noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
- noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
- noshot-3.0.0.dist-info/RECORD +38 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
- noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
- noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
- noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
- noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
- noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
- noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
- noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
- noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
- noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
- noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
- noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
- noshot-1.0.0.dist-info/RECORD +0 -32
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,1545 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {
|
6
|
-
"id": "Mrf4xROWisDL"
|
7
|
-
},
|
8
|
-
"source": [
|
9
|
-
"# **Linear shap**"
|
10
|
-
]
|
11
|
-
},
|
12
|
-
{
|
13
|
-
"cell_type": "code",
|
14
|
-
"execution_count": null,
|
15
|
-
"metadata": {
|
16
|
-
"colab": {
|
17
|
-
"base_uri": "https://localhost:8080/",
|
18
|
-
"height": 223
|
19
|
-
},
|
20
|
-
"id": "4mjDHxIbZYIP",
|
21
|
-
"outputId": "8a4cff63-8cf6-43f9-db26-a73d6dda16da"
|
22
|
-
},
|
23
|
-
"outputs": [],
|
24
|
-
"source": [
|
25
|
-
"import shap\n",
|
26
|
-
"import pandas as pd\n",
|
27
|
-
"import numpy as np\n",
|
28
|
-
"import matplotlib.pyplot as plt\n",
|
29
|
-
"from sklearn.model_selection import train_test_split\n",
|
30
|
-
"from sklearn.preprocessing import StandardScaler\n",
|
31
|
-
"from sklearn.linear_model import LinearRegression\n",
|
32
|
-
"\n",
|
33
|
-
"\n",
|
34
|
-
"url = \"/content/redwine.csv\"\n",
|
35
|
-
"data = pd.read_csv(url)\n",
|
36
|
-
"\n",
|
37
|
-
"data.head()"
|
38
|
-
]
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"cell_type": "code",
|
42
|
-
"execution_count": null,
|
43
|
-
"metadata": {
|
44
|
-
"colab": {
|
45
|
-
"base_uri": "https://localhost:8080/",
|
46
|
-
"height": 80
|
47
|
-
},
|
48
|
-
"id": "qHTaD3VYZcLm",
|
49
|
-
"outputId": "3d94ea7e-7511-4345-f08e-4a2fdc7ace1a"
|
50
|
-
},
|
51
|
-
"outputs": [],
|
52
|
-
"source": [
|
53
|
-
"X = data.drop(columns=[\"quality\"])\n",
|
54
|
-
"y = data[\"quality\"]\n",
|
55
|
-
"\n",
|
56
|
-
"\n",
|
57
|
-
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
58
|
-
"\n",
|
59
|
-
"\n",
|
60
|
-
"scaler = StandardScaler()\n",
|
61
|
-
"X_train = scaler.fit_transform(X_train)\n",
|
62
|
-
"X_test = scaler.transform(X_test)\n",
|
63
|
-
"\n",
|
64
|
-
"\n",
|
65
|
-
"model = LinearRegression()\n",
|
66
|
-
"model.fit(X_train, y_train)\n",
|
67
|
-
"\n"
|
68
|
-
]
|
69
|
-
},
|
70
|
-
{
|
71
|
-
"cell_type": "code",
|
72
|
-
"execution_count": null,
|
73
|
-
"metadata": {
|
74
|
-
"colab": {
|
75
|
-
"base_uri": "https://localhost:8080/",
|
76
|
-
"height": 1000,
|
77
|
-
"referenced_widgets": [
|
78
|
-
"e59c91f1ac42447a8d97da5cbfeaf919",
|
79
|
-
"f52afed55c5d43419f17d51c528d820a",
|
80
|
-
"956ade483238471fb4e3ab1c11e7724f",
|
81
|
-
"aa36ac3ce3354610bdc54be122e5bc4d",
|
82
|
-
"8731287981864014be1154edc0c3eba5",
|
83
|
-
"4c4e802ab50e4f408c63374ef2a29ce9",
|
84
|
-
"929cc32ff82348949fa4d36f17ffdbe0",
|
85
|
-
"90558b09f7294cd38148f483f5a87bf3",
|
86
|
-
"0d45e78edbe54459b9a59c8c11f41b2f",
|
87
|
-
"835aba7f48514c59987bc889bd587505",
|
88
|
-
"8487e3ebe34b47508dc30f747bf853a0"
|
89
|
-
]
|
90
|
-
},
|
91
|
-
"id": "G5IWZa4CjOF4",
|
92
|
-
"outputId": "a3c86b0b-c1f2-4caa-b58d-19902968d637"
|
93
|
-
},
|
94
|
-
"outputs": [],
|
95
|
-
"source": [
|
96
|
-
"explainer = shap.LinearExplainer(model, X_train, feature_perturbation=\"correlation_dependent\") # Fixed error\n",
|
97
|
-
"\n",
|
98
|
-
"shap_values = explainer.shap_values(X_test)\n",
|
99
|
-
"\n",
|
100
|
-
"shap_df = pd.DataFrame(shap_values, columns=X.columns)\n",
|
101
|
-
"\n",
|
102
|
-
"shap.summary_plot(shap_values, X_test, feature_names=X.columns)\n",
|
103
|
-
"\n",
|
104
|
-
"shap.dependence_plot(\"alcohol\", shap_values, X_test, feature_names=X.columns)\n",
|
105
|
-
"\n",
|
106
|
-
"shap.initjs()\n",
|
107
|
-
"shap.force_plot(explainer.expected_value, shap_values[0], X_test[0], feature_names=X.columns)"
|
108
|
-
]
|
109
|
-
},
|
110
|
-
{
|
111
|
-
"cell_type": "markdown",
|
112
|
-
"metadata": {
|
113
|
-
"id": "cykhcsaYjwui"
|
114
|
-
},
|
115
|
-
"source": [
|
116
|
-
"# **Regression shap**"
|
117
|
-
]
|
118
|
-
},
|
119
|
-
{
|
120
|
-
"cell_type": "code",
|
121
|
-
"execution_count": null,
|
122
|
-
"metadata": {
|
123
|
-
"colab": {
|
124
|
-
"base_uri": "https://localhost:8080/",
|
125
|
-
"height": 223
|
126
|
-
},
|
127
|
-
"id": "wiY3u1yCj_MV",
|
128
|
-
"outputId": "e38daa5b-3c91-4da7-f355-69de02064121"
|
129
|
-
},
|
130
|
-
"outputs": [],
|
131
|
-
"source": [
|
132
|
-
"import pandas as pd\n",
|
133
|
-
"import seaborn as sns\n",
|
134
|
-
"import matplotlib.pyplot as plt\n",
|
135
|
-
"from sklearn.model_selection import train_test_split\n",
|
136
|
-
"from sklearn.ensemble import RandomForestRegressor\n",
|
137
|
-
"import shap\n",
|
138
|
-
"\n",
|
139
|
-
"\n",
|
140
|
-
"url = \"/content/redwine.csv\"\n",
|
141
|
-
"data = pd.read_csv(url)\n",
|
142
|
-
"\n",
|
143
|
-
"data.head()"
|
144
|
-
]
|
145
|
-
},
|
146
|
-
{
|
147
|
-
"cell_type": "code",
|
148
|
-
"execution_count": null,
|
149
|
-
"metadata": {
|
150
|
-
"colab": {
|
151
|
-
"base_uri": "https://localhost:8080/",
|
152
|
-
"height": 506
|
153
|
-
},
|
154
|
-
"id": "cD9YhFB0Zclh",
|
155
|
-
"outputId": "318d1262-6ee9-4355-9d58-a3521d7ee313"
|
156
|
-
},
|
157
|
-
"outputs": [],
|
158
|
-
"source": [
|
159
|
-
"sns.displot(\n",
|
160
|
-
" data=data.isna().melt(value_name=\"missing\"),\n",
|
161
|
-
" y=\"variable\",\n",
|
162
|
-
" hue=\"missing\",\n",
|
163
|
-
" multiple=\"fill\",\n",
|
164
|
-
" aspect=1.5\n",
|
165
|
-
")\n",
|
166
|
-
"plt.show()"
|
167
|
-
]
|
168
|
-
},
|
169
|
-
{
|
170
|
-
"cell_type": "code",
|
171
|
-
"execution_count": null,
|
172
|
-
"metadata": {
|
173
|
-
"colab": {
|
174
|
-
"base_uri": "https://localhost:8080/",
|
175
|
-
"height": 80
|
176
|
-
},
|
177
|
-
"id": "NM1ddyLRZc6V",
|
178
|
-
"outputId": "5843b853-2fd7-486a-94b7-efbce2eb3d42"
|
179
|
-
},
|
180
|
-
"outputs": [],
|
181
|
-
"source": [
|
182
|
-
