noshot 0.3.8__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +74 -0
  4. noshot/data/ML TS XAI/ML Additional/LR.ipynb +69 -0
  5. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +2112 -0
  6. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +206 -0
  7. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +41189 -0
  8. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +69 -0
  9. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +78 -0
  10. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +81 -0
  11. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +1503 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  13. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  14. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  15. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  16. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  17. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  18. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  19. noshot-0.4.0.dist-info/RECORD +48 -0
  20. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  21. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  22. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  23. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  26. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  27. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  28. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  29. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  30. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  31. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  32. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  33. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  34. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  35. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  36. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  37. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  38. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  39. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  40. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  41. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  42. noshot-0.3.8.dist-info/RECORD +0 -53
  43. /noshot/data/ML TS XAI/{ML Lab CIA/1 → ML Additional}/airfoil_self_noise.dat +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  46. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  47. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  48. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  49. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  50. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  51. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  52. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  53. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  54. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  55. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  56. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  57. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,213 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8c277840-b16a-423e-9f4f-f3b803c2c2ee",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.tsa.stattools import adfuller, kpss\n",
15
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": null,
21
- "id": "9eb2b98c-9f4b-4f11-8773-ab7288365a2c",
22
- "metadata": {},
23
- "outputs": [],
24
- "source": [
25
- "import warnings\n",
26
- "warnings.filterwarnings('ignore')"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "id": "6a81c3aa-f769-4e32-b02c-1e4976f7f1a4",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "file_path = \"shampoo_sales.csv\"\n",
37
- "shampoo_data = pd.read_csv(file_path)\n",
38
- "\n",
39
- "shampoo_data['Date'] = pd.to_datetime(shampoo_data['Month'], format=\"%m-%y\")\n",
40
- "shampoo_data.set_index('Date', inplace=True)\n",
41
- "shampoo_data.drop(columns=['Month'], inplace=True)\n",
42
- "shampoo_data.head()"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": null,
48
- "id": "448b1106-37c9-43b8-9b79-fd370c2046c6",
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "print(shampoo_data.info())\n",
53
- "print(shampoo_data.describe())"
54
- ]
55
- },
56
- {
57
- "cell_type": "code",
58
- "execution_count": null,
59
- "id": "a63051e2-dc07-433c-a473-d6529d40b374",
60
- "metadata": {},
61
- "outputs": [],
62
- "source": [
63
- "plt.figure(figsize=(10, 5))\n",
64
- "plt.plot(shampoo_data['Sales'], marker='o', linestyle='-')\n",
65
- "plt.title(\"Shampoo Sales Over Time\")\n",
66
- "plt.show()"
67
- ]
68
- },
69
- {
70
- "cell_type": "code",
71
- "execution_count": null,
72
- "id": "49fb7080-639b-4bba-a96f-0afe16fae498",
73
- "metadata": {},
74
- "outputs": [],
75
