noshot 4.0.0__py3-none-any.whl → 6.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. noshot/data/ML TS XAI/XAI/Q1.ipynb +377 -0
  2. noshot/data/ML TS XAI/XAI/Q2.ipynb +362 -0
  3. noshot/data/ML TS XAI/XAI/Q3.ipynb +637 -0
  4. noshot/data/ML TS XAI/XAI/Q4.ipynb +206 -0
  5. noshot/data/ML TS XAI/XAI/Q5.ipynb +1018 -0
  6. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/METADATA +1 -1
  7. noshot-6.0.0.dist-info/RECORD +14 -0
  8. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/Copy_of_Pistachio_csv.ipynb +0 -269
  9. noshot/data/ML TS XAI/ML/ML Lab CIA 2 (I Found Only This Check)/weatherAUS.ipynb +0 -155
  10. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +0 -139
  11. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +0 -181
  12. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +0 -228
  13. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +0 -117
  14. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +0 -165
  15. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +0 -251
  16. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +0 -78
  17. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +0 -114
  18. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +0 -115
  19. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +0 -159
  20. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb +0 -200
  21. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +0 -112
  22. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +0 -153
  23. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +0 -89
  24. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +0 -208
  25. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +0 -260
  26. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +0 -238
  27. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +0 -8124
  28. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +0 -625
  29. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +0 -715
  30. noshot/data/ML TS XAI/ML/Main/data/iris.csv +0 -151
  31. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +0 -210
  32. noshot/data/ML TS XAI/ML/Main/data/magic04.data +0 -19020
  33. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  34. noshot/data/ML TS XAI/ML/Main/data/rice.arff +0 -3826
  35. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +0 -73
  36. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +0 -179
  37. noshot/data/ML TS XAI/ML/Other Codes.ipynb +0 -158
  38. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +0 -691
  39. noshot-4.0.0.dist-info/RECORD +0 -40
  40. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/WHEEL +0 -0
  41. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  42. {noshot-4.0.0.dist-info → noshot-6.0.0.dist-info}/top_level.txt +0 -0
@@ -1,251 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "10424106",
7
- "metadata": {
8
- "id": "10424106"
9
- },
10
- "outputs": [],
11
- "source": [
12
- "import numpy as np\n",
13
- "import pandas as pd\n",
14
- "import seaborn as sns\n",
15
- "import matplotlib.pyplot as plt"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": null,
21
- "id": "0fc5ef2f",
22
- "metadata": {
23
- "id": "0fc5ef2f",
24
- "outputId": "a217f653-0c3c-42cd-c9c0-21b11c178506"
25
- },
26
- "outputs": [],
27
- "source": [
28
- "df=pd.read_csv(\"data/sobar-72.csv\")\n",
29
- "print(\"Shape:\", df.shape)\n",
30
- "df.head()"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "id": "4eec711d",
37
- "metadata": {
38
- "id": "4eec711d",
39
- "outputId": "a15e9bfc-b965-4e95-e7a4-0052839233f3"
40
- },
41
- "outputs": [],
42
- "source": [
43
- "df.columns"
44
- ]
45
- },
46
- {
47
- "cell_type": "code",
48
- "execution_count": null,
49
- "id": "4e39de4e",
50
- "metadata": {
51
- "id": "4e39de4e",
52
- "outputId": "348e3927-e93a-4b96-e78f-a2d022497da9"
53
- },
54
- "outputs": [],
55
- "source": [
56
- "df.info()"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "7675bf00",
63
- "metadata": {
64
- "id": "7675bf00",
65
- "outputId": "3165d249-d062-4fa3-cf46-21452ad4aa42"
66
- },
67
- "outputs": [],
68
- "source": [
69
- "df.isnull().sum()"
70
- ]
71
- },
72
- {
73
- "cell_type": "code",
74
- "execution_count": null,
75
- "id": "1f10d8bd",
76
- "metadata": {
