noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
  2. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  3. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
  4. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
  5. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
  6. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
  7. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
  8. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  9. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
  10. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
  11. noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
  12. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  13. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
  14. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  15. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
  16. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
  17. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
  18. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
  19. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
  20. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
  21. noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
  22. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
  23. noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
  24. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  25. noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
  26. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
  27. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
  28. noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
  29. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  30. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
  31. noshot-3.0.0.dist-info/RECORD +38 -0
  32. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
  33. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
  34. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
  35. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
  36. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
  37. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
  38. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
  39. noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
  40. noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
  41. noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
  42. noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
  43. noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
  44. noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
  45. noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
  46. noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
  47. noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
  48. noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
  49. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
  50. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
  51. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
  52. noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
  53. noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
  54. noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
  55. noshot-1.0.0.dist-info/RECORD +0 -32
  56. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  57. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1545 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {
6
- "id": "Mrf4xROWisDL"
7
- },
8
- "source": [
9
- "# **Linear shap**"
10
- ]
11
- },
12
- {
13
- "cell_type": "code",
14
- "execution_count": null,
15
- "metadata": {
16
- "colab": {
17
- "base_uri": "https://localhost:8080/",
18
- "height": 223
19
- },
20
- "id": "4mjDHxIbZYIP",
21
- "outputId": "8a4cff63-8cf6-43f9-db26-a73d6dda16da"
22
- },
23
- "outputs": [],
24
- "source": [
25
- "import shap\n",
26
- "import pandas as pd\n",
27
- "import numpy as np\n",
28
- "import matplotlib.pyplot as plt\n",
29
- "from sklearn.model_selection import train_test_split\n",
30
- "from sklearn.preprocessing import StandardScaler\n",
31
- "from sklearn.linear_model import LinearRegression\n",
32
- "\n",
33
- "\n",
34
- "url = \"/content/redwine.csv\"\n",
35
- "data = pd.read_csv(url)\n",
36
- "\n",
37
- "data.head()"
38
- ]
39
- },
40
- {
41
- "cell_type": "code",
42
- "execution_count": null,
43
- "metadata": {
44
- "colab": {
45
- "base_uri": "https://localhost:8080/",
46
- "height": 80
47
- },
48
- "id": "qHTaD3VYZcLm",
49
- "outputId": "3d94ea7e-7511-4345-f08e-4a2fdc7ace1a"
50
- },
51
- "outputs": [],
52
- "source": [
53
- "X = data.drop(columns=[\"quality\"])\n",
54
- "y = data[\"quality\"]\n",
55
- "\n",
56
- "\n",
57
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
58
- "\n",
59
- "\n",
60
- "scaler = StandardScaler()\n",
61
- "X_train = scaler.fit_transform(X_train)\n",
62
- "X_test = scaler.transform(X_test)\n",
63
- "\n",
64
- "\n",
65
- "model = LinearRegression()\n",
66
- "model.fit(X_train, y_train)\n",
67
- "\n"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": null,
73
- "metadata": {
74
- "colab": {
75
- "base_uri": "https://localhost:8080/",
76
- "height": 1000,
77
- "referenced_widgets": [
78
- "e59c91f1ac42447a8d97da5cbfeaf919",
79
- "f52afed55c5d43419f17d51c528d820a",
80
- "956ade483238471fb4e3ab1c11e7724f",
81
- "aa36ac3ce3354610bdc54be122e5bc4d",
82
- "8731287981864014be1154edc0c3eba5",
83
- "4c4e802ab50e4f408c63374ef2a29ce9",
84
- "929cc32ff82348949fa4d36f17ffdbe0",
85
- "90558b09f7294cd38148f483f5a87bf3",
86
- "0d45e78edbe54459b9a59c8c11f41b2f",
87
- "835aba7f48514c59987bc889bd587505",
88
- "8487e3ebe34b47508dc30f747bf853a0"
89
- ]
90
- },
91
- "id": "G5IWZa4CjOF4",
92
- "outputId": "a3c86b0b-c1f2-4caa-b58d-19902968d637"
93
- },
94
- "outputs": [],
95
- "source": [
96
- "explainer = shap.LinearExplainer(model, X_train, feature_perturbation=\"correlation_dependent\") # Fixed error\n",
97
- "\n",
98
- "shap_values = explainer.shap_values(X_test)\n",
99
- "\n",
100
