noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
  2. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  3. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
  4. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
  5. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
  6. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
  7. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
  8. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  9. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
  10. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
  11. noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
  12. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  13. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
  14. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  15. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
  16. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
  17. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
  18. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
  19. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
  20. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
  21. noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
  22. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
  23. noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
  24. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  25. noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
  26. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
  27. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
  28. noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
  29. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  30. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
  31. noshot-3.0.0.dist-info/RECORD +38 -0
  32. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
  33. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
  34. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
  35. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
  36. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
  37. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
  38. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
  39. noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
  40. noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
  41. noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
  42. noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
  43. noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
  44. noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
  45. noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
  46. noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
  47. noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
  48. noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
  49. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
  50. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
  51. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
  52. noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
  53. noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
  54. noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
  55. noshot-1.0.0.dist-info/RECORD +0 -32
  56. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  57. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,167 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0ac778c2-495b-4613-80ca-d6be2b71e598",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": null,
18
- "id": "a843538d-035e-4a90-b67b-1fa647c22f70",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "df = pd.read_csv('daily-min-temperatures.csv', parse_dates = ['Date'], index_col = 'Date')\n",
23
- "df.head()"
24
- ]
25
- },
26
- {
27
- "cell_type": "code",
28
- "execution_count": null,
29
- "id": "c3aff0e1-9c54-474f-83ea-2b6bb632bd3f",
30
- "metadata": {},
31
- "outputs": [],
32
- "source": [
33
- "df.plot(title = 'Daily Minimum Temperatures', figsize = (14, 8), legend = None)\n",
34
- "plt.xlabel('Date')\n",
35
- "plt.ylabel('Temperature (°C)')\n",
36
- "plt.show()"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": null,
42
- "id": "5d08b196-75c8-473d-b77e-85008048d590",
43
- "metadata": {},
44
- "outputs": [],
45
- "source": [
46
- "differenced_series = df.diff(periods=1) #lag-1 difference\n",
47
- "plt.subplot(2, 1, 1)\n",
48
- "plt.plot(df, label = \"Original Series\")\n",
49
- "plt.title(\"Original Daily Minimum Temperatures\")\n",
50
- "plt.grid()\n",
51
- "\n",
52
- "plt.subplot(2, 1, 2)\n",
53
- "plt.plot(differenced_series, label = \"Differneced Series\", color=\"green\")\n",
54
- "plt.title(\"Differneced Daily Minimum Temperatures\")\n",
55
- "plt.grid()\n",
56
- "\n",
57
- "plt.tight_layout()\n",
58
- "plt.show()"
59
- ]
60
- },
61
- {
62
- "cell_type": "code",
63
- "execution_count": null,
64
- "id": "800dd56a-1b3f-4cdd-8fac-802048d1160b",
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "X = df.values\n",
69
- "diff = []\n",
70
- "days_in_year = 365\n",
71
- "for i in range(days_in_year, len(X)):\n",
72
- " value = X[i] - X[i - days_in_year]\n",
73
- " diff.append(value)\n",
74
- "plt.plot(diff)\n",
75
- "plt.show()"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "1dc499f8-4c1d-4d65-9e16-3439fe22ef13",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "df['diff'] = df['Temp'].diff(periods=1)\n",
86
- "\n",
87
- "plt.plot(df.index, df['Temp'], label = 'Original')\n",
88
- "plt.plot(df.index, df['diff'], label = 'Differenced (lag-1)')\n",
89
- "plt.xlabel('Date')\n",
90
- "plt.ylabel('Temperature (°C)')\n",
91
- "plt.title(\"Temperature Time Series with Differencing\")\n",
92
- "plt.legend()\n",
93
- "plt.show()"
94
- ]
95
- },
96
- {
97
- "cell_type": "code",
98
- "execution_count": null,
99
- "id": "7f720228-762a-48e3-aa61-733846cca105",
100
- "metadata": {},
101
- "outputs": [],
102
- "source": [
103
- "df = pd.read_csv('daily-min-temperatures.csv', header=0, index_col = 0)\n",
104
- "X = [i%365 for i in range(0, len(df))]\n",
105
- "y = df.values"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "id": "87262e57-a216-422d-a768-2d2459df23ff",
112
- "metadata": {},
113
- "outputs": [],
114
- "source": [
115
- "degree = 4\n",
116
- "coef = np.polyfit(X, y, degree)\n",
117
- "print(\"Coefficients:\\n\", coef)"
118
- ]
119
- },
120
- {
121
- "cell_type": "code",
122
- "execution_count": null,
123
- "id": "daec417d-061a-4953-9d2b-206dbc0ba8e7",
124
- "metadata": {},
125
- "outputs": [],
126
- "source": [
127
- "curve = []\n",
128
- "for i in range(len(X)):\n",
129
- " value = coef[-1]\n",
130
- " for d in range(degree):\n",
131
- " value += (X[i]**(degree - d)) * coef[d]\n",
132
- " curve.append(value)\n",
133
- "\n",
134
- "values = df.values\n",
135
- "\n",
136
- "diff = []\n",
137
- "for i in range(len(values)):\n",
138
- " value = values[i] - curve[i]\n",
139
- " diff.append(value)\n",
140
- "\n",
141
- "plt.plot(diff)\n",
142
- "plt.show()"
143
- ]
144
- }
145
- ],
146
- "metadata": {
147
- "kernelspec": {
148
- "display_name": "Python 3 (ipykernel)",
149
- "language": "python",
150
- "name": "python3"
151
- },
152
- "language_info": {
153
- "codemirror_mode": {
154
- "name": "ipython",
155
- "version": 3
156
- },
157
- "file_extension": ".py",
158
- "mimetype": "text/x-python",
159
- "name": "python",
160
- "nbconvert_exporter": "python",
161
- "pygments_lexer": "ipython3",
162
- "version": "3.12.4"
163
- }
164
- },
165
- "nbformat": 4,
166
- "nbformat_minor": 5
167
