noshot 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
  2. noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
  3. noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
  4. noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
  5. noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
  6. noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
  7. noshot/main.py +18 -18
  8. noshot/utils/__init__.py +2 -2
  9. noshot/utils/shell_utils.py +56 -56
  10. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
  11. noshot-0.4.1.dist-info/RECORD +15 -0
  12. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
  13. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
  14. noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
  15. noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
  16. noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
  17. noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
  18. noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
  19. noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
  20. noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
  21. noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
  22. noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
  23. noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
  24. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
  25. noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
  26. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
  27. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
  28. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
  29. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
  30. noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
  31. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
  32. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
  33. noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -133
  34. noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -12
  35. noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +0 -1503
  36. noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -139
  37. noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -12
  38. noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -143
  39. noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -130
  40. noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -1
  41. noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -164
  42. noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -141
  43. noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -4340
  44. noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -1
  45. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  46. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  47. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  48. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  49. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  50. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  51. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  52. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  53. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  54. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  55. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  56. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  57. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  58. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  59. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  60. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  61. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  62. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  63. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  64. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  65. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  66. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  67. noshot-0.3.9.dist-info/RECORD +0 -62
  68. {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,164 +0,0 @@
1
- "id","id_android","speed","time","distance","rating","rating_bus","rating_weather","car_or_bus","linha"
2
- 1,0,19.2105856218409,0.138048888888889,2.652,3,0,0,1,""
3
- 2,0,30.848229110141,0.171484722222222,5.29,3,0,0,1,""
4
- 3,1,13.5601009375705,0.0676986111111111,0.918,3,0,0,2,""
5
- 4,1,19.7666790267834,0.389544444444444,7.7,3,0,0,2,""
6
- 8,0,25.8074009208982,0.154800555555556,3.995,2,0,0,1,""
7
- 10,2,1.34691332363334,0.00668194444444444,0.009,2,0,0,1,""
8
- 11,3,36.8507874006155,0.228000555555556,8.402,3,0,0,1,""
9
- 12,1,17.4051312905583,0.0387816666666667,0.675,3,0,0,2,""
10
- 13,1,15.3954361396997,0.526844444444444,8.111,3,0,0,2,""
11
- 14,1,8.90272943762594,0.00303277777777778,0.027,2,0,0,2,""
12
- 16,3,15.0413480246533,0.217866111111111,3.277,3,0,0,1,""
13
- 17,3,14.4400981237154,0.268142222222222,3.872,3,0,0,1,""
14
- 18,1,16.3567325479505,0.0770325,1.26,2,0,0,2,""
15
- 19,1,17.5427999490819,0.333869166666667,5.857,2,0,0,2,""
16
- 20,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
17
- 21,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
18
- 22,4,16.2635039490851,0.450948333333333,7.334,2,0,0,1,""
19
- 23,4,21.2235944272772,0.289724722222222,6.149,3,0,0,1,""
20
- 24,4,19.4236545402881,0.236567222222222,4.595,2,0,0,2,""
21
- 25,4,20.7996291423591,0.425440277777778,8.849,3,0,0,2,""
22
- 26,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
23
- 27,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
24
- 28,3,8.68613764219664,0.502409722222222,4.364,3,0,0,1,""
25
- 30,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
26
- 31,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
27
- 33,1,12.6110448093387,0.579095555555556,7.303,2,0,0,2,""
28
- 34,3,14.5342872001012,0.0790544444444444,1.149,3,0,0,1,""
29
- 35,3,10.2882266731803,0.318422222222222,3.276,3,0,0,1,""
30
- 36,3,18.3281891367296,0.130945833333333,2.4,3,0,0,1,""
31
- 37,1,17.1776350229212,0.166088055555556,2.853,3,0,0,1,""
32
- 38,1,17.0978233675256,0.133233333333333,2.278,3,0,0,1,""
33
- 39,1,32.5207021199134,0.203716388888889,6.625,3,0,0,1,""
34
- 40,1,19.934809873384,0.329122777777778,6.561,3,0,0,1,""
35
- 41,1,21.5138017732911,0.6572525,14.14,2,0,0,1,""
36
- 42,1,27.5257702575601,0.292380555555556,8.048,3,0,0,1,""
37
- 43,1,28.104520679061,0.276574722222222,7.773,3,0,0,1,""
38
- 44,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
39
- 45,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
40
- 46,3,32.3773039972723,0.166196666666667,5.381,3,0,0,1,""
41
- 47,1,22.3779245187911,0.3471725,7.769,2,0,0,1,""
42
- 48,1,24.9082558704182,0.264851944444444,6.597,2,0,0,1,""
43
- 49,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
44
- 50,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
45
- 51,2,72.92675452038,0.00906388888888889,0.661,1,0,0,2,""
46
- 54,1,0.0663753526190608,0.0150658333333333,0.001,2,0,0,1,""
47
- 55,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
48
- 56,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
49
- 58,6,96.2060288173573,0.350695277777778,33.739,2,0,0,2,""
50
- 61,1,3.23767476085357,0.0101925,0.033,2,0,0,2,""
51
- 63,1,0.582100412321125,0.00343583333333333,0.002,2,0,0,2,""
52
- 65,1,1.3868378812199,0.00432638888888889,0.006,2,0,0,2,""
53
- 67,1,0.180865138244603,0.0331738888888889,0.006,2,0,0,2,""
54
- 70,1,0.187306514971514,0.0320330555555556,0.006,2,0,0,2,""
55
- 71,1,2.7403516784654,0.00364916666666667,0.01,2,0,0,2,""
56
- 78,1,1.55177191415992,0.00902194444444445,0.014,2,0,0,2,""
57
- 99,1,0.891614214585237,0.0325252777777778,0.029,2,0,0,2,""
58
- 128,1,1.2619744642138,0.133124722222222,0.168,2,0,0,2,""
59
- 131,7,19.8334720520812,0.509290555555556,10.101,3,0,0,1,""
60
- 132,7,16.8934214662962,0.563710555555556,9.523,3,0,0,1,""
61
- 133,7,20.5827023203105,0.493181111111111,10.151,3,0,0,1,""
62
- 134,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