- "shap_df = pd.DataFrame(shap_values, columns=X.columns)\n",
101
- "\n",
102
- "shap.summary_plot(shap_values, X_test, feature_names=X.columns)\n",
103
- "\n",
104
- "shap.dependence_plot(\"alcohol\", shap_values, X_test, feature_names=X.columns)\n",
105
- "\n",
106
- "shap.initjs()\n",
107
- "shap.force_plot(explainer.expected_value, shap_values[0], X_test[0], feature_names=X.columns)"
108
- ]
109
- },
110
- {
111
- "cell_type": "markdown",
112
- "metadata": {
113
- "id": "cykhcsaYjwui"
114
- },
115
- "source": [
116
- "# **Regression shap**"
117
- ]
118
- },
119
- {
120
- "cell_type": "code",
121
- "execution_count": null,
122
- "metadata": {
123
- "colab": {
124
- "base_uri": "https://localhost:8080/",
125
- "height": 223
126
- },
127
- "id": "wiY3u1yCj_MV",
128
- "outputId": "e38daa5b-3c91-4da7-f355-69de02064121"
129
- },
130
- "outputs": [],
131
- "source": [
132
- "import pandas as pd\n",
133
- "import seaborn as sns\n",
134
- "import matplotlib.pyplot as plt\n",
135
- "from sklearn.model_selection import train_test_split\n",
136
- "from sklearn.ensemble import RandomForestRegressor\n",
137
- "import shap\n",
138
- "\n",
139
- "\n",
140
- "url = \"/content/redwine.csv\"\n",
141
- "data = pd.read_csv(url)\n",
142
- "\n",
143
- "data.head()"
144
- ]
145
- },
146
- {
147
- "cell_type": "code",
148
- "execution_count": null,
149
- "metadata": {
150
- "colab": {
151
- "base_uri": "https://localhost:8080/",
152
- "height": 506
153
- },
154
- "id": "cD9YhFB0Zclh",
155
- "outputId": "318d1262-6ee9-4355-9d58-a3521d7ee313"
156
- },
157
- "outputs": [],
158
- "source": [
159
- "sns.displot(\n",
160
- " data=data.isna().melt(value_name=\"missing\"),\n",
161
- " y=\"variable\",\n",
162
- " hue=\"missing\",\n",
163
- " multiple=\"fill\",\n",
164
- " aspect=1.5\n",
165
- ")\n",
166
- "plt.show()"
167
- ]
168
- },
169
- {
170
- "cell_type": "code",
171
- "execution_count": null,
172
- "metadata": {
173
- "colab": {
174
- "base_uri": "https://localhost:8080/",
175
- "height": 80
176
- },
177
- "id": "NM1ddyLRZc6V",
178
- "outputId": "5843b853-2fd7-486a-94b7-efbce2eb3d42"
179
- },
180
- "outputs": [],
181
- "source": [
182
- "from sklearn.model_selection import train_test_split\n",
183
- "features = data.drop(columns=['quality'])\n",
184
- "labels = data['quality']\n",
185
- "x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=123)\n",
186
- "\n",
187
- "from sklearn.ensemble import RandomForestRegressor\n",
188
- "model = RandomForestRegressor(n_estimators=2000, max_depth=30, random_state=123)\n",
189
- "model.fit(x_train, y_train)\n"
190
- ]
191
- },
192
- {
193
- "cell_type": "code",
194
- "execution_count": null,
195
- "metadata": {
196
- "colab": {
197
- "base_uri": "https://localhost:8080/"
198
- },
199
- "id": "B7M2D8VnkKRB",
200
- "outputId": "6c8d027c-03c1-49b3-c9f9-b8eeb43a7a40"
201
- },
202
- "outputs": [],
203
- "source": [
204
- "model.score(x_test, y_test)"
205
- ]
206
- },
207
- {
208
- "cell_type": "code",
209
- "execution_count": null,
210
- "metadata": {
211
- "colab": {
212
- "base_uri": "https://localhost:8080/",
213
- "height": 646
214
- },
215
- "id": "fE-8PW0ekNjv",
216
- "outputId": "9ded61ba-2f75-4cbf-c868-d2443763d39d"
217
- },
218
- "outputs": [],
219
- "source": [
220
- "explainer = shap.Explainer(model)\n",
221
- "shap_values = explainer(x_test)\n",
222
- "plt.title('Feature Importance using SHAP')\n",
223
- "shap.plots.bar(shap_values, show=True, max_display=12)"
224
- ]
225
- },
226
- {
227
- "cell_type": "code",
228
- "execution_count": null,
229
- "metadata": {
230
- "colab": {
231
- "base_uri": "https://localhost:8080/",
232
- "height": 564
233
- },
234
- "id": "g9gH-OWXkQcE",
235
- "outputId": "35552661-954a-4821-cca6-7cb6d32c6d9d"
236
- },
237
- "outputs": [],
238
- "source": [
239
- "expected_value = explainer.expected_value\n",
240
- "shap_values = explainer.shap_values(x_test)[0]\n",
241
- "shap.decision_plot(expected_value, shap_values, x_test)"
242
- ]
243
- },
244
- {
245
- "cell_type": "markdown",
246
- "metadata": {
247
- "id": "yvqqrtknzDch"
248
- },
249
- "source": [
250
- "# **Tree Shap - German dataset**"
251
- ]
252
- },
253
- {
254
- "cell_type": "code",
255
- "execution_count": null,
256
- "metadata": {
257
- "colab": {
258
- "base_uri": "https://localhost:8080/"
259
- },
260
- "id": "Kb59xrmbyiQh",
261
- "outputId": "85486766-feb3-4573-9172-213638321e33"
262
- },
263
- "outputs": [],
264
- "source": [
265
- "!pip install --upgrade numpy pandas matplotlib seaborn sklearn lightgbm shap"
266
- ]
267
- },
268
- {
269
- "cell_type": "code",
270
- "execution_count": null,
271
- "metadata": {
272
- "colab": {
273
- "base_uri": "https://localhost:8080/",
274
- "height": 60
275
- },
276
- "id": "AUHlRFpWZdJZ",
277
- "outputId": "6f3b5abb-5ba4-4105-8379-b07ef420536a"
278
- },
279
- "outputs": [],
280
- "source": [
281
- "import warnings\n",
282
- "import numpy as np\n",
283
- "import pandas as pd\n",
284
- "import seaborn as sns\n",
285
- "import matplotlib.pyplot as plt\n",
286
- "import sklearn\n",
287
- "from sklearn.model_selection import train_test_split\n",
288
- "from sklearn.metrics import accuracy_score,confusion_matrix,roc_auc_score\n",
289
- "from sklearn.preprocessing import LabelEncoder\n",
290
- "import lightgbm as lgb\n",
291
- "import shap\n",
292
- "\n",
293
- "print(f\"Shap version used: {shap.__version__}\")\n",
294
- "\n",
295
- "shap.initjs()"
296
- ]
297
- },
298
- {
299
- "cell_type": "code",
300
- "execution_count": null,
301
- "metadata": {
302
- "colab": {
303
- "base_uri": "https://localhost:8080/",
304
- "height": 206
305
- },
306
- "id": "W-JO-ZGmZdhI",
307
- "outputId": "f7811a6a-76fe-4835-b60f-0f6fb26ccc6a"
308
- },
309
- "outputs": [],
310
- "source": [
311
- "data = pd.read_csv('/content/german_credit_data.csv', index_col=0)\n",
312
- "data.head()"
313
- ]
314
- },
315
- {
316
- "cell_type": "code",
317
- "execution_count": null,
318
- "metadata": {
319
- "colab": {
320
- "base_uri": "https://localhost:8080/"
