noshot 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
  7. noshot/main.py +18 -18
  8. noshot/utils/__init__.py +2 -2
  9. noshot/utils/shell_utils.py +56 -56
  10. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
  11. noshot-0.4.1.dist-info/RECORD +15 -0
  12. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
  13. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
  14. noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
  15. noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
  16. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
  17. noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
  18. noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
  19. noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
  20. noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
  21. noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
  22. noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
  23. noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
  24. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
  25. noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
  26. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
  27. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
  28. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
  29. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
  30. noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
  31. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
  32. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
  33. noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -133
  34. noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -12
  35. noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +0 -1503
  36. noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -139
  37. noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -12
  38. noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -143
  39. noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -130
  40. noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -1
  41. noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -164
  42. noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -141
  43. noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -4340
  44. noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -1
  45. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  46. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  47. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  48. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  49. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  50. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  51. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  52. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  53. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  54. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  55. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  56. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  57. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  58. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  59. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  60. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  61. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  62. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  63. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  64. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  65. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  66. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  67. noshot-0.3.9.dist-info/RECORD +0 -62
  68. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,287 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "def24f4a",
6
- "metadata": {},
7
- "source": [
8
- "##### __Balance Scale Dataset__"
9
- ]
10
- },
11
- {
12
- "cell_type": "code",
13
- "execution_count": null,
14
- "id": "b4a8b5dc",
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "from sklearn.neighbors import KNeighborsClassifier\n",
19
- "from sklearn.datasets import load_iris\n",
20
- "from sklearn.model_selection import train_test_split\n",
21
