noshot 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
- noshot-0.4.1.dist-info/RECORD +15 -0
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
- noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
- noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
- noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
- noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
- noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
- noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
- noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
- noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
- noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
- noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
- noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -133
- noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -139
- noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -143
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -130
- noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -1
- noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -164
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -141
- noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -4340
- noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -1
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
- noshot-0.3.9.dist-info/RECORD +0 -62
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,164 +0,0 @@
|
|
1
|
-
"id","id_android","speed","time","distance","rating","rating_bus","rating_weather","car_or_bus","linha"
|
2
|
-
1,0,19.2105856218409,0.138048888888889,2.652,3,0,0,1,""
|
3
|
-
2,0,30.848229110141,0.171484722222222,5.29,3,0,0,1,""
|
4
|
-
3,1,13.5601009375705,0.0676986111111111,0.918,3,0,0,2,""
|
5
|
-
4,1,19.7666790267834,0.389544444444444,7.7,3,0,0,2,""
|
6
|
-
8,0,25.8074009208982,0.154800555555556,3.995,2,0,0,1,""
|
7
|
-
10,2,1.34691332363334,0.00668194444444444,0.009,2,0,0,1,""
|
8
|
-
11,3,36.8507874006155,0.228000555555556,8.402,3,0,0,1,""
|
9
|
-
12,1,17.4051312905583,0.0387816666666667,0.675,3,0,0,2,""
|
10
|
-
13,1,15.3954361396997,0.526844444444444,8.111,3,0,0,2,""
|
11
|
-
14,1,8.90272943762594,0.00303277777777778,0.027,2,0,0,2,""
|
12
|
-
16,3,15.0413480246533,0.217866111111111,3.277,3,0,0,1,""
|
13
|
-
17,3,14.4400981237154,0.268142222222222,3.872,3,0,0,1,""
|
14
|
-
18,1,16.3567325479505,0.0770325,1.26,2,0,0,2,""
|
15
|
-
19,1,17.5427999490819,0.333869166666667,5.857,2,0,0,2,""
|
16
|
-
20,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
|
17
|
-
21,4,9.45181557237199,0.276772222222222,2.616,2,0,0,1,""
|
18
|
-
22,4,16.2635039490851,0.450948333333333,7.334,2,0,0,1,""
|
19
|
-
23,4,21.2235944272772,0.289724722222222,6.149,3,0,0,1,""
|
20
|
-
24,4,19.4236545402881,0.236567222222222,4.595,2,0,0,2,""
|
21
|
-
25,4,20.7996291423591,0.425440277777778,8.849,3,0,0,2,""
|
22
|
-
26,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
|
23
|
-
27,4,8.72437241694035,1.94294777777778,16.951,1,0,0,2,""
|
24
|
-
28,3,8.68613764219664,0.502409722222222,4.364,3,0,0,1,""
|
25
|
-