321
- },
322
- "id": "NM3Md3cQkyVC",
323
- "outputId": "f6a0221e-5198-4ef3-cc13-2f56f1a18903"
324
- },
325
- "outputs": [],
326
- "source": [
327
- "data.shape"
328
- ]
329
- },
330
- {
331
- "cell_type": "code",
332
- "execution_count": null,
333
- "metadata": {
334
- "colab": {
335
- "base_uri": "https://localhost:8080/"
336
- },
337
- "id": "9abnjoQSkzof",
338
- "outputId": "7f9672f1-fb82-4db8-8e1f-9d2150982429"
339
- },
340
- "outputs": [],
341
- "source": [
342
- "data.columns"
343
- ]
344
- },
345
- {
346
- "cell_type": "code",
347
- "execution_count": null,
348
- "metadata": {
349
- "colab": {
350
- "base_uri": "https://localhost:8080/"
351
- },
352
- "id": "CfLRp87Bk0rK",
353
- "outputId": "d062abe5-399a-421b-b37d-c0b1ece11f03"
354
- },
355
- "outputs": [],
356
- "source": [
357
- "data.info()"
358
- ]
359
- },
360
- {
361
- "cell_type": "code",
362
- "execution_count": null,
363
- "metadata": {
364
- "colab": {
365
- "base_uri": "https://localhost:8080/",
366
- "height": 300
367
- },
368
- "id": "Jj8rySKdkwtt",
369
- "outputId": "602f1f3e-67c6-455c-86ad-b1a0c71d1b9f"
370
- },
371
- "outputs": [],
372
- "source": [
373
- "num_features = ['Age', 'Credit amount', 'Duration']\n",
374
- "cat_features = ['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose']\n",
375
- "\n",
376
- "data[num_features].describe()"
377
- ]
378
- },
379
- {
380
- "cell_type": "code",
381
- "execution_count": null,
382
- "metadata": {
383
- "colab": {
384
- "base_uri": "https://localhost:8080/",
385
- "height": 506
386
- },
387
- "id": "OokZhe1GZhFm",
388
- "outputId": "d790f610-e7b6-428c-c6d9-5fcf270fc178"
389
- },
390
- "outputs": [],
391
- "source": [
392
- "sns.displot(\n",
393
- " data=data.isna().melt(value_name=\"missing\"),\n",
394
- " y=\"variable\",\n",
395
- " hue=\"missing\",\n",
396
- " multiple=\"fill\",\n",
397
- " aspect=1.5,\n",
398
- " palette='seismic'\n",
399
- ")\n",
400
- "plt.show()"
401
- ]
402
- },
403
- {
404
- "cell_type": "code",
405
- "execution_count": null,
406
- "metadata": {
407
- "colab": {
408
- "base_uri": "https://localhost:8080/",
409
- "height": 146
410
- },
411
- "id": "5T4RmXblZz2d",
412
- "outputId": "db009db1-03f7-42af-f56a-a344ae1375d3"
413
- },
414
- "outputs": [],
415
- "source": [
416
- "missing_features = ['Saving accounts','Checking account']\n",
417
- "data[missing_features].isna().sum()/1000*100"
418
- ]
419
- },
420
- {
421
- "cell_type": "code",
422
- "execution_count": null,
423
- "metadata": {
424
- "colab": {
425
- "base_uri": "https://localhost:8080/"
426
- },
427
- "id": "IX3lGsFPZ0hR",
428
- "outputId": "86609d7c-d3dd-4d63-8b0a-3c620e7deec5"
429
- },
430
- "outputs": [],
431
- "source": [
432
- "data.fillna('Unknown', inplace=True)\n",
433
- "\n",
434
- "print(data[missing_features].isna().sum()/1000 * 100)\n",
435
- "print(data[missing_features[0]].value_counts())\n",
436
- "print(data[missing_features[1]].value_counts())"
437
- ]
438
- },
439
- {
440
- "cell_type": "code",
441
- "execution_count": null,
442
- "metadata": {
443
- "colab": {
444
- "base_uri": "https://localhost:8080/"
445
- },
446
- "id": "t_jamAltlKf8",
447
- "outputId": "8a0ad824-d661-4077-873c-328d0b088f28"
448
- },
449
- "outputs": [],
450
- "source": [
451
- "data.duplicated().any()"
452
- ]
453
- },
454
- {
455
- "cell_type": "code",
456
- "execution_count": null,
457
- "metadata": {
458
- "colab": {
459
- "base_uri": "https://localhost:8080/",
460
- "height": 223
461
- },
462
- "id": "aK0LIl2OZ7bN",
463
- "outputId": "96346265-d720-49ec-bd12-dc0d0f623dae"
464
- },
465
- "outputs": [],
466
- "source": [
467
- "le = LabelEncoder()\n",
468
- "for feat in ['Sex','Saving accounts','Checking account','Purpose','Risk','Housing']:\n",
469
- " le.fit(data[feat])\n",
470
- " data[feat]=le.transform(data[feat])\n",
471
- "classes = list(le.classes_)\n",
472
- "print(classes)\n",
473
- "data.head()"
474
- ]
475
- },
476
- {
477
- "cell_type": "code",
478
- "execution_count": null,
479
- "metadata": {
480
- "colab": {
481
- "base_uri": "https://localhost:8080/"
482
- },
483
- "id": "ZN4x8UVNZ8sY",
484
- "outputId": "e14007e0-9955-4d7d-b07a-565060c54748"
485
- },
486
- "outputs": [],
487
- "source": [
488
- "features = data.drop(columns=['Risk'])\n",
489
- "labels = data['Risk']\n",
490
- "\n",
491
- "x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=123)\n",
492
- "\n",
493
- "x_train.columns\n"
494
- ]
495
- },
496
- {
497
- "cell_type": "code",
498
- "execution_count": null,
499
- "metadata": {
500
- "id": "9Ndo2n3ilrBK"
501
- },
502
- "outputs": [],
503
- "source": [
504
- "data_train = lgb.Dataset(x_train, label=y_train, categorical_feature=['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose'])\n",
505
- "data_test = lgb.Dataset(x_test, label=y_test, categorical_feature=['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose'])\n",
506
- "\n",
507
- "params = {\n",
508
- " 'boosting_type':'gbdt',\n",
509
- " 'objective':'binary',\n",
510
- " 'metric':'auc',\n",
511
- " 'num_leaves':20,\n",
512
- " 'learning_rate':0.05,\n",
513
- " 'feature_fraction':0.9,\n",
514
- " 'bagging_fraction':0.8,\n",
515
- " 'bagging_freq':5,\n",
516
- " 'verbose':-1,\n",
517
- " 'lambda_l1':1,\n",
518
- " 'lambda_l2':1,\n",
519
- " 'seed':123\n",
520
- "}\n",
521
- "\n",
522
- "model = lgb.train(\n",
523
- "params,\n",
524
- "data_train,\n",
525
- "num_boost_round=100,\n",
526
- "valid_sets=[data_test,data_train]\n",
527
- ")"
528
- ]
529
- },
530
- {
531
- "cell_type": "code",
532
- "execution_count": null,
533
- "metadata": {
534
- "colab": {
535
- "base_uri": "https://localhost:8080/"
536
- },
537
- "id": "LSdon-0GZ8ZS",
538
- "outputId": "244b56f0-5b4d-4a30-cb99-c43144dc751b"
539
- },
540
- "outputs": [],
541
- "source": [
542
- "y_pred = model.predict(x_test)\n",
543
- "y_pred = [1 if y > 0.5 else 0 for y in y_pred]\n",
544
- "\n",
545
- "print(f'Accuracy for the baseline model is: {accuracy_score(y_test, y_pred)}')\n"
546
- ]
547
- },
548
- {
549