- "from sklearn import metrics\n",
22
- "from sklearn.preprocessing import StandardScaler\n",
23
- "import sklearn\n",
24
- "import pandas as pd\n",
25
- "import numpy as np"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "1c308767",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "df = pd.read_csv('data/balance-scale.txt', delimiter = ',', names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
36
- "#df = pd.read_csv('data/balance-scale.csv')\n",
37
- "df.head()"
38
- ]
39
- },
40
- {
41
- "cell_type": "code",
42
- "execution_count": null,
43
- "id": "23d0288e",
44
- "metadata": {},
45
- "outputs": [],
46
- "source": [
47
- "feature = ['left-weight','left-distance','right-weight','right-distance']\n",
48
- "x = df.loc[:,feature]\n",
49
- "y = df.loc[:,'class name']\n",
50
- "x = StandardScaler().fit_transform(x)\n",
51
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4,\n",
52
- "random_state = 4)\n",
53
- "print (X_train.shape)\n",
54
- "print (X_test.shape)\n",
55
- "knn = KNeighborsClassifier(n_neighbors = 15)\n",
56
- "knn.fit(X_train, y_train) "
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "366c003d",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "y_pred = knn.predict(X_test)\n",
67
- "print (metrics.accuracy_score(y_test, y_pred))"
68
- ]
69
- },
70
- {
71
- "cell_type": "markdown",
72
- "id": "6702687e",
73
- "metadata": {},
74
- "source": [
75
- "##### __class for [1,1,1,1] = R (predicted)__"
76
- ]
77
- },
78
- {
79
- "cell_type": "code",
80
- "execution_count": null,
81
- "id": "22e96c2a",
82
- "metadata": {},
83
- "outputs": [],
84
- "source": [
85
- "y_pred = knn.predict(np.array([1,1,1,1]).reshape(1, -1))[0]\n",
86
- "print(\"Class Predicted:\", y_pred)"
87
- ]
88
- },
89
- {
90
- "cell_type": "markdown",
91
- "id": "13d70944",
92
- "metadata": {},
93
- "source": [
94
- "##### __Iris Dataset__"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "id": "3192e255",
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "def to_category(val):\n",
105
- " match val:\n",
106
- " case 0: return \"setosa\"\n",
107
- " case 1: return \"versicolor\"\n",
108
- " case 2: return \"virginica\"\n",
109
- "iris = load_iris()\n",
110
- "df2 = pd.DataFrame(data=iris.data, columns=iris.feature_names)\n",
111
- "df2['class'] = iris.target\n",
112
- "df2['class'] = df2['class'].apply(to_category)\n",
113
- "print(df2.shape)\n",
114
- "df2.head()"
115
- ]
116
- },
117
- {
118
- "cell_type": "code",
119
- "execution_count": null,
120
- "id": "4115986d",
121
- "metadata": {
122
- "scrolled": true
123
- },
124
- "outputs": [],
125
- "source": [
126
- "feature = ['sepal length (cm)','sepal width (cm)','petal length (cm)','petal width (cm)']\n",
127
- "x = df2.loc[:,feature]\n",
128
- "y = df2.loc[:,'class']\n",
129
- "x = StandardScaler().fit_transform(x)\n",
130
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.4,\n",
131
- "random_state = 4)\n",
132
- "print (X_train.shape)\n",
133
- "print (X_test.shape)\n",
134
- "knn = KNeighborsClassifier(n_neighbors = 15)\n",
135
- "knn.fit(X_train, y_train) "
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "id": "8252b0f1",
142
- "metadata": {},
143
- "outputs": [],
144
- "source": [
145
- "y_pred = knn.predict(X_test)\n",
146
- "print (metrics.accuracy_score(y_test, y_pred))"
147
- ]
148
- },
149
- {
150
- "cell_type": "markdown",
151
- "id": "06559281",
152
- "metadata": {},
153
- "source": [
154
- "##### __class for [5.2,3.5,1.1,0.2] = virginica (predicted)__"
155
- ]
156
- },
157
- {
158
- "cell_type": "code",
159
- "execution_count": null,
160
- "id": "085896ef",
161
- "metadata": {},
162
- "outputs": [],
163
- "source": [
164
- "y_pred = knn.predict(np.array([5.2, 3.5, 1.1, 0.2]).reshape(1, -1))[0]\n",
165
- "print(\"Class Predicted:\", y_pred)"
166
- ]
167
- },
168
- {
169
- "cell_type": "markdown",
170
- "id": "cdd56944",
171
- "metadata": {},
172
- "source": [
173
- "##### __Iris Dataset Visualization__"
174
- ]
175
- },
176
- {
177
- "cell_type": "code",
178
- "execution_count": null,
179
- "id": "a549df51",
180
- "metadata": {},
181
- "outputs": [],
182
- "source": [
183
- "from sklearn.svm import SVC\n",
184
- "import numpy as np\n",
185
