noshot 0.3.8__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +74 -0
  4. noshot/data/ML TS XAI/ML Additional/LR.ipynb +69 -0
  5. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +2112 -0
  6. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +206 -0
  7. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +41189 -0
  8. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +69 -0
  9. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +78 -0
  10. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +81 -0
  11. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +1503 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  13. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  14. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  15. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  16. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  17. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  18. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  19. noshot-0.4.0.dist-info/RECORD +48 -0
  20. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  21. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  22. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  23. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  26. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  27. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  28. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  29. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  30. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  31. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  32. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  33. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  34. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  35. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  36. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  37. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  38. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  39. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  40. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  41. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  42. noshot-0.3.8.dist-info/RECORD +0 -53
  43. /noshot/data/ML TS XAI/{ML Lab CIA/1 → ML Additional}/airfoil_self_noise.dat +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  46. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  47. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  48. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  49. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  50. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  51. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  52. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  53. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  54. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  55. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  56. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  57. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: noshot
3
- Version: 0.3.8
3
+ Version: 0.4.0
4
4
  Summary: Support library for Artificial Intelligence, Machine Learning and Data Science tools
5
5
  Author: Tim Stan S
6
6
  License: MIT
@@ -0,0 +1,48 @@
1
+ noshot/__init__.py,sha256=000R40tii8lDFU8C1fBaD3SOnxD0PWRNWZU-km49YrU,21