- "cell_type": "code",
550
- "execution_count": null,
551
- "metadata": {
552
- "colab": {
553
- "base_uri": "https://localhost:8080/"
554
- },
555
- "id": "fpcoFyJpmv6x",
556
- "outputId": "922ddd1c-df15-4c85-9443-e54f826c115f"
557
- },
558
- "outputs": [],
559
- "source": [
560
- "explainer = shap.TreeExplainer(model)\n",
561
- "shap_values = explainer.shap_values(features)"
562
- ]
563
- },
564
- {
565
- "cell_type": "code",
566
- "execution_count": null,
567
- "metadata": {
568
- "colab": {
569
- "base_uri": "https://localhost:8080/",
570
- "height": 516
571
- },
572
- "id": "RoSi7wnKm1ig",
573
- "outputId": "e9c8f232-913f-4a7a-b2ed-77fb1904ce31"
574
- },
575
- "outputs": [],
576
- "source": [
577
- "shap.summary_plot(shap_values, features)"
578
- ]
579
- },
580
- {
581
- "cell_type": "code",
582
- "execution_count": null,
583
- "metadata": {
584
- "colab": {
585
- "base_uri": "https://localhost:8080/",
586
- "height": 69
587
- },
588
- "id": "ty9FAZWqnD9-",
589
- "outputId": "420a7b9c-8c4d-4da1-d26d-04ef7bde0983"
590
- },
591
- "outputs": [],
592
- "source": [
593
- "shap.force_plot(explainer.expected_value, shap_values[0], features.iloc[0,:]) # Corrected index to 0"
594
- ]
595
- },
596
- {
597
- "cell_type": "code",
598
- "execution_count": null,
599
- "metadata": {
600
- "colab": {
601
- "base_uri": "https://localhost:8080/",
602
- "height": 502
603
- },
604
- "id": "hvwf_kdDnVxh",
605
- "outputId": "f3896849-fc5b-48d2-977d-7ecb0ffeb867"
606
- },
607
- "outputs": [],
608
- "source": [
609
- "shap.decision_plot(explainer.expected_value, shap_values[0], features.iloc[0,:])"
610
- ]
611
- },
612
- {
613
- "cell_type": "code",
614
- "execution_count": null,
615
- "metadata": {
616
- "colab": {
617
- "base_uri": "https://localhost:8080/",
618
- "height": 1000
619
- },
620
- "id": "xF-xZfkInncT",
621
- "outputId": "ed168984-42f5-4f15-a37c-77cb9526ddc9"
622
- },
623
- "outputs": [],
624
- "source": [
625
- "for col in ['Sex','Housing','Checking account','Saving accounts','Purpose','Credit amount','Age']:\n",
626
- " print(f'Feature Dependence plot for:{col}')\n",
627
- " shap.dependence_plot(col, shap_values, features, display_features=features)"
628
- ]
629
- },
630
- {
631
- "cell_type": "markdown",
632
- "metadata": {
633
- "id": "I52D9qOSn-HA"
634
- },
635
- "source": [
636
- "# **Deep shap**"
637
- ]
638
- },
639
- {
640
- "cell_type": "code",
641
- "execution_count": null,
642
- "metadata": {
643
- "colab": {
644
- "base_uri": "https://localhost:8080/"
645
- },
646
- "id": "vaFPLrm4Z8QB",
647
- "outputId": "c94ddaf4-58ec-489c-9734-1e97d70af477"
648
- },
649
- "outputs": [],
650
- "source": [
651
- "import tensorflow as tf\n",
652
- "import numpy as np\n",
653
- "import matplotlib.pyplot as plt\n",
654
- "from tensorflow.keras.datasets import mnist\n",
655
- "from tensorflow.keras.models import Sequential\n",
656
- "from tensorflow.keras.layers import Dense, Flatten\n",
657
- "\n",
658
- "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
659
- "\n",
660
- "x_train, x_test = x_train / 255.0, x_test / 255.0\n",
661
- "\n",
662
- "model = Sequential([\n",
663
- " Flatten(input_shape=(28, 28)),\n",
664
- " Dense(128, activation='relu'),\n",
665
- " Dense(10, activation='softmax')\n",
666
- "])"
667
- ]
668
- },
669
- {
670
- "cell_type": "code",
671
- "execution_count": null,
672
- "metadata": {
673
- "colab": {
674
- "base_uri": "https://localhost:8080/",
675
- "height": 1000
676
- },
677
- "id": "QypN7qjZZ8GG",
678
- "outputId": "f6c36853-220c-4778-ccc0-ffba4766bc0e"
679
- },
680
- "outputs": [],
681
- "source": [
682
- "model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
683
- "model.fit(x_train, y_train, epochs=3, batch_size=128, validation_data=(x_test, y_test))\n",
684
- "background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]\n",
685
- "\n",
686
- "explainer = shap.DeepExplainer(model, background)\n",
687
- "X_test_sample = x_test[:10]\n",
688
- "shap_values = explainer.shap_values(X_test_sample)\n",
689
- "\n",
690
- "plt.figure(figsize=(8, 4))\n",
691
- "shap.image_plot(shap_values, X_test_sample)"
692
- ]
693
- },
694
- {
695
- "cell_type": "markdown",
696
- "metadata": {
697
- "id": "-eEdltzyohUf"
698
- },
699
- "source": [
700
- "# **Kernal shap**"
701
- ]
702
- },
703
- {
704
- "cell_type": "code",
705
- "execution_count": null,
706
- "metadata": {
707
- "id": "8rFdoi4f2BRq"
708
- },
709
- "outputs": [],
710
- "source": [
711
- "!pip install shap scikit-learn matplotlib"
712
- ]
713
- },
714
- {
715
- "cell_type": "code",
716
- "execution_count": null,
717
- "metadata": {
718
- "id": "tAlO1p9ComgL"
719
- },
720
- "outputs": [],
721
- "source": [
722
- "import shap\n",
723
- "import numpy as np\n",
724
- "import matplotlib.pyplot as plt\n",
725
- "from sklearn.ensemble import RandomForestClassifier\n",
726
- "from sklearn.datasets import load_iris\n",
727
- "from sklearn.model_selection import train_test_split"
728
- ]
729
- },
730
- {
731
- "cell_type": "code",
732
- "execution_count": null,
733
- "metadata": {
734
- "id": "xaLCP9u_Z78X"
735
- },
736
- "outputs": [],
737
- "source": [
738
- "data = load_iris()\n",
739
- "x = data.data\n",
740
- "y = data.target\n",
741
- "feature_names = data.feature_names\n",
742
- "\n",
743
- "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)"
744
- ]
745
- },
746
- {
747
- "cell_type": "code",
748
- "execution_count": null,
749
- "metadata": {
750
- "colab": {
751
- "base_uri": "https://localhost:8080/",
752
- "height": 80
753
- },
754
- "id": "PQGek2frZ7vO",
755
- "outputId": "5e5e264a-3a81-4667-b49d-7ddfbb4e39e3"
756
- },
757
- "outputs": [],
758
- "source": [
759
- "model = RandomForestClassifier(random_state=42)\n",
760
- "model.fit(x_train,y_train)"
761
- ]
762
- },
763
- {
764
- "cell_type": "code",
765
- "execution_count": null,
766
- "metadata": {
767
- "colab": {
768
- "base_uri": "https://localhost:8080/",
769
- "height": 385,
770
- "referenced_widgets": [
771
