noshot 0.3.9__py3-none-any.whl → 0.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- noshot/data/ML TS XAI/TS/10. Seasonal ARIMA Forecasting.ipynb +928 -0
- noshot/data/ML TS XAI/TS/11. Multivariate ARIMA Forecasting.ipynb +1270 -0
- noshot/data/ML TS XAI/TS/6. ACF PACF.ipynb +175 -0
- noshot/data/ML TS XAI/TS/7. Differencing.ipynb +303 -0
- noshot/data/ML TS XAI/TS/8. ARMA Forecasting.ipynb +746 -0
- noshot/data/ML TS XAI/TS/9. ARIMA Forecasting.ipynb +579 -0
- noshot/main.py +18 -18
- noshot/utils/__init__.py +2 -2
- noshot/utils/shell_utils.py +56 -56
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/METADATA +58 -55
- noshot-0.4.1.dist-info/RECORD +15 -0
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/WHEEL +1 -1
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info/licenses}/LICENSE.txt +20 -20
- noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb +0 -207
- noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb +0 -287
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb +0 -83
- noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb +0 -117
- noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb +0 -151
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb +0 -89
- noshot/data/ML TS XAI/ML/data/balance-scale.csv +0 -626
- noshot/data/ML TS XAI/ML/data/balance-scale.txt +0 -625
- noshot/data/ML TS XAI/ML/data/machine-data.csv +0 -210
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv +0 -179
- noshot/data/ML TS XAI/ML Additional/Bank.ipynb +0 -74
- noshot/data/ML TS XAI/ML Additional/LR.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +0 -2112
- noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +0 -206
- noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +0 -41189
- noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +0 -69
- noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Additional/obesity.ipynb +0 -78
- noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +0 -81
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb +0 -133
- noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat +0 -1503
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb +0 -139
- noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt +0 -12
- noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat +0 -143
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb +0 -130
- noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt +0 -1
- noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv +0 -164
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb +0 -141
- noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv +0 -4340
- noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt +0 -1
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
- noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
- noshot-0.3.9.dist-info/RECORD +0 -62
- {noshot-0.3.9.dist-info → noshot-0.4.1.dist-info}/top_level.txt +0 -0
@@ -1,37 +0,0 @@
|
|
1
|
-
Month,Sales
|
2
|
-
01-01,266
|
3
|
-
01-02,145.9
|
4
|
-
01-03,183.1
|
5
|
-
01-04,119.3
|
6
|
-
01-05,180.3
|
7
|
-
01-06,168.5
|
8
|
-
01-07,231.8
|
9
|
-
01-08,224.5
|
10
|
-
01-09,192.8
|
11
|
-
1-10,122.9
|
12
|
-
1-11,336.5
|
13
|
-
1-12,185.9
|
14
|
-
02-01,194.3
|
15
|
-
02-02,149.5
|
16
|
-
02-03,210.1
|
17
|
-
02-04,273.3
|
18
|
-
02-05,191.4
|
19
|
-
02-06,287
|
20
|
-
02-07,226
|
21
|
-
02-08,303.6
|
22
|
-
02-09,289.9
|
23
|
-
2-10,421.6
|
24
|
-
2-11,264.5
|
25
|
-
2-12,342.3
|
26
|
-
03-01,339.7
|
27
|
-
03-02,440.4
|
28
|
-
03-03,315.9
|
29
|
-
03-04,439.3
|
30
|
-
03-05,401.3
|
31
|
-
03-06,437.4
|
32
|
-
03-07,575.5
|
33
|
-
03-08,407.6
|
34
|
-
03-09,682
|
35
|
-
3-10,475.3
|
36
|
-
3-11,581.3
|
37
|
-
3-12,646.9
|
@@ -1,198 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "87ec015f-1801-4aae-a7ae-3c16428341ba",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.tsa.stattools import adfuller\n",
|
15
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose"
|
16
|
-
]
|
17
|
-
},
|
18
|
-
{
|
19
|
-
"cell_type": "code",
|
20
|
-
"execution_count": null,
|
21
|
-
"id": "44d66930-1a1c-4088-868f-2f433939e8fc",
|
22
|
-
"metadata": {},
|
23
|
-
"outputs": [],
|
24
|
-
"source": [
|
25
|
-
"df = pd.read_csv('AirPassengers.csv')\n",
|
26
|
-
"print(\"Dataset Loaded Successfully\")\n",
|
27
|
-
"df.head()"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "cdc1ab64-0857-4bc6-b09a-58f8531a8f4b",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"df['Month'] = pd.to_datetime(df['Month'])\n",
|
38
|
-
"df.set_index('Month', inplace=True)\n",
|
39
|
-
"df.info()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "38df2890-85ae-4bf4-a612-7d2a0b1ce1ac",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"print(\"\\nDataset Summary:\")\n",
|
50
|
-
"df.describe()"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "a2347abf-db03-4b8a-be92-6dc2c617367e",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"df['Year'] = df.index.year\n",
|
61
|
-
"df['Month_Num'] = df.index.month\n",
|
62
|
-
"yearly_data = df.groupby('Year')['#Passengers'].sum()\n",
|
63
|
-
"monthly_data = df.groupby('Month_Num')['#Passengers'].mean()\n",
|
64
|
-
"print(\"\\nYearly Data:\")\n",
|
65
|
-
"print(yearly_data.head())\n",
|
66
|
-
"print(\"\\nMonthly Data:\")\n",
|
67
|
-
"print(monthly_data.head())"
|
68
|
-
]
|
69
|
-
},
|
70
|
-
{
|
71
|
-
"cell_type": "code",
|
72
|
-
"execution_count": null,
|
73
|
-
"id": "0bee4ef4-6272-410a-87a7-119f68ea98b1",
|
74
|
-
"metadata": {},
|
75
|
-
"outputs": [],
|
76
|
-
"source": [
|
77
|
-