63
- 135,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
64
- 136,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
65
- 137,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
66
- 138,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
67
- 139,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
68
- 140,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
69
- 141,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
70
- 142,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
71
- 143,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
72
- 145,8,0.461929548480813,0.114736111111111,0.053,2,0,0,1,""
73
- 146,8,0.777134962438477,0.0193016666666667,0.015,2,0,0,1,""
74
- 147,8,1.28318369631319,0.355366111111111,0.456,2,0,0,1,""
75
- 148,8,1.48769112698506,0.00470527777777778,0.007,2,0,0,1,""
76
- 149,8,23.0511917163542,0.318378333333333,7.339,3,0,0,1,""
77
- 150,7,21.2391801941645,0.4751125,10.091,3,0,0,1,""
78
- 151,7,21.3008271746005,0.443175277777778,9.44,3,0,0,1,""
79
- 153,7,24.4305935108028,0.416649722222222,10.179,3,0,0,1,""
80
- 155,1,0.637205734851614,0.00470805555555556,0.003,2,0,0,2,""
81
- 156,3,17.9277713150431,0.0212519444444444,0.381,3,0,0,1,""
82
- 157,10,0.196122416279442,0.0866805555555556,0.017,1,0,0,2,""
83
- 158,10,0.0358392609147971,0.0558047222222222,0.002,1,0,0,2,""
84
- 159,1,1.03398755385352,0.00290138888888889,0.003,3,0,0,2,""
85
- 171,1,8.98564792345559,0.00400638888888889,0.036,1,3,1,2,"008 - SANTA TEREZA B INDUSTRIA"
86
- 173,1,0.727684346701164,0.0137422222222222,0.01,3,0,0,1,"carro"
87
- 177,1,3.45644242463035,0.00433972222222222,0.015,3,1,1,2,"040 - MARCOS FREIRE II DIA "
88
- 179,1,1.58068057080132,0.00506111111111111,0.008,3,1,2,2,"008 - SANTA TEREZA B INDUSTRIA"
89
- 180,1,0.254912373871482,0.0235375,0.006,2,0,0,1,"carro"
90
- 190,1,0.919540229885058,0.002175,0.002,2,0,0,1,"carro"
91
- 205,1,1.02290889717635,0.00782083333333333,0.008,3,2,1,2,"409 - RIOMAR DIA "
92
- 206,1,0.0601222485720966,0.0166327777777778,0.001,3,0,0,1,"carro"
93
- 207,1,0.0669367155853642,0.104576388888889,0.007,3,0,0,1,"carro"
94
- 208,1,13.4687985264441,0.294978055555556,3.973,3,0,0,1,"carro"
95
- 209,10,0.125918420126597,0.262074444444444,0.033,2,0,0,1,"carro"
96
- 210,10,23.784876752306,0.266513888888889,6.339,1,2,2,2,"051 - ATALAIA CENTRO "
97
- 248,10,24.003004419964,0.288463888888889,6.924,3,1,2,2,"051 - ATALAIA CENTRO "
98
- 32446,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
99
- 32447,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
100
- 37945,10,20.3702468927379,0.391600555555556,7.977,3,1,2,2,"051 - ATALAIA CENTRO "
101
- 37949,11,2.87800872909554,0.0128561111111111,0.037,1,2,2,2,"007 - FERNANDO COLLOR ATALAIA "
102
- 37950,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
103
- 37951,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
104
- 37953,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
105
- 37954,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
106
- 37955,10,25.5547121629502,0.442071111111111,11.297,3,1,2,2,"080 - BUGIO ATALAIA"
107
- 37956,10,6.76963371457903,0.168842222222222,1.143,3,0,0,1,"carro"
108
- 37957,10,22.4681840403171,0.369900833333333,8.311,3,0,0,1,"carro"
109
- 37960,1,13.5322194428727,0.467846388888889,6.331,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
110
- 37961,10,17.9720982129203,0.454092777777778,8.161,3,1,2,2,"080 - BUGIO ATALAIA"
111
- 37962,12,14.7120528108936,1.27915527777778,18.819,2,0,0,1,"carro"
112
- 37964,10,29.5409544460097,0.213940277777778,6.32,3,1,2,2,"051 - ATALAIA CENTRO"
113
- 37965,10,15.6202167120987,0.330469166666667,5.162,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
114
- 37967,1,0.00977939318865264,0.3067675,0.003,1,1,1,2,"040 - MARCOS FREIRE II DIA"
115
- 37969,1,16.7788951880074,0.193099722222222,3.24,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
116
- 37971,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
117