"from sklearn.model_selection import train_test_split\n",
|
183
|
-
"features = data.drop(columns=['quality'])\n",
|
184
|
-
"labels = data['quality']\n",
|
185
|
-
"x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=123)\n",
|
186
|
-
"\n",
|
187
|
-
"from sklearn.ensemble import RandomForestRegressor\n",
|
188
|
-
"model = RandomForestRegressor(n_estimators=2000, max_depth=30, random_state=123)\n",
|
189
|
-
"model.fit(x_train, y_train)\n"
|
190
|
-
]
|
191
|
-
},
|
192
|
-
{
|
193
|
-
"cell_type": "code",
|
194
|
-
"execution_count": null,
|
195
|
-
"metadata": {
|
196
|
-
"colab": {
|
197
|
-
"base_uri": "https://localhost:8080/"
|
198
|
-
},
|
199
|
-
"id": "B7M2D8VnkKRB",
|
200
|
-
"outputId": "6c8d027c-03c1-49b3-c9f9-b8eeb43a7a40"
|
201
|
-
},
|
202
|
-
"outputs": [],
|
203
|
-
"source": [
|
204
|
-
"model.score(x_test, y_test)"
|
205
|
-
]
|
206
|
-
},
|
207
|
-
{
|
208
|
-
"cell_type": "code",
|
209
|
-
"execution_count": null,
|
210
|
-
"metadata": {
|
211
|
-
"colab": {
|
212
|
-
"base_uri": "https://localhost:8080/",
|
213
|
-
"height": 646
|
214
|
-
},
|
215
|
-
"id": "fE-8PW0ekNjv",
|
216
|
-
"outputId": "9ded61ba-2f75-4cbf-c868-d2443763d39d"
|
217
|
-
},
|
218
|
-
"outputs": [],
|
219
|
-
"source": [
|
220
|
-
"explainer = shap.Explainer(model)\n",
|
221
|
-
"shap_values = explainer(x_test)\n",
|
222
|
-
"plt.title('Feature Importance using SHAP')\n",
|
223
|
-
"shap.plots.bar(shap_values, show=True, max_display=12)"
|
224
|
-
]
|
225
|
-
},
|
226
|
-
{
|
227
|
-
"cell_type": "code",
|
228
|
-
"execution_count": null,
|
229
|
-
"metadata": {
|
230
|
-
"colab": {
|
231
|
-
"base_uri": "https://localhost:8080/",
|
232
|
-
"height": 564
|
233
|
-
},
|
234
|
-
"id": "g9gH-OWXkQcE",
|
235
|
-
"outputId": "35552661-954a-4821-cca6-7cb6d32c6d9d"
|
236
|
-
},
|
237
|
-
"outputs": [],
|
238
|
-
"source": [
|
239
|
-
"expected_value = explainer.expected_value\n",
|
240
|
-
"shap_values = explainer.shap_values(x_test)[0]\n",
|
241
|
-
"shap.decision_plot(expected_value, shap_values, x_test)"
|
242
|
-
]
|
243
|
-
},
|
244
|
-
{
|
245
|
-
"cell_type": "markdown",
|
246
|
-
"metadata": {
|
247
|
-
"id": "yvqqrtknzDch"
|
248
|
-
},
|
249
|
-
"source": [
|
250
|
-
"# **Tree Shap - German dataset**"
|
251
|
-
]
|
252
|
-
},
|
253
|
-
{
|
254
|
-
"cell_type": "code",
|
255
|
-
"execution_count": null,
|
256
|
-
"metadata": {
|
257
|
-
"colab": {
|
258
|
-
"base_uri": "https://localhost:8080/"
|
259
|
-
},
|
260
|
-
"id": "Kb59xrmbyiQh",
|
261
|
-
"outputId": "85486766-feb3-4573-9172-213638321e33"
|
262
|
-
},
|
263
|
-
"outputs": [],
|
264
|
-
"source": [
|
265
|
-
"!pip install --upgrade numpy pandas matplotlib seaborn sklearn lightgbm shap"
|
266
|
-
]
|
267
|
-
},
|
268
|
-
{
|
269
|
-
"cell_type": "code",
|
270
|
-
"execution_count": null,
|
271
|
-
"metadata": {
|
272
|
-
"colab": {
|
273
|
-
"base_uri": "https://localhost:8080/",
|
274
|
-
"height": 60
|
275
|
-
},
|
276
|
-
"id": "AUHlRFpWZdJZ",
|
277
|
-
"outputId": "6f3b5abb-5ba4-4105-8379-b07ef420536a"
|
278
|
-
},
|
279
|
-
"outputs": [],
|
280
|
-
"source": [
|
281
|
-
"import warnings\n",
|
282
|
-
"import numpy as np\n",
|
283
|
-
"import pandas as pd\n",
|
284
|
-
"import seaborn as sns\n",
|
285
|
-
"import matplotlib.pyplot as plt\n",
|
286
|
-
"import sklearn\n",
|
287
|
-
"from sklearn.model_selection import train_test_split\n",
|
288
|
-
"from sklearn.metrics import accuracy_score,confusion_matrix,roc_auc_score\n",
|
289
|
-
"from sklearn.preprocessing import LabelEncoder\n",
|
290
|
-
"import lightgbm as lgb\n",
|
291
|
-
"import shap\n",
|
292
|
-
"\n",
|
293
|
-
"print(f\"Shap version used: {shap.__version__}\")\n",
|
294
|
-
"\n",
|
295
|
-
"shap.initjs()"
|
296
|
-
]
|
297
|
-
},
|
298
|
-
{
|
299
|
-
"cell_type": "code",
|
300
|
-
"execution_count": null,
|
301
|
-
"metadata": {
|
302
|
-
"colab": {
|
303
|
-
"base_uri": "https://localhost:8080/",
|
304
|
-
"height": 206
|
305
|
-
},
|
306
|
-
"id": "W-JO-ZGmZdhI",
|
307
|
-
"outputId": "f7811a6a-76fe-4835-b60f-0f6fb26ccc6a"
|
308
|
-
},
|
309
|
-
"outputs": [],
|
310
|
-
"source": [
|
311
|
-
"data = pd.read_csv('/content/german_credit_data.csv', index_col=0)\n",
|
312
|
-
"data.head()"
|
313
|
-
]
|
314
|
-
},
|
315
|
-
{
|
316
|
-
"cell_type": "code",
|
317
|
-
"execution_count": null,
|
318
|
-
"metadata": {
|
319
|
-
"colab": {
|
320
|
-
"base_uri": "https://localhost:8080/"
|
321
|
-
},
|
322
|
-
"id": "NM3Md3cQkyVC",
|
323
|
-
"outputId": "f6a0221e-5198-4ef3-cc13-2f56f1a18903"
|
324
|
-
},
|
325
|
-
"outputs": [],
|
326
|
-
"source": [
|
327
|
-
"data.shape"
|
328
|
-
]
|
329
|
-
},
|
330
|
-
{
|
331
|
-
"cell_type": "code",
|
332
|
-
"execution_count": null,
|
333
|
-
"metadata": {
|
334
|
-
"colab": {
|
335
|
-
"base_uri": "https://localhost:8080/"
|
336
|
-
},
|
337
|
-
"id": "9abnjoQSkzof",
|
338
|
-
"outputId": "7f9672f1-fb82-4db8-8e1f-9d2150982429"
|
339
|
-
},
|
340
|
-
"outputs": [],
|
341
|
-
"source": [
|
342
|
-
"data.columns"
|
343
|
-
]
|
344
|
-
},
|
345
|
-
{
|
346
|
-
"cell_type": "code",
|
347
|
-
"execution_count": null,
|
348
|
-
"metadata": {
|
349
|
-
"colab": {
|
350
|
-
"base_uri": "https://localhost:8080/"
|
351
|
-
},
|
352
|
-
"id": "CfLRp87Bk0rK",
|
353
|
-
"outputId": "d062abe5-399a-421b-b37d-c0b1ece11f03"
|
354
|
-
},
|
355
|
-
"outputs": [],
|
356
|
-
"source": [
|
357
|
-
"data.info()"
|
358
|
-
]
|
359
|
-
},
|
360
|
-
{
|
361
|
-
"cell_type": "code",
|
362
|
-
"execution_count": null,
|
363
|
-
"metadata": {
|
364
|
-
"colab": {
|
365
|
-
"base_uri": "https://localhost:8080/",
|
366
|
-
"height": 300
|
367
|
-
},
|
368
|
-
"id": "Jj8rySKdkwtt",
|
369
|
-
"outputId": "602f1f3e-67c6-455c-86ad-b1a0c71d1b9f"
|
370
|
-
},
|
371
|
-
"outputs": [],
|
372
|
-
"source": [
|
373
|
-
"num_features = ['Age', 'Credit amount', 'Duration']\n",
|
374
|
-
"cat_features = ['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose']\n",
|
375
|
-
"\n",
|
376
|
-
"data[num_features].describe()"
|
377
|
-
]
|
378
|
-
},
|
379
|
-
{
|
380
|
-
"cell_type": "code",
|
381
|
-
"execution_count": null,
|
382
|
-
"metadata": {
|
383
|
-
"colab": {
|
384
|
-
"base_uri": "https://localhost:8080/",
|
385
|
-
"height": 506
|
386
|
-
},
|
387
|
-
"id": "OokZhe1GZhFm",
|
388
|
-
"outputId": "d790f610-e7b6-428c-c6d9-5fcf270fc178"
|
389
|
-
},
|
390
|
-
"outputs": [],
|
391
|
-
"source": [
|
392
|
-
"sns.displot(\n",
|
393
|
-
" data=data.isna().melt(value_name=\"missing\"),\n",
|
394
|
-
" y=\"variable\",\n",
