noshot 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
- noshot-0.4.1.dist-info/RECORD +15 -0
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
- noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
- noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
- noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
- noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
- noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
- noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
- noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
- noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
- noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
- noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
- noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -133
- noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -139
- noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -143
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -130
- noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -1
- noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -164
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -141
- noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -4340
- noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -1
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
- noshot-0.3.9.dist-info/RECORD +0 -62
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,1416 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {
|
6
|
-
"id": "YPUOzkLyRB8u"
|
7
|
-
},
|
8
|
-
"source": [
|
9
|
-
"# ***Pre Steps***"
|
10
|
-
]
|
11
|
-
},
|
12
|
-
{
|
13
|
-
"cell_type": "code",
|
14
|
-
"execution_count": null,
|
15
|
-
"metadata": {
|
16
|
-
"executionInfo": {
|
17
|
-
"elapsed": 18,
|
18
|
-
"status": "ok",
|
19
|
-
"timestamp": 1740357338286,
|
20
|
-
"user": {
|
21
|
-
"displayName": "Jaison A",
|
22
|
-
"userId": "07006398627763032071"
|
23
|
-
},
|
24
|
-
"user_tz": -330
|
25
|
-
},
|
26
|
-
"id": "NPvIf3ZFLvuV"
|
27
|
-
},
|
28
|
-
"outputs": [],
|
29
|
-
"source": [
|
30
|
-
"import pandas as pd\n",
|
31
|
-
"import matplotlib.pyplot as plt\n",
|
32
|
-
"import seaborn as sns\n",
|
33
|
-
"import datetime\n",
|
34
|
-
"import numpy as np\n",
|
35
|
-
"import warnings\n",
|
36
|
-
"warnings.filterwarnings('ignore')"
|
37
|
-
]
|
38
|
-
},
|
39
|
-
{
|
40
|
-
"cell_type": "markdown",
|
41
|
-
"metadata": {
|
42
|
-
"id": "gO-DdNvcL804"
|
43
|
-
},
|
44
|
-
"source": [
|
45
|
-
"# ***EX_1***"
|
46
|
-
]
|
47
|
-
},
|
48
|
-
{
|
49
|
-
"cell_type": "markdown",
|
50
|
-
"metadata": {
|
51
|
-
"id": "JtZeYI8jWgB7"
|
52
|
-
},
|
53
|
-
"source": [
|
54
|
-
"## ***Random Data.***"
|
55
|
-
]
|
56
|
-
},
|
57
|
-
{
|
58
|
-
"cell_type": "code",
|
59
|
-
"execution_count": null,
|
60
|
-
"metadata": {
|
61
|
-
"colab": {
|
62
|
-
"base_uri": "https://localhost:8080/"
|
63
|
-
},
|
64
|
-
"executionInfo": {
|
65
|
-
"elapsed": 721,
|
66
|
-
"status": "ok",
|
67
|
-
"timestamp": 1740357650710,
|
68
|
-
"user": {
|
69
|
-
"displayName": "Jaison A",
|
70
|
-
"userId": "07006398627763032071"
|
71
|
-
},
|
72
|
-
"user_tz": -330
|
73
|
-
},
|
74
|
-
"id": "bmxATAzRXDCs",
|
75
|
-
"outputId": "c8875b55-01a6-4d36-a47a-dd0cbe6bc107"
|
76
|
-
},
|
77
|
-
"outputs": [],
|
78
|
-
"source": [
|
79
|
-
"np.random.seed(42)\n",
|
80
|
-
"values=np.random.randn(100)\n",
|
81
|
-
"values"
|
82
|
-
]
|
83
|
-
},
|
84
|
-
{
|
85
|
-
"cell_type": "code",
|
86
|
-
"execution_count": null,
|
87
|
-
"metadata": {
|
88
|
-
"executionInfo": {
|
89
|
-
"elapsed": 3,
|
90
|
-
"status": "ok",
|
91
|
-
"timestamp": 1740357652355,
|
92
|
-
"user": {
|
93
|
-
"displayName": "Jaison A",
|
94
|
-
"userId": "07006398627763032071"
|
95
|
-
},
|
96
|
-
"user_tz": -330
|
97
|
-
},
|
98
|
-
"id": "ooK9lOgAXrL0"
|
99
|
-
},
|
100
|
-
"outputs": [],
|
101
|
-
"source": [
|
102
|
-
"dates=pd.date_range('2010-01-01',periods=len(values),freq='D')"
|
103
|
-
]
|
104
|
-
},
|
105
|
-
{
|
106
|
-
"cell_type": "code",
|
107
|
-
"execution_count": null,
|
108
|
-
"metadata": {
|
109
|
-
"colab": {
|
110
|
-
"base_uri": "https://localhost:8080/",
|
111
|
-
"height": 423
|
112
|
-
},
|
113
|
-
"executionInfo": {
|
114
|
-
"elapsed": 9,
|
115
|
-
"status": "ok",
|
116
|
-
"timestamp": 1740357654295,
|
117
|
-
"user": {
|
118
|
-
"displayName": "Jaison A",
|
119
|
-
"userId": "07006398627763032071"
|
120
|
-
},
|
121
|
-
"user_tz": -330
|
122
|
-
},
|
123
|
-
"id": "1XH7EXGpXjpb",
|
124
|
-
"outputId": "223b4a24-2bf7-4419-9773-d0fd7ae462d4"
|
125
|
-
},
|
126
|
-
"outputs": [],
|
127
|
-
"source": [
|
128
|
-
"data1=pd.DataFrame(values,index=dates,columns=[\"Values\"])\n",
|
129
|
-
"data1"
|
130
|
-
]
|
131
|
-
},
|
132
|
-
{
|
133
|
-
"cell_type": "markdown",
|
134
|
-
"metadata": {
|
135
|
-
"id": "Zl9W7OxjWqqO"
|
136
|
-
},
|
137
|
-
"source": [
|
138
|
-
"## ***Dataset Data***"
|
139
|
-
]
|
140
|
-
},
|
141
|
-
{
|
142
|
-
"cell_type": "code",
|
143
|
-
"execution_count": null,
|
144
|
-
"metadata": {
|
145
|
-
"colab": {
|
146
|
-
"base_uri": "https://localhost:8080/",
|
147
|
-
"height": 432
|
148
|
-
},
|
149
|
-
"executionInfo": {
|
150
|
-
"elapsed": 944,
|
151
|
-
"status": "ok",
|
152
|
-
"timestamp": 1740357339223,
|
153
|
-
"user": {
|
154
|
-
"displayName": "Jaison A",
|
155
|
-
"userId": "07006398627763032071"
|
156
|
-
},
|
157
|
-
"user_tz": -330
|
158
|
-
},
|
159
|
-
"id": "sG8VvdN7MFK3",
|
160
|
-
"outputId": "37d4cf03-b3d5-46e0-de82-8e23e56b4188"
|
161
|
-
},
|
162
|
-
"outputs": [],
|
163
|
-
"source": [
|
164
|
-
"data1=pd.read_csv(\"data/raw_sales.csv\")\n",
|
165
|
-
"display(\"First Five Rows :\",data1.head())\n",
|
166
|
-
"display(\"Last Five Rows :\",data1.tail())"
|
167
|
-
]
|
168
|
-
},
|
169
|
-
{
|
170
|
-
