noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
- noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
- noshot-3.0.0.dist-info/RECORD +38 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
- noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
- noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
- noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
- noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
- noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
- noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
- noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
- noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
- noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
- noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
- noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
- noshot-1.0.0.dist-info/RECORD +0 -32
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,633 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"metadata": {
|
7
|
-
"id": "KLkDQCnJdSwP"
|
8
|
-
},
|
9
|
-
"outputs": [],
|
10
|
-
"source": [
|
11
|
-
"#EDA contd\n",
|
12
|
-
"import pandas as pd\n",
|
13
|
-
"chips = pd.read_csv('http://bit.ly/chiporders',sep='\\t')"
|
14
|
-
]
|
15
|
-
},
|
16
|
-
{
|
17
|
-
"cell_type": "markdown",
|
18
|
-
"metadata": {
|
19
|
-
"id": "tqEc5RzBkTNc"
|
20
|
-
},
|
21
|
-
"source": [
|
22
|
-
"Order ID: A unique identifier for each order. Quantity: The number of items ordered. Item Name: The name of the menu item. Choice Description: Additional details or customization options for the ordered item. Item Price: The price of the individual item. Order Date: The date and time when the order was placed. Total: The total cost of the order."
|
23
|
-
]
|
24
|
-
},
|
25
|
-
{
|
26
|
-
"cell_type": "code",
|
27
|
-
"execution_count": null,
|
28
|
-
"metadata": {
|
29
|
-
"id": "CpNMX3vamGxB"
|
30
|
-
},
|
31
|
-
"outputs": [],
|
32
|
-
"source": []
|
33
|
-
},
|
34
|
-
{
|
35
|
-
"cell_type": "code",
|
36
|
-
"execution_count": null,
|
37
|
-
"metadata": {
|
38
|
-
"colab": {
|
39
|
-
"base_uri": "https://localhost:8080/",
|
40
|
-
"height": 484
|
41
|
-
},
|
42
|
-
"id": "VdVdAHnMe2Wq",
|
43
|
-
"outputId": "484615aa-1583-47ee-93c4-b8e0457cb734"
|
44
|
-
},
|
45
|
-
"outputs": [],
|
46
|
-
"source": [
|
47
|
-
"chips.head(10)"
|
48
|
-
]
|
49
|
-
},
|
50
|
-
{
|
51
|
-
"cell_type": "code",
|
52
|
-
"execution_count": null,
|
53
|
-
"metadata": {
|
54
|
-
"colab": {
|
55
|
-
"base_uri": "https://localhost:8080/"
|
56
|
-
},
|
57
|
-
"id": "cVA1ReI4hKAb",
|
58
|
-
"outputId": "05b9d9c8-8ea7-47e1-87ae-77d10ccd6d69"
|
59
|
-
},
|
60
|
-
"outputs": [],
|
61
|
-
"source": [
|
62
|
-
"chips.shape[0]"
|
63
|
-
]
|
64
|
-
},
|
65
|
-
{
|
66
|
-
"cell_type": "code",
|
67
|
-
"execution_count": null,
|
68
|
-
"metadata": {
|
69
|
-
"colab": {
|
70
|
-
"base_uri": "https://localhost:8080/"
|
71
|
-
},
|
72
|
-
"id": "Qlnk_G60hYtg",
|
73
|
-
"outputId": "a43698cb-8c31-4791-c559-1b8e53446669"
|
74
|
-
},
|
75
|
-
"outputs": [],
|
76
|
-
"source": [
|
77
|
-
"chips['order_id'].value_counts().head(15) #each order id ordered how many different times\n"
|
78
|
-
]
|
79
|
-
},
|
80
|
-
{
|
81
|
-
"cell_type": "code",
|
82
|
-
"execution_count": null,
|
83
|
-
"metadata": {
|
84
|
-
"colab": {
|
85
|
-
"base_uri": "https://localhost:8080/",
|
86
|
-
"height": 137
|
87
|
-
},
|
88
|
-
"id": "54oqEUsM2ok1",
|
89
|
-
"outputId": "7c7cc510-bd5e-4885-b100-fea12102301f"
|
90
|
-
},
|
91
|
-
"outputs": [],
|
92
|
-