|
395
|
-
" hue=\"missing\",\n",
|
396
|
-
" multiple=\"fill\",\n",
|
397
|
-
" aspect=1.5,\n",
|
398
|
-
" palette='seismic'\n",
|
399
|
-
")\n",
|
400
|
-
"plt.show()"
|
401
|
-
]
|
402
|
-
},
|
403
|
-
{
|
404
|
-
"cell_type": "code",
|
405
|
-
"execution_count": null,
|
406
|
-
"metadata": {
|
407
|
-
"colab": {
|
408
|
-
"base_uri": "https://localhost:8080/",
|
409
|
-
"height": 146
|
410
|
-
},
|
411
|
-
"id": "5T4RmXblZz2d",
|
412
|
-
"outputId": "db009db1-03f7-42af-f56a-a344ae1375d3"
|
413
|
-
},
|
414
|
-
"outputs": [],
|
415
|
-
"source": [
|
416
|
-
"missing_features = ['Saving accounts','Checking account']\n",
|
417
|
-
"data[missing_features].isna().sum()/1000*100"
|
418
|
-
]
|
419
|
-
},
|
420
|
-
{
|
421
|
-
"cell_type": "code",
|
422
|
-
"execution_count": null,
|
423
|
-
"metadata": {
|
424
|
-
"colab": {
|
425
|
-
"base_uri": "https://localhost:8080/"
|
426
|
-
},
|
427
|
-
"id": "IX3lGsFPZ0hR",
|
428
|
-
"outputId": "86609d7c-d3dd-4d63-8b0a-3c620e7deec5"
|
429
|
-
},
|
430
|
-
"outputs": [],
|
431
|
-
"source": [
|
432
|
-
"data.fillna('Unknown', inplace=True)\n",
|
433
|
-
"\n",
|
434
|
-
"print(data[missing_features].isna().sum()/1000 * 100)\n",
|
435
|
-
"print(data[missing_features[0]].value_counts())\n",
|
436
|
-
"print(data[missing_features[1]].value_counts())"
|
437
|
-
]
|
438
|
-
},
|
439
|
-
{
|
440
|
-
"cell_type": "code",
|
441
|
-
"execution_count": null,
|
442
|
-
"metadata": {
|
443
|
-
"colab": {
|
444
|
-
"base_uri": "https://localhost:8080/"
|
445
|
-
},
|
446
|
-
"id": "t_jamAltlKf8",
|
447
|
-
"outputId": "8a0ad824-d661-4077-873c-328d0b088f28"
|
448
|
-
},
|
449
|
-
"outputs": [],
|
450
|
-
"source": [
|
451
|
-
"data.duplicated().any()"
|
452
|
-
]
|
453
|
-
},
|
454
|
-
{
|
455
|
-
"cell_type": "code",
|
456
|
-
"execution_count": null,
|
457
|
-
"metadata": {
|
458
|
-
"colab": {
|
459
|
-
"base_uri": "https://localhost:8080/",
|
460
|
-
"height": 223
|
461
|
-
},
|
462
|
-
"id": "aK0LIl2OZ7bN",
|
463
|
-
"outputId": "96346265-d720-49ec-bd12-dc0d0f623dae"
|
464
|
-
},
|
465
|
-
"outputs": [],
|
466
|
-
"source": [
|
467
|
-
"le = LabelEncoder()\n",
|
468
|
-
"for feat in ['Sex','Saving accounts','Checking account','Purpose','Risk','Housing']:\n",
|
469
|
-
" le.fit(data[feat])\n",
|
470
|
-
" data[feat]=le.transform(data[feat])\n",
|
471
|
-
"classes = list(le.classes_)\n",
|
472
|
-
"print(classes)\n",
|
473
|
-
"data.head()"
|
474
|
-
]
|
475
|
-
},
|
476
|
-
{
|
477
|
-
"cell_type": "code",
|
478
|
-
"execution_count": null,
|
479
|
-
"metadata": {
|
480
|
-
"colab": {
|
481
|
-
"base_uri": "https://localhost:8080/"
|
482
|
-
},
|
483
|
-
"id": "ZN4x8UVNZ8sY",
|
484
|
-
"outputId": "e14007e0-9955-4d7d-b07a-565060c54748"
|
485
|
-
},
|
486
|
-
"outputs": [],
|
487
|
-
"source": [
|
488
|
-
"features = data.drop(columns=['Risk'])\n",
|
489
|
-
"labels = data['Risk']\n",
|
490
|
-
"\n",
|
491
|
-
"x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=123)\n",
|
492
|
-
"\n",
|
493
|
-
"x_train.columns\n"
|
494
|
-
]
|
495
|
-
},
|
496
|
-
{
|
497
|
-
"cell_type": "code",
|
498
|
-
"execution_count": null,
|
499
|
-
"metadata": {
|
500
|
-
"id": "9Ndo2n3ilrBK"
|
501
|
-
},
|
502
|
-
"outputs": [],
|
503
|
-
"source": [
|
504
|
-
"data_train = lgb.Dataset(x_train, label=y_train, categorical_feature=['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose'])\n",
|
505
|
-
"data_test = lgb.Dataset(x_test, label=y_test, categorical_feature=['Sex', 'Job', 'Housing', 'Saving accounts', 'Checking account', 'Purpose'])\n",
|
506
|
-
"\n",
|
507
|
-
"params = {\n",
|
508
|
-
" 'boosting_type':'gbdt',\n",
|
509
|
-
" 'objective':'binary',\n",
|
510
|
-
" 'metric':'auc',\n",
|
511
|
-
" 'num_leaves':20,\n",
|
512
|
-
" 'learning_rate':0.05,\n",
|
513
|
-
" 'feature_fraction':0.9,\n",
|
514
|
-
" 'bagging_fraction':0.8,\n",
|
515
|
-
" 'bagging_freq':5,\n",
|
516
|
-
" 'verbose':-1,\n",
|
517
|
-
" 'lambda_l1':1,\n",
|
518
|
-
" 'lambda_l2':1,\n",
|
519
|
-
" 'seed':123\n",
|
520
|
-
"}\n",
|
521
|
-
"\n",
|
522
|
-
"model = lgb.train(\n",
|
523
|
-
"params,\n",
|
524
|
-
"data_train,\n",
|
525
|
-
"num_boost_round=100,\n",
|
526
|
-
"valid_sets=[data_test,data_train]\n",
|
527
|
-
")"
|
528
|
-
]
|
529
|
-
},
|
530
|
-
{
|
531
|
-
"cell_type": "code",
|
532
|
-
"execution_count": null,
|
533
|
-
"metadata": {
|
534
|
-
"colab": {
|
535
|
-
"base_uri": "https://localhost:8080/"
|
536
|
-
},
|
537
|
-
"id": "LSdon-0GZ8ZS",
|
538
|
-
"outputId": "244b56f0-5b4d-4a30-cb99-c43144dc751b"
|
539
|
-
},
|
540
|
-
"outputs": [],
|
541
|
-
"source": [
|
542
|
-
"y_pred = model.predict(x_test)\n",
|
543
|
-
"y_pred = [1 if y > 0.5 else 0 for y in y_pred]\n",
|
544
|
-
"\n",
|
545
|
-
"print(f'Accuracy for the baseline model is: {accuracy_score(y_test, y_pred)}')\n"
|
546
|
-
]
|
547
|
-
},
|
548
|
-
{
|
549
|
-
"cell_type": "code",
|
550
|
-
"execution_count": null,
|
551
|
-
"metadata": {
|
552
|
-
"colab": {
|
553
|
-
"base_uri": "https://localhost:8080/"
|
554
|
-
},
|
555
|
-
"id": "fpcoFyJpmv6x",
|
556
|
-
"outputId": "922ddd1c-df15-4c85-9443-e54f826c115f"
|
557
|
-
},
|
558
|
-
"outputs": [],
|
559
|
-
"source": [
|
560
|
-
"explainer = shap.TreeExplainer(model)\n",
|
561
|
-
"shap_values = explainer.shap_values(features)"
|
562
|
-
]
|
563
|
-
},
|
564
|
-
{
|
565
|
-
"cell_type": "code",
|
566
|
-
"execution_count": null,
|
567
|
-
"metadata": {
|
568
|
-
"colab": {
|
569
|
-
"base_uri": "https://localhost:8080/",
|
570
|
-
"height": 516
|
571
|
-
},
|
572
|
-
"id": "RoSi7wnKm1ig",
|
573
|
-
"outputId": "e9c8f232-913f-4a7a-b2ed-77fb1904ce31"
|
574
|
-
},
|
575
|
-
"outputs": [],
|
576
|
-
"source": [
|
577
|
-
"shap.summary_plot(shap_values, features)"
|
578
|
-
]
|
579
|
-
},
|
580
|
-
{
|
581
|
-
"cell_type": "code",
|
582
|
-
"execution_count": null,
|
583
|
-
"metadata": {
|
584
|
-
"colab": {
|
585
|
-
"base_uri": "https://localhost:8080/",
|
586
|
-
"height": 69
|
587
|
-
},
|
588
|
-
"id": "ty9FAZWqnD9-",
|
589
|
-
"outputId": "420a7b9c-8c4d-4da1-d26d-04ef7bde0983"
|
590
|
-
},
|
591
|
-
"outputs": [],
|
592
|
-
"source": [
|
593
|
-
"shap.force_plot(explainer.expected_value, shap_values[0], features.iloc[0,:]) # Corrected index to 0"
|
594
|
-
]
|
595
|
-
},
|
596
|
-
{
|
597
|
-
"cell_type": "code",
|
598
|
-
"execution_count": null,
|
599
|
-
"metadata": {
|
600
|
-
"colab": {
|
601
|
-
"base_uri": "https://localhost:8080/",
|
602
|
-
"height": 502
|
603
|
-
},
|
604
|
-