"cell_type": "code",
|
171
|
-
"execution_count": null,
|
172
|
-
"metadata": {
|
173
|
-
"colab": {
|
174
|
-
"base_uri": "https://localhost:8080/",
|
175
|
-
"height": 319
|
176
|
-
},
|
177
|
-
"executionInfo": {
|
178
|
-
"elapsed": 25,
|
179
|
-
"status": "ok",
|
180
|
-
"timestamp": 1740357339224,
|
181
|
-
"user": {
|
182
|
-
"displayName": "Jaison A",
|
183
|
-
"userId": "07006398627763032071"
|
184
|
-
},
|
185
|
-
"user_tz": -330
|
186
|
-
},
|
187
|
-
"id": "y_u5ogPWcnpe",
|
188
|
-
"outputId": "5cb89815-9b6a-4518-8ab6-42f8ad1bef17"
|
189
|
-
},
|
190
|
-
"outputs": [],
|
191
|
-
"source": [
|
192
|
-
"#summary Statistics\n",
|
193
|
-
"display(\"Summary Statistics :\",data1.describe())"
|
194
|
-
]
|
195
|
-
},
|
196
|
-
{
|
197
|
-
"cell_type": "code",
|
198
|
-
"execution_count": null,
|
199
|
-
"metadata": {
|
200
|
-
"colab": {
|
201
|
-
"base_uri": "https://localhost:8080/",
|
202
|
-
"height": 423
|
203
|
-
},
|
204
|
-
"executionInfo": {
|
205
|
-
"elapsed": 21,
|
206
|
-
"status": "ok",
|
207
|
-
"timestamp": 1740357339224,
|
208
|
-
"user": {
|
209
|
-
"displayName": "Jaison A",
|
210
|
-
"userId": "07006398627763032071"
|
211
|
-
},
|
212
|
-
"user_tz": -330
|
213
|
-
},
|
214
|
-
"id": "ctnAohCcdHoE",
|
215
|
-
"outputId": "8ffd34e9-6709-473e-c17c-d2d5e753889a"
|
216
|
-
},
|
217
|
-
"outputs": [],
|
218
|
-
"source": [
|
219
|
-
"#Filter data for a specific year\n",
|
220
|
-
"data1[\"datesold\"]=pd.to_datetime(data1['datesold'])\n",
|
221
|
-
"'''\n",
|
222
|
-
"query_year=int(input(\"Enter year : \"))\n",
|
223
|
-
"'''\n",
|
224
|
-
"query_year=2015\n",
|
225
|
-
"display(data1[data1[\"datesold\"].dt.year==query_year])"
|
226
|
-
]
|
227
|
-
},
|
228
|
-
{
|
229
|
-
"cell_type": "code",
|
230
|
-
"execution_count": null,
|
231
|
-
"metadata": {
|
232
|
-
"colab": {
|
233
|
-
"base_uri": "https://localhost:8080/",
|
234
|
-
"height": 912
|
235
|
-
},
|
236
|
-
"executionInfo": {
|
237
|
-
"elapsed": 1305,
|
238
|
-
"status": "ok",
|
239
|
-
"timestamp": 1740357340510,
|
240
|
-
"user": {
|
241
|
-
"displayName": "Jaison A",
|
242
|
-
"userId": "07006398627763032071"
|
243
|
-
},
|
244
|
-
"user_tz": -330
|
245
|
-
},
|
246
|
-
"id": "jqUZ1GRjeRMn",
|
247
|
-
"outputId": "42f9205b-2abf-4e49-c05c-598c968f6133"
|
248
|
-
},
|
249
|
-
"outputs": [],
|
250
|
-
"source": [
|
251
|
-
"# Plot the average price per year\n",
|
252
|
-
"avg_price_per_year=data1.groupby(data1[\"datesold\"].dt.year)[\"price\"].mean().reset_index(name=\"Average Price\")\n",
|
253
|
-
"display(avg_price_per_year)\n",
|
254
|
-
"plt.plot(avg_price_per_year[\"datesold\"],avg_price_per_year[\"Average Price\"])\n",
|
255
|
-
"plt.title(\"Average Price per Year\")\n",
|
256
|
-
"plt.xlabel(\"Year\")\n",
|
257
|
-
"plt.ylabel(\"Average Price\")\n",
|
258
|
-
"plt.show()"
|
259
|
-
]
|
260
|
-
},
|
261
|
-
{
|
262
|
-
"cell_type": "code",
|
263
|
-
"execution_count": null,
|
264
|
-
"metadata": {
|
265
|
-
"colab": {
|
266
|
-
"base_uri": "https://localhost:8080/",
|
267
|
-
"height": 912
|
268
|
-
},
|
269
|
-
"executionInfo": {
|
270
|
-
"elapsed": 30,
|
271
|
-
"status": "ok",
|
272
|
-
"timestamp": 1740357340510,
|
273
|
-
"user": {
|
274
|
-
"displayName": "Jaison A",
|
275
|
-
"userId": "07006398627763032071"
|
276
|
-
},
|
277
|
-
"user_tz": -330
|
278
|
-
},
|
279
|
-
"id": "jr1y2lnXfJxB",
|
280
|
-
"outputId": "e10a53c9-7e85-468f-bf56-0e2b7c86b769"
|
281
|
-
},
|
282
|
-
"outputs": [],
|
283
|
-
"source": [
|
284
|
-
"#Count of properties sold per year\n",
|
285
|
-
"property_count_per_year=data1.groupby(data1[\"datesold\"].dt.year).size().reset_index(name=\"Properties_sold\")\n",
|
286
|
-
"property_count_per_year.rename(columns={\"datesold\":\"Year\"},inplace=True)\n",
|
287
|
-
"display(property_count_per_year)\n",
|
288
|
-
"plt.plot(property_count_per_year[\"Year\"],property_count_per_year[\"Properties_sold\"])\n",
|
289
|
-
"plt.title(\"Properties Sold per Year\")\n",
|
290
|
-
"plt.xlabel(\"Year\")\n",
|
291
|
-
"plt.ylabel(\"Properties Sold\")\n",
|
292
|
-
"plt.show()"
|
293
|
-
]
|
294
|
-
},
|
295
|
-
{
|
296
|
-
"cell_type": "code",
|
297
|
-
"execution_count": null,
|
298
|
-
"metadata": {
|
299
|
-
"colab": {
|
300
|
-
"base_uri": "https://localhost:8080/",
|
301
|
-
"height": 423
|
302
|
-
},
|
303
|
-
"executionInfo": {
|
304
|
-
"elapsed": 25,
|
305
|
-
"status": "ok",
|
306
|
-
"timestamp": 1740357340511,
|
307
|
-
"user": {
|
308
|
-
"displayName": "Jaison A",
|
309
|
-
"userId": "07006398627763032071"
|
310
|
-
},
|
311
|
-
"user_tz": -330
|
312
|
-
},
|
313
|
-
"id": "YkziajZ2jC2J",
|
314
|
-
"outputId": "09b7cbd9-27c8-4b35-94c6-dc094029f638"
|
315
|
-
},
|
316
|
-
"outputs": [],
|
317
|
-
"source": [
|
318
|
-
"#Query for a specific date range (e.g., Jan 2010 to Dec 2015)\n",
|
319
|
-
"'''\n",
|
320
|
-
"start_date=input(\"Enter date in format yyyy-mm-dd : \").split(\"-\")\n",
|
321
|
-
"start_date=datetime.datetime(int(start_date[0]),int(start_date[1]),int(start_date[2]))\n",
|
322
|
-
"end_date=input(\"Enter date in format yyyy-mm-dd : \").split(\"-\")\n",
|
323
|
-
"end_date=datetime.datetime(int(end_date[0]),int(end_date[1]),int(end_date[2]))\n",
|
324
|
-
"'''\n",
|
325
|
-
"start_date=datetime.datetime(2010,5,1)\n",
|
326
|
-
"end_date=datetime.datetime(2015,1,1)\n",
|
327
|
-
"display(data1[(data1[\"datesold\"]>=start_date) & (data1[\"datesold\"]<=end_date)])"
|
328
|
-
]
|
329
|
-
},
|
330
|
-
{
|
331
|
-
"cell_type": "code",
|
332
|
-
"execution_count": null,
|
333
|
-
"metadata": {
|
334
|
-
"colab": {
|
335
|
-
"base_uri": "https://localhost:8080/",
|
336
|
-
"height": 880
|
337
|
-
},
|
338
|
-
"executionInfo": {
|
339
|
-
"elapsed": 24,
|
340
|
-
"status": "ok",
|
341
|
-
"timestamp": 1740357340511,
