noshot 1.0.0__py3-none-any.whl → 3.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Balance Scale Dataset).ipynb +139 -0
- noshot/data/ML TS XAI/ML/Main/1. EDA-PCA (Rice Dataset).ipynb +181 -0
- noshot/data/ML TS XAI/ML/Main/10. HMM Veterbi.ipynb +228 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Balance Scale Dataset).ipynb +117 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Iris Dataset).ipynb +165 -0
- noshot/data/ML TS XAI/ML/Main/2. KNN (Sobar-72 Dataset).ipynb +251 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (Balance Scale Dataset).ipynb +78 -0
- noshot/data/ML TS XAI/ML/Main/3. LDA (NPHA Doctor Visits Dataset).ipynb +114 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Machine Dataset).ipynb +115 -0
- noshot/data/ML TS XAI/ML/Main/4. Linear Regression (Real Estate Dataset).ipynb +159 -0
- noshot/data/ML TS XAI/{XAI/XAI 2/Exp-3 (EDA-loan).ipynb → ML/Main/5. Logistic Regression (Magic04 Dataset).ipynb } +53 -74
- noshot/data/ML TS XAI/ML/Main/5. Logistic Regression (Wine Dataset).ipynb +112 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Agaricus Lepiota Dataset).ipynb +153 -0
- noshot/data/ML TS XAI/ML/Main/6. Naive Bayes Classifier (Wine Dataset).ipynb +89 -0
- noshot/data/ML TS XAI/ML/Main/7. SVM (Rice Dataset).ipynb +208 -0
- noshot/data/ML TS XAI/ML/Main/8. FeedForward NN (Sobar72 Dataset).ipynb +260 -0
- noshot/data/ML TS XAI/ML/Main/9. CNN (Cifar10 Dataset).ipynb +238 -0
- noshot/data/ML TS XAI/ML/Main/data/agaricus-lepiota.data +8124 -0
- noshot/data/ML TS XAI/ML/Main/data/balance-scale.txt +625 -0
- noshot/data/ML TS XAI/ML/Main/data/doctor-visits.csv +715 -0
- noshot/data/ML TS XAI/ML/Main/data/iris.csv +151 -0
- noshot/data/ML TS XAI/ML/Main/data/machine-data.csv +210 -0
- noshot/data/ML TS XAI/ML/Main/data/magic04.data +19020 -0
- noshot/data/ML TS XAI/ML/Main/data/real-estate.xlsx +0 -0
- noshot/data/ML TS XAI/ML/Main/data/rice.arff +3826 -0
- noshot/data/ML TS XAI/ML/Main/data/sobar-72.csv +73 -0
- noshot/data/ML TS XAI/ML/Main/data/wine-dataset.csv +179 -0
- noshot/data/ML TS XAI/ML/Other Codes.ipynb +158 -0
- noshot/data/ML TS XAI/ML/Rolls Royce AllinOne.ipynb +691 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/METADATA +1 -1
- noshot-3.0.0.dist-info/RECORD +38 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/WHEEL +1 -1
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +0 -246
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +0 -228
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +0 -77
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +0 -167
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +0 -197
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +0 -220
- noshot/data/ML TS XAI/XAI/XAI 1/EDA2_chipsdatset.ipynb +0 -633
- noshot/data/ML TS XAI/XAI/XAI 1/EDA_IRISH_8thjan.ipynb +0 -326
- noshot/data/ML TS XAI/XAI/XAI 1/XAI_EX1 MODEL BIAS (FINAL).ipynb +0 -487
- noshot/data/ML TS XAI/XAI/XAI 1/complete_guide_to_eda_on_text_data.ipynb +0 -845
- noshot/data/ML TS XAI/XAI/XAI 1/deepchecksframeworks.ipynb +0 -100
- noshot/data/ML TS XAI/XAI/XAI 1/deepexplainers (mnist).ipynb +0 -90