"id": "hvwf_kdDnVxh",
|
605
|
-
"outputId": "f3896849-fc5b-48d2-977d-7ecb0ffeb867"
|
606
|
-
},
|
607
|
-
"outputs": [],
|
608
|
-
"source": [
|
609
|
-
"shap.decision_plot(explainer.expected_value, shap_values[0], features.iloc[0,:])"
|
610
|
-
]
|
611
|
-
},
|
612
|
-
{
|
613
|
-
"cell_type": "code",
|
614
|
-
"execution_count": null,
|
615
|
-
"metadata": {
|
616
|
-
"colab": {
|
617
|
-
"base_uri": "https://localhost:8080/",
|
618
|
-
"height": 1000
|
619
|
-
},
|
620
|
-
"id": "xF-xZfkInncT",
|
621
|
-
"outputId": "ed168984-42f5-4f15-a37c-77cb9526ddc9"
|
622
|
-
},
|
623
|
-
"outputs": [],
|
624
|
-
"source": [
|
625
|
-
"for col in ['Sex','Housing','Checking account','Saving accounts','Purpose','Credit amount','Age']:\n",
|
626
|
-
" print(f'Feature Dependence plot for:{col}')\n",
|
627
|
-
" shap.dependence_plot(col, shap_values, features, display_features=features)"
|
628
|
-
]
|
629
|
-
},
|
630
|
-
{
|
631
|
-
"cell_type": "markdown",
|
632
|
-
"metadata": {
|
633
|
-
"id": "I52D9qOSn-HA"
|
634
|
-
},
|
635
|
-
"source": [
|
636
|
-
"# **Deep shap**"
|
637
|
-
]
|
638
|
-
},
|
639
|
-
{
|
640
|
-
"cell_type": "code",
|
641
|
-
"execution_count": null,
|
642
|
-
"metadata": {
|
643
|
-
"colab": {
|
644
|
-
"base_uri": "https://localhost:8080/"
|
645
|
-
},
|
646
|
-
"id": "vaFPLrm4Z8QB",
|
647
|
-
"outputId": "c94ddaf4-58ec-489c-9734-1e97d70af477"
|
648
|
-
},
|
649
|
-
"outputs": [],
|
650
|
-
"source": [
|
651
|
-
"import tensorflow as tf\n",
|
652
|
-
"import numpy as np\n",
|
653
|
-
"import matplotlib.pyplot as plt\n",
|
654
|
-
"from tensorflow.keras.datasets import mnist\n",
|
655
|
-
"from tensorflow.keras.models import Sequential\n",
|
656
|
-
"from tensorflow.keras.layers import Dense, Flatten\n",
|
657
|
-
"\n",
|
658
|
-
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
659
|
-
"\n",
|
660
|
-
"x_train, x_test = x_train / 255.0, x_test / 255.0\n",
|
661
|
-
"\n",
|
662
|
-
"model = Sequential([\n",
|
663
|
-
" Flatten(input_shape=(28, 28)),\n",
|
664
|
-
" Dense(128, activation='relu'),\n",
|
665
|
-
" Dense(10, activation='softmax')\n",
|
666
|
-
"])"
|
667
|
-
]
|
668
|
-
},
|
669
|
-
{
|
670
|
-
"cell_type": "code",
|
671
|
-
"execution_count": null,
|
672
|
-
"metadata": {
|
673
|
-
"colab": {
|
674
|
-
"base_uri": "https://localhost:8080/",
|
675
|
-
"height": 1000
|
676
|
-
},
|
677
|
-
"id": "QypN7qjZZ8GG",
|
678
|
-
"outputId": "f6c36853-220c-4778-ccc0-ffba4766bc0e"
|
679
|
-
},
|
680
|
-
"outputs": [],
|
681
|
-
"source": [
|
682
|
-
"model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n",
|
683
|
-
"model.fit(x_train, y_train, epochs=3, batch_size=128, validation_data=(x_test, y_test))\n",
|
684
|
-
"background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]\n",
|
685
|
-
"\n",
|
686
|
-
"explainer = shap.DeepExplainer(model, background)\n",
|
687
|
-
"X_test_sample = x_test[:10]\n",
|
688
|
-
"shap_values = explainer.shap_values(X_test_sample)\n",
|
689
|
-
"\n",
|
690
|
-
"plt.figure(figsize=(8, 4))\n",
|
691
|
-
"shap.image_plot(shap_values, X_test_sample)"
|
692
|
-
]
|
693
|
-
},
|
694
|
-
{
|
695
|
-
"cell_type": "markdown",
|
696
|
-
"metadata": {
|
697
|
-
"id": "-eEdltzyohUf"
|
698
|
-
},
|
699
|
-
"source": [
|
700
|
-
"# **Kernal shap**"
|
701
|
-
]
|
702
|
-
},
|
703
|
-
{
|
704
|
-
"cell_type": "code",
|
705
|
-
"execution_count": null,
|
706
|
-
"metadata": {
|
707
|
-
"id": "8rFdoi4f2BRq"
|
708
|
-
},
|
709
|
-
"outputs": [],
|
710
|
-
"source": [
|
711
|
-
"!pip install shap scikit-learn matplotlib"
|
712
|
-
]
|
713
|
-
},
|
714
|
-
{
|
715
|
-
"cell_type": "code",
|
716
|
-
"execution_count": null,
|
717
|
-
"metadata": {
|
718
|
-
"id": "tAlO1p9ComgL"
|
719
|
-
},
|
720
|
-
"outputs": [],
|
721
|
-
"source": [
|
722
|
-
"import shap\n",
|
723
|
-
"import numpy as np\n",
|
724
|
-
"import matplotlib.pyplot as plt\n",
|
725
|
-
"from sklearn.ensemble import RandomForestClassifier\n",
|
726
|
-
"from sklearn.datasets import load_iris\n",
|
727
|
-
"from sklearn.model_selection import train_test_split"
|
728
|
-
]
|
729
|
-
},
|
730
|
-
{
|
731
|
-
"cell_type": "code",
|
732
|
-
"execution_count": null,
|
733
|
-
"metadata": {
|
734
|
-
"id": "xaLCP9u_Z78X"
|
735
|
-
},
|
736
|
-
"outputs": [],
|
737
|
-
"source": [
|
738
|
-
"data = load_iris()\n",
|
739
|
-
"x = data.data\n",
|
740
|
-
"y = data.target\n",
|
741
|
-
"feature_names = data.feature_names\n",
|
742
|
-
"\n",
|
743
|
-
"x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)"
|
744
|
-
]
|
745
|
-
},
|
746
|
-
{
|
747
|
-
"cell_type": "code",
|
748
|
-
"execution_count": null,
|
749
|
-
"metadata": {
|
750
|
-
"colab": {
|
751
|
-
"base_uri": "https://localhost:8080/",
|
752
|
-
"height": 80
|
753
|
-
},
|
754
|
-
"id": "PQGek2frZ7vO",
|
755
|
-
"outputId": "5e5e264a-3a81-4667-b49d-7ddfbb4e39e3"
|
756
|
-
},
|
757
|
-
"outputs": [],
|
758
|
-
"source": [
|
759
|
-
"model = RandomForestClassifier(random_state=42)\n",
|
760
|
-
"model.fit(x_train,y_train)"
|
761
|
-
]
|
762
|
-
},
|
763
|
-
{
|
764
|
-
"cell_type": "code",
|
765
|
-
"execution_count": null,
|
766
|
-
"metadata": {
|
767
|
-
"colab": {
|
768
|
-
"base_uri": "https://localhost:8080/",
|
769
|
-
"height": 385,
|
770
|
-
"referenced_widgets": [
|
771
|
-
"473cc3c759cb4f0ab855237f752f98e4",
|
772
|
-
"8dae60a073264505829bda0463a1031c",
|
773
|
-
"b1ebcb257d0f42ec9e3d454417929286",
|
774
|
-
"4960679a5325442f8dc47dd06e9cd44c",
|
775
|
-
"260f50e7bad6461aba0971d9c62749db",
|
776
|
-
"31b769c507784bdf9aac5924f8d6b9f3",
|
777
|
-
"a65165ff50aa42be99a80c42eaf2312e",
|
778
|
-
"46de81bdeb5447f9a5943befddeba2db",
|
779
|
-
"0dc92e0e7c224848aba6de391ed981e5",
|
780
|
-
"2ad24f377bb0433fb90477dc185e2343",
|
781
|
-
"9e14d8d91a6f431aa7cad57703cac706"
|
782
|
-
]
|
783
|
-
},
|
784
|
-
"id": "1L8bMp1zoz7Q",
|
785
|
-
"outputId": "b7060f22-16aa-42a3-8284-7f806e70f72d"
|
786
|
-
},
|
787
|
-
"outputs": [],
|
788
|
-
"source": [
|
789
|
-
"explainer = shap.KernelExplainer(model.predict, x_train)\n",
|
790
|
-
"\n",
|
791
|
-
"shap_values = explainer.shap_values(x_test[:5])\n",
|
792
|
-
"\n",
|
793
|
-
"shap.summary_plot(shap_values, x_test[:5], feature_names=feature_names)"
|
794
|
-
]
|
795
|
-
},
|
796
|
-
{
|
797
|
-
"cell_type": "code",
|
798
|
-
"execution_count": null,
|
799
|
-
"metadata": {
|
800
|
-
"colab": {
|
801
|
-
"base_uri": "https://localhost:8080/",
|
802
|
-
"height": 43
|
803
|
-
},
|
804
|
-
"id": "Y7gh21m44NDC",
|
805
|
-