"plt.figure(figsize=(12, 6))\n",
|
78
|
-
"df['#Passengers'].plot(title='Air Passengers Over Time')\n",
|
79
|
-
"plt.xlabel('Year')\n",
|
80
|
-
"plt.ylabel('Number of Passengers')\n",
|
81
|
-
"plt.show()"
|
82
|
-
]
|
83
|
-
},
|
84
|
-
{
|
85
|
-
"cell_type": "code",
|
86
|
-
"execution_count": null,
|
87
|
-
"id": "e7917c24-12a4-4932-a9e7-3d0d1bff8244",
|
88
|
-
"metadata": {},
|
89
|
-
"outputs": [],
|
90
|
-
"source": [
|
91
|
-
"plt.figure(figsize=(8, 5))\n",
|
92
|
-
"plt.hist(df['#Passengers'], bins=20, edgecolor='black')\n",
|
93
|
-
"plt.title(\"Histogram of Passenger Counts\")\n",
|
94
|
-
"plt.xlabel(\"Passengers\")\n",
|
95
|
-
"plt.ylabel(\"Frequency\")\n",
|
96
|
-
"plt.show()"
|
97
|
-
]
|
98
|
-
},
|
99
|
-
{
|
100
|
-
"cell_type": "code",
|
101
|
-
"execution_count": null,
|
102
|
-
"id": "1e34240f-9035-4653-bf4d-b7d4dcad71fc",
|
103
|
-
"metadata": {},
|
104
|
-
"outputs": [],
|
105
|
-
"source": [
|
106
|
-
"sns.kdeplot(df['#Passengers'], fill=True)\n",
|
107
|
-
"plt.title(\"Density Plot of Passenger Counts\")\n",
|
108
|
-
"plt.show()"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"id": "d136e68a-4d9f-44dd-a604-32a4901cb579",
|
115
|
-
"metadata": {},
|
116
|
-
"outputs": [],
|
117
|
-
"source": [
|
118
|
-
"plt.figure(figsize=(8, 6))\n",
|
119
|
-
"sns.heatmap(df.corr(), annot=True, cmap='coolwarm')\n",
|
120
|
-
"plt.title(\"Correlation Heatmap\")\n",
|
121
|
-
"plt.show()"
|
122
|
-
]
|
123
|
-
},
|
124
|
-
{
|
125
|
-
"cell_type": "code",
|
126
|
-
"execution_count": null,
|
127
|
-
"id": "dcd61b6d-a5bd-4ac8-a8a9-ff67aacef211",
|
128
|
-
"metadata": {},
|
129
|
-
"outputs": [],
|
130
|
-
"source": [
|
131
|
-
"df['Rolling_Mean_3'] = df['#Passengers'].rolling(3).mean()\n",
|
132
|
-
"df['Expanding_Mean'] = df['#Passengers'].expanding().mean()\n",
|
133
|
-
"df.head()"
|
134
|
-
]
|
135
|
-
},
|
136
|
-
{
|
137
|
-
"cell_type": "code",
|
138
|
-
"execution_count": null,
|
139
|
-
"id": "8fc86da3-a4c2-4bd4-adc0-71b00483aaea",
|
140
|
-
"metadata": {},
|
141
|
-
"outputs": [],
|
142
|
-
"source": [
|
143
|
-
"#ADF test\n",
|
144
|
-
"print(\"\\nPerforming ADF Test for Stationarity:\")\n",
|
145
|
-
"adf_result = adfuller(df['#Passengers'])\n",
|
146
|
-
"print(f\"ADF Statistic: {adf_result[0]}\")\n",
|
147
|
-
"print(f\"p-value: {adf_result[1]}\")\n",
|
148
|
-
"print(f\"Critical Values: {adf_result[4]}\")"
|
149
|
-
]
|
150
|
-
},
|
151
|
-
{
|
152
|
-
"cell_type": "code",
|
153
|
-
"execution_count": null,
|
154
|
-
"id": "49a5b13c-b883-47c9-af10-792cf8cca8f4",
|
155
|
-
"metadata": {},
|
156
|
-
"outputs": [],
|
157
|
-
"source": [
|
158
|
-
"decomposed = seasonal_decompose(df['#Passengers'], model='additive', period=12)\n",
|
159
|
-
"plt.figure(figsize=(12, 8))\n",
|
160
|
-
"plt.subplot(411)\n",