2
+ noshot/main.py,sha256=6gU5gZ5csHxJQ7H-YyWVkW51hJIZdV9cqsPBDTjFo9s,645
3
+ noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb,sha256=gYyfP1V0fwTBS-I6wl_b_8qgKV2k-_GdNtAmSu1Zdqw,681560
4
+ noshot/data/ML TS XAI/Football Player/4.ipynb,sha256=Ax_j6m4jACBoZaiMjEzZXaRB9dElbYk5EBQYYt-2TO0,128966
5
+ noshot/data/ML TS XAI/ML/1. PCA - EDA.ipynb,sha256=YHOR8PEU-UZDbOnYfY8RXWlKWPmAylk8JjyCNXGJDWs,4951
6
+ noshot/data/ML TS XAI/ML/2. KNN Classifier.ipynb,sha256=Z-s44hC240B3ZQL4LHVhh6kdec8zbc9WXntA6rmu2gc,7705
7
+ noshot/data/ML TS XAI/ML/3. Linear Discriminant Analysis.ipynb,sha256=S7lovIZpIxK2rSUa201DQwnbBfVFN99R0v03nFq1amI,2218
8
+ noshot/data/ML TS XAI/ML/4. Linear Regression.ipynb,sha256=F3DQAZf_2omM8fBeWfkadzdbvrzh6dlRoeG6vqbqJgg,3152
9
+ noshot/data/ML TS XAI/ML/5. Logistic Regression.ipynb,sha256=QUJd2YY0dR8QncLM2_IgfGOJRJnIH1rBIV9XD8kY2ZY,3766
10
+ noshot/data/ML TS XAI/ML/6. Bayesian Classifier.ipynb,sha256=O1FCVYpuPBNe33vO2eRmKghvnehMe_rIup1djnzrDJY,2003
11
+ noshot/data/ML TS XAI/ML/data/balance-scale.csv,sha256=TIXuC522eeShSGKEzpVdslBH-7pj-iElyk1J0LQfp3k,6315
12
+ noshot/data/ML TS XAI/ML/data/balance-scale.txt,sha256=_QWQ4ru9MWCeh_4x372ev6Ipg5oOeUcGFH_2Jp0QA9E,6249
13
+ noshot/data/ML TS XAI/ML/data/machine-data.csv,sha256=poHH1NKX94SE7hyRTX7Gug4fWdAHRY4SnUNwYg_B1TQ,8746
14
+ noshot/data/ML TS XAI/ML/data/wine-dataset.csv,sha256=zYAVj609HiA9YdrkIkJiCwLdX5GOY3tfCDgeOefPUgQ,12261
15
+ noshot/data/ML TS XAI/ML Additional/Bank.ipynb,sha256=PX9-mjUbYAtRNgXPg-t3nzeq3Hat3Fm3LZxpAgy-yek,2332
16
+ noshot/data/ML TS XAI/ML Additional/LR.ipynb,sha256=d1t6_xphPFCAMikhaAZK2f63rSIEJVH3NQpPshHw--E,2050
17
+ noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv,sha256=ti4escjJgTeb7iPjnjVoP1RVaDvXctxyKCcVjd6Smh8,261534
18
+ noshot/data/ML TS XAI/ML Additional/Q4 LR.csv,sha256=LRgNqCbNasyiVsTnl76sCq5bSzf7t3SvwbkK6DGcW2U,26511
19
+ noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv,sha256=u0Wt2R1OAocPzeKO5PkTt4JopapgUej74sPhYBBAQ1U,4887557
20
+ noshot/data/ML TS XAI/ML Additional/airfoil.ipynb,sha256=P7xJDaG0gr7y6RoaCzW-2izjgetesGXPtFcRts1Hkes,2115
21
+ noshot/data/ML TS XAI/ML Additional/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
22
+ noshot/data/ML TS XAI/ML Additional/obesity.ipynb,sha256=-I7RSTLvsap3l02NpQwPJKzGsIy-rpvDPSbUBpjrOpc,2528
23
+ noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb,sha256=dxkLk_SCxksdYu-RiEZdzsLjfgTDqvSb464IjxiDl5w,2413
24
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/1.ipynb,sha256=RwpYKNBXvwkAuT8f5mvs56Qg8oml847e1Lz4Rn3B9Co,3995
25
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/Question.txt,sha256=cxrnnGmeKfFzUdYcD2H1iNBqBArJwuvkxBryrx45pcg,389
26
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat,sha256=EO4G5s-yfa5rRCE9Qh0hcBL7H5tpdZLnOk5AFrUtQl8,58481
27
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/2.ipynb,sha256=g7sW7wS4UZDI7q3S4HbzRWKoEDloVTCrT3lNvFbzQmo,3705
28
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/Question.txt,sha256=b-lOzBMSgYIF1NaFpHqKGaKBgg6InJ2X1BzDfrqvtiI,517
29
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/2/pop_failures.dat,sha256=Pf4s5kiObecb2vJmWTjKoXfZP_zlkbhG5nl-vhymW2I,65536
30
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/3.ipynb,sha256=ZOUhF1XGZLmBTKMfO6S1vQ6P-tUamWex0tKznA4gGSk,3780
31