- "import matplotlib.pyplot as plt\n",
186
- "from sklearn import svm, datasets\n",
187
- "\n",
188
- "iris = load_iris()\n",
189
- "X = iris.data[:, :2]\n",
190
- "y = iris.target\n",
191
- "\n",
192
- "def make_meshgrid(x, y, h=.02):\n",
193
- " x_min, x_max = x.min() - 1, x.max() + 1\n",
194
- " y_min, y_max = y.min() - 1, y.max() + 1\n",
195
- " xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n",
196
- " return xx, yy\n",
197
- "\n",
198
- "def plot_contours(ax, clf, xx, yy, **params):\n",
199
- " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n",
200
- " Z = Z.reshape(xx.shape)\n",
201
- " out = ax.contourf(xx, yy, Z, **params)\n",
202
- " return out\n",
203
- "\n",
204
- "model = svm.SVC(kernel='linear')\n",
205
- "clf = model.fit(X, y)\n",
206
- "\n",
207
- "fig, ax = plt.subplots()\n",
208
- "# title for the plots\n",
209
- "title = ('Decision surface of linear SVC ')\n",
210
- "# Set-up grid for plotting.\n",
211
- "X0, X1 = X[:, 0], X[:, 1]\n",
212
- "xx, yy = make_meshgrid(X0, X1)\n",
213
- "\n",
214
- "plot_contours(ax, clf, xx, yy, cmap=plt.cm.coolwarm, alpha=0.8)\n",
215
- "ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')\n",
216
- "ax.set_ylabel('y label here')\n",
217
- "ax.set_xlabel('x label here')\n",
218
- "ax.set_xticks(())\n",
219
- "ax.set_yticks(())\n",
220
- "ax.set_title(title)\n",
221
- "#ax.legend()\n",
222
- "plt.show()"
223
- ]
224
- },
225
- {
226
- "cell_type": "code",
227
- "execution_count": null,
228
- "id": "01719650",
229
- "metadata": {},
230
- "outputs": [],
231
- "source": [
232
- "from sklearn.svm import SVC\n",
233
- "import numpy as np\n",
234
- "import matplotlib.pyplot as plt\n",
235
- "from sklearn import svm, datasets\n",
236
- "from mpl_toolkits.mplot3d import Axes3D\n",
237
- "\n",
238
- "iris = datasets.load_iris()\n",
239
- "X = iris.data[:, :3] # we only take the first three features.\n",
240
- "Y = iris.target\n",
241
- "\n",
242
- "#make it binary classification problem\n",
243
- "X = X[np.logical_or(Y==0,Y==1)]\n",
244
- "Y = Y[np.logical_or(Y==0,Y==1)]\n",
245
- "\n",
246
- "model = svm.SVC(kernel='linear')\n",
247
- "clf = model.fit(X, Y)\n",
248
- "\n",
249
- "# The equation of the separating plane is given by all x so that np.dot(svc.coef_[0], x) + b = 0.\n",
250
- "# Solve for w3 (z)\n",
251
- "z = lambda x,y: (-clf.intercept_[0]-clf.coef_[0][0]*x -clf.coef_[0][1]*y) / clf.coef_[0][2]\n",
252
- "\n",
253
- "tmp = np.linspace(-5,5,30)\n",
254
- "x,y = np.meshgrid(tmp,tmp)\n",
255
- "\n",
256
- "fig = plt.figure()\n",
257
- "ax = fig.add_subplot(111, projection='3d')\n",
258
- "ax.plot3D(X[Y==0,0], X[Y==0,1], X[Y==0,2],'ob')\n",
259
- "ax.plot3D(X[Y==1,0], X[Y==1,1], X[Y==1,2],'sr')\n",
260
- "ax.plot_surface(x, y, z(x,y))\n",
261
- "ax.view_init(30, 60)\n",
262
- "plt.show()"
263
- ]
264
- }
265
- ],
266
- "metadata": {
267
- "kernelspec": {
268
- "display_name": "Python 3 (ipykernel)",
269
- "language": "python",
270
- "name": "python3"
271
- },
272
- "language_info": {
273
- "codemirror_mode": {
274
- "name": "ipython",
275
- "version": 3
276
- },
277
- "file_extension": ".py",
278
- "mimetype": "text/x-python",
279
- "name": "python",
280
- "nbconvert_exporter": "python",
281
- "pygments_lexer": "ipython3",
282
- "version": "3.12.4"
283
- }
284
- },
285
- "nbformat": 4,
286
- "nbformat_minor": 5
287
- }
@@ -1,83 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "96ac04a5-6577-4da4-8454-3b10535351f8",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import matplotlib.pyplot as plt\n",
11
- "from sklearn import datasets\n",
12
- "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
13
- "import pandas as pd\n",
14
- "import matplotlib.pyplot as plt\n",
15
- "from sklearn.preprocessing import StandardScaler"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": null,
21
- "id": "b1ffa4dc-488f-4238-877b-5cbd6fb48e4e",
22
- "metadata": {},
23
- "outputs": [],
24
- "source": [
25
- "df = pd.read_table('data/balance-scale.txt', delimiter = \",\", names=['class name','left-weight','left-distance','right-weight','right-distance'])\n",
26
- "#df = pd.read_csv('data/balance-scale.csv')\n",
27
- "df.head()"
28
- ]
29
- },
30
- {
31
- "cell_type": "markdown",