"outputId": "2005ab47-e8e5-4390-9722-ba221d2e7299"
|
806
|
-
},
|
807
|
-
"outputs": [],
|
808
|
-
"source": [
|
809
|
-
"shap.initjs()"
|
810
|
-
]
|
811
|
-
},
|
812
|
-
{
|
813
|
-
"cell_type": "code",
|
814
|
-
"execution_count": null,
|
815
|
-
"metadata": {
|
816
|
-
"id": "EIuK2GwasApq"
|
817
|
-
},
|
818
|
-
"outputs": [],
|
819
|
-
"source": [
|
820
|
-
"#shap.force_plot(explainer.expected_value, shap_values[0][0], x_test[0], feature_names=feature_names)\n"
|
821
|
-
]
|
822
|
-
},
|
823
|
-
{
|
824
|
-
"cell_type": "code",
|
825
|
-
"execution_count": null,
|
826
|
-
"metadata": {
|
827
|
-
"id": "tl0eLEv2tme9"
|
828
|
-
},
|
829
|
-
"outputs": [],
|
830
|
-
"source": []
|
831
|
-
}
|
832
|
-
],
|
833
|
-
"metadata": {
|
834
|
-
"colab": {
|
835
|
-
"provenance": []
|
836
|
-
},
|
837
|
-
"kernelspec": {
|
838
|
-
"display_name": "Python 3 (ipykernel)",
|
839
|
-
"language": "python",
|
840
|
-
"name": "python3"
|
841
|
-
},
|
842
|
-
"language_info": {
|
843
|
-
"codemirror_mode": {
|
844
|
-
"name": "ipython",
|
845
|
-
"version": 3
|
846
|
-
},
|
847
|
-
"file_extension": ".py",
|
848
|
-
"mimetype": "text/x-python",
|
849
|
-
"name": "python",
|
850
|
-
"nbconvert_exporter": "python",
|
851
|
-
"pygments_lexer": "ipython3",
|
852
|
-
"version": "3.12.4"
|
853
|
-
},
|
854
|
-
"widgets": {
|
855
|
-
"application/vnd.jupyter.widget-state+json": {
|
856
|
-
"0d45e78edbe54459b9a59c8c11f41b2f": {
|
857
|
-
"model_module": "@jupyter-widgets/controls",
|
858
|
-
"model_module_version": "1.5.0",
|
859
|
-
"model_name": "ProgressStyleModel",
|
860
|
-
"state": {
|
861
|
-
"_model_module": "@jupyter-widgets/controls",
|
862
|
-
"_model_module_version": "1.5.0",
|
863
|
-
"_model_name": "ProgressStyleModel",
|
864
|
-
"_view_count": null,
|
865
|
-
"_view_module": "@jupyter-widgets/base",
|
866
|
-
"_view_module_version": "1.2.0",
|
867
|
-
"_view_name": "StyleView",
|
868
|
-
"bar_color": null,
|
869
|
-
"description_width": ""
|
870
|
-
}
|
871
|
-
},
|
872
|
-
"0dc92e0e7c224848aba6de391ed981e5": {
|
873
|
-
"model_module": "@jupyter-widgets/controls",
|
874
|
-
"model_module_version": "1.5.0",
|
875
|
-
"model_name": "ProgressStyleModel",
|
876
|
-
"state": {
|
877
|
-
"_model_module": "@jupyter-widgets/controls",
|
878
|
-
"_model_module_version": "1.5.0",
|
879
|
-
"_model_name": "ProgressStyleModel",
|
880
|
-
"_view_count": null,
|
881
|
-
"_view_module": "@jupyter-widgets/base",
|
882
|
-
"_view_module_version": "1.2.0",
|
883
|
-
"_view_name": "StyleView",
|
884
|
-
"bar_color": null,
|
885
|
-
"description_width": ""
|
886
|
-
}
|
887
|
-
},
|
888
|
-
"260f50e7bad6461aba0971d9c62749db": {
|
889
|
-
"model_module": "@jupyter-widgets/base",
|
890
|
-
"model_module_version": "1.2.0",
|
891
|
-
"model_name": "LayoutModel",
|
892
|
-
"state": {
|
893
|
-
"_model_module": "@jupyter-widgets/base",
|
894
|
-
"_model_module_version": "1.2.0",
|
895
|
-
"_model_name": "LayoutModel",
|
896
|
-
"_view_count": null,
|
897
|
-
"_view_module": "@jupyter-widgets/base",
|
898
|
-
"_view_module_version": "1.2.0",
|
899
|
-
"_view_name": "LayoutView",
|
900
|
-
"align_content": null,
|
901
|
-
"align_items": null,
|
902
|
-
"align_self": null,
|
903
|
-
"border": null,
|
904
|
-
"bottom": null,
|
905
|
-
"display": null,
|
906
|
-
"flex": null,
|
907
|
-
"flex_flow": null,
|
908
|
-
"grid_area": null,
|
909
|
-
"grid_auto_columns": null,
|
910
|
-
"grid_auto_flow": null,
|
911
|
-
"grid_auto_rows": null,
|
912
|
-
"grid_column": null,
|
913
|
-
"grid_gap": null,
|
914
|
-
"grid_row": null,
|
915
|
-
"grid_template_areas": null,
|
916
|
-
"grid_template_columns": null,
|
917
|
-
"grid_template_rows": null,
|
918
|
-
"height": null,
|
919
|
-
"justify_content": null,
|
920
|
-
"justify_items": null,
|
921
|
-
"left": null,
|
922
|
-
"margin": null,
|
923
|
-
"max_height": null,
|
924
|
-
"max_width": null,
|
925
|
-
"min_height": null,
|
926
|
-
"min_width": null,
|
927
|
-
"object_fit": null,
|
928
|
-
"object_position": null,
|
929
|
-
"order": null,
|
930
|
-
"overflow": null,
|
931
|
-
"overflow_x": null,
|
932
|
-
"overflow_y": null,
|
933
|
-
"padding": null,
|
934
|
-
"right": null,
|
935
|
-
"top": null,
|
936
|
-
"visibility": null,
|
937
|
-
"width": null
|
938
|
-
}
|
939
|
-
},
|
940
|
-
"2ad24f377bb0433fb90477dc185e2343": {
|
941
|
-
"model_module": "@jupyter-widgets/base",
|
942
|
-
"model_module_version": "1.2.0",
|
943
|
-
"model_name": "LayoutModel",
|
944
|
-
"state": {
|
945
|
-
"_model_module": "@jupyter-widgets/base",
|
946
|
-
"_model_module_version": "1.2.0",
|
947
|
-
"_model_name": "LayoutModel",
|
948
|
-
"_view_count": null,
|
949
|
-
"_view_module": "@jupyter-widgets/base",
|
950
|
-
"_view_module_version": "1.2.0",
|
951
|
-
"_view_name": "LayoutView",
|
952
|
-
"align_content": null,
|
953
|
-
"align_items": null,
|
954
|
-
"align_self": null,
|
955
|
-
"border": null,
|
956
|
-
"bottom": null,
|
957
|
-
"display": null,
|
958
|
-
"flex": null,
|
959
|
-
"flex_flow": null,
|
960
|
-
"grid_area": null,
|
961
|
-
"grid_auto_columns": null,
|
962
|
-
"grid_auto_flow": null,
|
963
|
-
"grid_auto_rows": null,
|
964
|
-
"grid_column": null,
|
965
|
-
"grid_gap": null,
|
966
|
-
"grid_row": null,
|
967
|
-
"grid_template_areas": null,
|
968
|
-
"grid_template_columns": null,
|
969
|
-
"grid_template_rows": null,
|
970
|
-
"height": null,
|
971
|
-
"justify_content": null,
|
972
|
-
"justify_items": null,
|
973
|
-
"left": null,
|
974
|
-
"margin": null,
|
975
|
-
"max_height": null,
|
976
|
-
"max_width": null,
|
977
|
-
"min_height": null,
|
978
|
-
"min_width": null,
|
979
|
-
"object_fit": null,
|
980
|
-
"object_position": null,
|
981
|
-
"order": null,
|
982
|
-
"overflow": null,
|
983
|
-
"overflow_x": null,
|
984
|
-
"overflow_y": null,
|
985
|
-
"padding": null,
|
986
|
-
"right": null,
|
987
|
-
"top": null,
|
988
|
-
"visibility": null,
|
989
|
-
"width": null
|
990
|
-
}
|
991
|
-
},
|
992
|
-
"31b769c507784bdf9aac5924f8d6b9f3": {
|
993
|
-
"model_module": "@jupyter-widgets/base",
|
994
|
-
"model_module_version": "1.2.0",
|
995
|
-
"model_name": "LayoutModel",
|
996
|
-
"state": {
|
997
|
-
"_model_module": "@jupyter-widgets/base",
|
998
|
-
"_model_module_version": "1.2.0",
|
999
|
-
"_model_name": "LayoutModel",
|
1000
|
-
"_view_count": null,
|
1001
|
-
"_view_module": "@jupyter-widgets/base",
|
1002
|
-
"_view_module_version": "1.2.0",
|
1003
|
-
"_view_name": "LayoutView",
|
1004
|
-
"align_content": null,