|
161
|
-
"plt.plot(df['#Passengers'], label='Original')\n",
|
162
|
-
"plt.legend(loc='best')\n",
|
163
|
-
"plt.subplot(412)\n",
|
164
|
-
"plt.plot(decomposed.trend, label='Trend')\n",
|
165
|
-
"plt.legend(loc='best')\n",
|
166
|
-
"plt.subplot(413)\n",
|
167
|
-
"plt.plot(decomposed.seasonal, label='Seasonality')\n",
|
168
|
-
"plt.legend(loc='best')\n",
|
169
|
-
"plt.subplot(414)\n",
|
170
|
-
"plt.plot(decomposed.resid, label='Residuals')\n",
|
171
|
-
"plt.legend(loc='best')\n",
|
172
|
-
"plt.tight_layout()\n",
|
173
|
-
"plt.show()"
|
174
|
-
]
|
175
|
-
}
|
176
|
-
],
|
177
|
-
"metadata": {
|
178
|
-
"kernelspec": {
|
179
|
-
"display_name": "Python 3 (ipykernel)",
|
180
|
-
"language": "python",
|
181
|
-
"name": "python3"
|
182
|
-
},
|
183
|
-
"language_info": {
|
184
|
-
"codemirror_mode": {
|
185
|
-
"name": "ipython",
|
186
|
-
"version": 3
|
187
|
-
},
|
188
|
-
"file_extension": ".py",
|
189
|
-
"mimetype": "text/x-python",
|
190
|
-
"name": "python",
|
191
|
-
"nbconvert_exporter": "python",
|
192
|
-
"pygments_lexer": "ipython3",
|
193
|
-
"version": "3.12.4"
|
194
|
-
}
|
195
|
-
},
|
196
|
-
"nbformat": 4,
|
197
|
-
"nbformat_minor": 5
|
198
|
-
}
|
@@ -1,145 +0,0 @@
|
|
1
|
-
Month,#Passengers
|
2
|
-
1949-01,112
|
3
|
-
1949-02,118
|
4
|
-
1949-03,132
|
5
|
-
1949-04,129
|
6
|
-
1949-05,121
|
7
|
-
1949-06,135
|
8
|
-
1949-07,148
|
9
|
-
1949-08,148
|
10
|
-
1949-09,136
|
11
|
-
1949-10,119
|
12
|
-
1949-11,104
|
13
|
-
1949-12,118
|
14
|
-
1950-01,115
|
15
|
-
1950-02,126
|
16
|
-
1950-03,141
|
17
|
-
1950-04,135
|
18
|
-
1950-05,125
|
19
|
-
1950-06,149
|
20
|
-
1950-07,170
|
21
|
-
1950-08,170
|
22
|
-
1950-09,158
|
23
|
-
1950-10,133
|
24
|
-
1950-11,114
|
25
|
-
1950-12,140
|
26
|
-
1951-01,145
|
27
|
-
1951-02,150
|
28
|
-
1951-03,178
|
29
|
-
1951-04,163
|
30
|
-
1951-05,172
|
31
|
-
1951-06,178
|
32
|
-
1951-07,199
|
33
|
-
1951-08,199
|
34
|
-
1951-09,184
|
35
|
-
1951-10,162
|
36
|
-
1951-11,146
|
37
|
-
1951-12,166
|
38
|
-
1952-01,171
|
39
|
-
1952-02,180
|
40
|
-
1952-03,193
|
41
|
-
1952-04,181
|
42
|
-
1952-05,183
|
43
|
-
1952-06,218
|
44
|
-
1952-07,230
|
45
|
-
1952-08,242
|
46
|
-
1952-09,209
|
47
|
-
1952-10,191
|
48
|
-
1952-11,172
|
49
|
-
1952-12,194
|
50
|
-
1953-01,196
|
51
|
-
1953-02,196
|
52
|
-
1953-03,236
|
53
|
-
1953-04,235
|
54
|
-
1953-05,229
|
55
|
-
1953-06,243
|
56
|
-
1953-07,264
|
57
|
-
1953-08,272
|
58
|
-
1953-09,237
|
59
|
-
1953-10,211
|
60
|
-
1953-11,180
|
61
|
-
1953-12,201
|
62
|
-
1954-01,204
|
63
|
-
1954-02,188
|
64
|
-
1954-03,235
|
65
|
-
1954-04,227
|
66
|
-
1954-05,234
|
67
|
-
1954-06,264
|
68
|
-
1954-07,302
|
69
|
-
1954-08,293
|
70
|
-
1954-09,259
|
71
|
-
1954-10,229
|
72
|
-
1954-11,203
|
73
|
-
1954-12,229
|
74
|
-
1955-01,242