77
- "id": "1f10d8bd",
78
- "outputId": "e279942f-eb05-488a-84df-081f41c20a09"
79
- },
80
- "outputs": [],
81
- "source": [
82
- "cols = ['behavior_sexualRisk', 'intention_aggregation', 'attitude_consistency',\n",
83
- " 'norm_significantPerson', 'perception_vulnerability', 'motivation_strength',\n",
84
- " 'socialSupport_emotionality', 'empowerment_knowledge', 'ca_cervix']\n",
85
- "sns.pairplot(df[cols], hue='ca_cervix')"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "3ae73b60-e7a5-4637-8c1d-94deb6ee1336",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "X = df.drop(columns=['ca_cervix'])\n",
96
- "y = df['ca_cervix']"
97
- ]
98
- },
99
- {
100
- "cell_type": "code",
101
- "execution_count": null,
102
- "id": "e840e811",
103
- "metadata": {
104
- "id": "e840e811",
105
- "outputId": "21fe4718-db07-4188-bdce-10d7436eaa53"
106
- },
107
- "outputs": [],
108
- "source": [
109
- "import sklearn\n",
110
- "from sklearn import metrics\n",
111
- "from sklearn.neighbors import KNeighborsClassifier\n",
112
- "from sklearn.model_selection import train_test_split\n",
113
- "from sklearn.preprocessing import StandardScaler\n",
114
- "from sklearn.decomposition import PCA\n",
115
- "from mlxtend.plotting import plot_decision_regions\n",
116
- "\n",
117
- "x = StandardScaler().fit_transform(X)\n",
118
- "pca = PCA(n_components=2)\n",
119
- "x = pca.fit_transform(x)\n",
120
- "\n",
121
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state = 4)\n",
122
- "\n",
123
- "similarities=['euclidean','manhattan','minkowski']\n",
124
- "for sim in similarities:\n",
125
- " knn = KNeighborsClassifier(n_neighbors=5, metric=sim)\n",
126
- " knn.fit(X_train, y_train)\n",
127
- " y_pred = knn.predict(X_test)\n",
128
- " print(\"Accuracy:\", metrics.accuracy_score(y_test, y_pred))\n",
129
- " print(\"Distance Type:\", sim.capitalize())\n",
130
- " plot_decision_regions(X_train, np.array(y_train), clf=knn, legend=2)\n",
131
- " plt.xlabel('X')\n",
132
- " plt.ylabel('Y')\n",
133
- " plt.title('KNN with K=5 using '+str.capitalize(sim))\n",
134
- " plt.show()"
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- "execution_count": null,
140
- "id": "add0277c",
141
- "metadata": {
142
- "id": "add0277c",
143
- "outputId": "d82e7303-9d59-4f80-8d37-8f7cda39874a"
144
- },
145
- "outputs": [],
146
- "source": [
147
- "X, Y = [], []\n",
148
- "for i in range(1,10):\n",
149
- " knn = KNeighborsClassifier(n_neighbors = int(i))\n",
150
- " knn.fit(X_train, y_train)\n",
151
- " X.append(int(i))\n",
152
- " Y.append(metrics.accuracy_score(y_test, y_pred))\n",
153
- "\n",
154
- "plt.figure(figsize=(4,2))\n",
155
- "plt.plot(X, Y)\n",
156
- "plt.title('K Value vs Accuracy')\n",
157
- "plt.show()\n",
158
- "Y"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "id": "99411067",
165
- "metadata": {
166
- "id": "99411067",
167
- "outputId": "6f229212-5383-425f-c121-5cd27e6cd310"
168
- },
169
- "outputs": [],
170
- "source": [
171
- "plt.scatter(X_test[:,0], X_test[:,1], c=y_pred)\n",
172
- "plt.grid()\n",
173
- "plt.show()"
174
- ]
175
- },
176
- {
177
- "cell_type": "code",
178
- "execution_count": null,
179
- "id": "13bf2047",
180
- "metadata": {
181
- "id": "13bf2047",
182
- "outputId": "7f1a3184-c04e-44f8-a471-10d38e68e5ea"
183
- },
184
- "outputs": [],
185
- "source": [
186
- "from scipy.cluster.hierarchy import dendrogram, linkage\n",
187
- "\n",
188
- "unique_labels = np.unique(y)\n",
189
- "label_mapping = {label: i for i, label in enumerate(unique_labels)}\n",
190
- "new_y = np.array([label_mapping[label] for label in y])\n",
191
- "linked = linkage(x, 'single')\n",
192
- "\n",
193
- "plt.figure(figsize=(10, 7))\n",
194
- "dendrogram(linked,\n",
195
- " orientation='top',\n",
196
- " distance_sort='descending',\n",
197
- " labels=new_y,\n",
198
- " show_leaf_counts=True)\n",
199
- "plt.title('Dendrogram for KNN')\n",
200
- "plt.xlabel('Data Points')\n",
201
- "plt.ylabel('Distance')\n",
202
- "plt.show()"
203
- ]
204
- },
205
- {
206
- "cell_type": "code",
207
- "execution_count": null,
208
- "id": "ff0ac60f",
209
- "metadata": {
210
- "id": "ff0ac60f",
211
- "outputId": "31b575f3-f8e7-42ff-d01f-69f86e7d9fd0"
212
- },
213
- "outputs": [],
214