- }
@@ -1,197 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "cb446765-5f1b-4827-8eb8-465f275c1821",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from scipy import stats\n",
14
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
15
- "from statsmodels.graphics.api import qqplot\n",
16
- "from statsmodels.tsa.arima.model import ARIMA\n",
17
- "from statsmodels.api import tsa\n",
18
- "import warnings\n",
19
- "warnings.filterwarnings('ignore')"
20
- ]
21
- },
22
- {
23
- "cell_type": "code",
24
- "execution_count": null,
25
- "id": "8166c848-99fb-4883-9534-372e66da163f",
26
- "metadata": {},
27
- "outputs": [],
28
- "source": [
29
- "df = pd.read_csv('monthly-sunspots.csv', index_col = 'YEAR')\n",
30
- "df"
31
- ]
32
- },
33
- {
34
- "cell_type": "code",
35
- "execution_count": null,
36
- "id": "5db24ed8-03ae-4136-9d39-b7315daa85a2",
37
- "metadata": {},
38
- "outputs": [],
39
- "source": [
40
- "df.plot(figsize=(15,8), color = 'purple')"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "a9288a36-b6b8-4492-9dc7-276d9a185f63",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "fig = plt.figure(figsize=(15,8))\n",
51
- "ax1 = fig.add_subplot(211)\n",
52
- "fig = plot_acf(df.values.squeeze(), lags=40, ax=ax1, color = 'r', title='Original Autocorrelation')\n",
53
- "ax2 = fig.add_subplot(212)\n",
54
- "fig = plot_pacf(df, lags=40, ax=ax2, color = 'g', title='Original Partial Autocorrelation')"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "id": "c4044bdd-d852-49af-882a-7cf238abd1b3",
61
- "metadata": {},
62
- "outputs": [],
63
- "source": [
64
- "arma20 = ARIMA(df, order=(2,0,0)).fit()\n",
65
- "display(arma20.params)\n",
66
- "display(arma20.aic, arma20.bic, arma20.hqic)"
67
- ]
68
- },
69
- {
70
- "cell_type": "code",
71
- "execution_count": null,
72
- "id": "653f3938-1703-4cac-969a-1d991aed2081",
73
- "metadata": {},
74
- "outputs": [],
75
- "source": [
76
- "arma30 = ARIMA(df, order=(3,0,0)).fit()\n",
77
- "display(arma30.params)\n",
78
- "display(arma30.aic, arma30.bic, arma30.hqic)"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": null,
84
- "id": "d5f9d78e-9638-4c1f-bded-1d9a9a377543",
85
- "metadata": {},
86
- "outputs": [],
87
- "source": [
88
- "fig = plt.figure(figsize=(15,8))\n",
89
- "ax = fig.add_subplot(111)\n",
90
- "ax = arma30.resid.plot(ax=ax)"
91
- ]
92
- },
93
- {
94
- "cell_type": "code",
95
- "execution_count": null,
96
- "id": "790a3e2d-486d-4406-aa1b-58c1c50d904f",
97
- "metadata": {},
98
- "outputs": [],
99
- "source": [
100
- "resid = arma30.resid\n",
101
- "stats.normaltest(resid)"
102
- ]
103
- },
104
- {
105
- "cell_type": "code",
106
- "execution_count": null,
107
- "id": "20212ba9-efa8-4bb9-88b8-5bd8c1a99a3d",
108
- "metadata": {},
109
- "outputs": [],
110
- "source": [
111
- "fig = plt.figure(figsize=(15,8))\n",
112
- "ax = fig.add_subplot(111)\n",
113
- "fig = qqplot(resid, line='q', ax=ax, fit=True)"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": null,
119
- "id": "e50e8ade-7027-4ed9-91f4-c4bd9119ad4a",
120
- "metadata": {},
121
- "outputs": [],
122
- "source": [
123
- "fig = plt.figure(figsize=(15,8))\n",
124
- "ax1 = fig.add_subplot(211)\n",
125
- "fig = plot_acf(resid.values.squeeze(), lags=40, ax=ax1, color='g', title='Residual Autocorrelation')\n",
126
- "ax2 = fig.add_subplot(212)\n",
127
- "fig = plot_pacf(resid, lags=40, ax=ax2, color='r', title='Residual Partial Autocorrelation')"
128
- ]
129
- },
130
- {
131
- "cell_type": "code",
132
- "execution_count": null,
133
- "id": "f6b5a13b-3ce6-4be3-9e6b-436435d79141",
134
- "metadata": {},
135
- "outputs": [],
136
- "source": [
137
- "r, q, p = tsa.acf(resid.values.squeeze(), fft=True, qstat=True)\n",
138
- "data = np.c_[np.arange(1, 25), r[1:], q, p]"
139