- noshot/data/ML TS XAI/XAI/XAI 1/guidedbackpropagation.ipynb +0 -203
- noshot/data/ML TS XAI/XAI/XAI 1/updated_image_EDA1_with_LRP.ipynb +0 -3998
- noshot/data/ML TS XAI/XAI/XAI 1/zebrastripes.ipynb +0 -271
- noshot/data/ML TS XAI/XAI/XAI 2/EXP_5.ipynb +0 -1545
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-3 (EDA-movie).ipynb +0 -229
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4(Flower dataset).ipynb +0 -237
- noshot/data/ML TS XAI/XAI/XAI 2/Exp-4.ipynb +0 -241
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_2.ipynb +0 -352
- noshot/data/ML TS XAI/XAI/XAI 2/Exp_7.ipynb +0 -110
- noshot/data/ML TS XAI/XAI/XAI 2/FeatureImportance_SensitivityAnalysis.ipynb +0 -708
- noshot-1.0.0.dist-info/RECORD +0 -32
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/licenses/LICENSE.txt +0 -0
- {noshot-1.0.0.dist-info → noshot-3.0.0.dist-info}/top_level.txt +0 -0
@@ -1,326 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"metadata": {
|
7
|
-
"id": "dGFvje0Qt50J"
|
8
|
-
},
|
9
|
-
"outputs": [],
|
10
|
-
"source": [
|
11
|
-
"import pandas as pd\n",
|
12
|
-
"D1=pd.read_csv(\"IRIS1.csv\")\n",
|
13
|
-
"#the csv file is read in to D1 dataframe\n",
|
14
|
-
"#pandas package deals with reading csv files"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": null,
|
20
|
-
"metadata": {
|
21
|
-
"id": "_duANehevpqe"
|
22
|
-
},
|
23
|
-
"outputs": [],
|
24
|
-
"source": []
|
25
|
-
},
|
26
|
-
{
|
27
|
-
"cell_type": "markdown",
|
28
|
-
"metadata": {
|
29
|
-
"id": "TX8AY1zlubhL"
|
30
|
-
},
|
31
|
-
"source": [
|
32
|
-
"Exploratory Data analytics-ipynb file-EDA_IRISH_8thjan"
|
33
|
-
]
|
34
|
-
},
|
35
|
-
{
|
36
|
-
"cell_type": "code",
|
37
|
-
"execution_count": null,
|
38
|
-
"metadata": {
|
39
|
-
"colab": {
|
40
|
-
"base_uri": "https://localhost:8080/",
|
41
|
-
"height": 206
|
42
|
-
},
|
43
|
-
"id": "ZvaWBKnIuj1Q",
|
44
|
-
"outputId": "696f6903-d0d9-49b2-90f5-923430b5a5c2"
|
45
|
-
},
|
46
|
-
"outputs": [],
|
47
|
-
"source": [
|
48
|
-
"D1.head(5) # by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
|
49
|
-
]
|
50
|
-
},
|
51
|
-
{
|
52
|
-
"cell_type": "markdown",
|
53
|
-
"metadata": {
|
54
|
-
"id": "AxaJqvgTvXxo"
|
55
|
-
},
|
56
|
-
"source": [
|
57
|
-
"by deafult D1(the dataframe) head gives me 5 rows, here the rows are observations and the columns are attributes"
|
58
|
-
]
|
59
|
-
},
|
60
|
-
{
|
61
|
-
"cell_type": "code",
|
62
|
-
"execution_count": null,
|
63
|
-
"metadata": {
|
64
|
-
"colab": {
|
65
|
-
"base_uri": "https://localhost:8080/",
|
66
|
-
"height": 206
|
67
|
-
},
|
68
|
-
"id": "3Qw4Ty6xvZCn",
|
69
|
-
"outputId": "570b0b6e-b81a-434a-d014-fbbcf7a78800"
|
70
|
-
},
|
71
|
-
"outputs": [],
|
72
|
-
"source": [
|
73
|
-
"D1.tail()"
|
74
|
-
]
|
75
|
-
},
|
76
|
-
{
|
77
|
-
"cell_type": "markdown",
|
78
|
-
"metadata": {
|
79
|
-
"id": "hHARmuAZwDrB"
|
80
|
-
},
|
81
|
-
"source": [
|
82
|
-
"CSV -comma seperated value"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"metadata": {
|
89
|
-
"colab": {
|
90
|
-
"base_uri": "https://localhost:8080/"
|
91
|
-
},
|
92
|
-
"id": "7FVrFLqTwPuI",
|
93
|
-
"outputId": "f1f08824-bc21-452d-f56c-01f50c9eb7c7"