32
- "id": "ac328950-540f-4a27-b9d4-0880058064f5",
33
- "metadata": {},
34
- "source": [
35
- "##### __LDA__"
36
- ]
37
- },
38
- {
39
- "cell_type": "code",
40
- "execution_count": null,
41
- "id": "7a947959-791f-4ffe-95f0-e300d97cf179",
42
- "metadata": {},
43
- "outputs": [],
44
- "source": [
45
- "feature = ['left-weight','left-distance','right-weight','right-distance']\n",
46
- "x = df.loc[:,feature]\n",
47
- "y = df.loc[:,'class name']\n",
48
- "lda = LDA(n_components=2)\n",
49
- "lda_X = lda.fit(x,y).transform(x)\n",
50
- "plt.scatter(lda_X[y == 'L', 0], lda_X[y == 'L', 1], s =50, c = 'orange',\n",
51
- "label = 'L')\n",
52
- "plt.scatter(lda_X[y == 'B', 0], lda_X[y == 'B', 1], s =50, c = 'blue',\n",
53
- "label = 'B')\n",
54
- "\n",
55
- "16\n",
56
- "plt.scatter(lda_X[y == 'R', 0], lda_X[y == 'R', 1], s =50, c = 'green',\n",
57
- "label = 'R')\n",
58
- "plt.title('LDA plot for cmc DataSet')"
59
- ]
60
- }
61
- ],
62
- "metadata": {
63
- "kernelspec": {
64
- "display_name": "Python 3 (ipykernel)",
65
- "language": "python",
66
- "name": "python3"
67
- },
68
- "language_info": {
69
- "codemirror_mode": {
70
- "name": "ipython",
71
- "version": 3
72
- },
73
- "file_extension": ".py",
74
- "mimetype": "text/x-python",
75
- "name": "python",
76
- "nbconvert_exporter": "python",
77
- "pygments_lexer": "ipython3",
78
- "version": "3.12.4"
79
- }
80
- },
81
- "nbformat": 4,
82
- "nbformat_minor": 5
83
- }
@@ -1,117 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "2d42ca1a-531d-4d5b-aee4-a489d5033d1b",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import matplotlib.pyplot as plt\n",
12
- "from sklearn.model_selection import train_test_split\n",
13
- "from sklearn.linear_model import LinearRegression\n",
14
- "from sklearn.metrics import r2_score"
15
- ]
16
- },
17
- {
18
- "cell_type": "code",
19
- "execution_count": null,
20
- "id": "f81220bc-5415-4b02-b2fd-fd5a8ff8c97a",
21
- "metadata": {},
22
- "outputs": [],
23
- "source": [
24
- "df = pd.read_csv('data/machine-data.csv')\n",
25
- "df.head()"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "958f3a04-3ae7-442b-a6e7-9134b9c5aeb3",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "x=df.iloc[:,3:4].values\n",
36
- "y=df.iloc[:,8].values\n",
37
- "\n",
38
- "X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2, random_state = 0)\n",
39
- "regressor = LinearRegression()\n",
40
- "regressor.fit(X_train, y_train)\n",
41
- "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None)"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "5b15fa5c-5c78-436b-8f33-4f431c797788",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "y_pred = regressor.predict(X_test)\n",
52
- "y_pred_train = regressor.predict(X_train)\n",
53
- "print(\"Model Score: \", regressor.score(X_test, y_test))\n",
54
- "print(\"R_square score: \", r2_score(y_test,y_pred))"
55
- ]
56
- },
57
- {
58
- "cell_type": "code",
59
- "execution_count": null,
60
- "id": "b044ea95-014e-466b-b036-8ba9f96e3910",
61
- "metadata": {},
62
- "outputs": [],
63
- "source": [
64
- "plt.scatter(X_train, y_train, color = 'red')\n",
65
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
66
- "plt.title('Y vs X (Training set)')\n",
67
- "plt.xlabel('X')\n",
68
- "plt.ylabel('Y')\n",
69
- "plt.show()\n",
70
- "plt.scatter(X_test, y_test, color = 'red')\n",
71
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
72
- "plt.title('Y vs X (Test set)')\n",
73
- "plt.xlabel('X')"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "33c64414-d432-439e-a976-d28a9b4c3f2a",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "plt.ylabel('Y')\n",
84
- "X_future_expereince = [[2],[4]]\n",
85
- "print (\"Prediction :\", regressor.predict(X_future_expereince))\n",
86
- "plt.scatter(X_future_expereince, regressor.predict(X_future_expereince),\n",
87
- "color = 'red')\n",
88
- "plt.plot(X_train, regressor.predict(X_train), color = 'blue')\n",
89
- "plt.title('Y vs X (Test set)')\n",
90
- "plt.xlabel('X')\n",
91
- "plt.ylabel('Y')\n",
92
- "plt.show()"
93
- ]
94
- }
95
- ],
96
- "metadata": {
97
- "kernelspec": {
98
- "display_name": "Python 3 (ipykernel)",
99
- "language": "python",
100
- "name": "python3"