"source": [
|
93
|
-
"#Extract the information of all oredered items containing chicken as one of the ingredint\n",
|
94
|
-
"chips[chips['item_name'] == 'Chicken']"
|
95
|
-
]
|
96
|
-
},
|
97
|
-
{
|
98
|
-
"cell_type": "code",
|
99
|
-
"execution_count": null,
|
100
|
-
"metadata": {
|
101
|
-
"id": "hfgJ8K8x2wr1"
|
102
|
-
},
|
103
|
-
"outputs": [],
|
104
|
-
"source": [
|
105
|
-
"chk = chips[chips['item_name'].str.contains('Chicken')]"
|
106
|
-
]
|
107
|
-
},
|
108
|
-
{
|
109
|
-
"cell_type": "code",
|
110
|
-
"execution_count": null,
|
111
|
-
"metadata": {
|
112
|
-
"colab": {
|
113
|
-
"base_uri": "https://localhost:8080/",
|
114
|
-
"height": 363
|
115
|
-
},
|
116
|
-
"id": "DjbRKWy92zJ2",
|
117
|
-
"outputId": "dcee2668-b95b-4bc4-caef-5de24985a126"
|
118
|
-
},
|
119
|
-
"outputs": [],
|
120
|
-
"source": [
|
121
|
-
"chk.head(10)"
|
122
|
-
]
|
123
|
-
},
|
124
|
-
{
|
125
|
-
"cell_type": "code",
|
126
|
-
"execution_count": null,
|
127
|
-
"metadata": {
|
128
|
-
"colab": {
|
129
|
-
"base_uri": "https://localhost:8080/"
|
130
|
-
},
|
131
|
-
"id": "r7d8Fyvy25__",
|
132
|
-
"outputId": "ed07c163-98db-40b4-d68c-4101da97e754"
|
133
|
-
},
|
134
|
-
"outputs": [],
|
135
|
-
"source": [
|
136
|
-
"chips['item_price'].str.replace('$','').astype(float).max()"
|
137
|
-
]
|
138
|
-
},
|
139
|
-
{
|
140
|
-
"cell_type": "code",
|
141
|
-
"execution_count": null,
|
142
|
-
"metadata": {
|
143
|
-
"colab": {
|
144
|
-
"base_uri": "https://localhost:8080/"
|
145
|
-
},
|
146
|
-
"id": "dCELCgWXj_l_",
|
147
|
-
"outputId": "84c811f1-12d4-473b-8c0a-8cd3088a523a"
|
148
|
-
},
|
149
|
-
"outputs": [],
|
150
|
-
"source": [
|
151
|
-
"c1=chips['item_price'].str.replace('$','')\n",
|
152
|
-
"c1.head(5)\n"
|
153
|
-
]
|
154
|
-
},
|
155
|
-
{
|
156
|
-
"cell_type": "code",
|
157
|
-
"execution_count": null,
|
158
|
-
"metadata": {
|
159
|
-
"colab": {
|
160
|
-
"base_uri": "https://localhost:8080/",
|
161
|
-
"height": 35
|
162
|
-
},
|
163
|
-
"id": "bUSoL50c3A7X",
|
164
|
-
"outputId": "d99c9d2f-9bea-4906-80d8-a2eb91b770e5"
|
165
|
-
},
|
166
|
-
"outputs": [],
|
167
|
-
"source": [
|
168
|
-
"chips.loc[3598]['item_name']"
|
169
|
-
]
|
170
|
-
},
|
171
|
-
{
|
172
|
-
"cell_type": "code",
|
173
|
-
"execution_count": null,
|
174
|
-
"metadata": {
|
175
|
-
"colab": {
|
176
|
-
"base_uri": "https://localhost:8080/"
|
177
|
-
},
|
178
|
-
"id": "jAH6N9vEjoRB",
|
179
|
-
"outputId": "ca0bf772-6c0a-4100-b930-5003d390c3f3"
|
180
|
-
},
|
181
|
-
"outputs": [],
|
182
|
-
"source": [
|
183
|
-
"#Explore oreder id as : - Each order id ordered how many items\n",
|
184
|
-
"chips.groupby('order_id')['quantity'].sum().head(20)"
|
185
|
-
]
|
186
|
-
},
|
187
|
-
{
|
188
|
-
"cell_type": "markdown",
|
189
|
-
"metadata": {
|
190
|
-
"id": "_0MD-W-R40AO"
|
191
|
-
},
|
192
|
-
"source": [
|
193
|
-
"https://datascience.fm/pandas-for-simple-data-analysys/"
|
194
|
-
]
|
195
|
-
},
|
196
|
-
{
|
197
|
-
"cell_type": "markdown",
|
198
|
-
"metadata": {
|
199
|
-
"id": "qJlmbndSyfW0"
|
200
|
-
},
|
201
|
-
"source": [
|
202
|
-
"Order ID: A unique identifier for each order.\n",
|
203
|
-
"Quantity: The number of items ordered.\n",
|
204
|
-
"Item Name: The name of the menu item.\n",
|
205
|
-
"Choice Description: Additional details or customization options for the ordered item.\n",
|
206
|
-
"Item Price: The price of the individual item.\n",
|
207
|
-
"Order Date: The date and time when the order was placed.\n",
|
208
|
-
"Total: The total cost of the order."