- 37972,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
118
- 37973,1,0.366662786637178,0.0190911111111111,0.007,2,0,0,1,"carro"
119
- 37979,1,0.559217096065508,0.05007,0.028,3,1,2,2,"034 - TERM ROD L BATISTA"
120
- 37982,1,4.68039003250271,0.00384583333333333,0.018,3,1,2,2,"034 - TERM ROD L BATISTA"
121
- 37983,1,1.60135225301366,0.00624472222222222,0.01,3,1,2,2,"034 - TERM ROD L BATISTA"
122
- 37989,10,18.7052756317992,0.436935555555556,8.173,1,1,1,2,"702 - AUGUSTO FRANCO BEIRA MAR"
123
- 37990,1,1.83416125334352,0.00218083333333333,0.004,3,1,2,2,"020 - PIABETA DIA"
124
- 37992,10,13.5582998412167,0.5305975,7.194,2,0,0,1,"carro"
125
- 37993,13,0.102032140124139,0.00980083333333333,0.001,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
126
- 37995,10,0.177183941021579,0.214466388888889,0.038,3,1,2,2,"001 - A FRANCO BUGIO"
127
- 37996,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
128
- 37997,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
129
- 37998,1,1.4140938015555,0.00353583333333333,0.005,3,0,0,1,"carro"
130
- 38000,1,16.685368043088,0.4456,7.435,3,2,2,2,"715 - TIJUQUINHA DES MAYNARD"
131
- 38001,10,10.9412890874282,0.766088888888889,8.382,3,1,2,2,"007 - FERNANDO COLLOR ATALAIA"
132
- 38002,12,30.3970446454738,0.804716388888889,24.461,3,0,0,1,"carro"
133
- 38003,14,6.75973582327488,0.487888888888889,3.298,2,0,0,1,"carro"
134
- 38012,15,25.6549384144076,0.3566175,9.149,2,0,0,1,"carro"
135
- 38013,15,17.6544921328944,0.525588611111111,9.279,1,0,0,1,"carro"
136
- 38015,10,24.5047380202986,0.198043333333333,4.853,1,2,2,2,"051 - ATALAIA CENTRO"
137
- 38016,1,11.5665726177222,0.441358055555556,5.105,1,3,1,2,"031 - EDUARDO GOMES DES. MAYNA"
138
- 38017,16,14.6308963601367,0.766733611111111,11.218,2,0,0,1,"carro"
139
- 38018,17,0.398475672427697,0.0175669444444444,0.007,3,1,2,2,"061 - M. FREIRE CENTRO"
140
- 38019,16,9.07685860763604,0.512401944444444,4.651,2,0,0,1,"carro"
141
- 38020,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
142
- 38021,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
143
- 38022,1,19.3767939170255,0.351399722222222,6.809,1,2,2,2,"031 - EDUARDO GOMES DES. MAYNA"
144
- 38024,10,7.13806787802501,0.580829444444444,4.146,3,1,2,2,"051 - ATALAIA CENTRO"
145
- 38030,1,1.78318709312199,0.00392555555555556,0.007,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
146
- 38031,19,0.172012210205695,0.459269722222222,0.079,3,1,2,2,"020 - PIABETA DIA"
147
- 38039,20,1.31161192942279,0.0160108333333333,0.021,3,1,2,2,"002 - FERNANDO COLLOR DIA"
148
- 38044,21,23.1993918615228,0.234230277777778,5.434,3,2,2,2,"001 - A FRANCO BUGIO"
149
- 38045,21,23.5029280217167,0.159426944444444,3.747,3,1,2,2,"001 - A FRANCO BUGIO"
150
- 38064,22,1.4451421176245,0.0927244444444444,0.134,3,2,2,2,"707 - CASTELO BRANCO CENTRO"
151
- 38069,23,0.536246276067527,0.0223777777777778,0.012,3,1,2,2,"001 - A FRANCO BUGIO"
152
- 38072,24,36.6470717274739,0.200070555555556,7.332,3,0,0,1,"carro"
153
- 38073,24,31.3673367669048,0.2558075,8.024,3,0,0,1,"carro"
154
- 38074,24,25.5623968267628,0.177526388888889,4.538,3,0,0,1,"carro"
155
- 38075,24,38.0281073650115,0.171346944444444,6.516,3,0,0,1,"carro"
156
- 38076,24,28.1424373938593,0.226703888888889,6.38,3,0,0,1,"carro"
157
- 38077,24,21.8120695151521,0.143773611111111,3.136,3,0,0,1,"carro"
158
- 38079,24,23.8285145972787,0.196906944444444,4.692,2,0,0,1,"carro"
159
- 38080,24,28.3366193216111,0.110457777777778,3.13,3,0,0,1,"carro"
160
- 38081,24,30.051731888125,0.218756111111111,6.574,2,0,0,1,"carro"
161
- 38082,24,30.1737883866982,0.255387222222222,7.706,3,0,0,1,"carro"
162
- 38084,25,1.15377219409012,0.0130008333333333,0.015,1,3,2,2,"721 - CASTELO BRANCO SUISSA"
163
- 38090,26,0.843222985633979,0.00711555555555556,0.006,3,1,2,2,"002 - FERNANDO COLLOR DIA"
164
- 38092,27,1.37299771167048,0.0167516666666667,0.023,3,1,2,2,"060 - PADRE PEDRO CAMPUS"