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/Qu.txt,sha256=gvt2BGN7SWAXxHlbxjUOHk-VV6CY5lCeXLL3gl7cQvA,44
32
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/3/go_track_tracks.csv,sha256=xDfqYnGJFmNBRZicq8D98WC2o34qiR5buhPBMShxSC0,10979
33
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/4.ipynb,sha256=vxXJL4AFS8yeSSFtlgcWiiuE2Yk4qez58QDcPR7CAzw,3956
34
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/Wilt.csv,sha256=2Ew_JR5_DOLq5DtuAVZCmJiVK54uccMdT90yAW_9XWk,244730
35
+ noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/4/qu.txt,sha256=sM9c0pox6ooOXkyqFFZq_8QCYekl6CwU14ZPVocVeNk,53
36
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb,sha256=2OgCUqTjqqqeIjKtpi9yq9-pNcFcousrwiiJsLIFXLE,720354
37
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb,sha256=w5knr0u4Dk_EqX2LYpWmlUnhcafHqqHMEZiJTJhV1mQ,298732
38
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb,sha256=-MguP1cEOsPjdg5PVGcSZAgBTw0Ahieh1rjGn41VHXE,291984
39
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb,sha256=wtAE6Qq4MMB0Sy8-OYBwoPz8zte9RhfzHR4iNV7_bXw,440632
40
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv,sha256=U8Zk4J5jVwGY9Bl9qp1ulrX-pkiNShuSWdGS3yzlHM8,29435
41
+ noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv,sha256=V08vorQwEvol_KT82za9fGvM3Qr0JC9sDkyGM8Wgcq4,79346
42
+ noshot/utils/__init__.py,sha256=NovRMat6RWu1WNI1_OH_Xo6Uvaq8D91no-ZhLcuVwHs,108
43
+ noshot/utils/shell_utils.py,sha256=WzVq5EZEgiJFysbDYn9QPRYSE555Ew20HZbb3RDymkE,2555
44
+ noshot-0.4.0.dist-info/LICENSE.txt,sha256=MLVZLpViyRWQLkQCesNwRqdfGzt-aunQSFiP5b_5Qn4,1066
45
+ noshot-0.4.0.dist-info/METADATA,sha256=DZs3B0uNxzXYGbzj7C1GUlieYz1tiEY-l4l3AZclSjQ,2391
46
+ noshot-0.4.0.dist-info/WHEEL,sha256=jB7zZ3N9hIM9adW7qlTAyycLYW9npaWKLRzaoVcLKcM,91
47
+ noshot-0.4.0.dist-info/top_level.txt,sha256=UL-c0HffdRwohz-y9icY_rnY48pQDdxGcBsgyCKh2Q8,7
48
+ noshot-0.4.0.dist-info/RECORD,,
@@ -1,247 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "6b192e2a-14e9-4707-b1c1-e8f5aa32a919",
6
- "metadata": {},
7
- "source": [
8
- "### __Import Required Libraries__"
9
- ]
10
- },
11
- {
12
- "cell_type": "code",
13
- "execution_count": null,
14
- "id": "95be04fa-500c-4308-9784-b07bb42d5232",
15
- "metadata": {},
16
- "outputs": [],
17
- "source": [
18
- "import pandas as pd\n",
19
- "import matplotlib.pyplot as plt"
20
- ]
21
- },
22
- {
23
- "cell_type": "markdown",
24
- "id": "e5ff8a35-769d-4eda-b5f3-d3c9ba7a2dce",
25
- "metadata": {},
26
- "source": [
27
- "##### __1. Importing the dataset__"
28
- ]
29
- },
30
- {
31
- "cell_type": "code",
32
- "execution_count": null,
33
- "id": "69caa184-219d-4b01-8a30-1ea9ba61dcff",
34
- "metadata": {},
35
- "outputs": [],
36
- "source": [
37
- "df = pd.read_csv('data/raw_sales.csv', index_col = 'datesold')\n",
38
- "print(df.shape)"
39
- ]
40
- },
41
- {
42
- "cell_type": "markdown",
43
- "id": "f8273eed-a0e9-4d52-a183-350a7393a290",
44
- "metadata": {},
45
- "source": [
46
- "##### __2. Display the first few rows to peek at the data, the last few rows__"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "490892d7-df7d-4c0f-9f8a-63883ce7432f",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df.head()"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "24ae00c8-949b-4047-80ed-4f0631992c3f",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "df.tail()"