|
75
|
-
1955-02,233
|
76
|
-
1955-03,267
|
77
|
-
1955-04,269
|
78
|
-
1955-05,270
|
79
|
-
1955-06,315
|
80
|
-
1955-07,364
|
81
|
-
1955-08,347
|
82
|
-
1955-09,312
|
83
|
-
1955-10,274
|
84
|
-
1955-11,237
|
85
|
-
1955-12,278
|
86
|
-
1956-01,284
|
87
|
-
1956-02,277
|
88
|
-
1956-03,317
|
89
|
-
1956-04,313
|
90
|
-
1956-05,318
|
91
|
-
1956-06,374
|
92
|
-
1956-07,413
|
93
|
-
1956-08,405
|
94
|
-
1956-09,355
|
95
|
-
1956-10,306
|
96
|
-
1956-11,271
|
97
|
-
1956-12,306
|
98
|
-
1957-01,315
|
99
|
-
1957-02,301
|
100
|
-
1957-03,356
|
101
|
-
1957-04,348
|
102
|
-
1957-05,355
|
103
|
-
1957-06,422
|
104
|
-
1957-07,465
|
105
|
-
1957-08,467
|
106
|
-
1957-09,404
|
107
|
-
1957-10,347
|
108
|
-
1957-11,305
|
109
|
-
1957-12,336
|
110
|
-
1958-01,340
|
111
|
-
1958-02,318
|
112
|
-
1958-03,362
|
113
|
-
1958-04,348
|
114
|
-
1958-05,363
|
115
|
-
1958-06,435
|
116
|
-
1958-07,491
|
117
|
-
1958-08,505
|
118
|
-
1958-09,404
|
119
|
-
1958-10,359
|
120
|
-
1958-11,310
|
121
|
-
1958-12,337
|
122
|
-
1959-01,360
|
123
|
-
1959-02,342
|
124
|
-
1959-03,406
|
125
|
-
1959-04,396
|
126
|
-
1959-05,420
|
127
|
-
1959-06,472
|
128
|
-
1959-07,548
|
129
|
-
1959-08,559
|
130
|
-
1959-09,463
|
131
|
-
1959-10,407
|
132
|
-
1959-11,362
|
133
|
-
1959-12,405
|
134
|
-
1960-01,417
|
135
|
-
1960-02,391
|
136
|
-
1960-03,419
|
137
|
-
1960-04,461
|
138
|
-
1960-05,472
|
139
|
-
1960-06,535
|
140
|
-
1960-07,622
|
141
|
-
1960-08,606
|
142
|
-
1960-09,508
|
143
|
-
1960-10,461
|
144
|
-
1960-11,390
|
145
|
-
1960-12,432
|
noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb
DELETED
@@ -1,209 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"id": "487cf97a-4bd0-433b-8c0b-db8eb551354a",
|
7
|
-
"metadata": {},
|
8
|
-
"outputs": [],
|
9
|
-
"source": [
|
10
|
-
"import pandas as pd\n",
|
11
|
-
"import numpy as np\n",
|
12
|
-
"import matplotlib.pyplot as plt\n",
|
13
|
-
"import seaborn as sns\n",
|
14
|
-
"from statsmodels.tsa.stattools import adfuller\n",
|
15
|
-
"from statsmodels.tsa.seasonal import seasonal_decompose"
|
16
|
-
]
|
17
|
-
},
|
18
|
-
{
|
19
|
-
"cell_type": "code",
|
20
|
-
"execution_count": null,
|
21
|
-
"id": "dd6a9dc6-1e40-4fd1-8be4-6c69b50d82d8",
|
22
|
-
"metadata": {},
|
23
|
-
"outputs": [],
|
24
|
-
"source": [
|
25
|
-
"df = pd.read_csv('daily-total-female-births.csv')\n",
|
26
|
-
"print(\"Dataset Loaded Successfully\")\n",
|
27
|
-
"df.head()"
|
28
|
-
]
|
29
|
-
},
|
30
|
-
{
|
31
|
-
"cell_type": "code",
|
32
|
-
"execution_count": null,
|
33
|
-
"id": "1aee6411-6105-4d85-ac03-b7b8ec2d190d",
|
34
|
-
"metadata": {},
|
35
|
-
"outputs": [],
|
36
|
-
"source": [
|
37
|
-
"df['Date'] = pd.to_datetime(df['Date'])\n",
|
38
|
-
"df.set_index('Date', inplace=True)\n",
|
39
|
-