|
209
|
-
]
|
210
|
-
},
|
211
|
-
{
|
212
|
-
"cell_type": "code",
|
213
|
-
"execution_count": null,
|
214
|
-
"metadata": {
|
215
|
-
"colab": {
|
216
|
-
"base_uri": "https://localhost:8080/"
|
217
|
-
},
|
218
|
-
"id": "GBinyLCCygzd",
|
219
|
-
"outputId": "9f3fa4d1-9bf4-4673-e37e-c4136d81e7ea"
|
220
|
-
},
|
221
|
-
"outputs": [],
|
222
|
-
"source": [
|
223
|
-
"# finding is there any columns present in our data\n",
|
224
|
-
"chips.isnull().sum()"
|
225
|
-
]
|
226
|
-
},
|
227
|
-
{
|
228
|
-
"cell_type": "code",
|
229
|
-
"execution_count": null,
|
230
|
-
"metadata": {
|
231
|
-
"colab": {
|
232
|
-
"base_uri": "https://localhost:8080/"
|
233
|
-
},
|
234
|
-
"id": "dM82Vf8ly2jL",
|
235
|
-
"outputId": "e91b122b-1b3e-401f-c4f8-9a9b1aa0d54b"
|
236
|
-
},
|
237
|
-
"outputs": [],
|
238
|
-
"source": [
|
239
|
-
"chips.index"
|
240
|
-
]
|
241
|
-
},
|
242
|
-
{
|
243
|
-
"cell_type": "code",
|
244
|
-
"execution_count": null,
|
245
|
-
"metadata": {
|
246
|
-
"colab": {
|
247
|
-
"base_uri": "https://localhost:8080/",
|
248
|
-
"height": 449
|
249
|
-
},
|
250
|
-
"id": "1_kxS-uNy5jS",
|
251
|
-
"outputId": "6932e070-cfef-4c06-ed06-38896291c0f6"
|
252
|
-
},
|
253
|
-
"outputs": [],
|
254
|
-
"source": [
|
255
|
-
"#Which was the most ordered item? and How many items were ordered?\n",
|
256
|
-
"c = chips.groupby('item_name')\n",
|
257
|
-
"c = c.sum()\n",
|
258
|
-
"c = c.sort_values(['quantity'], ascending=False)\n",
|
259
|
-
"c.head(10)"
|
260
|
-
]
|
261
|
-
},
|
262
|
-
{
|
263
|
-
"cell_type": "code",
|
264
|
-
"execution_count": null,
|
265
|
-
"metadata": {
|
266
|
-
"colab": {
|
267
|
-
"base_uri": "https://localhost:8080/",
|
268
|
-
"height": 363
|
269
|
-
},
|
270
|
-
"id": "nBP7cVNa0Dif",
|
271
|
-
"outputId": "ee795041-c866-49a2-8583-e3aa66dee4fa"
|
272
|
-
},
|
273
|
-
"outputs": [],
|
274
|
-
"source": [
|
275
|
-
"import pandas as pd\n",
|
276
|
-
"dt = pd.DataFrame({'id' : [1,2,2,2,3,3,3,4,5,6] ,\n",
|
277
|
-
" 'order count' : [1,2,1,3,1,1,2,1,2,1]})\n",
|
278
|
-
"dt"
|
279
|
-
]
|
280
|
-
},
|
281
|
-
{
|
282
|
-
"cell_type": "code",
|
283
|
-
"execution_count": null,
|
284
|
-
"metadata": {
|
285
|
-
"colab": {
|
286
|
-
"base_uri": "https://localhost:8080/"
|
287
|
-
},
|
288
|
-
"id": "GzwktX2e2QW3",
|
289
|
-
"outputId": "96a044ff-6e27-41a4-9ef6-af3013117041"
|
290
|
-
},
|
291
|
-
"outputs": [],
|
292
|
-
"source": [
|
293
|
-
"dt['id'].value_counts()"
|
294
|
-
]
|
295
|
-
},
|
296
|
-
{
|
297
|
-