|
342
|
-
"user": {
|
343
|
-
"displayName": "Jaison A",
|
344
|
-
"userId": "07006398627763032071"
|
345
|
-
},
|
346
|
-
"user_tz": -330
|
347
|
-
},
|
348
|
-
"id": "NJ_5sVMFoTyX",
|
349
|
-
"outputId": "d6ea639a-d5d1-4fce-e3f3-b5c87372c8e3"
|
350
|
-
},
|
351
|
-
"outputs": [],
|
352
|
-
"source": [
|
353
|
-
"#Calculate the mean price month-wise (use Groupby)\n",
|
354
|
-
"mean_price_by_month=data1.groupby(data1[\"datesold\"].dt.month)[\"price\"].mean().reset_index(name=\"Average per by month\")\n",
|
355
|
-
"mean_price_by_month.rename(columns={\"datesold\":\"Month\"},inplace=True)\n",
|
356
|
-
"display(mean_price_by_month)\n",
|
357
|
-
"plt.plot(mean_price_by_month[\"Month\"],mean_price_by_month[\"Average per by month\"])\n",
|
358
|
-
"plt.title(\"Average Price per Month\")\n",
|
359
|
-
"plt.xlabel(\"Month\")\n",
|
360
|
-
"plt.ylabel(\"Average Price\")\n",
|
361
|
-
"plt.show()"
|
362
|
-
]
|
363
|
-
},
|
364
|
-
{
|
365
|
-
"cell_type": "code",
|
366
|
-
"execution_count": null,
|
367
|
-
"metadata": {
|
368
|
-
"colab": {
|
369
|
-
"base_uri": "https://localhost:8080/",
|
370
|
-
"height": 472
|
371
|
-
},
|
372
|
-
"executionInfo": {
|
373
|
-
"elapsed": 22,
|
374
|
-
"status": "ok",
|
375
|
-
"timestamp": 1740357340511,
|
376
|
-
"user": {
|
377
|
-
"displayName": "Jaison A",
|
378
|
-
"userId": "07006398627763032071"
|
379
|
-
},
|
380
|
-
"user_tz": -330
|
381
|
-
},
|
382
|
-
"id": "KIz-sKstpBUu",
|
383
|
-
"outputId": "90f7fa37-b4a9-42ea-b62b-25addc60f25d"
|
384
|
-
},
|
385
|
-
"outputs": [],
|
386
|
-
"source": [
|
387
|
-
"#Perform a histogram plot\n",
|
388
|
-
"plt.hist(data1[\"price\"],bins=20)\n",
|
389
|
-
"plt.title(\"Histogram of price\")\n",
|
390
|
-
"plt.xlabel(\"price\")\n",
|
391
|
-
"plt.ylabel(\"Frequency\")\n",
|
392
|
-
"plt.show()"
|
393
|
-
]
|
394
|
-
},
|
395
|
-
{
|
396
|
-
"cell_type": "code",
|
397
|
-
"execution_count": null,
|
398
|
-
"metadata": {
|
399
|
-
"colab": {
|
400
|
-
"base_uri": "https://localhost:8080/",
|
401
|
-
"height": 423
|
402
|
-
},
|
403
|
-
"executionInfo": {
|
404
|
-
"elapsed": 21,
|
405
|
-
"status": "ok",
|
406
|
-
"timestamp": 1740357340512,
|
407
|
-
"user": {
|
408
|
-
"displayName": "Jaison A",
|
409
|
-
"userId": "07006398627763032071"
|
410
|
-
},
|
411
|
-
"user_tz": -330
|
412
|
-
},
|
413
|
-
"id": "qmZKeyMTpgJ2",
|
414
|
-
"outputId": "6ad5b16b-71a8-451f-d86c-4a0b4246a37c"
|
415
|
-
},
|
416
|
-
"outputs": [],
|
417
|
-
"source": [
|
418
|
-
"#Print the property price > 5Lakhs\n",
|
419
|
-
"display(data1[(data1[\"price\"]>500000)])"
|
420
|
-
]
|
421
|
-
},
|
422
|
-
{
|
423
|
-
"cell_type": "markdown",
|
424
|
-
"metadata": {
|
425
|
-
"id": "0TR58cjVMVhP"
|
426
|
-
},
|
427
|
-
"source": [
|
428
|
-
"# ***EX_2***"
|
429
|
-
]
|
430
|
-
},
|
431
|
-
{
|
432
|
-
"cell_type": "code",
|
433
|
-
"execution_count": null,
|
434
|
-
"metadata": {
|
435
|
-
"executionInfo": {
|
436
|
-
"elapsed": 19,
|
437
|
-
"status": "ok",
|
438
|
-
"timestamp": 1740357340512,
|
439
|
-
"user": {
|
440
|
-
"displayName": "Jaison A",
|
441
|
-
"userId": "07006398627763032071"
|
442
|
-
},
|
443
|
-
"user_tz": -330
|
444
|
-
},
|
445
|
-
"id": "HAvpD5xIjklW"
|
446
|
-
},
|
447
|
-
"outputs": [],
|
448
|
-
"source": [
|
449
|
-
"from sklearn.preprocessing import StandardScaler"
|
450
|
-
]
|
451
|
-
},
|
452
|
-
{
|
453
|
-
"cell_type": "code",
|
454
|
-
"execution_count": null,
|
455
|
-
"metadata": {
|
456
|
-
"colab": {
|
457
|
-
"base_uri": "https://localhost:8080/",
|
458
|
-
"height": 206
|
459
|
-
},
|
460
|
-
"executionInfo": {
|
461
|
-
"elapsed": 1252,
|
462
|
-
"status": "ok",
|
463
|
-
"timestamp": 1740357341745,
|
464
|
-
"user": {
|
465
|
-
"displayName": "Jaison A",
|
466
|
-
"userId": "07006398627763032071"
|
467
|
-
},
|
468
|
-
"user_tz": -330
|
469
|
-
},
|
470
|
-
"id": "KIJ4N5nXMYFg",
|
471
|
-
"outputId": "74c59d4c-1a16-4a0d-ad2e-aeb205f7ea57"
|
472
|
-
},
|
473
|
-
"outputs": [],
|
474
|
-
"source": [
|
475
|
-
"data2=pd.read_csv(\"data/shampoo_sales.csv\")\n",
|
476
|
-
"display(data2.head())"
|
477
|
-
]
|
478
|
-
},
|
479
|
-
{
|
480
|
-
"cell_type": "code",
|
481
|
-
"execution_count": null,
|
482
|
-
"metadata": {
|
483
|
-
"colab": {
|
484
|
-
"base_uri": "https://localhost:8080/",
|
485
|
-
"height": 1000
|
486
|
-
},
|
487
|
-
"executionInfo": {
|
488
|
-
"elapsed": 36,
|
489
|
-
"status": "ok",
|
490
|
-
"timestamp": 1740357341745,
|
491
|
-
"user": {
|
492
|
-
"displayName": "Jaison A",
|
493
|
-
"userId": "07006398627763032071"
|
494
|
-
},
|
495
|
-
"user_tz": -330
|
496
|
-
},
|
497
|
-
"id": "YvazR8g_qbGK",
|
498
|
-
"outputId": "b565bdd1-1ab5-4a7a-a418-50025151bb23"
|
499
|
-
},
|
500
|
-
"outputs": [],
|
501
|
-
"source": [
|
502
|
-
"#Perform basic Exploratory Data Analysis.\n",
|
503
|
-
"\n",
|
504
|
-
"data2.info()\n",
|
505
|
-
"display(\"Summary Statistics : \",data2.describe())\n",
|
506
|
-
"display(\"No of Missing Values :\",data2.isnull().sum().reset_index(name=\" No of Missing Values\"))\n",
|
507
|
-
"data2=data2.dropna()#removing missing data if they exist.\n",
|
508
|
-
"print(f\"\\n\\nNo of Duplicates in Dataset : {data2.duplicated().sum()}\\n\\n\")\n",
|
509
|
-
"data2=data2.drop_duplicates()#removing duplicates if available.\n",
|
510
|
-
"display(\"First Five Rows : \",data2.head())\n",
|
511
|
-
"display(\"Last Five Rows : \",data2.tail())"
|
512
|
-
]
|
513
|
-
},
|
514
|
-
{
|
515
|
-
"cell_type": "code",
|
516
|
-
"execution_count": null,
|
517
|
-
"metadata": {
|
518
|
-
"colab": {
|
519
|
-
"base_uri": "https://localhost:8080/",
|
520
|
-
"height": 395
|
521
|
-
},
|
522
|
-
"executionInfo": {
|
523
|
-
"elapsed": 30,
|
524
|
-
"status": "ok",
|
525
|
-
"timestamp": 1740357341745,
|
526
|
-
