noshot 4.0.0__py3-none-any.whl → 6.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. noshot/data/ML TS XAI/XAI/Q1.ipynb +377 -0
  2. noshot/data/ML TS XAI/XAI/Q2.ipynb +362 -0
  3. noshot/data/ML TS XAI/XAI/Q3.ipynb +637 -0
  4. noshot/data/ML TS XAI/XAI/Q4.ipynb +206 -0
  5. noshot/data/ML TS XAI/XAI/Q5.ipynb +1018 -0
  6. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/METADATA +1 -1
  7. noshot-6.0.0.dist-info/RECORD +14 -0
  8. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +0 -269
  9. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +0 -155
  10. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -139
  11. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  12. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +0 -228
  13. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +0 -117
  14. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +0 -165
  15. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +0 -251
  16. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +0 -78
  17. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  18. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +0 -115
  19. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +0 -159
  20. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +0 -200
  21. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  22. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -153
  23. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  24. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +0 -208
  25. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -260
  26. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +0 -238
  27. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +0 -8124
  28. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +0 -625
  29. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +0 -715
  30. noshot/data/ML TS XAI/ML/Main/data/iris.csv +0 -151
  31. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +0 -210
  32. noshot/data/ML TS XAI/ML/Main/data/magic04.data +0 -19020
  33. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  34. noshot/data/ML TS XAI/ML/Main/data/rice.arff +0 -3826
  35. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +0 -73
  36. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +0 -179
  37. noshot/data/ML TS XAI/ML/Other Codes.ipynb +0 -158
  38. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  39. noshot-4.0.0.dist-info/RECORD +0 -40
  40. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/WHEEL +0 -0
  41. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  42. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/top_level.txt +0 -0
@@ -1,89 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "939c616d-2779-4e21-adcf-1d070898d65b",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "from sklearn import datasets\n",
11
- "from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay\n",
12
- "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.naive_bayes import GaussianNB\n",
14
- "import pandas as pd"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "17720a0d-e788-4b1d-b2b2-a542f6b824a2",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "wine = pd.read_csv('data/wine-dataset.csv')\n",
25
- "print(wine.shape)"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "a050923e-4382-4ff7-93bf-446b117c0ef5",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "X = wine.iloc[:, :13]\n",
36
- "X.head()"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": null,