"cell_type": "code",
|
298
|
-
"execution_count": null,
|
299
|
-
"metadata": {
|
300
|
-
"colab": {
|
301
|
-
"base_uri": "https://localhost:8080/"
|
302
|
-
},
|
303
|
-
"id": "1QDYXTOa2Ysh",
|
304
|
-
"outputId": "0e7c485a-b822-4dbc-a557-452b998a9bb5"
|
305
|
-
},
|
306
|
-
"outputs": [],
|
307
|
-
"source": [
|
308
|
-
"dt.groupby('id')['order count'].sum()"
|
309
|
-
]
|
310
|
-
},
|
311
|
-
{
|
312
|
-
"cell_type": "code",
|
313
|
-
"execution_count": null,
|
314
|
-
"metadata": {
|
315
|
-
"id": "GCKreTOi_oFA"
|
316
|
-
},
|
317
|
-
"outputs": [],
|
318
|
-
"source": [
|
319
|
-
"https://builtin.com/software-engineering-perspectives/pandas-iloc\n",
|
320
|
-
"\n",
|
321
|
-
"https://www.geeksforgeeks.org/difference-between-loc-and-iloc-in-pandas-dataframe/"
|
322
|
-
]
|
323
|
-
},
|
324
|
-
{
|
325
|
-
"cell_type": "code",
|
326
|
-
"execution_count": null,
|
327
|
-
"metadata": {
|
328
|
-
"id": "2UTru4cnmJFi"
|
329
|
-
},
|
330
|
-
"outputs": [],
|
331
|
-
"source": [
|
332
|
-
"TI=pd.read_csv('TRAIN1.csv')"
|
333
|
-
]
|
334
|
-
},
|
335
|
-
{
|
336
|
-
"cell_type": "code",
|
337
|
-
"execution_count": null,
|
338
|
-
"metadata": {
|
339
|
-
"colab": {
|
340
|
-
"base_uri": "https://localhost:8080/",
|
341
|
-
"height": 503
|
342
|
-
},
|
343
|
-
"id": "Dlm6gTAEnKGO",
|
344
|
-
"outputId": "0efc16b3-96eb-4729-c4b3-9e19baee8e04"
|
345
|
-
},
|
346
|
-
"outputs": [],
|
347
|
-
"source": [
|
348
|
-
"TI.head(5)"
|
349
|
-
]
|
350
|
-
},
|
351
|
-
{
|
352
|
-
"cell_type": "code",
|
353
|
-
"execution_count": null,
|
354
|
-
"metadata": {
|
355
|
-
"id": "q7XM07H2ned5"
|
356
|
-
},
|
357
|
-
"outputs": [],
|
358
|
-
"source": []
|
359
|
-
},
|
360
|
-
{
|
361
|
-
"cell_type": "code",
|
362
|
-
"execution_count": null,
|
363
|
-
"metadata": {
|
364
|
-
"colab": {
|
365
|
-
"base_uri": "https://localhost:8080/"
|
366
|
-
},
|
367
|
-
"id": "tMWfUl4uoeuA",
|
368
|
-
"outputId": "3252dae9-17c8-44d0-ccdf-1075cebc2097"
|
369
|
-
},
|
370
|
-
"outputs": [],
|
371
|
-
"source": [
|
372
|
-
"TI.info()"
|
373
|
-
]
|
374
|
-
},
|
375
|
-
{
|
376
|
-
"cell_type": "code",
|
377
|
-
"execution_count": null,
|
378
|
-
"metadata": {
|
379
|
-
"colab": {
|
380
|
-
"base_uri": "https://localhost:8080/",
|
381
|
-
"height": 825
|
382
|
-
},
|
383
|
-
"id": "PFovvtAyojjo",
|
384
|
-
"outputId": "e984ce14-e828-45ec-e01c-b2f21b4cd7a4"
|
385
|
-
},
|
386
|
-
"outputs": [],
|
387
|
-
"source": [
|
388
|
-
"TI.loc[TI['Sex']=='male'] #to get list of male passengers"