"user": {
|
527
|
-
"displayName": "Jaison A",
|
528
|
-
"userId": "07006398627763032071"
|
529
|
-
},
|
530
|
-
"user_tz": -330
|
531
|
-
},
|
532
|
-
"id": "QYLYOwa8tooX",
|
533
|
-
"outputId": "966c3194-2ecd-47d6-86d7-6d29684ea7ad"
|
534
|
-
},
|
535
|
-
"outputs": [],
|
536
|
-
"source": [
|
537
|
-
"#Perform date and lag based features\n",
|
538
|
-
"data2[\"Date\"] = pd.to_datetime(data2[\"Month\"],format=\"%m-%y\")\n",
|
539
|
-
"data2[\"Month\"]=data2[\"Date\"].dt.month\n",
|
540
|
-
"data2[\"Year\"]=data2[\"Date\"].dt.year\n",
|
541
|
-
"display(data2.head())\n",
|
542
|
-
"display(data2.tail())"
|
543
|
-
]
|
544
|
-
},
|
545
|
-
{
|
546
|
-
"cell_type": "code",
|
547
|
-
"execution_count": null,
|
548
|
-
"metadata": {
|
549
|
-
"colab": {
|
550
|
-
"base_uri": "https://localhost:8080/",
|
551
|
-
"height": 472
|
552
|
-
},
|
553
|
-
"executionInfo": {
|
554
|
-
"elapsed": 29,
|
555
|
-
"status": "ok",
|
556
|
-
"timestamp": 1740357341745,
|
557
|
-
"user": {
|
558
|
-
"displayName": "Jaison A",
|
559
|
-
"userId": "07006398627763032071"
|
560
|
-
},
|
561
|
-
"user_tz": -330
|
562
|
-
},
|
563
|
-
"id": "kaWQjZ6VfrOd",
|
564
|
-
"outputId": "21149ad5-56b5-4990-f108-d0fe513b776f"
|
565
|
-
},
|
566
|
-
"outputs": [],
|
567
|
-
"source": [
|
568
|
-
"data2[\"Sales\"].plot(kind=\"hist\",bins=20,title=\"Histogram of Sales\")\n",
|
569
|
-
"ax=plt.gca()\n",
|
570
|
-
"ax.spines[\"top\"].set_visible(False)\n",
|
571
|
-
"ax.spines[\"bottom\"].set_visible(False)\n",
|
572
|
-
"ax.spines[\"right\"].set_visible(False)\n",
|
573
|
-
"ax.spines[\"left\"].set_visible(False)\n",
|
574
|
-
"plt.xlabel(\"Sales\")\n",
|
575
|
-
"plt.show()"
|
576
|
-
]
|
577
|
-
},
|
578
|
-
{
|
579
|
-
"cell_type": "code",
|
580
|
-
"execution_count": null,
|
581
|
-
"metadata": {
|
582
|
-
"colab": {
|
583
|
-
"base_uri": "https://localhost:8080/",
|
584
|
-
"height": 472
|
585
|
-
},
|
586
|
-
"executionInfo": {
|
587
|
-
"elapsed": 28,
|
588
|
-
"status": "ok",
|
589
|
-
"timestamp": 1740357341745,
|
590
|
-
"user": {
|
591
|
-
"displayName": "Jaison A",
|
592
|
-
"userId": "07006398627763032071"
|
593
|
-
},
|
594
|
-
"user_tz": -330
|
595
|
-
},
|
596
|
-
"id": "nxYJOGkgg23k",
|
597
|
-
"outputId": "ae525b9d-79c8-4fe0-9d12-fd8e340a31c5"
|
598
|
-
},
|
599
|
-
"outputs": [],
|
600
|
-
"source": [
|
601
|
-
"data2[\"Sales\"].plot(kind='line',title=\"sales\")\n",
|
602
|
-
"plt.xlabel(\"Sales\")\n",
|
603
|
-
"plt.ylabel(\"Values\")\n",
|
604
|
-
"plt.show()"
|
605
|
-
]
|
606
|
-
},
|
607
|
-
{
|
608
|
-
"cell_type": "code",
|
609
|
-
"execution_count": null,
|
610
|
-
"metadata": {
|
611
|
-
"colab": {
|
612
|
-
"base_uri": "https://localhost:8080/",
|
613
|
-
"height": 206
|
614
|
-
},
|
615
|
-
"executionInfo": {
|
616
|
-
"elapsed": 27,
|
617
|
-
"status": "ok",
|
618
|
-
"timestamp": 1740357341745,
|
619
|
-
"user": {
|
620
|
-
"displayName": "Jaison A",
|
621
|
-
"userId": "07006398627763032071"
|
622
|
-
},
|
623
|
-
"user_tz": -330
|
624
|
-
},
|
625
|
-
"id": "VvybP7rThGkE",
|
626
|
-
"outputId": "882f1f08-c8c0-4109-c615-8be2235fe6a0"
|
627
|
-
},
|
628
|
-
"outputs": [],
|
629
|
-
"source": [
|
630
|
-
"#lag.\n",
|
631
|
-
"data2['lag_1']=data2[\"Sales\"].shift(1)\n",
|
632
|
-
"data2[\"lag_2\"]=data2['Sales'].shift(3)\n",
|
633
|
-
"display(data2.head())"
|
634
|
-
]
|
635
|
-
},
|
636
|
-
{
|
637
|
-
"cell_type": "code",
|
638
|
-
"execution_count": null,
|
639
|
-
"metadata": {
|
640
|
-
"colab": {
|
641
|
-
"base_uri": "https://localhost:8080/",
|
642
|
-
"height": 363
|
643
|
-
},
|
644
|
-
"executionInfo": {
|
645
|
-
"elapsed": 26,
|
646
|
-
"status": "ok",
|
647
|
-
"timestamp": 1740357341745,
|
648
|
-
"user": {
|
649
|
-
"displayName": "Jaison A",
|
650
|
-
"userId": "07006398627763032071"
|
651
|
-
},
|
652
|
-
"user_tz": -330
|
653
|
-
},
|
654
|
-
"id": "SIfG_XeuhoZV",
|
655
|
-
"outputId": "c2920be0-7ef6-4ce7-ec72-4cbdd69cf11e"
|
656
|
-
},
|
657
|
-
"outputs": [],
|
658
|
-
"source": [
|
659
|
-
"#rolling.\n",
|
660
|
-
"data2[\"rolling_mean_5\"]=data2['Sales'].rolling(5).mean()\n",
|
661
|
-
"data2[\"rolling_min_5\"]=data2['Sales'].rolling(5).min()\n",
|
662
|
-
"data2[\"rolling_max_5\"]=data2['Sales'].rolling(5).max()\n",
|
663
|
-
"data2[\"rolling_std_5\"]=data2['Sales'].rolling(5).std()\n",
|
664
|
-
"display(data2.head(10))"
|
665
|
-
]
|
666
|
-
},
|
667
|
-
{
|
668
|
-
"cell_type": "code",
|
669
|
-
"execution_count": null,
|
670
|
-
"metadata": {
|
671
|
-
"colab": {
|
672
|
-
"base_uri": "https://localhost:8080/",
|
673
|
-
"height": 363
|
674
|
-
},
|
675
|
-
"executionInfo": {
|
676
|
-
"elapsed": 25,
|
677
|
-
"status": "ok",
|
678
|
-
"timestamp": 1740357341745,
|
679
|
-
"user": {
|
680
|
-
"displayName": "Jaison A",
|
681
|
-
"userId": "07006398627763032071"
|
682
|
-
},
|
683
|
-
"user_tz": -330
|
684
|
-
},
|
685
|
-
"id": "6Ov02b5KiKap",
|
686
|
-
"outputId": "66e756d4-1945-43ce-cfb6-484cca73c91d"
|
687
|
-
},
|
688
|
-
"outputs": [],
|
689
|
-
"source": [
|
690
|
-
"data2[\"expanding_mean\"]=data2['Sales'].expanding().mean()\n",
|
691
|
-
"data2['expanding_min']=data2['Sales'].expanding().min()\n",
|
692
|
-
"data2['expanding_max']=data2['Sales'].expanding().max()\n",
|
693
|
-
"data2['expanding_std']=data2['Sales'].expanding().std()\n",
|
694
|
-
"display(data2.head(10))"
|
695
|
-
]
|
696
|
-
},
|
697
|
-
{
|
698
|
-
"cell_type": "code",
|
699
|
-
"execution_count": null,
|
700
|
-
"metadata": {
|
701
|
-
"colab": {
|
702
|
-
"base_uri": "https://localhost:8080/",
|
703
|
-
"height": 206
|
704
|
-
},
|
705
|
-
"executionInfo": {
|
706
|
-
"elapsed": 25,
|
707
|
-
"status": "ok",
|
708
|
-
"timestamp": 1740357341746,
|
709
|
-
"user": {
|
710
|
-
"displayName": "Jaison A",
|
711
|
-