- ]
140
- },
141
- {
142
- "cell_type": "code",
143
- "execution_count": null,
144
- "id": "87267a9d-ebfa-4324-b5ae-45c5680af95a",
145
- "metadata": {},
146
- "outputs": [],
147
- "source": [
148
- "df2 = pd.DataFrame(data, columns = ['Lag', 'AC', 'Q', 'Prob(>Q)'])\n",
149
- "df2.set_index('Lag')"
150
- ]
151
- },
152
- {
153
- "cell_type": "code",
154
- "execution_count": null,
155
- "id": "6cccb84e-4a8e-4278-b8a5-ed592936d84b",
156
- "metadata": {},
157
- "outputs": [],
158
- "source": [
159
- "predict_sunspots = arma30.predict('1990', '2012', dynamic=True)\n",
160
- "predict_sunspots = predict_sunspots['1990-12-31':'2008-12-31']\n",
161
- "predict_sunspots = pd.DataFrame(predict_sunspots)\n",
162
- "predict_sunspots.head()"
163
- ]
164
- },
165
- {
166
- "cell_type": "code",
167
- "execution_count": null,
168
- "id": "74f236dc-3062-4395-a444-bbeb411e8460",
169
- "metadata": {},
170
- "outputs": [],
171
- "source": [
172
- "np.mean((df['1990-12-31':'2008-12-31':1]['SUNACTIVITY'].values - predict_sunspots['predicted_mean'].values))"
173
- ]
174
- }
175
- ],
176
- "metadata": {
177
- "kernelspec": {
178
- "display_name": "Python 3 (ipykernel)",
179
- "language": "python",
180
- "name": "python3"
181
- },
182
- "language_info": {
183
- "codemirror_mode": {
184
- "name": "ipython",
185
- "version": 3
186
- },
187
- "file_extension": ".py",
188
- "mimetype": "text/x-python",
189
- "name": "python",
190
- "nbconvert_exporter": "python",
191
- "pygments_lexer": "ipython3",
192
- "version": "3.12.4"
193
- }
194
- },
195
- "nbformat": 4,
196
- "nbformat_minor": 5
197
- }
@@ -1,220 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "6e3f5839-6844-42c3-a57c-5e6324c7ee43",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from scipy import stats\n",
14
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n",
15
- "from statsmodels.graphics.api import qqplot\n",
16
- "from statsmodels.tsa.arima.model import ARIMA\n",
17
- "from statsmodels.tsa.stattools import adfuller\n",
18
- "from statsmodels.api import tsa\n",
19
- "from sklearn.metrics import r2_score\n",
20
- "from sklearn.model_selection import TimeSeriesSplit\n",
21
- "import warnings\n",
22
- "warnings.filterwarnings('ignore')"
23
- ]
24
- },
25
- {
26
- "cell_type": "code",
27
- "execution_count": null,
28
- "id": "f32d68f1-db8f-4b74-b23e-2f3ad3b56eed",
29
- "metadata": {},
30
- "outputs": [],
31
- "source": [
32
- "df = pd.read_csv('monthly-sunspots.csv', index_col = 'YEAR')\n",
33
- "df"
34
- ]
35
- },
36
- {
37
- "cell_type": "code",
38
- "execution_count": null,
39
- "id": "500a40bd-7d8f-4d52-923a-ad76d590216f",
40
- "metadata": {
41
- "scrolled": true
42
- },
43
- "outputs": [],
44
- "source": [
45
- "df.plot(figsize=(15,8), color = 'purple')"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": null,
51
- "id": "6dc6f56f-93bd-4506-b32a-e0f7361829b7",
52
- "metadata": {},
53
- "outputs": [],
54
- "source": [
55
- "result = adfuller(df['SUNACTIVITY'])\n",
56
- "display(result)"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "13ece976-8c18-4a2e-b44a-49fa6bc6ff85",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "pvalue = result[1]\n",
67
- "if pvalue < 0.05:\n",
68
- " print(\"Stationary\")\n",
69
- "else:\n",
70
- " print(\"Non Stationary\")"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": null,
76
- "id": "d83cf3f0-244b-4961-8ff4-dedf97e5a766",
77
- "metadata": {},
78
- "outputs": [],
79
- "source": [
80
- "plot_acf(df['SUNACTIVITY'], lags = 40)\n",
81
- "plot_pacf(df['SUNACTIVITY'], lags = 40)\n",
82
- "plt.show()"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "id": "5dacfe47-b35b-46e4-a06f-6001040a6405",
89
- "metadata": {},
90
- "outputs": [],
91
- "source": [
92
- "model = ARIMA(list(df['SUNACTIVITY']), order = (1,0,1))\n",