|
389
|
-
]
|
390
|
-
},
|
391
|
-
{
|
392
|
-
"cell_type": "code",
|
393
|
-
"execution_count": null,
|
394
|
-
"metadata": {
|
395
|
-
"colab": {
|
396
|
-
"base_uri": "https://localhost:8080/",
|
397
|
-
"height": 382
|
398
|
-
},
|
399
|
-
"id": "5fJ239izo6ib",
|
400
|
-
"outputId": "4128a4d6-f941-433a-d3cd-c40948043eb8"
|
401
|
-
},
|
402
|
-
"outputs": [],
|
403
|
-
"source": [
|
404
|
-
"titanic=TI\n",
|
405
|
-
"titanic.loc[(titanic['Sex']=='male') & (titanic['Embarked']=='S')].head()"
|
406
|
-
]
|
407
|
-
},
|
408
|
-
{
|
409
|
-
"cell_type": "code",
|
410
|
-
"execution_count": null,
|
411
|
-
"metadata": {
|
412
|
-
"colab": {
|
413
|
-
"base_uri": "https://localhost:8080/",
|
414
|
-
"height": 237
|
415
|
-
},
|
416
|
-
"id": "DjAfl0z8qLt1",
|
417
|
-
"outputId": "dc93282a-9baf-4d9e-e5df-7877da0e16f7"
|
418
|
-
},
|
419
|
-
"outputs": [],
|
420
|
-
"source": [
|
421
|
-
"titanic.loc[0:5,['Sex','Age']]"
|
422
|
-
]
|
423
|
-
},
|
424
|
-
{
|
425
|
-
"cell_type": "code",
|
426
|
-
"execution_count": null,
|
427
|
-
"metadata": {
|
428
|
-
"colab": {
|
429
|
-
"base_uri": "https://localhost:8080/",
|
430
|
-
"height": 174
|
431
|
-
},
|
432
|
-
"id": "CqicL_wcqc2M",
|
433
|
-
"outputId": "e2a2747a-b1f6-441e-c851-b501fa2d3859"
|
434
|
-
},
|
435
|
-
"outputs": [],
|
436
|
-
"source": [
|
437
|
-
"titanic.iloc[0:4,2:5]"
|
438
|
-
]
|
439
|
-
},
|
440
|
-
{
|
441
|
-
"cell_type": "code",
|
442
|
-
"execution_count": null,
|
443
|
-
"metadata": {
|
444
|
-
"colab": {
|
445
|
-
"base_uri": "https://localhost:8080/",
|
446
|
-
"height": 331
|
447
|
-
},
|
448
|
-
"id": "He6iEhi2qhYm",
|
449
|
-
"outputId": "75b67880-3620-4a93-c36b-396f341ca199"
|
450
|
-
},
|
451
|
-
"outputs": [],
|
452
|
-
"source": [
|
453
|
-
"# importing the module\n",
|
454
|
-
"import pandas as pd\n",
|
455
|
-
"\n",
|
456
|
-
"# creating a sample dataframe\n",
|
457
|
-
"data = pd.DataFrame({'Brand': ['Maruti', 'Hyundai', 'Tata',\n",
|
458
|
-
"\t\t\t\t\t\t\t'Mahindra', 'Maruti', 'Hyundai',\n",
|
459
|
-
"\t\t\t\t\t\t\t'Renault', 'Tata', 'Maruti'],\n",
|
460
|
-
"\t\t\t\t\t'Year': [2012, 2014, 2011, 2015, 2012,\n",
|
461
|
-
"\t\t\t\t\t\t\t2016, 2014, 2018, 2019],\n",
|
462
|
-
"\t\t\t\t\t'Kms Driven': [50000, 30000, 60000,\n",
|
463
|
-
"\t\t\t\t\t\t\t\t\t25000, 10000, 46000,\n",
|
464
|
-
"\t\t\t\t\t\t\t\t\t31000, 15000, 12000],\n",
|
465
|
-
"\t\t\t\t\t'City': ['Gurgaon', 'Delhi', 'Mumbai',\n",
|
466
|
-
"\t\t\t\t\t\t\t'Delhi', 'Mumbai', 'Delhi',\n",
|