|
1005
|
-
"align_items": null,
|
1006
|
-
"align_self": null,
|
1007
|
-
"border": null,
|
1008
|
-
"bottom": null,
|
1009
|
-
"display": null,
|
1010
|
-
"flex": null,
|
1011
|
-
"flex_flow": null,
|
1012
|
-
"grid_area": null,
|
1013
|
-
"grid_auto_columns": null,
|
1014
|
-
"grid_auto_flow": null,
|
1015
|
-
"grid_auto_rows": null,
|
1016
|
-
"grid_column": null,
|
1017
|
-
"grid_gap": null,
|
1018
|
-
"grid_row": null,
|
1019
|
-
"grid_template_areas": null,
|
1020
|
-
"grid_template_columns": null,
|
1021
|
-
"grid_template_rows": null,
|
1022
|
-
"height": null,
|
1023
|
-
"justify_content": null,
|
1024
|
-
"justify_items": null,
|
1025
|
-
"left": null,
|
1026
|
-
"margin": null,
|
1027
|
-
"max_height": null,
|
1028
|
-
"max_width": null,
|
1029
|
-
"min_height": null,
|
1030
|
-
"min_width": null,
|
1031
|
-
"object_fit": null,
|
1032
|
-
"object_position": null,
|
1033
|
-
"order": null,
|
1034
|
-
"overflow": null,
|
1035
|
-
"overflow_x": null,
|
1036
|
-
"overflow_y": null,
|
1037
|
-
"padding": null,
|
1038
|
-
"right": null,
|
1039
|
-
"top": null,
|
1040
|
-
"visibility": null,
|
1041
|
-
"width": null
|
1042
|
-
}
|
1043
|
-
},
|
1044
|
-
"46de81bdeb5447f9a5943befddeba2db": {
|
1045
|
-
"model_module": "@jupyter-widgets/base",
|
1046
|
-
"model_module_version": "1.2.0",
|
1047
|
-
"model_name": "LayoutModel",
|
1048
|
-
"state": {
|
1049
|
-
"_model_module": "@jupyter-widgets/base",
|
1050
|
-
"_model_module_version": "1.2.0",
|
1051
|
-
"_model_name": "LayoutModel",
|
1052
|
-
"_view_count": null,
|
1053
|
-
"_view_module": "@jupyter-widgets/base",
|
1054
|
-
"_view_module_version": "1.2.0",
|
1055
|
-
"_view_name": "LayoutView",
|
1056
|
-
"align_content": null,
|
1057
|
-
"align_items": null,
|
1058
|
-
"align_self": null,
|
1059
|
-
"border": null,
|
1060
|
-
"bottom": null,
|
1061
|
-
"display": null,
|
1062
|
-
"flex": null,
|
1063
|
-
"flex_flow": null,
|
1064
|
-
"grid_area": null,
|
1065
|
-
"grid_auto_columns": null,
|
1066
|
-
"grid_auto_flow": null,
|
1067
|
-
"grid_auto_rows": null,
|
1068
|
-
"grid_column": null,
|
1069
|
-
"grid_gap": null,
|
1070
|
-
"grid_row": null,
|
1071
|
-
"grid_template_areas": null,
|
1072
|
-
"grid_template_columns": null,
|
1073
|
-
"grid_template_rows": null,
|
1074
|
-
"height": null,
|
1075
|
-
"justify_content": null,
|
1076
|
-
"justify_items": null,
|
1077
|
-
"left": null,
|
1078
|
-
"margin": null,
|
1079
|
-
"max_height": null,
|
1080
|
-
"max_width": null,
|
1081
|
-
"min_height": null,
|
1082
|
-
"min_width": null,
|
1083
|
-
"object_fit": null,
|
1084
|
-
"object_position": null,
|
1085
|
-
"order": null,
|
1086
|
-
"overflow": null,
|
1087
|
-
"overflow_x": null,
|
1088
|
-
"overflow_y": null,
|
1089
|
-
"padding": null,
|
1090
|
-
"right": null,
|
1091
|
-
"top": null,
|
1092
|
-
"visibility": null,
|
1093
|
-
"width": null
|
1094
|
-
}
|
1095
|
-
},
|
1096
|
-
"473cc3c759cb4f0ab855237f752f98e4": {
|
1097
|
-
"model_module": "@jupyter-widgets/controls",
|
1098
|
-
"model_module_version": "1.5.0",
|
1099
|
-
"model_name": "HBoxModel",
|
1100
|
-
"state": {
|
1101
|
-
"_dom_classes": [],
|
1102
|
-
"_model_module": "@jupyter-widgets/controls",
|
1103
|
-
"_model_module_version": "1.5.0",
|
1104
|
-
"_model_name": "HBoxModel",
|
1105
|
-
"_view_count": null,
|
1106
|
-
"_view_module": "@jupyter-widgets/controls",
|
1107
|
-
"_view_module_version": "1.5.0",
|
1108
|
-
"_view_name": "HBoxView",
|
1109
|
-
"box_style": "",
|
1110
|
-
"children": [
|
1111
|
-
"IPY_MODEL_8dae60a073264505829bda0463a1031c",
|
1112
|
-
"IPY_MODEL_b1ebcb257d0f42ec9e3d454417929286",
|
1113
|
-
"IPY_MODEL_4960679a5325442f8dc47dd06e9cd44c"
|
1114
|
-
],
|
1115
|
-
"layout": "IPY_MODEL_260f50e7bad6461aba0971d9c62749db"
|
1116
|
-
}
|
1117
|
-
},
|
1118
|
-
"4960679a5325442f8dc47dd06e9cd44c": {
|
1119
|
-
"model_module": "@jupyter-widgets/controls",
|
1120
|
-
"model_module_version": "1.5.0",
|
1121
|
-
"model_name": "HTMLModel",
|
1122
|
-
"state": {
|
1123
|
-
"_dom_classes": [],
|
1124
|
-
"_model_module": "@jupyter-widgets/controls",
|
1125
|
-
"_model_module_version": "1.5.0",
|
1126
|
-
"_model_name": "HTMLModel",
|
1127
|
-
"_view_count": null,
|
1128
|
-
"_view_module": "@jupyter-widgets/controls",
|
1129
|
-
"_view_module_version": "1.5.0",
|
1130
|
-
"_view_name": "HTMLView",
|
1131
|
-
"description": "",
|
1132
|
-
"description_tooltip": null,
|
1133
|
-
"layout": "IPY_MODEL_2ad24f377bb0433fb90477dc185e2343",
|
1134
|
-
"placeholder": "",
|
1135
|
-
"style": "IPY_MODEL_9e14d8d91a6f431aa7cad57703cac706",
|
1136
|
-
"value": " 5/5 [00:00<00:00, 19.95it/s]"
|
1137
|
-
}
|
1138
|
-
},
|
1139
|
-
"4c4e802ab50e4f408c63374ef2a29ce9": {
|
1140
|
-
"model_module": "@jupyter-widgets/base",
|
1141
|
-
"model_module_version": "1.2.0",
|
1142
|
-
"model_name": "LayoutModel",
|
1143
|
-
"state": {
|
1144
|
-
"_model_module": "@jupyter-widgets/base",
|
1145
|
-
"_model_module_version": "1.2.0",
|
1146
|
-
"_model_name": "LayoutModel",
|
1147
|
-
"_view_count": null,
|
1148
|
-
"_view_module": "@jupyter-widgets/base",
|
1149
|
-
"_view_module_version": "1.2.0",
|
1150
|
-
"_view_name": "LayoutView",
|
1151
|
-
"align_content": null,
|
1152
|
-
"align_items": null,
|
1153
|
-
"align_self": null,
|
1154
|
-
"border": null,
|
1155
|
-
"bottom": null,
|
1156
|
-
"display": null,
|
1157
|
-
"flex": null,
|
1158
|
-
"flex_flow": null,
|
1159
|
-
"grid_area": null,
|
1160
|
-
"grid_auto_columns": null,
|
1161
|
-
"grid_auto_flow": null,
|
1162
|
-
"grid_auto_rows": null,
|
1163
|
-
"grid_column": null,
|
1164
|
-
"grid_gap": null,
|
1165
|
-
"grid_row": null,
|
1166
|
-
"grid_template_areas": null,
|
1167
|
-
"grid_template_columns": null,
|
1168
|
-
"grid_template_rows": null,
|
1169
|
-
"height": null,
|
1170
|
-
"justify_content": null,
|
1171
|
-
"justify_items": null,
|
1172
|
-
"left": null,
|
1173
|
-
"margin": null,
|
1174
|
-
"max_height": null,
|
1175
|
-
"max_width": null,
|
1176
|
-
"min_height": null,
|
1177
|
-
"min_width": null,
|
1178
|
-
"object_fit": null,
|
1179
|
-
"object_position": null,
|
1180
|
-
"order": null,
|
1181
|
-
"overflow": null,
|
1182
|
-
"overflow_x": null,
|
1183
|
-
"overflow_y": null,
|
1184
|
-
"padding": null,
|
1185
|
-
"right": null,
|
1186
|
-
"top": null,
|
1187
|
-
"visibility": null,
|
1188
|
-
"width": null
|
1189
|
-
}
|
1190
|
-
},
|
1191
|
-
"835aba7f48514c59987bc889bd587505": {
|
1192
|
-
"model_module": "@jupyter-widgets/base",
|
1193