"df.info()"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "code",
|
44
|
-
"execution_count": null,
|
45
|
-
"id": "64c2371b-1ac2-47e6-89be-9d6456c55c90",
|
46
|
-
"metadata": {},
|
47
|
-
"outputs": [],
|
48
|
-
"source": [
|
49
|
-
"print(\"\\nDataset Summary:\")\n",
|
50
|
-
"df.describe()"
|
51
|
-
]
|
52
|
-
},
|
53
|
-
{
|
54
|
-
"cell_type": "code",
|
55
|
-
"execution_count": null,
|
56
|
-
"id": "81010eaa-b416-47b3-b727-e86da7f8161b",
|
57
|
-
"metadata": {},
|
58
|
-
"outputs": [],
|
59
|
-
"source": [
|
60
|
-
"df['Year'] = df.index.year\n",
|
61
|
-
"df['Month_Num'] = df.index.month\n",
|
62
|
-
"yearly_data = df.groupby('Year')['Births'].sum()\n",
|
63
|
-
"monthly_data = df.groupby('Month_Num')['Births'].mean()\n",
|
64
|
-
"print(\"\\nYearly Data:\")\n",
|
65
|
-
"display(yearly_data.head())\n",
|
66
|
-
"print(\"\\nMonthly Data:\")\n",
|
67
|
-
"display(monthly_data.head())"
|
68
|
-
]
|
69
|
-
},
|
70
|
-
{
|
71
|
-
"cell_type": "code",
|
72
|
-
"execution_count": null,
|
73
|
-
"id": "ca8b19ba-18e3-45c9-8ba9-ba2a1e386cfe",
|
74
|
-
"metadata": {},
|
75
|
-
"outputs": [],
|
76
|
-
"source": [
|
77
|
-
"plt.figure(figsize=(12, 6))\n",
|
78
|
-
"df['Births'].plot(title='Daily Total Female Births Over Time')\n",
|
79
|
-
"plt.xlabel('Year')\n",
|
80
|
-
"plt.ylabel('Number of Births')\n",
|
81
|
-
"plt.show()"
|
82
|
-
]
|
83
|
-
},
|
84
|
-
{
|
85
|
-
"cell_type": "code",
|
86
|
-
"execution_count": null,
|
87
|
-
"id": "21e2a172-9b10-4ac1-acc5-e08fcccb9c83",
|
88
|
-
"metadata": {},
|
89
|
-
"outputs": [],
|
90
|
-
"source": [
|
91
|
-
"plt.figure(figsize=(8, 5))\n",
|
92
|
-
"plt.hist(df['Births'], bins=20, edgecolor='black')\n",
|
93
|
-
"plt.title(\"Histogram of Birth Counts\")\n",
|
94
|
-
"plt.xlabel(\"Births\")\n",
|
95
|
-
"plt.ylabel(\"Frequency\")\n",
|
96
|
-
"plt.show()"
|
97
|
-
]
|
98
|
-
},
|
99
|
-
{
|
100
|
-
"cell_type": "code",
|
101
|
-
"execution_count": null,
|
102
|
-
"id": "425a688c-5125-463d-9061-273ce4558db4",
|
103
|
-
"metadata": {},
|
104
|
-
"outputs": [],
|
105
|
-
"source": [
|
106
|
-
"sns.kdeplot(df['Births'], fill=True)\n",
|
107
|
-
"plt.title(\"Density Plot of Birth Counts\")\n",
|
108
|
-
"plt.show()"
|
109
|
-
]
|
110
|
-
},
|
111
|
-
{
|
112
|
-
"cell_type": "code",
|
113
|
-
"execution_count": null,
|
114
|
-
"id": "91058ea5-efb8-4d74-b1a5-3820deca3417",
|
115
|
-
"metadata": {},
|
116
|
-
"outputs": [],
|
117
|
-
"source": [
|
118
|
-
"sns.boxplot(df['Births'])\n",
|
119
|
-
"plt.title(\"Box and Whisker Plot of Birth Counts\")\n",
|
120
|
-
"plt.show()"
|
121
|
-
]
|
122
|
-
},
|
123
|
-
{
|
124
|
-
"cell_type": "code",
|
125
|
-
"execution_count": null,
|
126
|
-
"id": "ae19d7a0-af99-4c07-9250-13098bf9f436",
|
127
|
-
"metadata": {},
|
128
|
-
"outputs": [],