467
|
-
"\t\t\t\t\t\t\t'Mumbai', 'Chennai', 'Ghaziabad'],\n",
|
468
|
-
"\t\t\t\t\t'Mileage': [28, 27, 25, 26, 28,\n",
|
469
|
-
"\t\t\t\t\t\t\t\t29, 24, 21, 24]})\n",
|
470
|
-
"\n",
|
471
|
-
"# displaying the DataFrame\n",
|
472
|
-
"display(data)\n"
|
473
|
-
]
|
474
|
-
},
|
475
|
-
{
|
476
|
-
"cell_type": "code",
|
477
|
-
"execution_count": null,
|
478
|
-
"metadata": {
|
479
|
-
"colab": {
|
480
|
-
"base_uri": "https://localhost:8080/",
|
481
|
-
"height": 112
|
482
|
-
},
|
483
|
-
"id": "M3Kx0Fc9q61W",
|
484
|
-
"outputId": "3693ebf1-957a-4604-f337-4d81f2808f1f"
|
485
|
-
},
|
486
|
-
"outputs": [],
|
487
|
-
"source": [
|
488
|
-
"# selecting cars with brand 'Maruti' and Mileage > 25\n",
|
489
|
-
"display(data.loc[(data.Brand == 'Maruti') & (data.Mileage > 25)])"
|
490
|
-
]
|
491
|
-
},
|
492
|
-
{
|
493
|
-
"cell_type": "code",
|
494
|
-
"execution_count": null,
|
495
|
-
"metadata": {
|
496
|
-
"colab": {
|
497
|
-
"base_uri": "https://localhost:8080/",
|
498
|
-
"height": 174
|
499
|
-
},
|
500
|
-
"id": "tO82gnyMrI58",
|
501
|
-
"outputId": "10c47a2e-bf5a-4d8c-9017-a59b9c9da8cf"
|
502
|
-
},
|
503
|
-
"outputs": [],
|
504
|
-
"source": [
|
505
|
-
"# selecting range of rows from 2 to 5\n",
|
506
|
-
"display(data.loc[2: 5])"
|
507
|
-
]
|
508
|
-
},
|
509
|
-
{
|
510
|
-
"cell_type": "code",
|
511
|
-
"execution_count": null,
|
512
|
-
"metadata": {
|
513
|
-
"colab": {
|
514
|
-
"base_uri": "https://localhost:8080/",
|
515
|
-
"height": 331
|
516
|
-
},
|
517
|
-
"id": "vOazh8vUrRTR",
|
518
|
-
"outputId": "ca85cb51-427a-4398-f0af-d12d40aa3a35"
|
519
|
-
},
|
520
|
-
"outputs": [],
|
521
|
-
"source": [
|
522
|
-
"# updating values of Mileage if Year < 2015\n",
|
523
|
-
"data.loc[(data.Year < 2015), ['Mileage']] = 22\n",
|
524
|
-
"display(data)"
|
525
|
-
]
|
526
|
-
},
|
527
|
-
{
|
528
|
-
"cell_type": "code",
|
529
|
-
"execution_count": null,
|
530
|
-
"metadata": {
|
531
|
-
"colab": {
|
532
|
-
"base_uri": "https://localhost:8080/",
|
533
|
-
"height": 174
|
534
|
-
},
|
535
|
-
"id": "QMZcapyCrWWU",
|
536
|
-
"outputId": "32bd940a-938b-41fd-f4c5-4bed9ddfd9cc"
|
537
|
-
},
|
538
|
-
"outputs": [],
|
539
|
-
"source": [
|
540
|
-
"\n",
|
541
|
-
"# selecting 0th, 2nd, 4th, and 7th index rows\n",
|
542
|
-
"display(data.iloc[[0, 2, 4, 7]])"
|
543
|
-
]
|
544
|
-
},
|
545
|
-
{
|
546
|
-
"cell_type": "code",
|
547
|
-
"execution_count": null,
|
548
|
-
"metadata": {
|
549
|
-
"colab": {
|
550
|
-
"base_uri": "https://localhost:8080/",