|
94
|
-
},
|
95
|
-
"outputs": [],
|
96
|
-
"source": [
|
97
|
-
"D1.shape"
|
98
|
-
]
|
99
|
-
},
|
100
|
-
{
|
101
|
-
"cell_type": "code",
|
102
|
-
"execution_count": null,
|
103
|
-
"metadata": {
|
104
|
-
"colab": {
|
105
|
-
"base_uri": "https://localhost:8080/"
|
106
|
-
},
|
107
|
-
"id": "N7RyCNqtwkRv",
|
108
|
-
"outputId": "c2412510-4382-4657-ac57-851bd765b3cf"
|
109
|
-
},
|
110
|
-
"outputs": [],
|
111
|
-
"source": [
|
112
|
-
"D1.info()"
|
113
|
-
]
|
114
|
-
},
|
115
|
-
{
|
116
|
-
"cell_type": "code",
|
117
|
-
"execution_count": null,
|
118
|
-
"metadata": {
|
119
|
-
"colab": {
|
120
|
-
"base_uri": "https://localhost:8080/",
|
121
|
-
"height": 300
|
122
|
-
},
|
123
|
-
"id": "tXpl-p-Jwz1I",
|
124
|
-
"outputId": "40c3c71b-88c9-4c07-8d2e-0bea70efa741"
|
125
|
-
},
|
126
|
-
"outputs": [],
|
127
|
-
"source": [
|
128
|
-
"D1.describe()"
|
129
|
-
]
|
130
|
-
},
|
131
|
-
{
|
132
|
-
"cell_type": "code",
|
133
|
-
"execution_count": null,
|
134
|
-
"metadata": {
|
135
|
-
"colab": {
|
136
|
-
"base_uri": "https://localhost:8080/"
|
137
|
-
},
|
138
|
-
"id": "oWMPra54xcDi",
|
139
|
-
"outputId": "aa646590-d72e-4fd3-c54f-1fd5655793ef"
|
140
|
-
},
|
141
|
-
"outputs": [],
|
142
|
-
"source": [
|
143
|
-
"D1.columns"
|
144
|
-
]
|
145
|
-
},
|
146
|
-
{
|
147
|
-
"cell_type": "code",
|
148
|
-
"execution_count": null,
|
149
|
-
"metadata": {
|
150
|
-
"colab": {
|
151
|
-
"base_uri": "https://localhost:8080/"
|
152
|
-
},
|
153
|
-
"id": "cnc85x6ExjKx",
|
154
|
-
"outputId": "5f71dc96-7a27-41f7-e912-0bafaa520a96"
|
155
|
-
},
|
156
|
-
"outputs": [],
|
157
|
-
"source": [
|
158
|
-
"D1['Species'].value_counts()"
|
159
|
-
]
|
160
|
-
},
|
161
|
-
{
|
162
|
-
"cell_type": "code",
|
163
|
-
"execution_count": null,
|
164
|
-
"metadata": {
|
165
|
-
"colab": {
|
166
|
-
"base_uri": "https://localhost:8080/",
|
167
|
-
"height": 424
|
168
|
-
},
|
169
|
-
"id": "GU54vUy0yBog",
|
170
|
-
"outputId": "0d670a11-5d79-41a7-8f60-f3dc68706d3d"
|
171
|
-
},
|
172
|
-
"outputs": [],
|
173
|
-
"source": [
|
174
|
-
"import seaborn as sns\n",
|
175
|
-
"import matplotlib.pyplot as plt\n",
|
176
|
-
"sns.set_style('whitegrid')\n",
|
177
|
-
"sns.FacetGrid(D1,hue='Species',height=4).map(plt.scatter,'SepalLengthCm','SepalWidthCm').add_legend()"
|
178
|
-
]
|
179
|
-
},
|
180
|
-
{
|
181
|
-
"cell_type": "code",
|
182
|
-
"execution_count": null,
|
183
|
-
"metadata": {
|
184
|
-
"colab": {
|
185
|
-
"base_uri": "https://localhost:8080/",
|
186
|
-
"height": 261
|
187
|
-
},
|
188
|
-
"id": "2ealmeYm1BV_",
|
189
|
-
"outputId": "292a8c1d-bee9-4005-b1e1-f478459f245b"
|
190
|
-
},
|
191
|
-
"outputs": [],
|
192
|
-
"source": [
|
193
|
-
"D1.corr()"
|
194
|
-
]
|
195
|
-
},
|
196
|
-
{
|
197
|
-
"cell_type": "markdown",
|
198
|
-
"metadata": {
|
199
|
-
"id": "WLTiQEH71Zg_"
|
200
|
-
},
|
201
|
-
"source": [
|
202
|
-
"correlation matrix gives the correlation between each column and other columns"
|
203
|
-
]
|
204
|
-
},
|
205
|
-
{
|
206
|
-
"cell_type": "code",
|
207
|
-
"execution_count": null,
|
208
|
-
"metadata": {
|
209
|
-
"colab": {
|
210
|
-