|
-
"model_module_version": "1.2.0",
|
1194
|
-
"model_name": "LayoutModel",
|
1195
|
-
"state": {
|
1196
|
-
"_model_module": "@jupyter-widgets/base",
|
1197
|
-
"_model_module_version": "1.2.0",
|
1198
|
-
"_model_name": "LayoutModel",
|
1199
|
-
"_view_count": null,
|
1200
|
-
"_view_module": "@jupyter-widgets/base",
|
1201
|
-
"_view_module_version": "1.2.0",
|
1202
|
-
"_view_name": "LayoutView",
|
1203
|
-
"align_content": null,
|
1204
|
-
"align_items": null,
|
1205
|
-
"align_self": null,
|
1206
|
-
"border": null,
|
1207
|
-
"bottom": null,
|
1208
|
-
"display": null,
|
1209
|
-
"flex": null,
|
1210
|
-
"flex_flow": null,
|
1211
|
-
"grid_area": null,
|
1212
|
-
"grid_auto_columns": null,
|
1213
|
-
"grid_auto_flow": null,
|
1214
|
-
"grid_auto_rows": null,
|
1215
|
-
"grid_column": null,
|
1216
|
-
"grid_gap": null,
|
1217
|
-
"grid_row": null,
|
1218
|
-
"grid_template_areas": null,
|
1219
|
-
"grid_template_columns": null,
|
1220
|
-
"grid_template_rows": null,
|
1221
|
-
"height": null,
|
1222
|
-
"justify_content": null,
|
1223
|
-
"justify_items": null,
|
1224
|
-
"left": null,
|
1225
|
-
"margin": null,
|
1226
|
-
"max_height": null,
|
1227
|
-
"max_width": null,
|
1228
|
-
"min_height": null,
|
1229
|
-
"min_width": null,
|
1230
|
-
"object_fit": null,
|
1231
|
-
"object_position": null,
|
1232
|
-
"order": null,
|
1233
|
-
"overflow": null,
|
1234
|
-
"overflow_x": null,
|
1235
|
-
"overflow_y": null,
|
1236
|
-
"padding": null,
|
1237
|
-
"right": null,
|
1238
|
-
"top": null,
|
1239
|
-
"visibility": null,
|
1240
|
-
"width": null
|
1241
|
-
}
|
1242
|
-
},
|
1243
|
-
"8487e3ebe34b47508dc30f747bf853a0": {
|
1244
|
-
"model_module": "@jupyter-widgets/controls",
|
1245
|
-
"model_module_version": "1.5.0",
|
1246
|
-
"model_name": "DescriptionStyleModel",
|
1247
|
-
"state": {
|
1248
|
-
"_model_module": "@jupyter-widgets/controls",
|
1249
|
-
"_model_module_version": "1.5.0",
|
1250
|
-
"_model_name": "DescriptionStyleModel",
|
1251
|
-
"_view_count": null,
|
1252
|
-
"_view_module": "@jupyter-widgets/base",
|
1253
|
-
"_view_module_version": "1.2.0",
|
1254
|
-
"_view_name": "StyleView",
|
1255
|
-
"description_width": ""
|
1256
|
-
}
|
1257
|
-
},
|
1258
|
-
"8731287981864014be1154edc0c3eba5": {
|
1259
|
-
"model_module": "@jupyter-widgets/base",
|
1260
|
-
"model_module_version": "1.2.0",
|
1261
|
-
"model_name": "LayoutModel",
|
1262
|
-
"state": {
|
1263
|
-
"_model_module": "@jupyter-widgets/base",
|
1264
|
-
"_model_module_version": "1.2.0",
|
1265
|
-
"_model_name": "LayoutModel",
|
1266
|
-
"_view_count": null,
|
1267
|
-
"_view_module": "@jupyter-widgets/base",
|
1268
|
-
"_view_module_version": "1.2.0",
|
1269
|
-
"_view_name": "LayoutView",
|
1270
|
-
"align_content": null,
|
1271
|
-
"align_items": null,
|
1272
|
-
"align_self": null,
|
1273
|
-
"border": null,
|
1274
|
-
"bottom": null,
|
1275
|
-
"display": null,
|
1276
|
-
"flex": null,
|
1277
|
-
"flex_flow": null,
|
1278
|
-
"grid_area": null,
|
1279
|
-
"grid_auto_columns": null,
|
1280
|
-
"grid_auto_flow": null,
|
1281
|
-
"grid_auto_rows": null,
|
1282
|
-
"grid_column": null,
|
1283
|
-
"grid_gap": null,
|
1284
|
-
"grid_row": null,
|
1285
|
-
"grid_template_areas": null,
|
1286
|
-
"grid_template_columns": null,
|
1287
|
-
"grid_template_rows": null,
|
1288
|
-
"height": null,
|
1289
|
-
"justify_content": null,
|
1290
|
-
"justify_items": null,
|
1291
|
-
"left": null,
|
1292
|
-
"margin": null,
|
1293
|
-
"max_height": null,
|
1294
|
-
"max_width": null,
|
1295
|
-
"min_height": null,
|
1296
|
-
"min_width": null,
|
1297
|
-
"object_fit": null,
|
1298
|
-
"object_position": null,
|
1299
|
-
"order": null,
|
1300
|
-
"overflow": null,
|
1301
|
-
"overflow_x": null,
|
1302
|
-
"overflow_y": null,
|
1303
|
-
"padding": null,
|
1304
|
-
"right": null,
|
1305
|
-
"top": null,
|
1306
|
-
"visibility": null,
|
1307
|
-
"width": null
|
1308
|
-
}
|
1309
|
-
},
|
1310
|
-
"8dae60a073264505829bda0463a1031c": {
|
1311
|
-
"model_module": "@jupyter-widgets/controls",
|
1312
|
-
"model_module_version": "1.5.0",
|
1313
|
-
"model_name": "HTMLModel",
|
1314
|
-
"state": {
|
1315
|
-
"_dom_classes": [],
|
1316
|
-
"_model_module": "@jupyter-widgets/controls",
|
1317
|
-
"_model_module_version": "1.5.0",
|
1318
|
-
"_model_name": "HTMLModel",
|
1319
|
-
"_view_count": null,
|
1320
|
-
"_view_module": "@jupyter-widgets/controls",
|
1321
|
-
"_view_module_version": "1.5.0",
|
1322
|
-
"_view_name": "HTMLView",
|
1323
|
-
"description": "",
|
1324
|
-
"description_tooltip": null,
|
1325
|
-
"layout": "IPY_MODEL_31b769c507784bdf9aac5924f8d6b9f3",
|
1326
|
-
"placeholder": "",
|
1327
|
-
"style": "IPY_MODEL_a65165ff50aa42be99a80c42eaf2312e",
|
1328
|
-
"value": "100%"
|
1329
|
-
}
|
1330
|
-
},
|
1331
|
-
"90558b09f7294cd38148f483f5a87bf3": {
|
1332
|
-
"model_module": "@jupyter-widgets/base",
|
1333
|
-
"model_module_version": "1.2.0",
|
1334
|
-
"model_name": "LayoutModel",
|
1335
|
-
"state": {
|
1336
|
-
"_model_module": "@jupyter-widgets/base",
|
1337
|
-
"_model_module_version": "1.2.0",
|
1338
|
-
"_model_name": "LayoutModel",
|
1339
|
-
"_view_count": null,
|
1340
|
-
"_view_module": "@jupyter-widgets/base",
|
1341
|
-
"_view_module_version": "1.2.0",
|
1342
|
-
"_view_name": "LayoutView",
|
1343
|
-
"align_content": null,
|
1344
|
-
"align_items": null,
|
1345
|
-
"align_self": null,
|
1346
|
-
"border": null,
|
1347
|
-
"bottom": null,
|
1348
|
-
"display": null,
|
1349
|
-
"flex": null,
|
1350
|
-
"flex_flow": null,
|
1351
|
-
"grid_area": null,
|
1352
|
-
"grid_auto_columns": null,
|
1353
|
-
"grid_auto_flow": null,
|
1354
|
-
"grid_auto_rows": null,
|
1355
|
-
"grid_column": null,
|
1356
|
-
"grid_gap": null,
|
1357
|
-
"grid_row": null,
|
1358
|
-
"grid_template_areas": null,
|
1359
|
-
"grid_template_columns": null,
|
1360
|
-
"grid_template_rows": null,
|
1361
|
-
"height": null,
|
1362
|
-
"justify_content": null,
|
1363
|
-
"justify_items": null,
|
1364
|
-
"left": null,
|
1365
|
-
"margin": null,
|
1366
|
-
"max_height": null,
|
1367
|
-
"max_width": null,
|
1368
|
-
"min_height": null,
|
1369
|
-
"min_width": null,
|
1370
|
-
"object_fit": null,
|
1371
|
-
"object_position": null,
|
1372
|
-
"order": null,
|
1373
|
-
"overflow": null,
|
1374
|
-
"overflow_x": null,
|
1375
|
-
"overflow_y": null,
|
1376
|
-
"padding": null,
|
1377
|
-
"right": null,
|
1378
|
-
"top": null,
|
1379
|
-
"visibility": null,
|
1380
|
-
"width": null