"userId": "07006398627763032071"
|
712
|
-
},
|
713
|
-
"user_tz": -330
|
714
|
-
},
|
715
|
-
"id": "GKyc9bAejTy4",
|
716
|
-
"outputId": "4a686717-21ec-4375-ecfc-0fcc6f56fb11"
|
717
|
-
},
|
718
|
-
"outputs": [],
|
719
|
-
"source": [
|
720
|
-
"#drop missing values.\n",
|
721
|
-
"data2.dropna(inplace=True)\n",
|
722
|
-
"display(data2.head())"
|
723
|
-
]
|
724
|
-
},
|
725
|
-
{
|
726
|
-
"cell_type": "code",
|
727
|
-
"execution_count": null,
|
728
|
-
"metadata": {
|
729
|
-
"colab": {
|
730
|
-
"base_uri": "https://localhost:8080/",
|
731
|
-
"height": 747
|
732
|
-
},
|
733
|
-
"executionInfo": {
|
734
|
-
"elapsed": 1649,
|
735
|
-
"status": "ok",
|
736
|
-
"timestamp": 1740357343371,
|
737
|
-
"user": {
|
738
|
-
"displayName": "Jaison A",
|
739
|
-
"userId": "07006398627763032071"
|
740
|
-
},
|
741
|
-
"user_tz": -330
|
742
|
-
},
|
743
|
-
"id": "IacjMiWsjraC",
|
744
|
-
"outputId": "395c187a-c9d7-42dc-ace0-2979b69e853a"
|
745
|
-
},
|
746
|
-
"outputs": [],
|
747
|
-
"source": [
|
748
|
-
"#correlation matrix for feature extraction.\n",
|
749
|
-
"from sklearn.preprocessing import StandardScaler\n",
|
750
|
-
"Scaler=StandardScaler()\n",
|
751
|
-
"data_numeric=data2.select_dtypes(include=['number'])\n",
|
752
|
-
"Scaled_data=pd.DataFrame(Scaler.fit_transform(data_numeric),columns=data_numeric.columns,index=data_numeric.index)\n",
|
753
|
-
"display(Scaled_data.head())\n",
|
754
|
-
"\n",
|
755
|
-
"sns.heatmap(Scaled_data.corr(),annot=True,cmap='coolwarm')\n",
|
756
|
-
"plt.title(\"Correlation Matrix\")\n",
|
757
|
-
"plt.show()"
|
758
|
-
]
|
759
|
-
},
|
760
|
-
{
|
761
|
-
"cell_type": "markdown",
|
762
|
-
"metadata": {
|
763
|
-
"id": "f0DbzcliMrBt"
|
764
|
-
},
|
765
|
-
"source": [
|
766
|
-
"# ***EX_3***"
|
767
|
-
]
|
768
|
-
},
|
769
|
-
{
|
770
|
-
"cell_type": "code",
|
771
|
-
"execution_count": null,
|
772
|
-
"metadata": {
|
773
|
-
"executionInfo": {
|
774
|
-
"elapsed": 413,
|
775
|
-
"status": "ok",
|
776
|
-
"timestamp": 1740358664164,
|
777
|
-
"user": {
|
778
|
-
"displayName": "Jaison A",
|
779
|
-
"userId": "07006398627763032071"
|
780
|
-
},
|
781
|
-
"user_tz": -330
|
782
|
-
},
|
783
|
-
"id": "hMDhfYk9A31m"
|
784
|
-
},
|
785
|
-
"outputs": [],
|
786
|
-
"source": [
|
787
|
-
"from statsmodels.graphics.tsaplots import plot_acf,plot_pacf\n",
|
788
|
-
"from statsmodels.tsa.arima.model import ARIMA"
|
789
|
-
]
|
790
|
-
},
|
791
|
-
{
|
792
|
-
"cell_type": "code",
|
793
|
-
"execution_count": null,
|
794
|
-
"metadata": {
|
795
|
-
"colab": {
|
796
|
-
"base_uri": "https://localhost:8080/",
|
797
|
-
"height": 206
|
798
|
-
},
|
799
|
-
"executionInfo": {
|
800
|
-
"elapsed": 541,
|
801
|
-
"status": "ok",
|
802
|
-
"timestamp": 1740358667234,
|
803
|
-
"user": {
|
804
|
-
"displayName": "Jaison A",
|
805
|
-
"userId": "07006398627763032071"
|
806
|
-
},
|
807
|
-
"user_tz": -330
|
808
|
-
},
|
809
|
-
"id": "nauKmIq0MteK",
|
810
|
-
"outputId": "0fe43e74-5e28-4808-e91f-7976f1d51849"
|
811
|
-
},
|
812
|
-
"outputs": [],
|
813
|
-
"source": [
|
814
|
-
"data3=pd.read_csv(\"data/daily-min-temperatures.csv\")\n",
|
815
|
-
"display(data3.head())"
|
816
|
-
]
|
817
|
-
},
|
818
|
-
{
|
819
|
-
"cell_type": "code",
|
820
|
-
"execution_count": null,
|
821
|
-
"metadata": {
|
822
|
-
"colab": {
|
823
|
-
"base_uri": "https://localhost:8080/",
|
824
|
-
"height": 887
|
825
|
-
},
|
826
|
-
"executionInfo": {
|
827
|
-
"elapsed": 14562,
|
828
|
-
"status": "ok",
|
829
|
-
"timestamp": 1740358683849,
|
830
|
-
"user": {
|
831
|
-
"displayName": "Jaison A",
|
832
|
-
"userId": "07006398627763032071"
|
833
|
-
},
|
834
|
-
"user_tz": -330
|
835
|
-
},
|
836
|
-
"id": "kXmZiDB099gy",
|
837
|
-
"outputId": "bec3f37d-2627-48c0-d871-6988158a7097"
|
838
|
-
},
|
839
|
-
"outputs": [],
|
840
|
-
"source": [
|
841
|
-
"#Find how time series values differs over[S1] time by analyzing the key aspects of temporal relationships such as trends, seasonality,lags and cycles.\n",
|
842
|
-
"data3[\"Temp\"].plot(title=\"Daily Temperature\")\n",
|
843
|
-
"plt.show()\n",
|
844
|
-
"\n",
|
845
|
-
"plt.scatter(data3[\"Date\"],data3[\"Temp\"])\n",
|
846
|
-
"plt.title(\"Daily Temperature\")\n",
|
847
|
-
"plt.show()"
|
848
|
-
]
|
849
|
-
},
|
850
|
-
{
|
851
|
-
"cell_type": "code",
|
852
|
-
"execution_count": null,
|
853
|
-
"metadata": {
|
854
|
-
"colab": {
|
855
|
-
"base_uri": "https://localhost:8080/",
|
856
|
-
"height": 887
|
857
|
-
},
|
858
|
-
"executionInfo": {
|
859
|
-
"elapsed": 621,
|
860
|
-
"status": "ok",
|
861
|
-
"timestamp": 1740358689668,
|
862
|
-
"user": {
|
863
|
-
"displayName": "Jaison A",
|
864
|
-
"userId": "07006398627763032071"
|
865
|
-
},
|
866
|
-
"user_tz": -330
|
867
|
-
},
|
868
|
-
"id": "vLpi08RqBBEq",
|
869
|
-
"outputId": "93ff1514-7e91-472d-e921-93b480c80c17"
|
870
|
-
},
|
871
|
-
"outputs": [],
|
872
|
-
"source": [
|
873
|
-
"plot_acf(data3[\"Temp\"],lags=50)\n",
|
874
|
-
"plt.show()\n",
|
875
|
-
"\n",
|
876
|
-
"plot_pacf(data3[\"Temp\"],lags=50)\n",
|
877
|
-
"plt.show()"
|
878
|
-
]
|
879
|
-
},
|
880
|
-
{
|
881
|
-
"cell_type": "code",
|
882
|
-
"execution_count": null,
|
883
|
-
"metadata": {
|
884
|
-
"colab": {
|
885
|
-
"base_uri": "https://localhost:8080/",
|
886
|
-
"height": 1000
|
887
|
-
},
|
888
|
-
"executionInfo": {
|
889
|
-
"elapsed": 4781,
|
890
|
-
"status": "ok",
|
891
|
-
"timestamp": 1740358792570,
|
892
|
-
"user": {
|
893
|
-
"displayName": "Jaison A",
|
894
|
-
"userId": "07006398627763032071"
|
895
|
-
},
|
896
|
-
"user_tz": -330
|
897
|
-
},
|
898
|
-
"id": "H1QHq0q5Drfz",
|
899
|
-
"outputId": "2a337a2f-6936-4bf0-9249-f0ec900b6cf8"
|
900
|
-
},
|
901
|
-
"outputs": [],
|
902
|
-
"source": [
|
903
|
-
"ar_model=ARIMA(data3[\"Temp\"],order=(2,0,0))\n",