"base_uri": "https://localhost:8080/",
|
211
|
-
"height": 206
|
212
|
-
},
|
213
|
-
"id": "wOUhW4Ee1ksw",
|
214
|
-
"outputId": "18ab735e-1cd3-45a0-a852-ee8181c1b9d4"
|
215
|
-
},
|
216
|
-
"outputs": [],
|
217
|
-
"source": [
|
218
|
-
"D1=D1.drop(['Id'],axis=1)\n",
|
219
|
-
"D1.head()"
|
220
|
-
]
|
221
|
-
},
|
222
|
-
{
|
223
|
-
"cell_type": "code",
|
224
|
-
"execution_count": null,
|
225
|
-
"metadata": {
|
226
|
-
"colab": {
|
227
|
-
"base_uri": "https://localhost:8080/",
|
228
|
-
"height": 229
|
229
|
-
},
|
230
|
-
"id": "MVnmVZcg2F1_",
|
231
|
-
"outputId": "de271d34-3ad1-4b0d-949f-dcce336f8b0d"
|
232
|
-
},
|
233
|
-
"outputs": [],
|
234
|
-
"source": [
|
235
|
-
"D1.corr()"
|
236
|
-
]
|
237
|
-
},
|
238
|
-
{
|
239
|
-
"cell_type": "code",
|
240
|
-
"execution_count": null,
|
241
|
-
"metadata": {
|
242
|
-
"colab": {
|
243
|
-
"base_uri": "https://localhost:8080/",
|
244
|
-
"height": 821
|
245
|
-
},
|
246
|
-
"id": "NQ3tMO9U27DP",
|
247
|
-
"outputId": "5a2b45e6-adc8-4451-9e00-7f3490f659c8"
|
248
|
-
},
|
249
|
-
"outputs": [],
|
250
|
-
"source": [
|
251
|
-
"#pairplot to be drawn\n",
|
252
|
-
"sns.pairplot(D1)"
|
253
|
-
]
|
254
|
-
},
|
255
|
-
{
|
256
|
-
"cell_type": "code",
|
257
|
-
"execution_count": null,
|
258
|
-
"metadata": {
|
259
|
-
"colab": {
|
260
|
-
"base_uri": "https://localhost:8080/",
|
261
|
-
"height": 603
|
262
|
-
},
|
263
|
-
"id": "evijQMEh3bZG",
|
264
|
-
"outputId": "b6615629-f159-49f5-c378-817ddc2383f0"
|
265
|
-
},
|
266
|
-
"outputs": [],
|
267
|
-
"source": [
|
268
|
-
"H=D1.corr()\n",
|
269
|
-
"sns.heatmap(H)"
|
270
|
-
]
|
271
|
-
},
|
272
|
-
{
|
273
|
-
"cell_type": "code",
|
274
|
-
"execution_count": null,
|
275
|
-
"metadata": {
|
276
|
-
"id": "d_w0Ofuu0U2k"
|
277
|
-
},
|
278
|
-
"outputs": [],
|
279
|
-
"source": [
|
280
|
-
"D1['Species'].replace(0, 'Iris-setosa',inplace=True)\n",
|
281
|
-
"D1['Species'].replace(1, 'Iris-versicolor',inplace=True)\n",
|
282
|
-
"D1['Species'].replace(2, 'Iris-virginica',inplace=True)"
|
283
|
-
]
|
284
|
-
},
|
285
|
-
{
|
286
|
-
"cell_type": "code",
|
287
|
-
"execution_count": null,
|
288
|
-
"metadata": {
|
289
|
-
"colab": {
|
290
|
-
"base_uri": "https://localhost:8080/",
|
291
|
-
"height": 158
|
292
|
-
},
|
293
|
-
"id": "2iJiG_Xt0coi",
|
294
|
-
"outputId": "c317f036-d1d5-449d-c6c4-738d4c7da57b"
|
295
|
-
},
|
296
|
-
"outputs": [],
|
297
|
-
"source": [
|
298
|
-
"D1.head(1)"
|
299
|
-
]
|
300
|
-
}
|
301
|
-
],
|
302
|
-
"metadata": {
|
303
|
-
"colab": {
|
304
|
-
"provenance": []
|
305
|
-
},
|
306
|
-
"kernelspec": {
|
307
|
-
"display_name": "Python 3 (ipykernel)",
|
308
|
-
"language": "python",
|
309
|
-
"name": "python3"
|
310
|
-
},
|
311
|
-
"language_info": {
|
312
|
-
"codemirror_mode": {
|
313
|
-
"name": "ipython",
|
314
|
-
"version": 3
|
315
|
-
},
|
316
|
-
"file_extension": ".py",
|
317
|
-
"mimetype": "text/x-python",
|
318
|
-
"name": "python",
|
319
|
-
"nbconvert_exporter": "python",
|
320
|
-
"pygments_lexer": "ipython3",
|
321
|
-
"version": "3.12.4"
|
322
|
-
}
|
323
|
-
},
|
324
|
-
"nbformat": 4,
|
325
|
-
"nbformat_minor": 4
|
326
|
-
}
|