101
- },
102
- "language_info": {
103
- "codemirror_mode": {
104
- "name": "ipython",
105
- "version": 3
106
- },
107
- "file_extension": ".py",
108
- "mimetype": "text/x-python",
109
- "name": "python",
110
- "nbconvert_exporter": "python",
111
- "pygments_lexer": "ipython3",
112
- "version": "3.12.4"
113
- }
114
- },
115
- "nbformat": 4,
116
- "nbformat_minor": 5
117
- }
@@ -1,151 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "0fcc8bb7-4d22-4d3b-b58a-302bb24f8f2e",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import itertools\n",
11
- "import numpy as np\n",
12
- "import pandas as pd\n",
13
- "import matplotlib.pyplot as plt\n",
14
- "from sklearn import linear_model,datasets\n",
15
- "from sklearn.model_selection import train_test_split\n",
16
- "from sklearn.metrics import confusion_matrix\n",
17
- "import warnings\n",
18
- "warnings.filterwarnings('ignore')"
19
- ]
20
- },
21
- {
22
- "cell_type": "code",
23
- "execution_count": null,
24
- "id": "d28e507b-fb15-4058-a161-656859a27c65",
25
- "metadata": {},
26
- "outputs": [],
27
- "source": [
28
- "wine = pd.read_csv('data/wine-dataset.csv')\n",
29
- "print(wine.shape)"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "c4e953da-6941-43f2-a9ce-aab907876d45",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "wine.columns"
40
- ]
41
- },
42
- {
43
- "cell_type": "code",
44
- "execution_count": null,
45
- "id": "9ee44a66-dc4a-4c79-9dab-eec60669dd8b",
46
- "metadata": {},
47
- "outputs": [],
48
- "source": [
49
- "X = wine.iloc[:, :13]\n",
50
- "X.head()"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "id": "5cfd2fe6-3825-4d95-b606-3b3e2ef685b2",
57
- "metadata": {},
58
- "outputs": [],
59
- "source": [
60
- "y = wine.iloc[:, 13]\n",
61
- "y"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "id": "bd9d60dd-8272-46b4-8335-69d9751ed0c7",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.30, random_state=7)\n",
72
- "\n",
73
- "log_reg_model = linear_model.LogisticRegression()\n",
74
- "log_reg_model.fit(X_train,y_train)"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": null,
80
- "id": "7c8fca42-c8d8-4334-9cc4-da4f5e1b0a1e",
81
- "metadata": {},
82
- "outputs": [],
83
- "source": [
84
- "log_reg_base_score = log_reg_model.score(X_test,y_test)\n",
85
- "print(\"The score for the Logistic Regression Model is : \", log_reg_base_score)"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "61bbb23e-cb29-41ae-9ea3-82e8d465c7f2",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "cm = confusion_matrix(y_test, log_reg_model.predict(X_test))\n",
96
- "print(cm)"
97
- ]
98
- },
99
- {
100
- "cell_type": "code",
101
- "execution_count": null,
102
- "id": "600ec8f2-34e1-4be7-8ef5-fe53ff673f41",
103
- "metadata": {
104
- "scrolled": true
105
- },
106
- "outputs": [],
107
- "source": [
108
- "X = X.iloc[:, :2]\n",
109
- "Y = y\n",
110
- "\n",
111
- "log_reg_model.fit(X,Y)\n",
112
- "x_min, x_max = X.iloc[:, 0].min() - .5, X.iloc[:, 0].max() + .5\n",
113
- "y_min, y_max = X.iloc[:, 1].min() - .5, X.iloc[:, 1].max() + .5\n",
114
- "xx, yy = np.meshgrid(np.arange(x_min, x_max, .01), np.arange(y_min, y_max, .01))\n",
115
- "Z = log_reg_model.predict(np.c_[xx.ravel(), yy.ravel()])\n",
116
- "Z = Z.reshape(xx.shape)\n",
117
- "plt.figure(1, figsize = (4, 3))\n",
118
- "plt.pcolormesh(xx, yy, Z, cmap = plt.cm.Paired)\n",
119
- "plt.scatter(X.iloc[:, 0], X.iloc[:, 1], c = Y, edgecolors = 'k', cmap = plt.cm.Paired)\n",
120
- "plt.xlabel('X')\n",
121
- "plt.ylabel('Y')\n",
122
- "plt.xlim(xx.min(), xx.max())\n",
123
- "plt.ylim(yy.min(), yy.max())\n",
124
- "plt.xticks(())\n",
125
- "plt.yticks(())\n",
126
- "plt.show()"
127
- ]
128
- }
129
- ],
130
- "metadata": {
131
- "kernelspec": {
132
- "display_name": "Python 3 (ipykernel)",
133
- "language": "python",
134
- "name": "python3"
135
- },
136
- "language_info": {
137
- "codemirror_mode": {
138
- "name": "ipython",
139
- "version": 3
140
- },
141
- "file_extension": ".py",
142
- "mimetype": "text/x-python",
143
- "name": "python",
144
- "nbconvert_exporter": "python",
145
- "pygments_lexer": "ipython3",
146
- "version": "3.12.4"
147
- }
148
- },
149
- "nbformat": 4,
150
- "nbformat_minor": 5
151
- }