|
904
|
-
"ar_fit=ar_model.fit()\n",
|
905
|
-
"display('AR Model : ',ar_fit.summary())\n",
|
906
|
-
"\n",
|
907
|
-
"ma_model=ARIMA(data3[\"Temp\"],order=(0,0,2))\n",
|
908
|
-
"ma_fit=ma_model.fit()\n",
|
909
|
-
"display('MA Model : ',ma_fit.summary())\n",
|
910
|
-
"\n",
|
911
|
-
"arma_model=ARIMA(data3[\"Temp\"],order=(2,0,2))\n",
|
912
|
-
"arma_fit=arma_model.fit()\n",
|
913
|
-
"display('ARMA Model : ',arma_fit.summary())"
|
914
|
-
]
|
915
|
-
},
|
916
|
-
{
|
917
|
-
"cell_type": "code",
|
918
|
-
"execution_count": null,
|
919
|
-
"metadata": {
|
920
|
-
"colab": {
|
921
|
-
"base_uri": "https://localhost:8080/",
|
922
|
-
"height": 1000
|
923
|
-
},
|
924
|
-
"executionInfo": {
|
925
|
-
"elapsed": 1277,
|
926
|
-
"status": "ok",
|
927
|
-
"timestamp": 1740357363185,
|
928
|
-
"user": {
|
929
|
-
"displayName": "Jaison A",
|
930
|
-
"userId": "07006398627763032071"
|
931
|
-
},
|
932
|
-
"user_tz": -330
|
933
|
-
},
|
934
|
-
"id": "CwhhRS3gFSut",
|
935
|
-
"outputId": "0359f268-5204-4fe3-8520-b5b06f0b3418"
|
936
|
-
},
|
937
|
-
"outputs": [],
|
938
|
-
"source": [
|
939
|
-
"#Histogram.\n",
|
940
|
-
"data3[\"Temp\"].plot(kind=\"hist\",bins=20,title=\"Histogram of Temperature\",edgecolor=\"black\")\n",
|
941
|
-
"plt.xlabel(\"Temperature\")\n",
|
942
|
-
"plt.show()\n",
|
943
|
-
"\n",
|
944
|
-
"#Density plot.\n",
|
945
|
-
"sns.kdeplot(data3[\"Temp\"],fill=True)\n",
|
946
|
-
"plt.title(\"Density PLot of Temperature\")\n",
|
947
|
-
"plt.show()\n",
|
948
|
-
"\n",
|
949
|
-
"#box and wisker plot.\n",
|
950
|
-
"sns.boxplot(data3[\"Temp\"])\n",
|
951
|
-
"plt.title(\"Box and Whisker Plot of Temperature\")\n",
|
952
|
-
"plt.show()\n",
|
953
|
-
"\n",
|
954
|
-
"#heatmap\n",
|
955
|
-
"data3[\"Lagged_1\"]=data3[\"Temp\"].shift(1)\n",
|
956
|
-
"data3[\"Lagged_3\"]=data3[\"Temp\"].shift(3)\n",
|
957
|
-
"data3[\"Rolling_mean_3\"]=data3[\"Temp\"].rolling(3).mean()\n",
|
958
|
-
"sns.heatmap(data3.select_dtypes(include=['number']).corr(), annot=True, cmap='coolwarm', linewidths=0.5)\n",
|
959
|
-
"plt.show()"
|
960
|
-
]
|
961
|
-
},
|
962
|
-
{
|
963
|
-
"cell_type": "markdown",
|
964
|
-
"metadata": {
|
965
|
-
"id": "1MC9ktJs-WRz"
|
966
|
-
},
|
967
|
-
"source": [
|
968
|
-
"***Extra***"
|
969
|
-
]
|
970
|
-
},
|
971
|
-
{
|
972
|
-
"cell_type": "code",
|
973
|
-
"execution_count": null,
|
974
|
-
"metadata": {
|
975
|
-
"colab": {
|
976
|
-
"base_uri": "https://localhost:8080/",
|
977
|
-
"height": 1000
|
978
|
-
},
|
979
|
-
"executionInfo": {
|
980
|
-
"elapsed": 1564,
|
981
|
-
"status": "ok",
|
982
|
-
"timestamp": 1740357364737,
|
983
|
-
"user": {
|
984
|
-
"displayName": "Jaison A",
|
985
|
-
"userId": "07006398627763032071"
|
986
|
-
},
|
987
|
-
"user_tz": -330
|
988
|
-
},
|
989
|
-
"id": "Arh5e0emCHdU",
|
990
|
-
"outputId": "db0a0b2e-1b5e-48f0-ffe3-3de8f82b9bb9"
|
991
|
-
},
|
992
|
-
"outputs": [],
|
993
|
-
"source": [
|
994
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose\n",
|
995
|
-
"\n",
|
996
|
-
"data_decomposed=seasonal_decompose(data3[\"Temp\"],model=\"additive\",period=365)\n",
|
997
|
-
"\n",
|
998
|
-
"trend=data_decomposed.trend\n",
|
999
|
-
"seasonal=data_decomposed.seasonal\n",
|
1000
|
-
"residual=data_decomposed.resid\n",
|
1001
|
-
"\n",
|
1002
|
-
"plt.plot(data3[\"Temp\"])\n",
|
1003
|
-
"plt.title('Original')\n",
|
1004
|
-
"plt.show()\n",
|
1005
|
-
"plt.plot(trend)\n",
|
1006
|
-
"plt.title(\"Trend\")\n",
|
1007
|
-
"plt.show()\n",
|
1008
|
-
"plt.plot(seasonal)\n",
|
1009
|
-
"plt.title(\"Seasonal\")\n",
|
1010
|
-
"plt.show()\n",
|
1011
|
-
"plt.plot(residual)\n",
|
1012
|
-
"plt.title(\"Residual\")\n",
|
1013
|
-
"plt.show()"
|
1014
|
-
]
|
1015
|
-
},
|
1016
|
-
{
|
1017
|
-
"cell_type": "markdown",
|
1018
|
-
"metadata": {
|
1019
|
-
"id": "14Hg06M_NoUq"
|
1020
|
-
},
|
1021
|
-
"source": [
|
1022
|
-
"# ***EX_4***"
|
1023
|
-
]
|
1024
|
-
},
|
1025
|
-
{
|
1026
|
-
"cell_type": "code",
|
1027
|
-
"execution_count": null,
|
1028
|
-
"metadata": {
|
1029
|
-
"colab": {
|
1030
|
-
"base_uri": "https://localhost:8080/",
|
1031
|
-
"height": 650
|
1032
|
-
},
|
1033
|
-
"executionInfo": {
|
1034
|
-
"elapsed": 29,
|
1035
|
-
"status": "ok",
|
1036
|
-
"timestamp": 1740357364738,
|
1037
|
-
"user": {
|
1038
|
-
"displayName": "Jaison A",
|
1039
|
-
"userId": "07006398627763032071"
|
1040
|
-
},
|
1041
|
-
"user_tz": -330
|
1042
|
-
},
|
1043
|
-
"id": "rJBVHicDNrHy",
|
1044
|
-
"outputId": "9d97b557-512c-4d02-dd58-dac1e56c318d"
|
1045
|
-
},
|
1046
|
-
"outputs": [],
|
1047
|
-
"source": [
|
1048
|
-
"data4=pd.read_csv(\"data/shampoo_sales.csv\")\n",
|
1049
|
-
"display(data4.head())\n",
|
1050
|
-
"\n",
|
1051
|
-
"\n",
|
1052
|
-
"data4[\"Date\"]=pd.to_datetime(data4[\"Month\"],format=\"%m-%y\")\n",
|
1053
|
-
"data4=data4.drop(\"Month\",axis=1)\n",
|
1054
|
-
"display(data4.head())\n",
|
1055
|
-
"\n",
|
1056
|
-
"data=pd.Series(data4[\"Sales\"].values,index=data4[\"Date\"])\n",
|
1057
|
-
"display(data.head())"
|
1058
|
-
]
|
1059
|
-
},
|
1060
|
-
{
|
1061
|
-
"cell_type": "code",
|
1062
|
-
"execution_count": null,
|
1063
|
-
"metadata": {
|
1064
|
-
"colab": {
|
1065
|
-
"base_uri": "https://localhost:8080/",
|
1066
|
-
"height": 1000
|
1067
|
-
},
|
1068
|
-
"executionInfo": {
|
1069
|
-
"elapsed": 26,
|
1070
|
-
"status": "ok",
|
1071
|
-
"timestamp": 1740357364739,
|
1072
|
-
"user": {
|
1073
|
-
"displayName": "Jaison A",
|
1074
|
-
"userId": "07006398627763032071"
|
1075
|
-
},
|
1076
|
-
"user_tz": -330
|
1077
|
-
},
|
1078
|
-
"id": "Wv9S5nMGLMYa",
|
1079
|
-
"outputId": "377c6156-1fcd-47e9-c271-bcc5627242ee"
|
1080
|
-
},
|
1081
|
-
"outputs": [],
|
1082
|
-
"source": [
|
1083
|
-
"#upsampling.\n",
|
1084
|
-
"\n",
|
1085
|
-