|
551
|
-
"height": 174
|
552
|
-
},
|
553
|
-
"id": "AnwKkMkvrZrt",
|
554
|
-
"outputId": "c183117f-5a13-4484-945f-cba21854d475"
|
555
|
-
},
|
556
|
-
"outputs": [],
|
557
|
-
"source": [
|
558
|
-
"# selecting rows from 1 to 4 and columns from 2 to 4\n",
|
559
|
-
"display(data.iloc[1: 5, 2: 5])"
|
560
|
-
]
|
561
|
-
},
|
562
|
-
{
|
563
|
-
"cell_type": "code",
|
564
|
-
"execution_count": null,
|
565
|
-
"metadata": {
|
566
|
-
"colab": {
|
567
|
-
"base_uri": "https://localhost:8080/",
|
568
|
-
"height": 1000
|
569
|
-
},
|
570
|
-
"id": "YBHhMDsgsC4d",
|
571
|
-
"outputId": "8599d99a-9522-47a8-8adf-1f107303e673"
|
572
|
-
},
|
573
|
-
"outputs": [],
|
574
|
-
"source": [
|
575
|
-
"# Bar plot\n",
|
576
|
-
"import seaborn as sns\n",
|
577
|
-
"import matplotlib.pyplot as plt\n",
|
578
|
-
"\n",
|
579
|
-
"df=titanic\n",
|
580
|
-
"sns.countplot(x='Survived', data=df)\n",
|
581
|
-
"plt.xlabel('Survival Status')\n",
|
582
|
-
"plt.ylabel('Count')\n",
|
583
|
-
"plt.title('Survival Count')\n",
|
584
|
-
"plt.show()\n",
|
585
|
-
"\n",
|
586
|
-
"# Histogram\n",
|
587
|
-
"plt.hist(df['Age'], bins=10)\n",
|
588
|
-
"plt.xlabel('Age')\n",
|
589
|
-
"plt.ylabel('Frequency')\n",
|
590
|
-
"plt.title('Distribution of Age')\n",
|
591
|
-
"plt.show()\n",
|
592
|
-
"\n",
|
593
|
-
"# Scatter plot\n",
|
594
|
-
"plt.scatter(df['Age'], df['Fare'])\n",
|
595
|
-
"plt.xlabel('Age')\n",
|
596
|
-
"plt.ylabel('Fare')\n",
|
597
|
-
"plt.title('Age vs. Fare')\n",
|
598
|
-
"plt.show()\n",
|
599
|
-
"\n",
|
600
|
-
"# Box plot\n",
|
601
|
-
"sns.boxplot(x=df['Survived'], y=df['Fare'])\n",
|
602
|
-
"plt.xlabel('Survival Status')\n",
|
603
|
-
"plt.ylabel('Fare')\n",
|
604
|
-
"plt.title('Survival Status vs. Fare')\n",
|
605
|
-
"plt.show()"
|
606
|
-
]
|
607
|
-
}
|
608
|
-
],
|
609
|
-
"metadata": {
|
610
|
-
"colab": {
|
611
|
-
"provenance": []
|
612
|
-
},
|
613
|
-
"kernelspec": {
|
614
|
-
"display_name": "Python 3 (ipykernel)",
|
615
|
-
"language": "python",
|
616
|
-
"name": "python3"
|
617
|
-
},
|
618
|
-
"language_info": {
|
619
|
-
"codemirror_mode": {
|
620
|
-
"name": "ipython",
|
621
|
-
"version": 3
|
622
|
-
},
|
623
|
-
"file_extension": ".py",
|
624
|
-
"mimetype": "text/x-python",
|
625
|
-
"name": "python",
|
626
|
-
"nbconvert_exporter": "python",
|
627
|
-
"pygments_lexer": "ipython3",
|
628
|
-
"version": "3.12.4"
|
629
|
-
}
|
630
|
-
},
|
631
|
-
"nbformat": 4,
|
632
|
-
"nbformat_minor": 4
|
633
|
-
}
|