42
- "id": "9f1a4355-718e-40ed-b892-3e3d03c4ef3c",
43
- "metadata": {},
44
- "outputs": [],
45
- "source": [
46
- "y = wine.iloc[:, 13]\n",
47
- "y"
48
- ]
49
- },
50
- {
51
- "cell_type": "code",
52
- "execution_count": null,
53
- "id": "dd3f31ef-c0d2-48dd-9fb7-338c10f9fbf9",
54
- "metadata": {},
55
- "outputs": [],
56
- "source": [
57
- "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)\n",
58
- "\n",
59
- "gnb = GaussianNB().fit(X_train, y_train)\n",
60
- "gnb_predictions = gnb.predict(X_test)\n",
61
- "accuracy = gnb.score(X_test, y_test)\n",
62
- "accuracy\n",
63
- "cm = confusion_matrix(y_test, gnb_predictions)\n",
64
- "ConfusionMatrixDisplay(cm).plot()"
65
- ]
66
- }
67
- ],
68
- "metadata": {
69
- "kernelspec": {
70
- "display_name": "Python 3 (ipykernel)",
71
- "language": "python",
72
- "name": "python3"
73
- },
74
- "language_info": {
75
- "codemirror_mode": {
76
- "name": "ipython",
77
- "version": 3
78
- },
79
- "file_extension": ".py",
80
- "mimetype": "text/x-python",
81
- "name": "python",
82
- "nbconvert_exporter": "python",
83
- "pygments_lexer": "ipython3",
84
- "version": "3.12.4"
85
- }
86
- },
87
- "nbformat": 4,
88
- "nbformat_minor": 5
89
- }
@@ -1,208 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "30043339",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import seaborn as sns\n",
13
- "import matplotlib.pyplot as plt\n",
14
- "\n",
15
- "from sklearn.model_selection import train_test_split\n",
16
- "from sklearn.metrics import accuracy_score\n",
17
- "from sklearn.preprocessing import MinMaxScaler\n",
18
- "from sklearn.decomposition import PCA\n",
19
- "from sklearn import svm\n",
20
- "from sklearn.svm import SVC\n",
21
- "from scipy.io import arff"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": null,
27
- "id": "74c26fca",
28
- "metadata": {},
29
- "outputs": [],
30
- "source": [
31
- "data = arff.loadarff(\"data/rice.arff\")\n",
32
- "df = pd.DataFrame(data[0])\n",
33
- "df.head()"
34
- ]
35
- },
36
- {
37
- "cell_type": "code",
38
- "execution_count": null,
39
- "id": "51439c01",
40
- "metadata": {},
41
- "outputs": [],
42
- "source": [
43
- "df.info()"
44
- ]
45
- },
46
- {
47
- "cell_type": "code",
48
- "execution_count": null,
49
- "id": "03e7a5d4",
50
- "metadata": {},
51
- "outputs": [],
52
- "source": [
53
- "df['Class'].unique()"
54
- ]
55
- },
56
- {
57
- "cell_type": "code",
58
- "execution_count": null,
59
- "id": "cf14dcf8",
60
- "metadata": {},
61
- "outputs": [],
62
- "source": [
63
- "df['Class'] = df['Class'].map({b'Cammeo':0, b'Osmancik':1})\n",
64
- "df['Class'].unique()"
65
- ]
66
- },
67
- {
68
- "cell_type": "code",
69
- "execution_count": null,
70
- "id": "dba18b10",
71
- "metadata": {},
72
- "outputs": [],
73
- "source": [
74
- "df.isnull().sum()"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": null,
80
- "id": "246346b1",
81
- "metadata": {},
82
- "outputs": [],
83
- "source": [
84
- "X = df.drop(columns=['Class'])\n",
85
- "y = df['Class']"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "d182a204",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "X = PCA(n_components=2).fit_transform(X)"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": null,
101
- "id": "f8e67728",
102
- "metadata": {},
103
- "outputs": [],
104
- "source": [
105
- "X.shape"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "id": "99facee4",
112
- "metadata": {},
113
- "outputs": [],
114
- "source": [
115