30,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
|
26
|
-
31,3,54.9959473181491,1.01407472222222,55.77,3,0,0,1,""
|
27
|
-
33,1,12.6110448093387,0.579095555555556,7.303,2,0,0,2,""
|
28
|
-
34,3,14.5342872001012,0.0790544444444444,1.149,3,0,0,1,""
|
29
|
-
35,3,10.2882266731803,0.318422222222222,3.276,3,0,0,1,""
|
30
|
-
36,3,18.3281891367296,0.130945833333333,2.4,3,0,0,1,""
|
31
|
-
37,1,17.1776350229212,0.166088055555556,2.853,3,0,0,1,""
|
32
|
-
38,1,17.0978233675256,0.133233333333333,2.278,3,0,0,1,""
|
33
|
-
39,1,32.5207021199134,0.203716388888889,6.625,3,0,0,1,""
|
34
|
-
40,1,19.934809873384,0.329122777777778,6.561,3,0,0,1,""
|
35
|
-
41,1,21.5138017732911,0.6572525,14.14,2,0,0,1,""
|
36
|
-
42,1,27.5257702575601,0.292380555555556,8.048,3,0,0,1,""
|
37
|
-
43,1,28.104520679061,0.276574722222222,7.773,3,0,0,1,""
|
38
|
-
44,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
|
39
|
-
45,3,22.3224624996634,0.0825177777777778,1.842,3,0,0,1,""
|
40
|
-
46,3,32.3773039972723,0.166196666666667,5.381,3,0,0,1,""
|
41
|
-
47,1,22.3779245187911,0.3471725,7.769,2,0,0,1,""
|
42
|
-
48,1,24.9082558704182,0.264851944444444,6.597,2,0,0,1,""
|
43
|
-
49,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
|
44
|
-
50,5,37.1409017347196,0.500849444444444,18.602,3,0,0,2,""
|
45
|
-
51,2,72.92675452038,0.00906388888888889,0.661,1,0,0,2,""
|
46
|
-
54,1,0.0663753526190608,0.0150658333333333,0.001,2,0,0,1,""
|
47
|
-
55,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
|
48
|
-
56,1,83.3281350578336,0.0837172222222222,6.976,3,0,0,1,""
|
49
|
-
58,6,96.2060288173573,0.350695277777778,33.739,2,0,0,2,""
|
50
|
-
61,1,3.23767476085357,0.0101925,0.033,2,0,0,2,""
|
51
|
-
63,1,0.582100412321125,0.00343583333333333,0.002,2,0,0,2,""
|
52
|
-
65,1,1.3868378812199,0.00432638888888889,0.006,2,0,0,2,""
|
53
|
-
67,1,0.180865138244603,0.0331738888888889,0.006,2,0,0,2,""
|
54
|
-
70,1,0.187306514971514,0.0320330555555556,0.006,2,0,0,2,""
|
55
|
-
71,1,2.7403516784654,0.00364916666666667,0.01,2,0,0,2,""
|
56
|
-
78,1,1.55177191415992,0.00902194444444445,0.014,2,0,0,2,""
|
57
|
-
99,1,0.891614214585237,0.0325252777777778,0.029,2,0,0,2,""
|
58
|
-
128,1,1.2619744642138,0.133124722222222,0.168,2,0,0,2,""
|
59
|
-
131,7,19.8334720520812,0.509290555555556,10.101,3,0,0,1,""
|
60
|
-
132,7,16.8934214662962,0.563710555555556,9.523,3,0,0,1,""
|
61
|
-
133,7,20.5827023203105,0.493181111111111,10.151,3,0,0,1,""
|
62
|
-
134,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
|
63
|
-
135,8,0.307454685867442,0.458604166666667,0.141,2,0,0,1,""
|
64
|
-
136,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
|
65
|
-
137,9,21.6717437150604,0.248941666666667,5.395,3,0,0,1,""
|
66
|
-
138,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
|
67
|
-
139,9,33.2011779795367,0.104604722222222,3.473,3,0,0,1,""
|
68
|
-
140,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
|
69
|
-
141,9,26.8955892313514,0.230483888888889,6.199,3,0,0,1,""
|
70
|
-
142,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
|
71
|
-
143,9,31.0853313305217,0.240402777777778,7.473,3,0,0,1,""