"up_1=data.resample(\"h\").mean()\n",
|
1086
|
-
"up_2=data.resample(\"1min\").min()\n",
|
1087
|
-
"up_3=data.resample('5min').sum()\n",
|
1088
|
-
"up_4=data.resample('h').asfreq()\n",
|
1089
|
-
"display(up_1,up_1.describe(),\"No of missing Values : \",up_1.isnull().sum())\n",
|
1090
|
-
"display(up_2,up_2.describe(),\"No of missing Values : \",up_2.isnull().sum())\n",
|
1091
|
-
"display(up_3,up_3.describe(),\"No of missing Values : \",up_3.isnull().sum())\n",
|
1092
|
-
"display(up_4,up_4.describe(),\"No of missing Values : \",up_4.isnull().sum())"
|
1093
|
-
]
|
1094
|
-
},
|
1095
|
-
{
|
1096
|
-
"cell_type": "code",
|
1097
|
-
"execution_count": null,
|
1098
|
-
"metadata": {
|
1099
|
-
"colab": {
|
1100
|
-
"base_uri": "https://localhost:8080/",
|
1101
|
-
"height": 1000
|
1102
|
-
},
|
1103
|
-
"executionInfo": {
|
1104
|
-
"elapsed": 22,
|
1105
|
-
"status": "ok",
|
1106
|
-
"timestamp": 1740357364739,
|
1107
|
-
"user": {
|
1108
|
-
"displayName": "Jaison A",
|
1109
|
-
"userId": "07006398627763032071"
|
1110
|
-
},
|
1111
|
-
"user_tz": -330
|
1112
|
-
},
|
1113
|
-
"id": "QrqkQYJgOOLk",
|
1114
|
-
"outputId": "4f411d06-0040-4d0b-95ea-ffd495e5b3cc"
|
1115
|
-
},
|
1116
|
-
"outputs": [],
|
1117
|
-
"source": [
|
1118
|
-
"#Downsampling from upsampled data.\n",
|
1119
|
-
"\n",
|
1120
|
-
"down_1=up_1.resample(\"D\").mean()\n",
|
1121
|
-
"down_2=up_2.resample(\"10min\").min()\n",
|
1122
|
-
"down_3=up_3.resample(\"h\").sum()\n",
|
1123
|
-
"down_4=up_4.resample(\"D\").asfreq()\n",
|
1124
|
-
"\n",
|
1125
|
-
"display(down_1,down_1.describe(),\"No of missing Values : \",down_1.isnull().sum())\n",
|
1126
|
-
"display(down_2,down_2.describe(),\"No of missing Values : \",down_2.isnull().sum())\n",
|
1127
|
-
"display(down_3,down_3.describe(),\"No of missing Values : \",down_3.isnull().sum())\n",
|
1128
|
-
"display(down_4,down_4.describe(),\"No of missing Values : \",down_4.isnull().sum())"
|
1129
|
-
]
|
1130
|
-
},
|
1131
|
-
{
|
1132
|
-
"cell_type": "code",
|
1133
|
-
"execution_count": null,
|
1134
|
-
"metadata": {
|
1135
|
-
"colab": {
|
1136
|
-
"base_uri": "https://localhost:8080/",
|
1137
|
-
"height": 1000
|
1138
|
-
},
|
1139
|
-
"executionInfo": {
|
1140
|
-
"elapsed": 1537,
|
1141
|
-
"status": "ok",
|
1142
|
-
"timestamp": 1740357366258,
|
1143
|
-
"user": {
|
1144
|
-
"displayName": "Jaison A",
|
1145
|
-
"userId": "07006398627763032071"
|
1146
|
-
},
|
1147
|
-
"user_tz": -330
|
1148
|
-
},
|
1149
|
-
"id": "OsLKMVgyPuvK",
|
1150
|
-
"outputId": "69ef9500-35e8-4d97-ce49-16dea0b08114"
|
1151
|
-
},
|
1152
|
-
"outputs": [],
|
1153
|
-
"source": [
|
1154
|
-
"#Interpolation .\n",
|
1155
|
-
"\n",
|
1156
|
-
"d1=data.resample(\"D\")\n",
|
1157
|
-
"interpolated_1=d1.interpolate(method=\"linear\")\n",
|
1158
|
-
"display(interpolated_1.head())\n",
|
1159
|
-
"display(interpolated_1.tail())\n",
|
1160
|
-
"interpolated_1.plot(kind=\"line\",title=\"Linear Interpolation\")\n",
|
1161
|
-
"plt.show()\n",
|
1162
|
-
"\n",
|
1163
|
-
"interpolated_2=d1.interpolate(method=\"spline\",order=2)\n",
|
1164
|
-
"display(interpolated_2.head())\n",
|
1165
|
-
"display(interpolated_2.tail())\n",
|
1166
|
-
"interpolated_2.plot(title=\"Spline Interpolation\")\n",
|
1167
|
-
"plt.show()"
|
1168
|
-
]
|
1169
|
-
},
|
1170
|
-
{
|
1171
|
-
"cell_type": "markdown",
|
1172
|
-
"metadata": {
|
1173
|
-
"id": "vxHGmAiyOVCq"
|
1174
|
-
},
|
1175
|
-
"source": [
|
1176
|
-
"# ***EX_5***"
|
1177
|
-
]
|
1178
|
-
},
|
1179
|
-
{
|
1180
|
-
"cell_type": "code",
|
1181
|
-
"execution_count": null,
|
1182
|
-
"metadata": {
|
1183
|
-
"executionInfo": {
|
1184
|
-
"elapsed": 21,
|
1185
|
-
"status": "ok",
|
1186
|
-
"timestamp": 1740357366258,
|
1187
|
-
"user": {
|
1188
|
-
"displayName": "Jaison A",
|
1189
|
-
"userId": "07006398627763032071"
|
1190
|
-
},
|
1191
|
-
"user_tz": -330
|
1192
|
-
},
|
1193
|
-
"id": "lQn-Xu89RRdF"
|
1194
|
-
},
|
1195
|
-
"outputs": [],
|
1196
|
-
"source": [
|
1197
|
-
"from statsmodels.tsa.stattools import kpss,adfuller\n",
|
1198
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose"
|
1199
|
-
]
|
1200
|
-
},
|
1201
|
-
{
|
1202
|
-
"cell_type": "code",
|
1203
|
-
"execution_count": null,
|
1204
|
-
"metadata": {
|
1205
|
-
"colab": {
|
1206
|
-
"base_uri": "https://localhost:8080/",
|
1207
|
-
"height": 206
|
1208
|
-
},
|
1209
|
-
"executionInfo": {
|
1210
|
-
"elapsed": 21,
|
1211
|
-
"status": "ok",
|
1212
|
-
"timestamp": 1740357366259,
|
1213
|
-
"user": {
|
1214
|
-
"displayName": "Jaison A",
|
1215
|
-
"userId": "07006398627763032071"
|
1216
|
-
},
|
1217
|
-
"user_tz": -330
|
1218
|
-
},
|
1219
|
-
"id": "DMi3fCA9OXBl",
|
1220
|
-
"outputId": "dd2b4195-0e15-459d-9126-3225045538b4"
|
1221
|
-
},
|
1222
|
-
"outputs": [],
|
1223
|
-
"source": [
|
1224
|
-
"data5=pd.read_csv(\"data/daily-total-female-births.csv\")\n",
|
1225
|
-
"display(data5.head())"
|
1226
|
-
]
|
1227
|
-
},
|
1228
|
-
{
|
1229
|
-
"cell_type": "code",
|
1230
|
-
"execution_count": null,
|
1231
|
-
"metadata": {
|
1232
|
-
"colab": {
|
1233
|
-
"base_uri": "https://localhost:8080/"
|
1234
|
-
},
|
1235
|
-
"executionInfo": {
|
1236
|
-
"elapsed": 19,
|
1237
|
-
"status": "ok",
|
1238
|
-
"timestamp": 1740357366259,
|
1239
|
-
"user": {
|
1240
|
-
"displayName": "Jaison A",
|
1241
|
-
"userId": "07006398627763032071"
|
1242
|
-
},
|
1243
|
-
"user_tz": -330
|
1244
|
-
},
|
1245
|
-
"id": "WJUYt-XgRhsL",
|
1246
|
-
"outputId": "a8b40d2b-2b0e-42e6-c6c0-713c1c641bbd"
|
1247
|
-
},
|
1248
|
-
"outputs": [],
|
1249
|
-
"source": [
|
1250
|
-
"import warnings\n",
|
1251
|
-
"warnings.filterwarnings('ignore')\n",
|
1252
|
-
"\n",
|
1253
|
-
"class stationary_test():\n",
|
1254
|
-
" def adf_test(self,data):\n",
|
1255
|
-