|
1381
|
-
}
|
1382
|
-
},
|
1383
|
-
"929cc32ff82348949fa4d36f17ffdbe0": {
|
1384
|
-
"model_module": "@jupyter-widgets/controls",
|
1385
|
-
"model_module_version": "1.5.0",
|
1386
|
-
"model_name": "DescriptionStyleModel",
|
1387
|
-
"state": {
|
1388
|
-
"_model_module": "@jupyter-widgets/controls",
|
1389
|
-
"_model_module_version": "1.5.0",
|
1390
|
-
"_model_name": "DescriptionStyleModel",
|
1391
|
-
"_view_count": null,
|
1392
|
-
"_view_module": "@jupyter-widgets/base",
|
1393
|
-
"_view_module_version": "1.2.0",
|
1394
|
-
"_view_name": "StyleView",
|
1395
|
-
"description_width": ""
|
1396
|
-
}
|
1397
|
-
},
|
1398
|
-
"956ade483238471fb4e3ab1c11e7724f": {
|
1399
|
-
"model_module": "@jupyter-widgets/controls",
|
1400
|
-
"model_module_version": "1.5.0",
|
1401
|
-
"model_name": "FloatProgressModel",
|
1402
|
-
"state": {
|
1403
|
-
"_dom_classes": [],
|
1404
|
-
"_model_module": "@jupyter-widgets/controls",
|
1405
|
-
"_model_module_version": "1.5.0",
|
1406
|
-
"_model_name": "FloatProgressModel",
|
1407
|
-
"_view_count": null,
|
1408
|
-
"_view_module": "@jupyter-widgets/controls",
|
1409
|
-
"_view_module_version": "1.5.0",
|
1410
|
-
"_view_name": "ProgressView",
|
1411
|
-
"bar_style": "success",
|
1412
|
-
"description": "",
|
1413
|
-
"description_tooltip": null,
|
1414
|
-
"layout": "IPY_MODEL_90558b09f7294cd38148f483f5a87bf3",
|
1415
|
-
"max": 1000,
|
1416
|
-
"min": 0,
|
1417
|
-
"orientation": "horizontal",
|
1418
|
-
"style": "IPY_MODEL_0d45e78edbe54459b9a59c8c11f41b2f",
|
1419
|
-
"value": 1000
|
1420
|
-
}
|
1421
|
-
},
|
1422
|
-
"9e14d8d91a6f431aa7cad57703cac706": {
|
1423
|
-
"model_module": "@jupyter-widgets/controls",
|
1424
|
-
"model_module_version": "1.5.0",
|
1425
|
-
"model_name": "DescriptionStyleModel",
|
1426
|
-
"state": {
|
1427
|
-
"_model_module": "@jupyter-widgets/controls",
|
1428
|
-
"_model_module_version": "1.5.0",
|
1429
|
-
"_model_name": "DescriptionStyleModel",
|
1430
|
-
"_view_count": null,
|
1431
|
-
"_view_module": "@jupyter-widgets/base",
|
1432
|
-
"_view_module_version": "1.2.0",
|
1433
|
-
"_view_name": "StyleView",
|
1434
|
-
"description_width": ""
|
1435
|
-
}
|
1436
|
-
},
|
1437
|
-
"a65165ff50aa42be99a80c42eaf2312e": {
|
1438
|
-
"model_module": "@jupyter-widgets/controls",
|
1439
|
-
"model_module_version": "1.5.0",
|
1440
|
-
"model_name": "DescriptionStyleModel",
|
1441
|
-
"state": {
|
1442
|
-
"_model_module": "@jupyter-widgets/controls",
|
1443
|
-
"_model_module_version": "1.5.0",
|
1444
|
-
"_model_name": "DescriptionStyleModel",
|
1445
|
-
"_view_count": null,
|
1446
|
-
"_view_module": "@jupyter-widgets/base",
|
1447
|
-
"_view_module_version": "1.2.0",
|
1448
|
-
"_view_name": "StyleView",
|
1449
|
-
"description_width": ""
|
1450
|
-
}
|
1451
|
-
},
|
1452
|
-
"aa36ac3ce3354610bdc54be122e5bc4d": {
|
1453
|
-
"model_module": "@jupyter-widgets/controls",
|
1454
|
-
"model_module_version": "1.5.0",
|
1455
|
-
"model_name": "HTMLModel",
|
1456
|
-
"state": {
|
1457
|
-
"_dom_classes": [],
|
1458
|
-
"_model_module": "@jupyter-widgets/controls",
|
1459
|
-
"_model_module_version": "1.5.0",
|
1460
|
-
"_model_name": "HTMLModel",
|
1461
|
-
"_view_count": null,
|
1462
|
-
"_view_module": "@jupyter-widgets/controls",
|
1463
|
-
"_view_module_version": "1.5.0",
|
1464
|
-
"_view_name": "HTMLView",
|
1465
|
-
"description": "",
|
1466
|
-
"description_tooltip": null,
|
1467
|
-
"layout": "IPY_MODEL_835aba7f48514c59987bc889bd587505",
|
1468
|
-
"placeholder": "",
|
1469
|
-
"style": "IPY_MODEL_8487e3ebe34b47508dc30f747bf853a0",
|
1470
|
-
"value": " 1000/1000 [00:00<00:00, 1327.59it/s]"
|
1471
|
-
}
|
1472
|
-
},
|
1473
|
-
"b1ebcb257d0f42ec9e3d454417929286": {
|
1474
|
-
"model_module": "@jupyter-widgets/controls",
|
1475
|
-
"model_module_version": "1.5.0",
|
1476
|
-
"model_name": "FloatProgressModel",
|
1477
|
-
"state": {
|
1478
|
-
"_dom_classes": [],
|
1479
|
-
"_model_module": "@jupyter-widgets/controls",
|
1480
|
-
"_model_module_version": "1.5.0",
|
1481
|
-
"_model_name": "FloatProgressModel",
|
1482
|
-
"_view_count": null,
|
1483
|
-
"_view_module": "@jupyter-widgets/controls",
|
1484
|
-
"_view_module_version": "1.5.0",
|
1485
|
-
"_view_name": "ProgressView",
|
1486
|
-
"bar_style": "success",
|
1487
|
-
"description": "",
|
1488
|
-
"description_tooltip": null,
|
1489
|
-
"layout": "IPY_MODEL_46de81bdeb5447f9a5943befddeba2db",
|
1490
|
-
"max": 5,
|
1491
|
-
"min": 0,
|
1492
|
-
"orientation": "horizontal",
|
1493
|
-
"style": "IPY_MODEL_0dc92e0e7c224848aba6de391ed981e5",
|
1494
|
-
"value": 5
|
1495
|
-
}
|
1496
|
-
},
|
1497
|
-
"e59c91f1ac42447a8d97da5cbfeaf919": {
|
1498
|
-
"model_module": "@jupyter-widgets/controls",
|
1499
|
-
"model_module_version": "1.5.0",
|
1500
|
-
"model_name": "HBoxModel",
|
1501
|
-
"state": {
|
1502
|
-
"_dom_classes": [],
|
1503
|
-
"_model_module": "@jupyter-widgets/controls",
|
1504
|
-
"_model_module_version": "1.5.0",
|
1505
|
-
"_model_name": "HBoxModel",
|
1506
|
-
"_view_count": null,
|
1507
|
-
"_view_module": "@jupyter-widgets/controls",
|
1508
|
-
"_view_module_version": "1.5.0",
|
1509
|
-
"_view_name": "HBoxView",
|
1510
|
-
"box_style": "",
|
1511
|
-
"children": [
|
1512
|
-
"IPY_MODEL_f52afed55c5d43419f17d51c528d820a",
|
1513
|
-
"IPY_MODEL_956ade483238471fb4e3ab1c11e7724f",
|
1514
|
-
"IPY_MODEL_aa36ac3ce3354610bdc54be122e5bc4d"
|
1515
|
-
],
|
1516
|
-
"layout": "IPY_MODEL_8731287981864014be1154edc0c3eba5"
|
1517
|
-
}
|
1518
|
-
},
|
1519
|
-
"f52afed55c5d43419f17d51c528d820a": {
|
1520
|
-
"model_module": "@jupyter-widgets/controls",
|
1521
|
-
"model_module_version": "1.5.0",
|
1522
|
-
"model_name": "HTMLModel",
|
1523
|
-
"state": {
|
1524
|
-
"_dom_classes": [],
|
1525
|
-
"_model_module": "@jupyter-widgets/controls",
|
1526
|
-
"_model_module_version": "1.5.0",
|
1527
|
-
"_model_name": "HTMLModel",
|
1528
|
-
"_view_count": null,
|
1529
|
-
"_view_module": "@jupyter-widgets/controls",
|
1530
|
-
"_view_module_version": "1.5.0",
|
1531
|
-
"_view_name": "HTMLView",
|
1532
|
-
"description": "",
|
1533
|
-
"description_tooltip": null,
|
1534
|
-
"layout": "IPY_MODEL_4c4e802ab50e4f408c63374ef2a29ce9",
|
1535
|
-
"placeholder": "",
|
1536
|
-
"style": "IPY_MODEL_929cc32ff82348949fa4d36f17ffdbe0",
|
1537
|
-
"value": "Estimating transforms: 100%"
|
1538
|
-
}
|
1539
|
-
}
|
1540
|
-
}
|
1541
|
-
}
|
1542
|
-
},
|
1543
|
-
"nbformat": 4,
|
1544
|
-
"nbformat_minor": 4
|
1545
|
-
}
|