|
72
|
-
145,8,0.461929548480813,0.114736111111111,0.053,2,0,0,1,""
|
73
|
-
146,8,0.777134962438477,0.0193016666666667,0.015,2,0,0,1,""
|
74
|
-
147,8,1.28318369631319,0.355366111111111,0.456,2,0,0,1,""
|
75
|
-
148,8,1.48769112698506,0.00470527777777778,0.007,2,0,0,1,""
|
76
|
-
149,8,23.0511917163542,0.318378333333333,7.339,3,0,0,1,""
|
77
|
-
150,7,21.2391801941645,0.4751125,10.091,3,0,0,1,""
|
78
|
-
151,7,21.3008271746005,0.443175277777778,9.44,3,0,0,1,""
|
79
|
-
153,7,24.4305935108028,0.416649722222222,10.179,3,0,0,1,""
|
80
|
-
155,1,0.637205734851614,0.00470805555555556,0.003,2,0,0,2,""
|
81
|
-
156,3,17.9277713150431,0.0212519444444444,0.381,3,0,0,1,""
|
82
|
-
157,10,0.196122416279442,0.0866805555555556,0.017,1,0,0,2,""
|
83
|
-
158,10,0.0358392609147971,0.0558047222222222,0.002,1,0,0,2,""
|
84
|
-
159,1,1.03398755385352,0.00290138888888889,0.003,3,0,0,2,""
|
85
|
-
171,1,8.98564792345559,0.00400638888888889,0.036,1,3,1,2,"008 - SANTA TEREZA B INDUSTRIA"
|
86
|
-
173,1,0.727684346701164,0.0137422222222222,0.01,3,0,0,1,"carro"
|
87
|
-
177,1,3.45644242463035,0.00433972222222222,0.015,3,1,1,2,"040 - MARCOS FREIRE II DIA "
|
88
|
-
179,1,1.58068057080132,0.00506111111111111,0.008,3,1,2,2,"008 - SANTA TEREZA B INDUSTRIA"
|
89
|
-
180,1,0.254912373871482,0.0235375,0.006,2,0,0,1,"carro"
|
90
|
-
190,1,0.919540229885058,0.002175,0.002,2,0,0,1,"carro"
|
91
|
-
205,1,1.02290889717635,0.00782083333333333,0.008,3,2,1,2,"409 - RIOMAR DIA "
|
92
|
-
206,1,0.0601222485720966,0.0166327777777778,0.001,3,0,0,1,"carro"
|
93
|
-
207,1,0.0669367155853642,0.104576388888889,0.007,3,0,0,1,"carro"
|
94
|
-
208,1,13.4687985264441,0.294978055555556,3.973,3,0,0,1,"carro"
|
95
|
-
209,10,0.125918420126597,0.262074444444444,0.033,2,0,0,1,"carro"
|
96
|
-
210,10,23.784876752306,0.266513888888889,6.339,1,2,2,2,"051 - ATALAIA CENTRO "
|
97
|
-
248,10,24.003004419964,0.288463888888889,6.924,3,1,2,2,"051 - ATALAIA CENTRO "
|
98
|
-
32446,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
|
99
|
-
32447,10,21.1954933253485,0.310773611111111,6.587,3,2,2,2,"051 - ATALAIA CENTRO "
|
100
|
-
37945,10,20.3702468927379,0.391600555555556,7.977,3,1,2,2,"051 - ATALAIA CENTRO "
|
101
|
-
37949,11,2.87800872909554,0.0128561111111111,0.037,1,2,2,2,"007 - FERNANDO COLLOR ATALAIA "
|
102
|
-
37950,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
|
103
|
-
37951,10,18.7935954343691,0.12616,2.371,3,1,2,2,"100 1 - CIRCULAR SHOPPINGS "
|
104
|
-
37953,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
|
105
|
-
37954,10,14.9003918467513,0.462269722222222,6.888,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
|
106
|
-
37955,10,25.5547121629502,0.442071111111111,11.297,3,1,2,2,"080 - BUGIO ATALAIA"
|
107
|
-
37956,10,6.76963371457903,0.168842222222222,1.143,3,0,0,1,"carro"
|
108
|
-
37957,10,22.4681840403171,0.369900833333333,8.311,3,0,0,1,"carro"
|
109
|
-
37960,1,13.5322194428727,0.467846388888889,6.331,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
|
110
|
-
37961,10,17.9720982129203,0.454092777777778,8.161,3,1,2,2,"080 - BUGIO ATALAIA"
|
