noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
  2. noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
  3. noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
  4. noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
  5. noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
  6. noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
  7. noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
  8. noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
  9. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
  10. noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
  11. noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
  12. noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
  13. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
  14. noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
  15. noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
  16. noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
  17. noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
  18. noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
  19. noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
  20. noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
  21. noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
  22. noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
  23. noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
  24. noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
  25. noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
  26. noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
  27. noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
  28. noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
  29. noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
  30. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
  31. noshot-3.0.0.dist-info/RECORD +38 -0
  32. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
  33. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
  34. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
  35. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
  36. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
  37. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
  38. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
  39. noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
  40. noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
  41. noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
  42. noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
  43. noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
  44. noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
  45. noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
  46. noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
  47. noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
  48. noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
  49. noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
  50. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
  51. noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
  52. noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
  53. noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
  54. noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
  55. noshot-1.0.0.dist-info/RECORD +0 -32
  56. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
  57. {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,326 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "id": "dGFvje0Qt50J"
8
- },
9
- "outputs": [],
10
- "source": [
11
- "import pandas as pd\n",
12
- "D1=pd.read_csv(\"IRIS1.csv\")\n",
13
- "#the csv file is read in to D1 dataframe\n",
14
- "#pandas package deals with reading csv files"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "metadata": {
21
- "id": "_duANehevpqe"
22
- },
23
- "outputs": [],
24
- "source": []
25
- },
26
- {
27
- "cell_type": "markdown",
28
- "metadata": {
29
- "id": "TX8AY1zlubhL"
30
- },
31
- "source": [
32
- "Exploratory Data analytics-ipynb file-EDA_IRISH_8thjan"
33
- ]
34
- },
35
- {
36
- "cell_type": "code",
37
- "execution_count": null,
38
- "metadata": {
39
- "colab": {
40
- "base_uri": "https://localhost:8080/",
41
- "height": 206
42
- },
43
- "id": "ZvaWBKnIuj1Q",
44
- "outputId": "696f6903-d0d9-49b2-90f5-923430b5a5c2"
45
- },
46
- "outputs": [],
47
- "source": [
48
- "D1.head(5) # by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
49
- ]
50
- },
51
- {
52
- "cell_type": "markdown",
53
- "metadata": {
54
- "id": "AxaJqvgTvXxo"
55
- },
56
- "source": [
57
- "by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
58
- ]
59
- },
60
- {
61
- "cell_type": "code",
62
- "execution_count": null,
63
- "metadata": {
64
- "colab": {
65
- "base_uri": "https://localhost:8080/",
66
- "height": 206
67
- },
68
- "id": "3Qw4Ty6xvZCn",
69
- "outputId": "570b0b6e-b81a-434a-d014-fbbcf7a78800"
70
- },
71
- "outputs": [],
72
- "source": [
73
- "D1.tail()"
74
- ]
75
- },
76
- {
77
- "cell_type": "markdown",
78
- "metadata": {
79
- "id": "hHARmuAZwDrB"
80
- },
81
- "source": [
82
- "CSV -comma seperated value"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "metadata": {
89
- "colab": {
90
- "base_uri": "https://localhost:8080/"
91
- },
92
- "id": "7FVrFLqTwPuI",
93