" print(\"\\nAdfuller : \\n\")\n",
|
1256
|
-
" statistic,p_value,n_lags,n_obs,critical_values,m_info=adfuller(data)\n",
|
1257
|
-
" print(f\"Statistic : {statistic}\")\n",
|
1258
|
-
" print(f\"P_value : {p_value}\")\n",
|
1259
|
-
" print(f\"n_lags : {n_lags}\")\n",
|
1260
|
-
" print(f\"n_obs : {n_obs}\")\n",
|
1261
|
-
" print(f\"max_info : {m_info}\")\n",
|
1262
|
-
" print(\"Critical Values : \")\n",
|
1263
|
-
" for key,value in critical_values.items():\n",
|
1264
|
-
" print(f\" {key} : {value}\")\n",
|
1265
|
-
" print(f\"Result : The data is {'not' if p_value<0.05 else ''} Stationary.\")\n",
|
1266
|
-
"\n",
|
1267
|
-
" def kpss_test(self,data):\n",
|
1268
|
-
" print(\"\\nKPSS : \\n\")\n",
|
1269
|
-
" statistic,p_value,n_lags,critical_values=kpss(data)\n",
|
1270
|
-
" print(f\"Statistic : {statistic}\")\n",
|
1271
|
-
" print(f\"P_value : {p_value}\")\n",
|
1272
|
-
" print(f\"n_lags : {n_lags}\")\n",
|
1273
|
-
" print(\"Critical Values : \")\n",
|
1274
|
-
" for key,value in critical_values.items():\n",
|
1275
|
-
" print(f\" {key} : {value}\")\n",
|
1276
|
-
" print(f\"Result : The data is {'not' if p_value<0.05 else ''} Stationary.\")\n",
|
1277
|
-
"\n",
|
1278
|
-
"stationary_test().adf_test(data5[\"Births\"])\n",
|
1279
|
-
"stationary_test().kpss_test(data5[\"Births\"])"
|
1280
|
-
]
|
1281
|
-
},
|
1282
|
-
{
|
1283
|
-
"cell_type": "code",
|
1284
|
-
"execution_count": null,
|
1285
|
-
"metadata": {
|
1286
|
-
"colab": {
|
1287
|
-
"base_uri": "https://localhost:8080/",
|
1288
|
-
"height": 487
|
1289
|
-
},
|
1290
|
-
"executionInfo": {
|
1291
|
-
"elapsed": 12,
|
1292
|
-
"status": "ok",
|
1293
|
-
"timestamp": 1740357366259,
|
1294
|
-
"user": {
|
1295
|
-
"displayName": "Jaison A",
|
1296
|
-
"userId": "07006398627763032071"
|
1297
|
-
},
|
1298
|
-
"user_tz": -330
|
1299
|
-
},
|
1300
|
-
"id": "8MHXNENCX_v3",
|
1301
|
-
"outputId": "55f46ef1-9ecc-436d-9cd3-162192296c58"
|
1302
|
-
},
|
1303
|
-
"outputs": [],
|
1304
|
-
"source": [
|
1305
|
-
"def decompose_data(data):\n",
|
1306
|
-
" decomposed_data=seasonal_decompose(data[\"Births\"],model=\"additive\",period=7)\n",
|
1307
|
-
"\n",
|
1308
|
-
" seasonal=decomposed_data.seasonal\n",
|
1309
|
-
" trend=decomposed_data.trend\n",
|
1310
|
-
" residual=decomposed_data.resid\n",
|
1311
|
-
"\n",
|
1312
|
-
" plt.subplot(411)\n",
|
1313
|
-
" plt.plot(data[\"Births\"],label=\"Births\")\n",
|
1314
|
-
" plt.title(\"Original\")\n",
|
1315
|
-
" plt.legend(loc=\"best\")\n",
|
1316
|
-
" plt.subplot(412)\n",
|
1317
|
-
" plt.plot(trend,label=\"Births\")\n",
|
1318
|
-
" plt.title(\"Trend\")\n",
|
1319
|
-
" plt.legend(loc=\"best\")\n",
|
1320
|
-
" plt.subplot(413)\n",
|
1321
|
-
" plt.plot(seasonal,label=\"Births\")\n",
|
1322
|
-
" plt.title(\"Seasonal\")\n",
|
1323
|
-
" plt.legend(loc=\"best\")\n",
|
1324
|
-
" plt.subplot(414)\n",
|
1325
|
-
" plt.plot(residual,label=\"Births\")\n",
|
1326
|
-
" plt.title(\"Residual\")\n",
|
1327
|
-
" plt.legend(loc=\"best\")\n",
|
1328
|
-
" plt.tight_layout()\n",
|
1329
|
-
" plt.show()\n",
|
1330
|
-
"\n",
|
1331
|
-
"decompose_data(data5)"
|
1332
|
-
]
|
1333
|
-
},
|
1334
|
-
{
|
1335
|
-
"cell_type": "markdown",
|
1336
|
-
"metadata": {},
|
1337
|
-
"source": [
|
1338
|
-
"# ***EX_6***"
|
1339
|
-
]
|
1340
|
-
},
|
1341
|
-
{
|
1342
|
-
"cell_type": "code",
|
1343
|
-
"execution_count": null,
|
1344
|
-
"metadata": {},
|
1345
|
-
"outputs": [],
|
1346
|
-
"source": [
|
1347
|
-
"import pandas as pd\n",
|
1348
|
-
"import numpy as np\n",
|
1349
|
-
"import matplotlib.pyplot as plt\n",
|
1350
|
-
"from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
|
1351
|
-
]
|
1352
|
-
},
|
1353
|
-
{
|
1354
|
-
"cell_type": "code",
|
1355
|
-
"execution_count": null,
|
1356
|
-
"metadata": {},
|
1357
|
-
"outputs": [],
|
1358
|
-
"source": [
|
1359
|
-
"df = pd.read_csv('data/daily-min-temperatures.csv')\n",
|
1360
|
-
"print(df.shape)\n",
|
1361
|
-
"df.head()"
|
1362
|
-
]
|
1363
|
-
},
|
1364
|
-
{
|
1365
|
-
"cell_type": "code",
|
1366
|
-
"execution_count": null,
|
1367
|
-
"metadata": {},
|
1368
|
-
"outputs": [],
|
1369
|
-
"source": [
|
1370
|
-
"df.plot(title = \"daily Minimum Temperature\" ,figsize = (14, 8), legend = None, color = 'green')\n",
|
1371
|
-
"plt.xlabel('Date')\n",
|
1372
|
-
"plt.ylabel('Temperature (°C)')\n",
|
1373
|
-
"plt.show()"
|
1374
|
-
]
|
1375
|
-
},
|
1376
|
-
{
|
1377
|
-
"cell_type": "code",
|
1378
|
-
"execution_count": null,
|
1379
|
-
"metadata": {},
|
1380
|
-
"outputs": [],
|
1381
|
-
"source": [
|
1382
|
-
"fig, axs = plt.subplots(2, 1, figsize = (10,8))\n",
|
1383
|
-
"plot_acf(df['Temp'], lags = 30, ax = axs[0], title = 'Autocorrelation (ACF)', color = 'green')\n",
|
1384
|
-
"plot_pacf(df['Temp'], lags = 30, ax = axs[1], title = 'Partial Autocorrelation (PACF)', color = 'red')\n",
|
1385
|
-
"plt.tight_layout()\n",
|
1386
|
-
"plt.show()"
|
1387
|
-
]
|
1388
|
-
}
|
1389
|
-
],
|
1390
|
-
"metadata": {
|
1391
|
-
"colab": {
|
1392
|
-
"authorship_tag": "ABX9TyMO2Ar4ng0qzuL76Kn//c5c",
|
1393
|
-
"mount_file_id": "1-TZgygrVA6lCZOtzkiJAcAIWo5aLCj-x",
|
1394
|
-
"provenance": []
|
1395
|
-
},
|
1396
|
-
"kernelspec": {
|
1397
|
-
"display_name": "Python 3 (ipykernel)",
|
1398
|
-
"language": "python",
|
1399
|
-
"name": "python3"
|
1400
|
-
},
|
1401
|
-
"language_info": {
|
1402
|
-
"codemirror_mode": {
|
1403
|
-
"name": "ipython",
|
1404
|
-
"version": 3
|
1405
|
-
},
|
1406
|
-
"file_extension": ".py",
|
1407
|
-
"mimetype": "text/x-python",
|
1408
|
-
"name": "python",
|
1409
|
-
"nbconvert_exporter": "python",
|
1410
|
-
"pygments_lexer": "ipython3",
|
1411
|
-
"version": "3.12.4"
|
1412
|
-
}
|
1413
|
-
},
|
1414
|
-
"nbformat": 4,
|
1415
|
-
"nbformat_minor": 4
|
1416
|
-
}
|