- "plt.scatter(X[:,0], X[:,1], c=y, edgecolor=\"black\")\n",
116
- "plt.show()"
117
- ]
118
- },
119
- {
120
- "cell_type": "code",
121
- "execution_count": null,
122
- "id": "23da86fe-1c5d-4f57-ab29-a2bb6b060783",
123
- "metadata": {},
124
- "outputs": [],
125
- "source": [
126
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
127
- ]
128
- },
129
- {
130
- "cell_type": "code",
131
- "execution_count": null,
132
- "id": "903cccff",
133
- "metadata": {},
134
- "outputs": [],
135
- "source": [
136
- "models=[\n",
137
- " SVC(kernel='linear', C=1, degree=5, gamma=\"auto\", probability=True),\n",
138
- " SVC(kernel='rbf', C=1, gamma='scale', probability=True),\n",
139
- " SVC(kernel='poly', C=1, degree=5, gamma=\"auto\", probability=True)\n",
140
- "]"
141
- ]
142
- },
143
- {
144
- "cell_type": "code",
145
- "execution_count": null,
146
- "id": "ff7b81e7",
147
- "metadata": {},
148
- "outputs": [],
149
- "source": [
150
- "from sklearn.preprocessing import StandardScaler\n",
151
- "from sklearn.pipeline import make_pipeline\n",
152
- "from sklearn.metrics import classification_report,confusion_matrix,ConfusionMatrixDisplay\n",
153
- "from sklearn.metrics import roc_curve, auc\n",
154
- "from mlxtend.plotting import plot_decision_regions\n",
155
- "\n",
156
- "for model in models:\n",
157
- " nonlinear_svm = make_pipeline(StandardScaler(), model)\n",
158
- " nonlinear_svm.fit(X_train, y_train)\n",
159
- " y_pred = nonlinear_svm.predict(X_test)\n",
160
- " print(\"SVM Classification Report:\")\n",
161
- " print(classification_report(y_test, y_pred))\n",
162
- " print(f\"Accuracy: {accuracy_score(y_test, y_pred):.2f}\")\n",
163
- " plot_decision_regions(X=X_train, \n",
164
- " y=y_train.values,\n",
165
- " clf=nonlinear_svm, \n",
166
- " legend=2)\n",
167
- "\n",
168
- " plt.title('SVM Decision Region Boundary', size=16)\n",
169
- " plt.show()\n",
170
- " conf=confusion_matrix(y_test,y_pred)\n",
171
- " ConfusionMatrixDisplay(conf,display_labels=[0,1]).plot(cmap='Blues')\n",
172
- " plt.show()\n",
173
- " y_pred_proba=nonlinear_svm.predict_proba(X_test)[:,1]\n",
174
- " fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba) \n",
175
- " roc_auc = auc(fpr, tpr)\n",
176
- " \n",
177
- " plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)\n",
178
- " plt.plot([0, 1], [0, 1], 'k--', label='No Skill')\n",
179
- " plt.xlabel('False Positive Rate')\n",
180
- " plt.ylabel('True Positive Rate')\n",
181
- " plt.title('ROC Curve for Rice Classification')\n",
182
- " plt.legend()\n",
183
- " plt.show()"
184
- ]
185
- }
186
- ],
187
- "metadata": {
188
- "kernelspec": {
189
- "display_name": "Python 3 (ipykernel)",
190
- "language": "python",
191
- "name": "python3"
192
- },
193
- "language_info": {
194
- "codemirror_mode": {
195
- "name": "ipython",
196
- "version": 3
197
- },
198
- "file_extension": ".py",
199
- "mimetype": "text/x-python",
200
- "name": "python",
201
- "nbconvert_exporter": "python",
202
- "pygments_lexer": "ipython3",
203
- "version": "3.12.4"
204
- }
205
- },
206
- "nbformat": 4,
207
- "nbformat_minor": 5
208
- }
@@ -1,260 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "id": "aYlTWIqe5rL9"
8
- },
9
- "outputs": [],
10
- "source": [
11
- "import numpy as np\n",
12
- "import pandas as pd\n",
13
- "import seaborn as sns\n",
14
- "import matplotlib.pyplot as plt\n",
15
- "\n",
16
- "import tensorflow as tf\n",
17
- "from tensorflow.keras.models import Sequential\n",
18
- "from tensorflow.keras.layers import Dense, Flatten\n",