67
- ]
68
- },
69
- {
70
- "cell_type": "markdown",
71
- "id": "9c24bbd0-75f0-4eb6-863d-7960337bcb77",
72
- "metadata": {},
73
- "source": [
74
- "##### __3. Print the summary statistics__"
75
- ]
76
- },
77
- {
78
- "cell_type": "code",
79
- "execution_count": null,
80
- "id": "bf0037dd-41b5-4c55-ae5c-8dfa5cb11f90",
81
- "metadata": {},
82
- "outputs": [],
83
- "source": [
84
- "df.describe().T"
85
- ]
86
- },
87
- {
88
- "cell_type": "markdown",
89
- "id": "fb7299b8-90fe-4dae-93a1-496129bc928a",
90
- "metadata": {},
91
- "source": [
92
- "##### __4. Filter data for a specific year__"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "6a533c7b-6786-4789-9a18-0f19125de32d",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "df.index = pd.to_datetime(df.index)\n",
103
- "df['price'][df.index.year == 2007].mean()"
104
- ]
105
- },
106
- {
107
- "cell_type": "markdown",
108
- "id": "111029b6-fcc9-4f5e-a9d8-833ae27c039e",
109
- "metadata": {},
110
- "source": [
111
- "##### __5. Plot the average price per year__"
112
- ]
113
- },
114
- {
115
- "cell_type": "code",
116
- "execution_count": null,
117
- "id": "71212203-c3e5-49ca-aa07-bbc12a2e0de6",
118
- "metadata": {},
119
- "outputs": [],
120
- "source": [
121
- "group = df['price'].groupby(df.index.year).mean()\n",
122
- "plt.plot(group.index, group.values, color = 'r', label = 'Average_Price/Yr')\n",
123
- "plt.title('Average Price Year Wise')\n",
124
- "plt.legend()\n",
125
- "plt.show()"
126
- ]
127
- },
128
- {
129
- "cell_type": "markdown",
130
- "id": "0405f26e-b564-48a2-9fb5-6d89311a363e",
131
- "metadata": {},
132
- "source": [
133
- "##### __6. Count of properties sold per year__"
134
- ]
135
- },
136
- {
137
- "cell_type": "code",
138
- "execution_count": null,
139
- "id": "7e1cb0fb-f494-49b1-adbc-89824b7e3855",
140
- "metadata": {},
141
- "outputs": [],
142
- "source": [
143
- "group = df.groupby(df.index.year).count()\n",
144
- "plt.bar(group.index, group.values[:, 0], color = 'g', label = 'Property_Sold/Yr')\n",
145
- "plt.title('Property\\'s Sold Year Wise')\n",
146
- "plt.legend()\n",
147
- "plt.show()"
148
- ]
149
- },
150
- {
151
- "cell_type": "markdown",
152
- "id": "d9b4c518-05ec-41ba-956d-e145efc958fd",
153
- "metadata": {},
154
- "source": [
155
- "##### __7. Query for a specific date range (e.g., Jan 2010 to Dec 2015)__"
156
- ]
157
- },
158
- {
159
- "cell_type": "code",
160
- "execution_count": null,
161
- "id": "17f1f390-9e5b-4bc1-882a-88d0331e3a12",
162
- "metadata": {},
163
- "outputs": [],
164
- "source": [
165
- "df2 = df[(df.index > '1/1/2010') & (df.index <= '31/12/2015')]\n",
166
- "df2"
167
- ]
168
- },
169
- {
170
- "cell_type": "markdown",
171
- "id": "28c84984-a5f0-4c46-963f-5c6e3336aed9",
172
- "metadata": {},
173
- "source": [
174
- "##### __8. Calculate the mean price month-wise (use Groupby)__"
175
- ]
176
- },
177
- {
178
- "cell_type": "code",
179
- "execution_count": null,
180
- "id": "db344276-03ab-4fb5-bb62-5dbc0fc11852",
181
- "metadata": {},
182
- "outputs": [],
183
- "source": [
184
- "df2['price'].groupby(df2.index.month).mean()"
185
- ]
186
- },
187
- {
188
- "cell_type": "markdown",
189
- "id": "3f1afa45-d234-4f01-bf63-ea2a5a73f708",
190
- "metadata": {},
191
- "source": [
192
- "##### __9. Perform a histogram plot__"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": null,