- "473cc3c759cb4f0ab855237f752f98e4",
772
- "8dae60a073264505829bda0463a1031c",
773
- "b1ebcb257d0f42ec9e3d454417929286",
774
- "4960679a5325442f8dc47dd06e9cd44c",
775
- "260f50e7bad6461aba0971d9c62749db",
776
- "31b769c507784bdf9aac5924f8d6b9f3",
777
- "a65165ff50aa42be99a80c42eaf2312e",
778
- "46de81bdeb5447f9a5943befddeba2db",
779
- "0dc92e0e7c224848aba6de391ed981e5",
780
- "2ad24f377bb0433fb90477dc185e2343",
781
- "9e14d8d91a6f431aa7cad57703cac706"
782
- ]
783
- },
784
- "id": "1L8bMp1zoz7Q",
785
- "outputId": "b7060f22-16aa-42a3-8284-7f806e70f72d"
786
- },
787
- "outputs": [],
788
- "source": [
789
- "explainer = shap.KernelExplainer(model.predict, x_train)\n",
790
- "\n",
791
- "shap_values = explainer.shap_values(x_test[:5])\n",
792
- "\n",
793
- "shap.summary_plot(shap_values, x_test[:5], feature_names=feature_names)"
794
- ]
795
- },
796
- {
797
- "cell_type": "code",
798
- "execution_count": null,
799
- "metadata": {
800
- "colab": {
801
- "base_uri": "https://localhost:8080/",
802
- "height": 43
803
- },
804
- "id": "Y7gh21m44NDC",
805
- "outputId": "2005ab47-e8e5-4390-9722-ba221d2e7299"
806
- },
807
- "outputs": [],
808
- "source": [
809
- "shap.initjs()"
810
- ]
811
- },
812
- {
813
- "cell_type": "code",
814
- "execution_count": null,
815
- "metadata": {
816
- "id": "EIuK2GwasApq"
817
- },
818
- "outputs": [],
819
- "source": [
820
- "#shap.force_plot(explainer.expected_value, shap_values[0][0], x_test[0], feature_names=feature_names)\n"
821
- ]
822
- },
823
- {
824
- "cell_type": "code",
825
- "execution_count": null,
826
- "metadata": {
827
- "id": "tl0eLEv2tme9"
828
- },
829
- "outputs": [],
830
- "source": []
831
- }
832
- ],
833
- "metadata": {
834
- "colab": {
835
- "provenance": []
836
- },
837
- "kernelspec": {
838
- "display_name": "Python 3 (ipykernel)",
839
- "language": "python",
840
- "name": "python3"
841
- },
842
- "language_info": {
843
- "codemirror_mode": {
844
- "name": "ipython",
845
- "version": 3
846
- },
847
- "file_extension": ".py",
848
- "mimetype": "text/x-python",
849
- "name": "python",
850
- "nbconvert_exporter": "python",
851
- "pygments_lexer": "ipython3",
852
- "version": "3.12.4"
853
- },
854
- "widgets": {
855
- "application/vnd.jupyter.widget-state+json": {
856
- "0d45e78edbe54459b9a59c8c11f41b2f": {
857
- "model_module": "@jupyter-widgets/controls",
858
- "model_module_version": "1.5.0",
859
- "model_name": "ProgressStyleModel",
860
- "state": {
861
- "_model_module": "@jupyter-widgets/controls",
862
- "_model_module_version": "1.5.0",
863
- "_model_name": "ProgressStyleModel",
864
- "_view_count": null,
865
- "_view_module": "@jupyter-widgets/base",
866
- "_view_module_version": "1.2.0",
867
- "_view_name": "StyleView",
868
- "bar_color": null,
869
- "description_width": ""
870
- }
871
- },
872
- "0dc92e0e7c224848aba6de391ed981e5": {
873
- "model_module": "@jupyter-widgets/controls",
874
- "model_module_version": "1.5.0",
875
- "model_name": "ProgressStyleModel",
876
- "state": {
877
- "_model_module": "@jupyter-widgets/controls",
878
- "_model_module_version": "1.5.0",
879
- "_model_name": "ProgressStyleModel",
880
- "_view_count": null,
881
- "_view_module": "@jupyter-widgets/base",
882
- "_view_module_version": "1.2.0",
883
- "_view_name": "StyleView",
884
- "bar_color": null,
885
- "description_width": ""
886
- }
887
- },
888
- "260f50e7bad6461aba0971d9c62749db": {
889
- "model_module": "@jupyter-widgets/base",
890
- "model_module_version": "1.2.0",
891
- "model_name": "LayoutModel",
892
- "state": {
893
- "_model_module": "@jupyter-widgets/base",
894
- "_model_module_version": "1.2.0",
895
- "_model_name": "LayoutModel",
896
- "_view_count": null,
897
- "_view_module": "@jupyter-widgets/base",
898
- "_view_module_version": "1.2.0",
899
- "_view_name": "LayoutView",
900
- "align_content": null,
901
- "align_items": null,
902
- "align_self": null,
903
- "border": null,
904
- "bottom": null,
905
- "display": null,
906
- "flex": null,
907
- "flex_flow": null,
908
- "grid_area": null,
909
- "grid_auto_columns": null,
910
- "grid_auto_flow": null,
911
- "grid_auto_rows": null,
912
- "grid_column": null,
913
- "grid_gap": null,
914
- "grid_row": null,
915
- "grid_template_areas": null,
916
- "grid_template_columns": null,
917
- "grid_template_rows": null,
918
- "height": null,
919
- "justify_content": null,
920
- "justify_items": null,
921
- "left": null,
922
- "margin": null,
923
- "max_height": null,
924
- "max_width": null,
925
- "min_height": null,
926
- "min_width": null,
927
- "object_fit": null,
928
- "object_position": null,
929
- "order": null,
930
- "overflow": null,
931
- "overflow_x": null,
932
- "overflow_y": null,
933
- "padding": null,
934
- "right": null,
935
- "top": null,
936
- "visibility": null,
937
- "width": null
938
- }
939
- },
940
- "2ad24f377bb0433fb90477dc185e2343": {
941
- "model_module": "@jupyter-widgets/base",
942
- "model_module_version": "1.2.0",
943
- "model_name": "LayoutModel",
944
- "state": {
945
- "_model_module": "@jupyter-widgets/base",
946
- "_model_module_version": "1.2.0",
947
- "_model_name": "LayoutModel",
948
- "_view_count": null,
949
- "_view_module": "@jupyter-widgets/base",
950
- "_view_module_version": "1.2.0",
951
- "_view_name": "LayoutView",
952
- "align_content": null,
953
- "align_items": null,
954
- "align_self": null,
955
- "border": null,
956
- "bottom": null,
957
- "display": null,
958
- "flex": null,
959
- "flex_flow": null,
960
- "grid_area": null,
961
- "grid_auto_columns": null,
962
- "grid_auto_flow": null,
963
- "grid_auto_rows": null,
964
- "grid_column": null,
965
- "grid_gap": null,
966
- "grid_row": null,
967
- "grid_template_areas": null,
968
- "grid_template_columns": null,
969
- "grid_template_rows": null,
970
- "height": null,
971
- "justify_content": null,
972
- "justify_items": null,
973
- "left": null,
974
- "margin": null,
975
- "max_height": null,
976
- "max_width": null,
977
- "min_height": null,
978
- "min_width": null,
979
- "object_fit": null,