19
- "from tensorflow.keras.optimizers import Adam\n",
20
- "from tensorflow.keras.losses import SparseCategoricalCrossentropy\n",
21
- "from tensorflow.keras.metrics import SparseCategoricalAccuracy\n",
22
- "\n",
23
- "import warnings\n",
24
- "warnings.filterwarnings('ignore')"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "metadata": {
31
- "colab": {
32
- "base_uri": "https://localhost:8080/",
33
- "height": 226
34
- },
35
- "id": "ejG3Obse5smj",
36
- "outputId": "85d8cf13-eb83-49f6-e98f-0893fabb1cff"
37
- },
38
- "outputs": [],
39
- "source": [
40
- "df = pd.read_csv(\"data/sobar-72.csv\")\n",
41
- "df.head()"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "metadata": {
48
- "id": "hLECDj5558Om"
49
- },
50
- "outputs": [],
51
- "source": [
52
- "X = df.drop(columns=['ca_cervix'])\n",
53
- "y = df['ca_cervix']"
54
- ]
55
- },
56
- {
57
- "cell_type": "code",
58
- "execution_count": null,
59
- "metadata": {
60
- "id": "MhA_LTNA5-49"
61
- },
62
- "outputs": [],
63
- "source": [
64
- "import matplotlib.pyplot as plt\n",
65
- "from sklearn.model_selection import train_test_split\n",
66
- "from tensorflow.keras import regularizers\n",
67
- "from tensorflow.keras.layers import Dropout"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": null,
73
- "metadata": {
74
- "id": "rjH4KJqq5_7-"
75
- },
76
- "outputs": [],
77
- "source": [
78
- "x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
79
- "\n",
80
- "y_train = tf.keras.utils.to_categorical(y_train, num_classes=2)\n",
81
- "y_test = tf.keras.utils.to_categorical(y_test, num_classes=2)"
82
- ]
83
- },
84
- {
85
- "cell_type": "code",
86
- "execution_count": null,
87
- "metadata": {
88
- "id": "5lQVtYUC6A67"
89
- },
90
- "outputs": [],
91
- "source": [
92
- "model = tf.keras.models.Sequential([\n",
93
- " tf.keras.layers.Dense(128, activation='relu', input_shape=(19,),\n",
94
- " kernel_regularizer=regularizers.l2(0.001)),\n",
95
- " Dropout(0.3),\n",
96
- " tf.keras.layers.Dense(64, activation='relu',\n",
97
- " kernel_regularizer=regularizers.l2(0.001)),\n",
98
- " Dropout(0.3),\n",
99
- " tf.keras.layers.Dense(units=2, activation='softmax')\n",
100
- "])"
101
- ]
102
- },
103
- {
104
- "cell_type": "code",
105
- "execution_count": null,
106
- "metadata": {
107
- "id": "cgxMgB8q6Cjg"
108
- },
109
- "outputs": [],
110
- "source": [
111
- "model.compile(optimizer='adam',\n",
112
- " loss='categorical_crossentropy',\n",
113
- " metrics=['accuracy'])"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": null,
119
- "metadata": {
120
- "id": "y71y0yDT6MnK"
121
- },
122
- "outputs": [],
123
- "source": [
124
- "early_stopping = tf.keras.callbacks.EarlyStopping(\n",
125
- " monitor='val_loss',\n",
126
- " patience=10,\n",
127
- " restore_best_weights=True)"
128
- ]
129
- },
130
- {
131
- "cell_type": "code",
132
- "execution_count": null,
133
- "metadata": {
134
- "colab": {
135
- "base_uri": "https://localhost:8080/"
136
- },
137
- "id": "1PZHOQQp6NpP",
138
- "outputId": "c1d34cfd-5b74-4f42-aef1-74bbfc6aec95"
139
- },
140
- "outputs": [],
141
- "source": [
142
- "history = model.fit(x_train, y_train,\n",
143
- " epochs=50,\n",
144
- " batch_size=32,\n",
145
- " validation_split=0.2,\n",
146
- " callbacks=[early_stopping],\n",
147
- " verbose=1)"
148
- ]
149
- },
150
- {
151
- "cell_type": "code",
152
- "execution_count": null,
153
- "metadata": {
154
- "colab": {
155
- "base_uri": "https://localhost:8080/",
156
- "height": 362
157
- },
158