111
|
-
37962,12,14.7120528108936,1.27915527777778,18.819,2,0,0,1,"carro"
|
112
|
-
37964,10,29.5409544460097,0.213940277777778,6.32,3,1,2,2,"051 - ATALAIA CENTRO"
|
113
|
-
37965,10,15.6202167120987,0.330469166666667,5.162,3,1,2,2,"715 - TIJUQUINHA DES MAYNARD"
|
114
|
-
37967,1,0.00977939318865264,0.3067675,0.003,1,1,1,2,"040 - MARCOS FREIRE II DIA"
|
115
|
-
37969,1,16.7788951880074,0.193099722222222,3.24,1,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
|
116
|
-
37971,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
|
117
|
-
37972,1,4.87144790257104,0.00862166666666667,0.042,3,1,1,2,"031 - EDUARDO GOMES DES. MAYNA"
|
118
|
-
37973,1,0.366662786637178,0.0190911111111111,0.007,2,0,0,1,"carro"
|
119
|
-
37979,1,0.559217096065508,0.05007,0.028,3,1,2,2,"034 - TERM ROD L BATISTA"
|
120
|
-
37982,1,4.68039003250271,0.00384583333333333,0.018,3,1,2,2,"034 - TERM ROD L BATISTA"
|
121
|
-
37983,1,1.60135225301366,0.00624472222222222,0.01,3,1,2,2,"034 - TERM ROD L BATISTA"
|
122
|
-
37989,10,18.7052756317992,0.436935555555556,8.173,1,1,1,2,"702 - AUGUSTO FRANCO BEIRA MAR"
|
123
|
-
37990,1,1.83416125334352,0.00218083333333333,0.004,3,1,2,2,"020 - PIABETA DIA"
|
124
|
-
37992,10,13.5582998412167,0.5305975,7.194,2,0,0,1,"carro"
|
125
|
-
37993,13,0.102032140124139,0.00980083333333333,0.001,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
|
126
|
-
37995,10,0.177183941021579,0.214466388888889,0.038,3,1,2,2,"001 - A FRANCO BUGIO"
|
127
|
-
37996,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
|
128
|
-
37997,13,25.9576025205289,0.537453333333333,13.951,2,0,0,1,"carro"
|
129
|
-
37998,1,1.4140938015555,0.00353583333333333,0.005,3,0,0,1,"carro"
|
130
|
-
38000,1,16.685368043088,0.4456,7.435,3,2,2,2,"715 - TIJUQUINHA DES MAYNARD"
|
131
|
-
38001,10,10.9412890874282,0.766088888888889,8.382,3,1,2,2,"007 - FERNANDO COLLOR ATALAIA"
|
132
|
-
38002,12,30.3970446454738,0.804716388888889,24.461,3,0,0,1,"carro"
|
133
|
-
38003,14,6.75973582327488,0.487888888888889,3.298,2,0,0,1,"carro"
|
134
|
-
38012,15,25.6549384144076,0.3566175,9.149,2,0,0,1,"carro"
|
135
|
-
38013,15,17.6544921328944,0.525588611111111,9.279,1,0,0,1,"carro"
|
136
|
-
38015,10,24.5047380202986,0.198043333333333,4.853,1,2,2,2,"051 - ATALAIA CENTRO"
|
137
|
-
38016,1,11.5665726177222,0.441358055555556,5.105,1,3,1,2,"031 - EDUARDO GOMES DES. MAYNA"
|
138
|
-
38017,16,14.6308963601367,0.766733611111111,11.218,2,0,0,1,"carro"
|
139
|
-
38018,17,0.398475672427697,0.0175669444444444,0.007,3,1,2,2,"061 - M. FREIRE CENTRO"
|
140
|
-
38019,16,9.07685860763604,0.512401944444444,4.651,2,0,0,1,"carro"
|
141
|
-
38020,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
|
142
|
-
38021,18,25.4513325533673,0.193978055555556,4.937,3,0,0,1,"carro"
|
143
|
-
38022,1,19.3767939170255,0.351399722222222,6.809,1,2,2,2,"031 - EDUARDO GOMES DES. MAYNA"
|
144
|
-
38024,10,7.13806787802501,0.580829444444444,4.146,3,1,2,2,"051 - ATALAIA CENTRO"
|
145
|
-
38030,1,1.78318709312199,0.00392555555555556,0.007,3,1,2,2,"031 - EDUARDO GOMES DES. MAYNA"
|
146
|
-