- "outputId": "f1f08824-bc21-452d-f56c-01f50c9eb7c7"
94
- },
95
- "outputs": [],
96
- "source": [
97
- "D1.shape"
98
- ]
99
- },
100
- {
101
- "cell_type": "code",
102
- "execution_count": null,
103
- "metadata": {
104
- "colab": {
105
- "base_uri": "https://localhost:8080/"
106
- },
107
- "id": "N7RyCNqtwkRv",
108
- "outputId": "c2412510-4382-4657-ac57-851bd765b3cf"
109
- },
110
- "outputs": [],
111
- "source": [
112
- "D1.info()"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": null,
118
- "metadata": {
119
- "colab": {
120
- "base_uri": "https://localhost:8080/",
121
- "height": 300
122
- },
123
- "id": "tXpl-p-Jwz1I",
124
- "outputId": "40c3c71b-88c9-4c07-8d2e-0bea70efa741"
125
- },
126
- "outputs": [],
127
- "source": [
128
- "D1.describe()"
129
- ]
130
- },
131
- {
132
- "cell_type": "code",
133
- "execution_count": null,
134
- "metadata": {
135
- "colab": {
136
- "base_uri": "https://localhost:8080/"
137
- },
138
- "id": "oWMPra54xcDi",
139
- "outputId": "aa646590-d72e-4fd3-c54f-1fd5655793ef"
140
- },
141
- "outputs": [],
142
- "source": [
143
- "D1.columns"
144
- ]
145
- },
146
- {
147
- "cell_type": "code",
148
- "execution_count": null,
149
- "metadata": {
150
- "colab": {
151
- "base_uri": "https://localhost:8080/"
152
- },
153
- "id": "cnc85x6ExjKx",
154
- "outputId": "5f71dc96-7a27-41f7-e912-0bafaa520a96"
155
- },
156
- "outputs": [],
157
- "source": [
158
- "D1['Species'].value_counts()"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "metadata": {
165
- "colab": {
166
- "base_uri": "https://localhost:8080/",
167
- "height": 424
168
- },
169
- "id": "GU54vUy0yBog",
170
- "outputId": "0d670a11-5d79-41a7-8f60-f3dc68706d3d"
171
- },
172
- "outputs": [],
173
- "source": [
174
- "import seaborn as sns\n",
175
- "import matplotlib.pyplot as plt\n",
176
- "sns.set_style('whitegrid')\n",
177
- "sns.FacetGrid(D1,hue='Species',height=4).map(plt.scatter,'SepalLengthCm','SepalWidthCm').add_legend()"
178
- ]
179
- },
180
- {
181
- "cell_type": "code",
182
- "execution_count": null,
183
- "metadata": {
184
- "colab": {
185
- "base_uri": "https://localhost:8080/",
186
- "height": 261
187
- },
188
- "id": "2ealmeYm1BV_",
189
- "outputId": "292a8c1d-bee9-4005-b1e1-f478459f245b"
190
- },
191
- "outputs": [],
192
- "source": [
193
- "D1.corr()"
194
- ]
195
- },
196
- {
197
- "cell_type": "markdown",
198
- "metadata": {
199
- "id": "WLTiQEH71Zg_"
200
- },
201
- "source": [
202
- "correlation matrix gives the correlation between each column and other columns"
203
- ]
204
- },
205
- {
206
- "cell_type": "code",
207
- "execution_count": null,
208
- "metadata": {
209
- "colab": {
210
- "base_uri": "https://localhost:8080/",
211
- "height": 206
212
- },
213
- "id": "wOUhW4Ee1ksw",
214
- "outputId": "18ab735e-1cd3-45a0-a852-ee8181c1b9d4"
215
- },
216
- "outputs": [],
217
- "source": [
218
- "D1=D1.drop(['Id'],axis=1)\n",
219
- "D1.head()"
220
- ]
221
- },
222
- {
223
- "cell_type": "code",
224
- "execution_count": null,
225
- "metadata": {
226
- "colab": {
227
- "base_uri": "https://localhost:8080/",
228
- "height": 229
229
- },
230
- "id": "MVnmVZcg2F1_",
231
- "outputId": "de271d34-3ad1-4b0d-949f-dcce336f8b0d"
232
- },
233
- "outputs": [],
234
- "source": [
235
- "D1.corr()"
236
- ]
237
- },
238
- {
239
- "cell_type": "code",
240
- "execution_count": null,
241
- "metadata": {
242
- "colab": {
243
- "base_uri": "https://localhost:8080/",
244
- "height": 821
245
- },
246
- "id": "NQ3tMO9U27DP",
247
- "outputId": "5a2b45e6-adc8-4451-9e00-7f3490f659c8"
248
- },
249
- "outputs": [],
250
- "source": [
251
- "#pairplot to be drawn\n",
252
- "sns.pairplot(D1)"
253
- ]
254
- },
255
- {
256
- "cell_type": "code",
257
- "execution_count": null,
258
- "metadata": {
259
- "colab": {
260
- "base_uri": "https://localhost:8080/",
261
- "height": 603
262
- },
263
- "id": "evijQMEh3bZG",
264
- "outputId": "b6615629-f159-49f5-c378-817ddc2383f0"
265
- },
266
- "outputs": [],
267
- "source": [
268
- "H=D1.corr()\n",
269
- "sns.heatmap(H)"
270
- ]
271
- },
272
- {
273
- "cell_type": "code",
274
- "execution_count": null,
275
- "metadata": {
276
- "id": "d_w0Ofuu0U2k"
277
- },
278
- "outputs": [],
279
- "source": [
280
- "D1['Species'].replace(0, 'Iris-setosa',inplace=True)\n",
281
- "D1['Species'].replace(1, 'Iris-versicolor',inplace=True)\n",
282
- "D1['Species'].replace(2, 'Iris-virginica',inplace=True)"
283
- ]
284
- },
285
- {
286
- "cell_type": "code",
287
- "execution_count": null,
288
- "metadata": {
289
- "colab": {
290
- "base_uri": "https://localhost:8080/",
291
- "height": 158
292
- },
293
- "id": "2iJiG_Xt0coi",
294
- "outputId": "c317f036-d1d5-449d-c6c4-738d4c7da57b"
295
- },
296
- "outputs": [],
297
- "source": [
298
- "D1.head(1)"
299
- ]
300
- }
301
- ],
302
- "metadata": {
303
- "colab": {
304
- "provenance": []
305
- },
306
- "kernelspec": {
307
- "display_name": "Python 3 (ipykernel)",
308
- "language": "python",
309
- "name": "python3"
310
- },
311
- "language_info": {
312
- "codemirror_mode": {
313
- "name": "ipython",
314
- "version": 3
315
- },
316
- "file_extension": ".py",
317
- "mimetype": "text/x-python",
318
- "name": "python",
319
- "nbconvert_exporter": "python",
320
- "pygments_lexer": "ipython3",
321
- "version": "3.12.4"
322
- }
323
- },
324
- "nbformat": 4,
325
- "nbformat_minor": 4
326
- }