- "source": [
215
- "from scipy.spatial import Voronoi, voronoi_plot_2d\n",
216
- "\n",
217
- "vor = Voronoi(x)\n",
218
- "fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='black', line_width=2, line_alpha=0.6, point_size=10)\n",
219
- "plt.scatter(x[:, 0], x[:, 1], c=y, cmap='viridis', s=50, edgecolors='black') # Color points by target variable\n",
220
- "plt.title('Voronoi Diagram with Target Variable')\n",
221
- "plt.xlabel('X')\n",
222
- "plt.ylabel('Y')\n",
223
- "plt.show()"
224
- ]
225
- }
226
- ],
227
- "metadata": {
228
- "colab": {
229
- "provenance": []
230
- },
231
- "kernelspec": {
232
- "display_name": "Python 3 (ipykernel)",
233
- "language": "python",
234
- "name": "python3"
235
- },
236
- "language_info": {
237
- "codemirror_mode": {
238
- "name": "ipython",
239
- "version": 3
240
- },
241
- "file_extension": ".py",
242
- "mimetype": "text/x-python",
243
- "name": "python",
244
- "nbconvert_exporter": "python",
245
- "pygments_lexer": "ipython3",
246
- "version": "3.12.4"
247
- }
248
- },
249
- "nbformat": 4,
250
- "nbformat_minor": 5
251
- }
@@ -1,78 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "96ac04a5-6577-4da4-8454-3b10535351f8",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import matplotlib.pyplot as plt\n",
12
- "from sklearn.preprocessing import StandardScaler\n",
13
- "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": null,
19
- "id": "b1ffa4dc-488f-4238-877b-5cbd6fb48e4e",
20
- "metadata": {},
21
- "outputs": [],
22
- "source": [
23
- "cols = ['class name','left-weight','left-distance','right-weight','right-distance']\n",
24
- "df = pd.read_table('data/balance-scale.txt', delimiter = \",\", names=cols)\n",
25
- "print(\"Shape:\", df.shape)\n",
26
- "df.head()"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "id": "069bba36-4187-48e4-bc5b-d1443c1ee87c",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "features = ['left-weight','left-distance','right-weight','right-distance']\n",
37
- "x = df.loc[:,features]\n",
38
- "y = df.loc[:,'class name']\n",
39
- "lda = LDA(n_components=2)\n",
40
- "lda_X = lda.fit(x,y).transform(x)"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "66c2b6ac-6163-4f36-ae6b-3a9e32e578ce",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "plt.scatter(lda_X[y == 'L', 0], lda_X[y == 'L', 1], s=50, c='orange', label='L')\n",
51
- "plt.scatter(lda_X[y == 'B', 0], lda_X[y == 'B', 1], s=50, c='blue', label='B')\n",
52
- "plt.scatter(lda_X[y == 'R', 0], lda_X[y == 'R', 1], s=50, c='green', label='R')\n",
53
- "plt.title('LDA plot for cmc DataSet')"
54
- ]
55
- }
56
- ],
57
- "metadata": {
58
- "kernelspec": {
59
- "display_name": "Python 3 (ipykernel)",
60
- "language": "python",
61
- "name": "python3"
62
- },
63
- "language_info": {
64
- "codemirror_mode": {
65
- "name": "ipython",
66
- "version": 3
67
- },
68
- "file_extension": ".py",
69
- "mimetype": "text/x-python",
70
- "name": "python",
71
- "nbconvert_exporter": "python",
72
- "pygments_lexer": "ipython3",
73
- "version": "3.12.4"
74
- }
75
- },
76
- "nbformat": 4,
77
- "nbformat_minor": 5
78
- }
@@ -1,114 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "68f40eda",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": null,
18
- "id": "066999b2",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "df = pd.read_csv(r\"data\\doctor-visits.csv\")\n",
23
- "print(\"Shape:\", df.shape)\n",
24
- "df.head()"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "id": "839d6a31",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "df.columns"
35
- ]
36
- },
37
- {
38
- "cell_type": "code",
39
- "execution_count": null,
40
- "id": "7d105e4c",
41
- "metadata": {},
42
- "outputs": [],
43
- "source": [
44
- "X = df.drop(columns=['Number of Doctors Visited'])\n",
45
- "Y = df['Number of Doctors Visited']"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": null,
51
- "id": "05dc3f49-79f4-4862-91e8-89aab4ae2b2f",
52
- "metadata": {},
53
- "outputs": [],
54
- "source": [
55
- "from sklearn import metrics\n",
56
- "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n",
57
- "from sklearn.model_selection import train_test_split\n",
58
- "\n",
59
- "X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=4)\n",