980
- "object_position": null,
981
- "order": null,
982
- "overflow": null,
983
- "overflow_x": null,
984
- "overflow_y": null,
985
- "padding": null,
986
- "right": null,
987
- "top": null,
988
- "visibility": null,
989
- "width": null
990
- }
991
- },
992
- "31b769c507784bdf9aac5924f8d6b9f3": {
993
- "model_module": "@jupyter-widgets/base",
994
- "model_module_version": "1.2.0",
995
- "model_name": "LayoutModel",
996
- "state": {
997
- "_model_module": "@jupyter-widgets/base",
998
- "_model_module_version": "1.2.0",
999
- "_model_name": "LayoutModel",
1000
- "_view_count": null,
1001
- "_view_module": "@jupyter-widgets/base",
1002
- "_view_module_version": "1.2.0",
1003
- "_view_name": "LayoutView",
1004
- "align_content": null,
1005
- "align_items": null,
1006
- "align_self": null,
1007
- "border": null,
1008
- "bottom": null,
1009
- "display": null,
1010
- "flex": null,
1011
- "flex_flow": null,
1012
- "grid_area": null,
1013
- "grid_auto_columns": null,
1014
- "grid_auto_flow": null,
1015
- "grid_auto_rows": null,
1016
- "grid_column": null,
1017
- "grid_gap": null,
1018
- "grid_row": null,
1019
- "grid_template_areas": null,
1020
- "grid_template_columns": null,
1021
- "grid_template_rows": null,
1022
- "height": null,
1023
- "justify_content": null,
1024
- "justify_items": null,
1025
- "left": null,
1026
- "margin": null,
1027
- "max_height": null,
1028
- "max_width": null,
1029
- "min_height": null,
1030
- "min_width": null,
1031
- "object_fit": null,
1032
- "object_position": null,
1033
- "order": null,
1034
- "overflow": null,
1035
- "overflow_x": null,
1036
- "overflow_y": null,
1037
- "padding": null,
1038
- "right": null,
1039
- "top": null,
1040
- "visibility": null,
1041
- "width": null
1042
- }
1043
- },
1044
- "46de81bdeb5447f9a5943befddeba2db": {
1045
- "model_module": "@jupyter-widgets/base",
1046
- "model_module_version": "1.2.0",
1047
- "model_name": "LayoutModel",
1048
- "state": {
1049
- "_model_module": "@jupyter-widgets/base",
1050
- "_model_module_version": "1.2.0",
1051
- "_model_name": "LayoutModel",
1052
- "_view_count": null,
1053
- "_view_module": "@jupyter-widgets/base",
1054
- "_view_module_version": "1.2.0",
1055
- "_view_name": "LayoutView",
1056
- "align_content": null,
1057
- "align_items": null,
1058
- "align_self": null,
1059
- "border": null,
1060
- "bottom": null,
1061
- "display": null,
1062
- "flex": null,
1063
- "flex_flow": null,
1064
- "grid_area": null,
1065
- "grid_auto_columns": null,
1066
- "grid_auto_flow": null,
1067
- "grid_auto_rows": null,
1068
- "grid_column": null,
1069
- "grid_gap": null,
1070
- "grid_row": null,
1071
- "grid_template_areas": null,
1072
- "grid_template_columns": null,
1073
- "grid_template_rows": null,
1074
- "height": null,
1075
- "justify_content": null,
1076
- "justify_items": null,
1077
- "left": null,
1078
- "margin": null,
1079
- "max_height": null,
1080
- "max_width": null,
1081
- "min_height": null,
1082
- "min_width": null,
1083
- "object_fit": null,
1084
- "object_position": null,
1085
- "order": null,
1086
- "overflow": null,
1087
- "overflow_x": null,
1088
- "overflow_y": null,
1089
- "padding": null,
1090
- "right": null,
1091
- "top": null,
1092
- "visibility": null,
1093
- "width": null
1094
- }
1095
- },
1096
- "473cc3c759cb4f0ab855237f752f98e4": {
1097
- "model_module": "@jupyter-widgets/controls",
1098
- "model_module_version": "1.5.0",
1099
- "model_name": "HBoxModel",
1100
- "state": {
1101
- "_dom_classes": [],
1102
- "_model_module": "@jupyter-widgets/controls",
1103
- "_model_module_version": "1.5.0",
1104
- "_model_name": "HBoxModel",
1105
- "_view_count": null,
1106
- "_view_module": "@jupyter-widgets/controls",
1107
- "_view_module_version": "1.5.0",
1108
- "_view_name": "HBoxView",
1109
- "box_style": "",
1110
- "children": [
1111
- "IPY_MODEL_8dae60a073264505829bda0463a1031c",
1112
- "IPY_MODEL_b1ebcb257d0f42ec9e3d454417929286",
1113
- "IPY_MODEL_4960679a5325442f8dc47dd06e9cd44c"
1114
- ],
1115
- "layout": "IPY_MODEL_260f50e7bad6461aba0971d9c62749db"
1116
- }
1117
- },
1118
- "4960679a5325442f8dc47dd06e9cd44c": {
1119
- "model_module": "@jupyter-widgets/controls",
1120
- "model_module_version": "1.5.0",
1121
- "model_name": "HTMLModel",
1122
- "state": {
1123
- "_dom_classes": [],
1124
- "_model_module": "@jupyter-widgets/controls",
1125
- "_model_module_version": "1.5.0",
1126
- "_model_name": "HTMLModel",
1127
- "_view_count": null,
1128
- "_view_module": "@jupyter-widgets/controls",
1129
- "_view_module_version": "1.5.0",
1130
- "_view_name": "HTMLView",
1131
- "description": "",
1132
- "description_tooltip": null,
1133
- "layout": "IPY_MODEL_2ad24f377bb0433fb90477dc185e2343",
1134
- "placeholder": "​",
1135
- "style": "IPY_MODEL_9e14d8d91a6f431aa7cad57703cac706",
1136
- "value": " 5/5 [00:00<00:00, 19.95it/s]"
1137
- }
1138
- },
1139
- "4c4e802ab50e4f408c63374ef2a29ce9": {
1140
- "model_module": "@jupyter-widgets/base",
1141
- "model_module_version": "1.2.0",
1142
- "model_name": "LayoutModel",
1143
- "state": {
1144
- "_model_module": "@jupyter-widgets/base",
1145
- "_model_module_version": "1.2.0",
1146
- "_model_name": "LayoutModel",
1147
- "_view_count": null,
1148
- "_view_module": "@jupyter-widgets/base",
1149
- "_view_module_version": "1.2.0",
1150
- "_view_name": "LayoutView",
1151
- "align_content": null,
1152
- "align_items": null,
1153
- "align_self": null,
1154
- "border": null,
1155
- "bottom": null,
1156
- "display": null,
1157
- "flex": null,
1158
- "flex_flow": null,
1159
- "grid_area": null,
1160
- "grid_auto_columns": null,
1161
- "grid_auto_flow": null,
1162
- "grid_auto_rows": null,
1163
- "grid_column": null,
1164
- "grid_gap": null,
1165
- "grid_row": null,
1166
- "grid_template_areas": null,
1167
- "grid_template_columns": null,
1168
- "grid_template_rows": null,
1169
- "height": null,
1170
- "justify_content": null,
1171
- "justify_items": null,
1172
- "left": null,
1173
- "margin": null,
1174
- "max_height": null,
1175