38031,19,0.172012210205695,0.459269722222222,0.079,3,1,2,2,"020 - PIABETA DIA"
|
147
|
-
38039,20,1.31161192942279,0.0160108333333333,0.021,3,1,2,2,"002 - FERNANDO COLLOR DIA"
|
148
|
-
38044,21,23.1993918615228,0.234230277777778,5.434,3,2,2,2,"001 - A FRANCO BUGIO"
|
149
|
-
38045,21,23.5029280217167,0.159426944444444,3.747,3,1,2,2,"001 - A FRANCO BUGIO"
|
150
|
-
38064,22,1.4451421176245,0.0927244444444444,0.134,3,2,2,2,"707 - CASTELO BRANCO CENTRO"
|
151
|
-
38069,23,0.536246276067527,0.0223777777777778,0.012,3,1,2,2,"001 - A FRANCO BUGIO"
|
152
|
-
38072,24,36.6470717274739,0.200070555555556,7.332,3,0,0,1,"carro"
|
153
|
-
38073,24,31.3673367669048,0.2558075,8.024,3,0,0,1,"carro"
|
154
|
-
38074,24,25.5623968267628,0.177526388888889,4.538,3,0,0,1,"carro"
|
155
|
-
38075,24,38.0281073650115,0.171346944444444,6.516,3,0,0,1,"carro"
|
156
|
-
38076,24,28.1424373938593,0.226703888888889,6.38,3,0,0,1,"carro"
|
157
|
-
38077,24,21.8120695151521,0.143773611111111,3.136,3,0,0,1,"carro"
|
158
|
-
38079,24,23.8285145972787,0.196906944444444,4.692,2,0,0,1,"carro"
|
159
|
-
38080,24,28.3366193216111,0.110457777777778,3.13,3,0,0,1,"carro"
|
160
|
-
38081,24,30.051731888125,0.218756111111111,6.574,2,0,0,1,"carro"
|
161
|
-
38082,24,30.1737883866982,0.255387222222222,7.706,3,0,0,1,"carro"
|
162
|
-
38084,25,1.15377219409012,0.0130008333333333,0.015,1,3,2,2,"721 - CASTELO BRANCO SUISSA"
|
163
|
-
38090,26,0.843222985633979,0.00711555555555556,0.006,3,1,2,2,"002 - FERNANDO COLLOR DIA"
|
164
|
-
38092,27,1.37299771167048,0.0167516666666667,0.023,3,1,2,2,"060 - PADRE PEDRO CAMPUS"
|
@@ -1,141 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "8b01d639-7417-4a71-a735-d519043691ac",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"from sklearn.decomposition import PCA\n",
|
14
|
-
"from sklearn.neighbors import KNeighborsClassifier\n",
|
15
|
-
"from sklearn.model_selection import train_test_split\n",
|
16
|
-
"from sklearn.preprocessing import StandardScaler, LabelEncoder\n",
|
17
|
-
"from sklearn.metrics import accuracy_score"
|
18
|
-
]
|
19
|
-
},
|
20
|
-
{
|
21
|
-
"cell_type": "code",
|
22
|
-
"execution_count": null,
|
23
|
-
"id": "03cbb0a7-0a95-4e08-94a9-028c664ecbe1",
|
24
|
-
"metadata": {},
|
25
|
-
"outputs": [],
|
26
|
-
"source": [
|
27
|
-
"file_path = \"Wilt.csv\"\n",
|
28
|
-
"df = pd.read_csv(file_path)\n",
|
29
|
-
"df.head()"
|
30
|
-
]
|
31
|
-
},
|
32
|
-
{
|
33
|
-
"cell_type": "code",
|
34
|
-
"execution_count": null,
|
35
|
-
"id": "0a4961c3-0fea-401b-a7f0-5f6fd0eb9e69",
|
36
|
-
"metadata": {},
|
37
|
-
"outputs": [],
|
38
|
-
"source": [
|
39
|
-
"y = df.iloc[:, 0]\n",
|
40
|
-
"X = df.iloc[:, 1:]"
|
41
|
-
]
|
42
|
-
},
|
43
|
-
{
|
44
|
-
"cell_type": "code",
|
45
|
-
"execution_count": null,
|
46
|
-
"id": "d6699a1a-5436-40d7-84b9-f2c3d5e87850",
|
47
|
-
"metadata": {},
|
48
|
-
"outputs": [],
|
49
|
-
"source": [
|
50
|
-
"if y.dtype == 'object':\n",
|
51
|
-
" class_mapping = {label: idx for idx, label in enumerate(y.unique())}\n",
|
52
|
-
" y = y.map(class_mapping)\n",
|
53
|
-
"\n",
|
54
|
-
"scaler = StandardScaler()\n",
|