@@ -1,141 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8b01d639-7417-4a71-a735-d519043691ac",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "from sklearn.decomposition import PCA\n",
14
- "from sklearn.neighbors import KNeighborsClassifier\n",
15
- "from sklearn.model_selection import train_test_split\n",
16
- "from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
17
- "from sklearn.metrics import accuracy_score"
18
- ]
19
- },
20
- {
21
- "cell_type": "code",
22
- "execution_count": null,
23
- "id": "03cbb0a7-0a95-4e08-94a9-028c664ecbe1",
24
- "metadata": {},
25
- "outputs": [],
26
- "source": [
27
- "file_path = \"Wilt.csv\"\n",
28
- "df = pd.read_csv(file_path)\n",
29
- "df.head()"
30
- ]
31
- },
32
- {
33
- "cell_type": "code",
34
- "execution_count": null,
35
- "id": "0a4961c3-0fea-401b-a7f0-5f6fd0eb9e69",
36
- "metadata": {},
37
- "outputs": [],
38
- "source": [
39
- "y = df.iloc[:, 0]\n",
40
- "X = df.iloc[:, 1:]"
41
- ]
42
- },
43
- {
44
- "cell_type": "code",
45
- "execution_count": null,
46
- "id": "d6699a1a-5436-40d7-84b9-f2c3d5e87850",
47
- "metadata": {},
48
- "outputs": [],
49
- "source": [
50
- "if y.dtype == 'object':\n",
51
- " class_mapping = {label: idx for idx, label in enumerate(y.unique())}\n",
52
- " y = y.map(class_mapping)\n",
53
- "\n",
54
- "scaler = StandardScaler()\n",
55
- "X_scaled = scaler.fit_transform(X)\n",
56
- "\n",
57
- "pca = PCA(n_components=2)\n",
58
- "X_pca = pca.fit_transform(X_scaled)\n",
59
- "\n",
60
- "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
61
- "X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)"
62
- ]
63
- },
64
- {
65
- "cell_type": "code",
66
- "execution_count": null,
67
- "id": "0c6c271e-3725-4472-b082-a96aa9850ec6",
68
- "metadata": {},
69
- "outputs": [],
70
- "source": [
71
- "knn_original = KNeighborsClassifier(n_neighbors=5)\n",
72
- "knn_original.fit(X_train, y_train)\n",
73
- "y_pred_original = knn_original.predict(X_test)\n",
74
- "accuracy_original = accuracy_score(y_test, y_pred_original)\n",
75
- "\n",
76
- "knn_pca = KNeighborsClassifier(n_neighbors=5)\n",
77
- "knn_pca.fit(X_pca_train, y_train)\n",
78
- "y_pred_pca = knn_pca.predict(X_pca_test)\n",
79
- "accuracy_pca = accuracy_score(y_test, y_pred_pca)\n",
80
- "\n",
81
- "print(\"Accuracy without PCA:\", accuracy_original)\n",
82
- "print(\"Accuracy with PCA:\", accuracy_pca)"
83
- ]
84
- },
85
- {
86
- "cell_type": "code",
87
- "execution_count": null,
88
- "id": "5b129aaa-8fba-4dac-a4be-e94c277d40ae",
89
- "metadata": {},
90
- "outputs": [],
91
- "source": [
92
- "plt.figure(figsize=(6, 4))\n",
93
- "plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='coolwarm', alpha=0.5)\n",
94
- "plt.xlabel(\"Principal Component 1\")\n",
95
- "plt.ylabel(\"Principal Component 2\")\n",
96
- "plt.title(\"PCA Visualization of Wilt Dataset\")\n",
97
- "plt.colorbar(label=\"Class\")\n",
98
- "plt.show()"
99
- ]
100
- },
101
- {
102
- "cell_type": "code",
103
- "execution_count": null,
104
- "id": "a4b9dcf0-d091-4ece-9651-e84932fb1eba",
105
- "metadata": {},
106
- "outputs": [],
107
- "source": [
108
- "labels = ['Without PCA', 'With PCA']\n",
109
- "accuracies = [accuracy_original, accuracy_pca]\n",
110
- "plt.figure(figsize=(6, 4))\n",
111
- "plt.bar(labels, accuracies, color=['blue', 'orange'])\n",
112
- "plt.xlabel(\"Model\")\n",
113
- "plt.ylabel(\"Accuracy\")\n",
114
- "plt.title(\"KNN Classification Accuracy Comparison\")\n",
115
- "plt.ylim(0, 1)\n",
116
- "plt.show()"
117
- ]
118
- }
119
- ],
120
- "metadata": {
121
- "kernelspec": {
122
- "display_name": "Python 3 (ipykernel)",
123
- "language": "python",
124
- "name": "python3"
125
- },
126
- "language_info": {
127
- "codemirror_mode": {
128
- "name": "ipython",
129
- "version": 3
130
- },
131
- "file_extension": ".py",
132
- "mimetype": "text/x-python",
133
- "name": "python",
134
- "nbconvert_exporter": "python",
135
- "pygments_lexer": "ipython3",
136
- "version": "3.12.4"
137
- }
138
- },
139
- "nbformat": 4,
140
- "nbformat_minor": 5
141
- }