198
- "id": "f0d19cd6-8800-4b7b-b827-6c8fb43d72d9",
199
- "metadata": {},
200
- "outputs": [],
201
- "source": [
202
- "plt.plot(df['price'])\n",
203
- "plt.title('Price Distribution Time-Series')\n",
204
- "plt.show()"
205
- ]
206
- },
207
- {
208
- "cell_type": "markdown",
209
- "id": "b33230fa-a886-4639-926a-cb60f0398745",
210
- "metadata": {},
211
- "source": [
212
- "##### __10. Print the property price > 5Lakhs__"
213
- ]
214
- },
215
- {
216
- "cell_type": "code",
217
- "execution_count": null,
218
- "id": "42695276-9e68-4e56-90a6-02a10e78ed14",
219
- "metadata": {},
220
- "outputs": [],
221
- "source": [
222
- "df[df['price'] > 500000]"
223
- ]
224
- }
225
- ],
226
- "metadata": {
227
- "kernelspec": {
228
- "display_name": "Python 3 (ipykernel)",
229
- "language": "python",
230
- "name": "python3"
231
- },
232
- "language_info": {
233
- "codemirror_mode": {
234
- "name": "ipython",
235
- "version": 3
236
- },
237
- "file_extension": ".py",
238
- "mimetype": "text/x-python",
239
- "name": "python",
240
- "nbconvert_exporter": "python",
241
- "pygments_lexer": "ipython3",
242
- "version": "3.12.4"
243
- }
244
- },
245
- "nbformat": 4,
246
- "nbformat_minor": 5
247
- }
@@ -1,183 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "ac978750-0ac5-4371-a0fb-a54f8503fc64",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import numpy as np\n",
11
- "import pandas as pd\n",
12
- "import matplotlib.pyplot as plt"
13
- ]
14
- },
15
- {
16
- "cell_type": "code",
17
- "execution_count": null,
18
- "id": "1bc21b2b-ccd4-4ed9-888b-b022bd800d26",
19
- "metadata": {},
20
- "outputs": [],
21
- "source": [
22
- "np.random.seed(42)\n",
23
- "values = np.random.randn(100)\n",
24
- "values[:10]"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "id": "b23f68f1-98f8-4d36-8fc8-d92eb82240ae",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "dates = pd.date_range(start='2023-01-01',end='2023-04-10',freq='D')\n",
35
- "dates[:10]"
36
- ]
37
- },
38
- {
39
- "cell_type": "code",
40
- "execution_count": null,
41
- "id": "7c763c06-37fc-4070-b8ee-2241563a6ea4",
42
- "metadata": {},
43
- "outputs": [],
44
- "source": [
45
- "df = pd.DataFrame(values,index=dates,columns=['value'])\n",
46
- "df.head()"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "3a3555e2-1925-4a94-85a2-5ca3909a4c72",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df['value'].plot(kind='hist',bins=20,title='value')\n",
57
- "plt.show()"
58
- ]
59
- },
60
- {
61
- "cell_type": "code",
62
- "execution_count": null,
63
- "id": "d6188560-d5ed-4093-b3b0-7da64bfa99b1",
64
- "metadata": {},
65
- "outputs": [],
66
- "source": [
67
- "df['value'].plot(kind='hist',bins=20,title='value')\n",
68
- "plt.show()"
69
- ]
70
- },
71
- {
72
- "cell_type": "code",
73
- "execution_count": null,
74
- "id": "42b76b42-0f4e-4f90-904e-ef286fa92464",
75
- "metadata": {},
76
- "outputs": [],
77
- "source": [
78
- "df['value'].plot(kind='line',figsize=(8,4),title='value')\n",
79
- "plt.show()"
80
- ]
81
- },
82
- {
83
- "cell_type": "code",
84
- "execution_count": null,
85
- "id": "e1975c05-f04e-445f-8ddb-30ea29f3e231",
86
- "metadata": {},
87
- "outputs": [],
88
- "source": [
89
- "plt.figure(figsize=(10,6))\n",
90
- "plt.plot(df['value'])\n",
91
- "plt.xlabel('Date')\n",
92
- "plt.ylabel('value')\n",