93
- "result = model.fit()\n",
94
- "pred = result.predict()\n",
95
- "print(r2_score(df, pred))"
96
- ]
97
- },
98
- {
99
- "cell_type": "code",
100
- "execution_count": null,
101
- "id": "171168aa-f0a2-43f1-a195-72b9f3791a53",
102
- "metadata": {},
103
- "outputs": [],
104
- "source": [
105
- "plt.plot(list(df['SUNACTIVITY']))\n",
106
- "plt.plot(pred, linestyle = '--')\n",
107
- "plt.legend(['Actual Sunspots'], ['Predicted SUnspots'])\n",
108
- "plt.xlabel('Timesteps')\n",
109
- "plt.show()"
110
- ]
111
- },
112
- {
113
- "cell_type": "code",
114
- "execution_count": null,
115
- "id": "62e74f51-e0b4-4b22-856b-5a28838375b7",
116
- "metadata": {},
117
- "outputs": [],
118
- "source": [
119
- "ax = pd.Series(result.resid).hist()\n",
120
- "ax.set_xlabel('Residual')\n",
121
- "ax.set_ylabel('Number of Occurences')\n",
122
- "plt.show()"
123
- ]
124
- },
125
- {
126
- "cell_type": "code",
127
- "execution_count": null,
128
- "id": "1cac3ae4-d8f2-49c4-a04d-fabf5290977a",
129
- "metadata": {},
130
- "outputs": [],
131
- "source": [
132
- "result.summary()"
133
- ]
134
- },
135
- {
136
- "cell_type": "code",
137
- "execution_count": null,
138
- "id": "e3ae6db1-4b9c-4a9b-8286-b6484fabb348",
139
- "metadata": {},
140
- "outputs": [],
141
- "source": [
142
- "data_array = df.values\n",
143
- "avg_errors = []\n",
144
- "for p in range(1):\n",
145
- " for q in range(13):\n",
146
- " errors = []\n",
147
- " tscv = TimeSeriesSplit(test_size = 10)\n",
148
- " for train_index, test_index in tscv.split(data_array):\n",
149
- " x_train, x_test = data_array[train_index], data_array[test_index]\n",
150
- " x_test_orig = x_test\n",
151
- "\n",
152
- " fcst = []\n",
153
- " for stop in range(10):\n",
154
- " try:\n",
155
- " mod = ARIMA(x_train, order = (p,0,q))\n",
156
- " res = mod.fit()\n",
157
- " fcst.append(res.forecast(steps = 1))\n",
158
- " except:\n",
159
- " print(\"Error\")\n",
160
- " fcst.append(-9999999.)\n",
161
- " x_train = np.concatenate((x_train, x_test[0:1,]))\n",
162
- " x_test = x_test[1:]\n",
163
- " errors.append(r2_score(x_test_orig, fcst))\n",
164
- " pq_result = [p, q, np.mean(errors)]\n",
165
- " print(pq_result)\n",
166
- " avg_errors.append(pq_result)\n",
167
- "avg_errors = pd.DataFrame(avg_errors)\n",
168
- "avg_errors.columns = ['p', 'q', 'error']\n",
169
- "result = avg_errors.pivot(index = 'p', columns = 'q')"
170
- ]
171
- },
172
- {
173
- "cell_type": "code",
174
- "execution_count": null,
175
- "id": "f0882bbd-e5de-4249-b74c-9f96c6777205",
176
- "metadata": {},
177
- "outputs": [],
178
- "source": [
179
- "dta_array = df.values\n",
180
- "X_train, X_test = dta_array[:10], dta_array[-10:]\n",
181
- "X_test_orig = X_test\n",
182
- "\n",
183
- "fcst = []\n",
184
- "for step in range(10):\n",
185
- " mod = ARIMA(X_train, order = (10,0,9))\n",
186
- " res = mod.fit()\n",
187
- " fcst.append(res.forecast(steps = 1))\n",
188
- " X_train = np.concatenate((X_train, X_test[0:1,:]))\n",
189
- " X_test = X_test[1:]\n",
190
- "\n",
191
- "plt.plot(X_test_orig)\n",
192
- "plt.plot(fcst)\n",
193
- "plt.legend(['Actual Sunspots', 'Predicted Sunspots'])\n",
194
- "plt.xlabel('Time Steps of Test Data')\n",
195
- "plt.show()"
196
- ]
197
- }
198
- ],
199
- "metadata": {
200
- "kernelspec": {
201
- "display_name": "Python 3 (ipykernel)",
202
- "language": "python",
203
- "name": "python3"
204
- },
205
- "language_info": {
206
- "codemirror_mode": {
207
- "name": "ipython",
208
- "version": 3
209
- },
210
- "file_extension": ".py",
211
- "mimetype": "text/x-python",
212
- "name": "python",
213
- "nbconvert_exporter": "python",
214
- "pygments_lexer": "ipython3",
215
- "version": "3.12.4"
216
- }
217
- },
218
- "nbformat": 4,
219
- "nbformat_minor": 5
220
- }