- "source": [
76
- "plt.scatter(shampoo_data.index, shampoo_data['Sales'])\n",
77
- "plt.title(\"Scatter Plot of Shampoo Sales\")\n",
78
- "plt.show()"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": null,
84
- "id": "90c8cac6-eb8b-4352-a644-0511715e3a38",
85
- "metadata": {},
86
- "outputs": [],
87
- "source": [
88
- "plot_acf(shampoo_data['Sales'])\n",
89
- "plt.show()\n",
90
- "\n",
91
- "plot_pacf(shampoo_data['Sales'])\n",
92
- "plt.show()"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "4e996648-7825-45cb-812a-628c53a16c4a",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "plt.figure(figsize=(8, 5))\n",
103
- "sns.histplot(shampoo_data['Sales'], bins=20, kde=True, edgecolor='black')\n",
104
- "plt.title(\"Histogram of Shampoo Sales\")\n",
105
- "plt.show()"
106
- ]
107
- },
108
- {
109
- "cell_type": "code",
110
- "execution_count": null,
111
- "id": "17b1e87a-bd61-4a01-851d-41527be0b032",
112
- "metadata": {},
113
- "outputs": [],
114
- "source": [
115
- "sns.kdeplot(shampoo_data['Sales'], fill=True)\n",
116
- "plt.title(\"Density Plot of Shampoo Sales\")\n",
117
- "plt.show()"
118
- ]
119
- },
120
- {
121
- "cell_type": "code",
122
- "execution_count": null,
123
- "id": "10c9d944-fe80-43a0-9300-4cb8ea57d5d3",
124
- "metadata": {},
125
- "outputs": [],
126
- "source": [
127
- "plt.figure(figsize=(8, 6))\n",
128
- "sns.heatmap(shampoo_data.corr(), annot=True, cmap='coolwarm')\n",
129
- "plt.title(\"Correlation Heatmap\")\n",
130
- "plt.show()"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "id": "c77ab9ee-e024-4f5b-b7bf-db2332496f83",
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "upsampled = shampoo_data.resample('D').interpolate(method='linear')\n",
141
- "\n",
142
- "plt.figure(figsize=(12, 5))\n",
143
- "plt.plot(upsampled['Sales'], label='Linear Interpolation', color='blue')\n",
144
- "plt.title(\"Upsampled Data (Daily)\")\n",
145
- "plt.legend()\n",
146
- "plt.show()"
147
- ]
148
- },
149
- {
150
- "cell_type": "code",
151
- "execution_count": null,
152
- "id": "65cbf554-b568-4841-8572-5454723505a2",
153
- "metadata": {},
154
- "outputs": [],
155
- "source": [
156
- "upsampled_quadratic = shampoo_data.resample('D').interpolate(method='quadratic')\n",
157
- "\n",
158
- "plt.figure(figsize=(12, 5))\n",
159
- "plt.plot(upsampled_quadratic['Sales'], label='Quadratic Interpolation', color='red')\n",
160
- "plt.title(\"Upsampled Data (Quadratic)\")\n",
161
- "plt.legend()\n",
162
- "plt.show()"
163
- ]
164
- },
165
- {
166
- "cell_type": "code",
167
- "execution_count": null,
168
- "id": "0cb91482-23cb-45f1-8dc9-bf6def1f1383",
169
- "metadata": {},
170
- "outputs": [],
171
- "source": [
172
- "def adf_test(series):\n",
173
- " result = adfuller(series.dropna())\n",
174
- " print(\"ADF Statistic:\", result[0])\n",
175
- " print(\"p-value:\", result[1])\n",
176
- " print(\"Stationary\" if result[1] < 0.05 else \"Non-Stationary\")\n",
177
- "\n",
178
- "print(\"\\nADF Test Results:\")\n",
179
- "adf_test(shampoo_data['Sales'])\n",
180
- "\n",
181
- "def kpss_test(series):\n",
182
- " result = kpss(series.dropna(), regression='c')\n",
183
- " print(\"KPSS Statistic:\", result[0])\n",
184
- " print(\"p-value:\", result[1])\n",
185
- " print(\"Stationary\" if result[1] > 0.05 else \"Non-Stationary\")\n",
186
- "\n",
187
- "print(\"\\nKPSS Test Results:\")\n",
188
- "kpss_test(shampoo_data['Sales'])"
189
- ]
190
- }
191
- ],
192
- "metadata": {
193
- "kernelspec": {
194
- "display_name": "Python 3 (ipykernel)",
195
- "language": "python",
196
- "name": "python3"
197
- },
198
- "language_info": {
199
- "codemirror_mode": {
200
- "name": "ipython",
201
- "version": 3
202
- },
203
- "file_extension": ".py",
204
- "mimetype": "text/x-python",
205
- "name": "python",
206
- "nbconvert_exporter": "python",
207
- "pygments_lexer": "ipython3",
208
- "version": "3.12.4"
209
- }
210
- },
211
- "nbformat": 4,
212
- "nbformat_minor": 5
213
- }
@@ -1,37 +0,0 @@
1
- "Month","Sales"
2
- "1-01",266.0
3
- "1-02",145.9
4
- "1-03",183.1
5
- "1-04",119.3
6
- "1-05",180.3
7
- "1-06",168.5
8
- "1-07",231.8
9
- "1-08",224.5
10
- "1-09",192.8
11
- "1-10",122.9
12
- "1-11",336.5
13
- "1-12",185.9
14
- "2-01",194.3
15
- "2-02",149.5
16
- "2-03",210.1
17
- "2-04",273.3
18
- "2-05",191.4
19
- "2-06",287.0
20
- "2-07",226.0
21
- "2-08",303.6
22
- "2-09",289.9
23
- "2-10",421.6
24
- "2-11",264.5
25
- "2-12",342.3
26
- "3-01",339.7
27
- "3-02",440.4
28
- "3-03",315.9
29
- "3-04",439.3
30
- "3-05",401.3
31
- "3-06",437.4
32
- "3-07",575.5
33
- "3-08",407.6
34
- "3-09",682.0
35
- "3-10",475.3
36
- "3-11",581.3
37
- "3-12",646.9
@@ -1,53 +0,0 @@
1
- noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
- noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
3
- noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
4
- noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
5
- noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
6
- noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
7
- noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
8
- noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
9
- noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
10
- noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
11
- noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
12
- noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
13
- noshot/data/ML TS XAI/ML Lab CIA/1/1.ipynb,sha256=RwpYKNBXvwkAuT8f5mvs56Qg8oml847e1Lz4Rn3B9Co,3995
14
- noshot/data/ML TS XAI/ML Lab CIA/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
15
- noshot/data/ML TS XAI/ML Lab CIA/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
16
- noshot/data/ML TS XAI/ML Lab CIA/2/2.ipynb,sha256=g7sW7wS4UZDI7q3S4HbzRWKoEDloVTCrT3lNvFbzQmo,3705
17
- noshot/data/ML TS XAI/ML Lab CIA/2/Question.txt,sha256=b-lOzBMSgYIF1NaFpHqKGaKBgg6InJ2X1BzDfrqvtiI,517
18
- noshot/data/ML TS XAI/ML Lab CIA/2/pop_failures.dat,sha256=Pf4s5kiObecb2vJmWTjKoXfZP_zlkbhG5nl-vhymW2I,65536
19
- noshot/data/ML TS XAI/ML Lab CIA/3/3.ipynb,sha256=ZOUhF1XGZLmBTKMfO6S1vQ6P-tUamWex0tKznA4gGSk,3780
20
- noshot/data/ML TS XAI/ML Lab CIA/3/Qu.txt,sha256=gvt2BGN7SWAXxHlbxjUOHk-VV6CY5lCeXLL3gl7cQvA,44
21
- noshot/data/ML TS XAI/ML Lab CIA/3/go_track_tracks.csv,sha256=xDfqYnGJFmNBRZicq8D98WC2o34qiR5buhPBMShxSC0,10979
22
- noshot/data/ML TS XAI/ML Lab CIA/4/4.ipynb,sha256=vxXJL4AFS8yeSSFtlgcWiiuE2Yk4qez58QDcPR7CAzw,3956
23
- noshot/data/ML TS XAI/ML Lab CIA/4/Wilt.csv,sha256=2Ew_JR5_DOLq5DtuAVZCmJiVK54uccMdT90yAW_9XWk,244730
24
- noshot/data/ML TS XAI/ML Lab CIA/4/qu.txt,sha256=sM9c0pox6ooOXkyqFFZq_8QCYekl6CwU14ZPVocVeNk,53
25
- noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb,sha256=TSBMPI4qdxsp4TV8FXxlutybmft76PP5AnnAEVBmX14,5483
26
- noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb,sha256=HdDfhPowxFujZweySJRuP-Et_y_2TvZP-PZLevgXUKY,4231
27
- noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb,sha256=Fi1Aq6BhqlqY8XcHwvRdOwTTNQ5QvIS7yr41sTMkW3A,3705
28
- noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb,sha256=7-_k3WNgab0sIAX4vC2Ot_jbJwcLBszh4hw_F66PSms,3194
29
- noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb,sha256=I3vHyu1oxp95TiroeLUrTeKR7am5G7CEPVjp3CZ4V4U,4612
30
- noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb,sha256=tRSrqFrJpXQHRo4nyXCz-UZbNmhJc47F4b8pGRWEMRk,1901
31
- noshot/data/ML TS XAI/TS/AllinOne.ipynb,sha256=egNDVfK-aObDRs_qyWLWjdQKQhccijA3_cirYbinJeg,35686
32
- noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
33
- noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
34
- noshot/data/ML TS XAI/TS/data/raw_sales.csv,sha256=prmIL2Za6SSvtNySuENVeeWm96ErETBE2yKdzUTsAIQ,1150525
35
- noshot/data/ML TS XAI/TS/data/shampoo_sales.csv,sha256=3cnpMyQZjuLerDQ6seFWybW79od4Xx0J1jYJYOjBrm0,426
36
- noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf,sha256=B_z0vtszHqZ8yK4r7M7qL-BdryhR3hqs978QrzUMCeQ,156479
37
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb,sha256=fx-bnmM--DGpl_wDxmpP0Vk7aqYKpGRCM6JFSlhljw0,5114
38
- noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv,sha256=X4sxa4RUXZz7BWEimN-EFc5MREIccBLRCUZVZLB-vAY,1746
39
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb,sha256=DqOIH5u7ZE1-ZBa8PB3NmfTefT5UaP3xcUSetpKA32s,5376
40
- noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv,sha256=nvfDjkWMQydf_0NJKSLwCZgI1y9oVtrDY9kAwEM1RQQ,5855
41
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb,sha256=oXbFNROkV0zqpdKHuocFj6fVdyNDzURuA4VqpifGGoU,4265
42
- noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv,sha256=tLP-OanWaF3ddiGFYyFjzcK1cXYpPvSmitbyOOe0Okk,471
43
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb,sha256=cUhKSNijW8nbwCAFKf65Q4HrJYFxQ7r6PbZ_rCqeGt8,4681
44
- noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv,sha256=F4yFcHwUgxnEyjUGnQRMeZ_yLo1xt6LAiSIhZ1bRiWE,64271
45
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb,sha256=jPltozGU6R3driZcLthAPjgkuJWIBX6kWsrnsxc09Ec,5590
46
- noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv,sha256=c3ry-Yy1m-MoLGWopaD9jfVX9UZ2JRBBJA2DtwWi_fg,484
47
- noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
48
- noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
49
- noshot-0.3.8.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
50
- noshot-0.3.8.dist-info/METADATA,sha256=lmA5Gpe6EQdjFkf4CchFUoA9Yhi7LO3jmTVC_4c5uqE,2391
51
- noshot-0.3.8.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
52
- noshot-0.3.8.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
53
- noshot-0.3.8.dist-info/RECORD,,
File without changes