- "id": "qjhgjajp6O3J",
159
- "outputId": "b04cb0d7-bc3f-4991-e5f8-c51698856ab7"
160
- },
161
- "outputs": [],
162
- "source": [
163
- "def plot_history(history):\n",
164
- " plt.figure(figsize=(12, 5))\n",
165
- "\n",
166
- " # Plot loss\n",
167
- " plt.subplot(1, 2, 1)\n",
168
- " plt.plot(history.history['loss'], label='Training Loss')\n",
169
- " plt.plot(history.history['val_loss'], label='Validation Loss')\n",
170
- " plt.title('Training and Validation Loss')\n",
171
- " plt.xlabel('Epoch')\n",
172
- " plt.ylabel('Loss')\n",
173
- " plt.legend()\n",
174
- "\n",
175
- " # Plot accuracy\n",
176
- " plt.subplot(1, 2, 2)\n",
177
- " plt.plot(history.history['accuracy'], label='Training Accuracy')\n",
178
- " plt.plot(history.history['val_accuracy'], label='Validation Accuracy')\n",
179
- " plt.title('Training and Validation Accuracy')\n",
180
- " plt.xlabel('Epoch')\n",
181
- " plt.ylabel('Accuracy')\n",
182
- " plt.legend()\n",
183
- "\n",
184
- " plt.tight_layout()\n",
185
- " plt.show()\n",
186
- "\n",
187
- "plot_history(history)\n",
188
- "\n",
189
- "loss, accuracy = model.evaluate(x_test, y_test)\n",
190
- "print(f'Test accuracy: {accuracy:.4f}')\n",
191
- "print(f'Test loss: {loss:.4f}')\n",
192
- "\n",
193
- "print(f\"Actual: {y_test[1]}, Predicted: {model.predict(x_test[:1])}\")"
194
- ]
195
- },
196
- {
197
- "cell_type": "code",
198
- "execution_count": null,
199
- "metadata": {
200
- "colab": {
201
- "base_uri": "https://localhost:8080/",
202
- "height": 1000
203
- },
204
- "id": "VaBGSYTs6Qeq",
205
- "outputId": "39af0238-9045-412e-cd8b-258fdc133948"
206
- },
207
- "outputs": [],
208
- "source": [
209
- "from sklearn.metrics import classification_report,confusion_matrix,ConfusionMatrixDisplay,roc_curve, auc, accuracy_score\n",
210
- "y_pred=model.predict(x_test)\n",
211
- "y_test= [np.argmax(y, axis=None, out=None) for y in y_test]\n",
212
- "y_pred= [np.argmax(y, axis=None, out=None) for y in y_pred]\n",
213
- "print(\"Feed Forward Classification Report:\")\n",
214
- "print(classification_report(y_test, y_pred))\n",
215
- "print(f\"Accuracy: {accuracy_score(y_test, y_pred):.2f}\")\n",
216
- "conf=confusion_matrix(y_test,y_pred)\n",
217
- "ConfusionMatrixDisplay(conf,display_labels=[0,1]).plot(cmap='Blues')\n",
218
- "plt.show()\n",
219
- "y_pred_proba=model.predict(x_test)[:,1]\n",
220
- "fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)\n",
221
- "roc_auc = auc(fpr, tpr)\n",
222
- "\n",
223
- "plt.figure()\n",
224
- "plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc)\n",
225
- "plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')\n",
226
- "plt.xlim([0.0, 1.0])\n",
227
- "plt.ylim([0.0, 1.05])\n",
228
- "plt.xlabel('False Positive Rate')\n",
229
- "plt.ylabel('True Positive Rate')\n",
230
- "plt.title('Receiver Operating Characteristic')\n",
231
- "plt.legend(loc=\"lower right\")\n",
232
- "plt.show()"
233
- ]
234
- }
235
- ],
236
- "metadata": {
237
- "colab": {
238
- "provenance": []
239
- },
240
- "kernelspec": {
241
- "display_name": "Python 3 (ipykernel)",
242
- "language": "python",
243
- "name": "python3"
244
- },
245
- "language_info": {
246
- "codemirror_mode": {
247
- "name": "ipython",
248
- "version": 3
249
- },
250
- "file_extension": ".py",
251
- "mimetype": "text/x-python",
252
- "name": "python",
253
- "nbconvert_exporter": "python",
254
- "pygments_lexer": "ipython3",
255
- "version": "3.12.4"
256
- }
257
- },
258
- "nbformat": 4,
259
- "nbformat_minor": 4
260
- }