60
- "\n",
61
- "lda = LinearDiscriminantAnalysis(n_components=2)\n",
62
- "X_train = lda.fit_transform(X_train, y_train)\n",
63
- "X_test = lda.fit_transform(X_test,y_test)"
64
- ]
65
- },
66
- {
67
- "cell_type": "code",
68
- "execution_count": null,
69
- "id": "9e25c024-8dd8-40da-b755-1ed36dfc197c",
70
- "metadata": {},
71
- "outputs": [],
72
- "source": [
73
- "lda.fit(X_train,y_train)\n",
74
- "y_pred=lda.predict(X_test)\n",
75
- "print (\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "7f0537a8-6820-4859-a3f5-f24096dfa66b",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap='viridis')\n",
86
- "plt.title('LDA Dimensionality Reduction')\n",
87
- "plt.xlabel('LDA Component 1')\n",
88
- "plt.ylabel('LDA Component 2')\n",
89
- "plt.show()"
90
- ]
91
- }
92
- ],
93
- "metadata": {
94
- "kernelspec": {
95
- "display_name": "Python 3 (ipykernel)",
96
- "language": "python",
97
- "name": "python3"
98
- },
99
- "language_info": {
100
- "codemirror_mode": {
101
- "name": "ipython",
102
- "version": 3
103
- },
104
- "file_extension": ".py",
105
- "mimetype": "text/x-python",
106
- "name": "python",
107
- "nbconvert_exporter": "python",
108
- "pygments_lexer": "ipython3",
109
- "version": "3.12.4"
110
- }
111
- },
112
- "nbformat": 4,
113
- "nbformat_minor": 5
114
- }
@@ -1,115 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "2d42ca1a-531d-4d5b-aee4-a489d5033d1b",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import matplotlib.pyplot as plt\n",
12
- "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.linear_model import LinearRegression\n",
14
- "from sklearn.metrics import r2_score"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "f81220bc-5415-4b02-b2fd-fd5a8ff8c97a",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "df = pd.read_csv('data/machine-data.csv')\n",
25
- "print(\"Shape:\", df.shape)\n",
26
- "df.head()"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "id": "958f3a04-3ae7-442b-a6e7-9134b9c5aeb3",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "x = df.iloc[:,3:4].values\n",
37
- "y = df.iloc[:,8].values\n",
38
- "\n",
39
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)\n",
40
- "regressor = LinearRegression()\n",
41
- "regressor.fit(X_train, y_train)"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "5b15fa5c-5c78-436b-8f33-4f431c797788",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "y_pred = regressor.predict(X_test)\n",
52
- "y_pred_train = regressor.predict(X_train)\n",
53
- "print(\"Model Score: \", regressor.score(X_test, y_test))\n",
54
- "print(\"R2 Score: \", r2_score(y_test, y_pred))"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "id": "b044ea95-014e-466b-b036-8ba9f96e3910",
61
- "metadata": {},
62
- "outputs": [],
63
- "source": [
64
- "plt.scatter(X_train, y_train, color = 'red')\n",
65
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
66
- "plt.title('Y vs X (Training set)')\n",
67
- "plt.xlabel('X')\n",
68
- "plt.ylabel('Y')\n",
69
- "plt.show()\n",
70
- "plt.scatter(X_test, y_test, color = 'red')\n",
71
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
72
- "plt.title('Y vs X (Test set)')\n",
73
- "plt.xlabel('X')"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "33c64414-d432-439e-a976-d28a9b4c3f2a",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "X_future_expereince = [[2],[4]]\n",
84
- "print(\"Prediction :\", regressor.predict(X_future_expereince))\n",
85
- "plt.scatter(X_future_expereince, regressor.predict(X_future_expereince), color = 'red')\n",
86
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
87
- "plt.title('Y vs X (Test set)')\n",
88
- "plt.xlabel('X')\n",
89
- "plt.ylabel('Y')\n",
90
- "plt.show()"
91
- ]
92
- }
93
- ],
94
- "metadata": {
95
- "kernelspec": {
96
- "display_name": "Python 3 (ipykernel)",
97
- "language": "python",
98
- "name": "python3"
99
- },
100
- "language_info": {
101
- "codemirror_mode": {
102
- "name": "ipython",
103
- "version": 3
104
- },
105
- "file_extension": ".py",
106
- "mimetype": "text/x-python",
107
- "name": "python",
108
- "nbconvert_exporter": "python",
109
- "pygments_lexer": "ipython3",
110
- "version": "3.12.4"
111
- }
112
- },
113
- "nbformat": 4,
114
- "nbformat_minor": 5
115
- }