- "max_width": null,
1176
- "min_height": null,
1177
- "min_width": null,
1178
- "object_fit": null,
1179
- "object_position": null,
1180
- "order": null,
1181
- "overflow": null,
1182
- "overflow_x": null,
1183
- "overflow_y": null,
1184
- "padding": null,
1185
- "right": null,
1186
- "top": null,
1187
- "visibility": null,
1188
- "width": null
1189
- }
1190
- },
1191
- "835aba7f48514c59987bc889bd587505": {
1192
- "model_module": "@jupyter-widgets/base",
1193
- "model_module_version": "1.2.0",
1194
- "model_name": "LayoutModel",
1195
- "state": {
1196
- "_model_module": "@jupyter-widgets/base",
1197
- "_model_module_version": "1.2.0",
1198
- "_model_name": "LayoutModel",
1199
- "_view_count": null,
1200
- "_view_module": "@jupyter-widgets/base",
1201
- "_view_module_version": "1.2.0",
1202
- "_view_name": "LayoutView",
1203
- "align_content": null,
1204
- "align_items": null,
1205
- "align_self": null,
1206
- "border": null,
1207
- "bottom": null,
1208
- "display": null,
1209
- "flex": null,
1210
- "flex_flow": null,
1211
- "grid_area": null,
1212
- "grid_auto_columns": null,
1213
- "grid_auto_flow": null,
1214
- "grid_auto_rows": null,
1215
- "grid_column": null,
1216
- "grid_gap": null,
1217
- "grid_row": null,
1218
- "grid_template_areas": null,
1219
- "grid_template_columns": null,
1220
- "grid_template_rows": null,
1221
- "height": null,
1222
- "justify_content": null,
1223
- "justify_items": null,
1224
- "left": null,
1225
- "margin": null,
1226
- "max_height": null,
1227
- "max_width": null,
1228
- "min_height": null,
1229
- "min_width": null,
1230
- "object_fit": null,
1231
- "object_position": null,
1232
- "order": null,
1233
- "overflow": null,
1234
- "overflow_x": null,
1235
- "overflow_y": null,
1236
- "padding": null,
1237
- "right": null,
1238
- "top": null,
1239
- "visibility": null,
1240
- "width": null
1241
- }
1242
- },
1243
- "8487e3ebe34b47508dc30f747bf853a0": {
1244
- "model_module": "@jupyter-widgets/controls",
1245
- "model_module_version": "1.5.0",
1246
- "model_name": "DescriptionStyleModel",
1247
- "state": {
1248
- "_model_module": "@jupyter-widgets/controls",
1249
- "_model_module_version": "1.5.0",
1250
- "_model_name": "DescriptionStyleModel",
1251
- "_view_count": null,
1252
- "_view_module": "@jupyter-widgets/base",
1253
- "_view_module_version": "1.2.0",
1254
- "_view_name": "StyleView",
1255
- "description_width": ""
1256
- }
1257
- },
1258
- "8731287981864014be1154edc0c3eba5": {
1259
- "model_module": "@jupyter-widgets/base",
1260
- "model_module_version": "1.2.0",
1261
- "model_name": "LayoutModel",
1262
- "state": {
1263
- "_model_module": "@jupyter-widgets/base",
1264
- "_model_module_version": "1.2.0",
1265
- "_model_name": "LayoutModel",
1266
- "_view_count": null,
1267
- "_view_module": "@jupyter-widgets/base",
1268
- "_view_module_version": "1.2.0",
1269
- "_view_name": "LayoutView",
1270
- "align_content": null,
1271
- "align_items": null,
1272
- "align_self": null,
1273
- "border": null,
1274
- "bottom": null,
1275
- "display": null,
1276
- "flex": null,
1277
- "flex_flow": null,
1278
- "grid_area": null,
1279
- "grid_auto_columns": null,
1280
- "grid_auto_flow": null,
1281
- "grid_auto_rows": null,
1282
- "grid_column": null,
1283
- "grid_gap": null,
1284
- "grid_row": null,
1285
- "grid_template_areas": null,
1286
- "grid_template_columns": null,
1287
- "grid_template_rows": null,
1288
- "height": null,
1289
- "justify_content": null,
1290
- "justify_items": null,
1291
- "left": null,
1292
- "margin": null,
1293
- "max_height": null,
1294
- "max_width": null,
1295
- "min_height": null,
1296
- "min_width": null,
1297
- "object_fit": null,
1298
- "object_position": null,
1299
- "order": null,
1300
- "overflow": null,
1301
- "overflow_x": null,
1302
- "overflow_y": null,
1303
- "padding": null,
1304
- "right": null,
1305
- "top": null,
1306
- "visibility": null,
1307
- "width": null
1308
- }
1309
- },
1310
- "8dae60a073264505829bda0463a1031c": {
1311
- "model_module": "@jupyter-widgets/controls",
1312
- "model_module_version": "1.5.0",
1313
- "model_name": "HTMLModel",
1314
- "state": {
1315
- "_dom_classes": [],
1316
- "_model_module": "@jupyter-widgets/controls",
1317
- "_model_module_version": "1.5.0",
1318
- "_model_name": "HTMLModel",
1319
- "_view_count": null,
1320
- "_view_module": "@jupyter-widgets/controls",
1321
- "_view_module_version": "1.5.0",
1322
- "_view_name": "HTMLView",
1323
- "description": "",
1324
- "description_tooltip": null,
1325
- "layout": "IPY_MODEL_31b769c507784bdf9aac5924f8d6b9f3",
1326
- "placeholder": "​",
1327
- "style": "IPY_MODEL_a65165ff50aa42be99a80c42eaf2312e",
1328
- "value": "100%"
1329
- }
1330
- },
1331
- "90558b09f7294cd38148f483f5a87bf3": {
1332
- "model_module": "@jupyter-widgets/base",
1333
- "model_module_version": "1.2.0",
1334
- "model_name": "LayoutModel",
1335
- "state": {
1336
- "_model_module": "@jupyter-widgets/base",
1337
- "_model_module_version": "1.2.0",
1338
- "_model_name": "LayoutModel",
1339
- "_view_count": null,
1340
- "_view_module": "@jupyter-widgets/base",
1341
- "_view_module_version": "1.2.0",
1342
- "_view_name": "LayoutView",
1343
- "align_content": null,
1344
- "align_items": null,
1345
- "align_self": null,
1346
- "border": null,
1347
- "bottom": null,
1348
- "display": null,
1349
- "flex": null,
1350
- "flex_flow": null,
1351
- "grid_area": null,
1352
- "grid_auto_columns": null,
1353
- "grid_auto_flow": null,
1354
- "grid_auto_rows": null,
1355
- "grid_column": null,
1356
- "grid_gap": null,
1357
- "grid_row": null,
1358
- "grid_template_areas": null,
1359
- "grid_template_columns": null,
1360
- "grid_template_rows": null,
1361
- "height": null,
1362
- "justify_content": null,
1363
- "justify_items": null,
1364
- "left": null,
1365
- "margin": null,
1366
- "max_height": null,
1367
- "max_width": null,
1368
- "min_height": null,
1369
- "min_width": null,
1370
- "object_fit": null,
1371
- "object_position": null,
1372
- "order": null,
1373
