata": {},
|
112
|
-
"outputs": [],
|
113
|
-
"source": [
|
114
|
-
"model = Sequential([\n",
|
115
|
-
" Conv2D(32, (3,3), activation='relu', input_shape=(64, 64, 3)),\n",
|
116
|
-
" Conv2D(32, (3,3), activation='relu'),\n",
|
117
|
-
" MaxPooling2D(pool_size=(2,2)),\n",
|
118
|
-
"\n",
|
119
|
-
" Conv2D(64, (3,3), activation='relu'),\n",
|
120
|
-
" Conv2D(64, (3,3), activation='relu'),\n",
|
121
|
-
" MaxPooling2D(pool_size=(2,2)),\n",
|
122
|
-
"\n",
|
123
|
-
" Conv2D(128, (3,3), activation='relu'),\n",
|
124
|
-
" Conv2D(128, (3,3), activation='relu'),\n",
|
125
|
-
" MaxPooling2D(pool_size=(2,2)),\n",
|
126
|
-
"\n",
|
127
|
-
" Flatten(),\n",
|
128
|
-
" Dense(256, activation='relu'),\n",
|
129
|
-
" Dense(num_classes, activation='softmax')\n",
|
130
|
-
"])\n",
|
131
|
-
"\n",
|
132
|
-
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
133
|
-
"model.summary()\n"
|
134
|
-
]
|
135
|
-
}
|
136
|
-
],
|
137
|
-
"metadata": {
|
138
|
-
"kernelspec": {
|
139
|
-
"display_name": "Python 3 (ipykernel)",
|
140
|
-
"language": "python",
|
141
|
-
"name": "python3"
|
142
|
-
},
|
143
|
-
"language_info": {
|
144
|
-
"codemirror_mode": {
|
145
|
-
"name": "ipython",
|
146
|
-
"version": 3
|
147
|
-
},
|
148
|
-
"file_extension": ".py",
|
149
|
-
"mimetype": "text/x-python",
|
150
|
-
"name": "python",
|
151
|
-
"nbconvert_exporter": "python",
|
152
|
-
"pygments_lexer": "ipython3",
|
153
|
-
"version": "3.12.4"
|
154
|
-
}
|
155
|
-
},
|
156
|
-
"nbformat": 4,
|
157
|
-
"nbformat_minor": 5
|
158
|
-
}
|