|
129
|
-
"source": [
|
130
|
-
"df['Rolling_Mean_3'] = df['Births'].rolling(3).mean()\n",
|
131
|
-
"df['Expanding_Mean'] = df['Births'].expanding().mean()\n",
|
132
|
-
"df.head()"
|
133
|
-
]
|
134
|
-
},
|
135
|
-
{
|
136
|
-
"cell_type": "code",
|
137
|
-
"execution_count": null,
|
138
|
-
"id": "9dd9ff6c-4b3b-46d1-85cf-daf6af100b48",
|
139
|
-
"metadata": {},
|
140
|
-
"outputs": [],
|
141
|
-
"source": [
|
142
|
-
"df_resampled = df.resample('W').mean() # Weekly resampling\n",
|
143
|
-
"interpolated_df = df.interpolate(method='linear') # Linear interpolation\n",
|
144
|
-
"interpolated_df.head()"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
{
|
148
|
-
"cell_type": "code",
|
149
|
-
"execution_count": null,
|
150
|
-
"id": "bfa32ab5-48ee-4aff-8217-881e8429ebe8",
|
151
|
-
"metadata": {},
|
152
|
-
"outputs": [],
|
153
|
-
"source": [
|
154
|
-
"#(ADF Test)\n",
|
155
|
-
"print(\"\\nPerforming ADF Test for Stationarity:\")\n",
|
156
|
-
"adf_result = adfuller(df['Births'])\n",
|
157
|
-
"print(f\"ADF Statistic: {adf_result[0]}\")\n",
|
158
|
-
"print(f\"p-value: {adf_result[1]}\")\n",
|
159
|
-
"print(f\"Critical Values: {adf_result[4]}\")"
|
160
|
-
]
|
161
|
-
},
|
162
|
-
{
|
163
|
-
"cell_type": "code",
|
164
|
-
"execution_count": null,
|
165
|
-
"id": "4aecf4be-05a1-4bae-8b6b-c5f5e5f49480",
|
166
|
-
"metadata": {},
|
167
|
-
"outputs": [],
|
168
|
-
"source": [
|
169
|
-
"decomposed = seasonal_decompose(df['Births'], model='additive', period=7)\n",
|
170
|
-
"plt.figure(figsize=(12, 8))\n",
|
171
|
-
"plt.subplot(411)\n",
|
172
|
-
"plt.plot(df['Births'], label='Original')\n",
|
173
|
-
"plt.legend(loc='best')\n",
|
174
|
-
"plt.subplot(412)\n",
|
175
|
-
"plt.plot(decomposed.trend, label='Trend')\n",
|
176
|
-
"plt.legend(loc='best')\n",
|
177
|
-
"plt.subplot(413)\n",
|
178
|
-
"plt.plot(decomposed.seasonal, label='Seasonality')\n",
|
179
|
-
"plt.legend(loc='best')\n",
|
180
|
-
"plt.subplot(414)\n",
|
181
|
-
"plt.plot(decomposed.resid, label='Residuals')\n",
|
182
|
-
"plt.legend(loc='best')\n",
|
183
|
-
"plt.tight_layout()\n",
|
184
|
-
"plt.show()"
|
185
|
-
]
|
186
|
-
}
|
187
|
-
],
|
188
|
-
"metadata": {
|
189
|
-
"kernelspec": {
|
190
|
-
"display_name": "Python 3 (ipykernel)",
|
191
|
-
"language": "python",
|
192
|
-
"name": "python3"
|
193
|
-
},
|
194
|
-
"language_info": {
|
195
|
-
"codemirror_mode": {
|
196
|
-
"name": "ipython",
|
197
|
-
"version": 3
|
198
|
-
},
|
199
|
-
"file_extension": ".py",
|
200
|
-
"mimetype": "text/x-python",
|
201
|
-
"name": "python",
|
202
|
-
"nbconvert_exporter": "python",
|
203
|
-
"pygments_lexer": "ipython3",
|
204
|
-
"version": "3.12.4"
|
205
|
-
}
|
206
|
-
},
|
207
|
-
"nbformat": 4,
|
208
|
-
"nbformat_minor": 5
|
209
|
-
}
|