- "overflow": null,
1374
- "overflow_x": null,
1375
- "overflow_y": null,
1376
- "padding": null,
1377
- "right": null,
1378
- "top": null,
1379
- "visibility": null,
1380
- "width": null
1381
- }
1382
- },
1383
- "929cc32ff82348949fa4d36f17ffdbe0": {
1384
- "model_module": "@jupyter-widgets/controls",
1385
- "model_module_version": "1.5.0",
1386
- "model_name": "DescriptionStyleModel",
1387
- "state": {
1388
- "_model_module": "@jupyter-widgets/controls",
1389
- "_model_module_version": "1.5.0",
1390
- "_model_name": "DescriptionStyleModel",
1391
- "_view_count": null,
1392
- "_view_module": "@jupyter-widgets/base",
1393
- "_view_module_version": "1.2.0",
1394
- "_view_name": "StyleView",
1395
- "description_width": ""
1396
- }
1397
- },
1398
- "956ade483238471fb4e3ab1c11e7724f": {
1399
- "model_module": "@jupyter-widgets/controls",
1400
- "model_module_version": "1.5.0",
1401
- "model_name": "FloatProgressModel",
1402
- "state": {
1403
- "_dom_classes": [],
1404
- "_model_module": "@jupyter-widgets/controls",
1405
- "_model_module_version": "1.5.0",
1406
- "_model_name": "FloatProgressModel",
1407
- "_view_count": null,
1408
- "_view_module": "@jupyter-widgets/controls",
1409
- "_view_module_version": "1.5.0",
1410
- "_view_name": "ProgressView",
1411
- "bar_style": "success",
1412
- "description": "",
1413
- "description_tooltip": null,
1414
- "layout": "IPY_MODEL_90558b09f7294cd38148f483f5a87bf3",
1415
- "max": 1000,
1416
- "min": 0,
1417
- "orientation": "horizontal",
1418
- "style": "IPY_MODEL_0d45e78edbe54459b9a59c8c11f41b2f",
1419
- "value": 1000
1420
- }
1421
- },
1422
- "9e14d8d91a6f431aa7cad57703cac706": {
1423
- "model_module": "@jupyter-widgets/controls",
1424
- "model_module_version": "1.5.0",
1425
- "model_name": "DescriptionStyleModel",
1426
- "state": {
1427
- "_model_module": "@jupyter-widgets/controls",
1428
- "_model_module_version": "1.5.0",
1429
- "_model_name": "DescriptionStyleModel",
1430
- "_view_count": null,
1431
- "_view_module": "@jupyter-widgets/base",
1432
- "_view_module_version": "1.2.0",
1433
- "_view_name": "StyleView",
1434
- "description_width": ""
1435
- }
1436
- },
1437
- "a65165ff50aa42be99a80c42eaf2312e": {
1438
- "model_module": "@jupyter-widgets/controls",
1439
- "model_module_version": "1.5.0",
1440
- "model_name": "DescriptionStyleModel",
1441
- "state": {
1442
- "_model_module": "@jupyter-widgets/controls",
1443
- "_model_module_version": "1.5.0",
1444
- "_model_name": "DescriptionStyleModel",
1445
- "_view_count": null,
1446
- "_view_module": "@jupyter-widgets/base",
1447
- "_view_module_version": "1.2.0",
1448
- "_view_name": "StyleView",
1449
- "description_width": ""
1450
- }
1451
- },
1452
- "aa36ac3ce3354610bdc54be122e5bc4d": {
1453
- "model_module": "@jupyter-widgets/controls",
1454
- "model_module_version": "1.5.0",
1455
- "model_name": "HTMLModel",
1456
- "state": {
1457
- "_dom_classes": [],
1458
- "_model_module": "@jupyter-widgets/controls",
1459
- "_model_module_version": "1.5.0",
1460
- "_model_name": "HTMLModel",
1461
- "_view_count": null,
1462
- "_view_module": "@jupyter-widgets/controls",
1463
- "_view_module_version": "1.5.0",
1464
- "_view_name": "HTMLView",
1465
- "description": "",
1466
- "description_tooltip": null,
1467
- "layout": "IPY_MODEL_835aba7f48514c59987bc889bd587505",
1468
- "placeholder": "​",
1469
- "style": "IPY_MODEL_8487e3ebe34b47508dc30f747bf853a0",
1470
- "value": " 1000/1000 [00:00<00:00, 1327.59it/s]"
1471
- }
1472
- },
1473
- "b1ebcb257d0f42ec9e3d454417929286": {
1474
- "model_module": "@jupyter-widgets/controls",
1475
- "model_module_version": "1.5.0",
1476
- "model_name": "FloatProgressModel",
1477
- "state": {
1478
- "_dom_classes": [],
1479
- "_model_module": "@jupyter-widgets/controls",
1480
- "_model_module_version": "1.5.0",
1481
- "_model_name": "FloatProgressModel",
1482
- "_view_count": null,
1483
- "_view_module": "@jupyter-widgets/controls",
1484
- "_view_module_version": "1.5.0",
1485
- "_view_name": "ProgressView",
1486
- "bar_style": "success",
1487
- "description": "",
1488
- "description_tooltip": null,
1489
- "layout": "IPY_MODEL_46de81bdeb5447f9a5943befddeba2db",
1490
- "max": 5,
1491
- "min": 0,
1492
- "orientation": "horizontal",
1493
- "style": "IPY_MODEL_0dc92e0e7c224848aba6de391ed981e5",
1494
- "value": 5
1495
- }
1496
- },
1497
- "e59c91f1ac42447a8d97da5cbfeaf919": {
1498
- "model_module": "@jupyter-widgets/controls",
1499
- "model_module_version": "1.5.0",
1500
- "model_name": "HBoxModel",
1501
- "state": {
1502
- "_dom_classes": [],
1503
- "_model_module": "@jupyter-widgets/controls",
1504
- "_model_module_version": "1.5.0",
1505
- "_model_name": "HBoxModel",
1506
- "_view_count": null,
1507
- "_view_module": "@jupyter-widgets/controls",
1508
- "_view_module_version": "1.5.0",
1509
- "_view_name": "HBoxView",
1510
- "box_style": "",
1511
- "children": [
1512
- "IPY_MODEL_f52afed55c5d43419f17d51c528d820a",
1513
- "IPY_MODEL_956ade483238471fb4e3ab1c11e7724f",
1514
- "IPY_MODEL_aa36ac3ce3354610bdc54be122e5bc4d"
1515
- ],
1516
- "layout": "IPY_MODEL_8731287981864014be1154edc0c3eba5"
1517
- }
1518
- },
1519
- "f52afed55c5d43419f17d51c528d820a": {
1520
- "model_module": "@jupyter-widgets/controls",
1521
- "model_module_version": "1.5.0",
1522
- "model_name": "HTMLModel",
1523
- "state": {
1524
- "_dom_classes": [],
1525
- "_model_module": "@jupyter-widgets/controls",
1526
- "_model_module_version": "1.5.0",
1527
- "_model_name": "HTMLModel",
1528
- "_view_count": null,
1529
- "_view_module": "@jupyter-widgets/controls",
1530
- "_view_module_version": "1.5.0",
1531
- "_view_name": "HTMLView",
1532
- "description": "",
1533
- "description_tooltip": null,
1534
- "layout": "IPY_MODEL_4c4e802ab50e4f408c63374ef2a29ce9",
1535
- "placeholder": "​",
1536
- "style": "IPY_MODEL_929cc32ff82348949fa4d36f17ffdbe0",
1537
- "value": "Estimating transforms: 100%"
1538
- }
1539
- }
1540
- }
1541
- }
1542
- },
1543
- "nbformat": 4,
1544
- "nbformat_minor": 4
1545
- }