55
|
-
"X_scaled = scaler.fit_transform(X)\n",
|
56
|
-
"\n",
|
57
|
-
"pca = PCA(n_components=2)\n",
|
58
|
-
"X_pca = pca.fit_transform(X_scaled)\n",
|
59
|
-
"\n",
|
60
|
-
"X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)\n",
|
61
|
-
"X_pca_train, X_pca_test, _, _ = train_test_split(X_pca, y, test_size=0.2, random_state=42)"
|
62
|
-
]
|
63
|
-
},
|
64
|
-
{
|
65
|
-
"cell_type": "code",
|
66
|
-
"execution_count": null,
|
67
|
-
"id": "0c6c271e-3725-4472-b082-a96aa9850ec6",
|
68
|
-
"metadata": {},
|
69
|
-
"outputs": [],
|
70
|
-
"source": [
|
71
|
-
"knn_original = KNeighborsClassifier(n_neighbors=5)\n",
|
72
|
-
"knn_original.fit(X_train, y_train)\n",
|
73
|
-
"y_pred_original = knn_original.predict(X_test)\n",
|
74
|
-
"accuracy_original = accuracy_score(y_test, y_pred_original)\n",
|
75
|
-
"\n",
|
76
|
-
"knn_pca = KNeighborsClassifier(n_neighbors=5)\n",
|
77
|
-
"knn_pca.fit(X_pca_train, y_train)\n",
|
78
|
-
"y_pred_pca = knn_pca.predict(X_pca_test)\n",
|
79
|
-
"accuracy_pca = accuracy_score(y_test, y_pred_pca)\n",
|
80
|
-
"\n",
|
81
|
-
"print(\"Accuracy without PCA:\", accuracy_original)\n",
|
82
|
-
"print(\"Accuracy with PCA:\", accuracy_pca)"
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "code",
|
87
|
-
"execution_count": null,
|
88
|
-
"id": "5b129aaa-8fba-4dac-a4be-e94c277d40ae",
|
89
|
-
"metadata": {},
|
90
|
-
"outputs": [],
|
91
|
-
"source": [
|
92
|
-
"plt.figure(figsize=(6, 4))\n",
|
93
|
-
"plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y, cmap='coolwarm', alpha=0.5)\n",
|
94
|
-
"plt.xlabel(\"Principal Component 1\")\n",
|
95
|
-
"plt.ylabel(\"Principal Component 2\")\n",
|
96
|
-
"plt.title(\"PCA Visualization of Wilt Dataset\")\n",
|
97
|
-
"plt.colorbar(label=\"Class\")\n",
|
98
|
-
"plt.show()"
|
99
|
-
]
|
100
|
-
},
|
101
|
-
{
|
102
|
-
"cell_type": "code",
|
103
|
-
"execution_count": null,
|
104
|
-
"id": "a4b9dcf0-d091-4ece-9651-e84932fb1eba",
|
105
|
-
"metadata": {},
|
106
|
-
"outputs": [],
|
107
|
-
"source": [
|
108
|
-
"labels = ['Without PCA', 'With PCA']\n",
|
109
|
-
"accuracies = [accuracy_original, accuracy_pca]\n",
|
110
|
-
"plt.figure(figsize=(6, 4))\n",
|
111
|
-
"plt.bar(labels, accuracies, color=['blue', 'orange'])\n",
|
112
|
-
"plt.xlabel(\"Model\")\n",
|
113
|
-
"plt.ylabel(\"Accuracy\")\n",
|
114
|
-
"plt.title(\"KNN Classification Accuracy Comparison\")\n",
|
115
|
-
"plt.ylim(0, 1)\n",
|
116
|
-
"plt.show()"
|
117
|
-
]
|
118
|
-
}
|
119
|
-
],
|
120
|
-
"metadata": {
|
121
|
-
"kernelspec": {
|
122
|
-
"display_name": "Python 3 (ipykernel)",
|
123
|
-
"language": "python",
|
124
|
-
"name": "python3"
|
125
|
-
},
|
126
|
-
"language_info": {
|
127
|
-
"codemirror_mode": {
|
128
|
-
"name": "ipython",
|
129
|
-
"version": 3
|
130
|
-
},
|
131
|
-
"file_extension": ".py",
|
132
|
-
"mimetype": "text/x-python",
|
133
|
-
"name": "python",
|
134
|
-
"nbconvert_exporter": "python",
|
135
|
-
"pygments_lexer": "ipython3",
|
136
|
-
"version": "3.12.4"
|
137
|
-
}
|
138
|
-
},
|
139
|
-
"nbformat": 4,
|
140
|
-
"nbformat_minor": 5
|
141
|
-
}
|