93
- "plt.title('Synthetic time series Dataset')\n",
94
- "plt.show()"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": null,
100
- "id": "6c46e388-cba3-43ca-b5ef-b5dfd55d4418",
101
- "metadata": {},
102
- "outputs": [],
103
- "source": [
104
- "df['year'] = df.index.year\n",
105
- "df['month'] = df.index.month\n",
106
- "df['day'] = df.index.day\n",
107
- "df['weekday'] = df.index.weekday\n",
108
- "df.head()"
109
- ]
110
- },
111
- {
112
- "cell_type": "code",
113
- "execution_count": null,
114
- "id": "a09ab128-c1a1-40da-aa23-23862def187f",
115
- "metadata": {},
116
- "outputs": [],
117
- "source": [
118
- "df['lag_1']=df['value'].shift(1)\n",
119
- "df.head()"
120
- ]
121
- },
122
- {
123
- "cell_type": "code",
124
- "execution_count": null,
125
- "id": "30c06285-7362-48e2-80cb-89302f8a29e0",
126
- "metadata": {},
127
- "outputs": [],
128
- "source": [
129
- "df['lag_2']=df['value'].shift(2)\n",
130
- "df.head()"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "id": "9734d51b-898b-4c6b-a1cd-a30a5cdab71b",
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "df['rollling_mean_5'] = df['value'].rolling(5).mean()\n",
141
- "df['rollling_std_5'] = df['value'].rolling(5).std()\n",
142
- "df['rollling_min_5'] = df['value'].rolling(5).min()\n",
143
- "df['rollling_max_5'] = df['value'].rolling(5).max()\n",
144
- "df.head()"
145
- ]
146
- },
147
- {
148
- "cell_type": "code",
149
- "execution_count": null,
150
- "id": "44564c15-d51e-4dd8-bed9-0d5d3e340fac",
151
- "metadata": {},
152
- "outputs": [],
153
- "source": [
154
- "df['expanding_mean_5'] = df['value'].expanding(5).mean()\n",
155
- "df['expanding_std_5'] = df['value'].expanding(5).std()\n",
156
- "df['expanding_min_5'] = df['value'].expanding(5).min()\n",
157
- "df['expanding_max_5'] = df['value'].expanding(5).max()\n",
158
- "df.head()"
159
- ]
160
- }
161
- ],
162
- "metadata": {
163
- "kernelspec": {
164
- "display_name": "Python 3 (ipykernel)",
165
- "language": "python",
166
- "name": "python3"
167
- },
168
- "language_info": {
169
- "codemirror_mode": {
170
- "name": "ipython",
171
- "version": 3
172
- },
173
- "file_extension": ".py",
174
- "mimetype": "text/x-python",
175
- "name": "python",
176
- "nbconvert_exporter": "python",
177
- "pygments_lexer": "ipython3",
178
- "version": "3.12.4"
179
- }
180
- },
181
- "nbformat": 4,
182
- "nbformat_minor": 5
183
- }
@@ -1,172 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "8fba5290-f2d4-4a0e-8ee6-54eea00d0684",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import numpy as np\n",
11
- "import pandas as pd\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns"
14
- ]
15
- },
16
- {
17
- "cell_type": "code",
18
- "execution_count": null,
19
- "id": "2d6192e1-b823-40b9-bb03-0fcc1bc0ab07",
20
- "metadata": {},
21
- "outputs": [],
22
- "source": [
23
- "np.random.seed(42)\n",
24
- "dates = pd.date_range(start='2024-01-01',end='2024-04-09',freq='D')\n",
25
- "values = np.random.normal(loc=78,scale=16,size=len(dates)) #loc-Mean of Distribution, scale-Standard Deviation"
26
- ]
27
- },
28
- {
29
- "cell_type": "code",
30
- "execution_count": null,
31
- "id": "db65f62d-4477-4f0f-bc49-852a55f4003a",
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "df = pd.DataFrame(index=dates,data=values,columns=['Temperature'])\n",
36
- "df.head()"
37
- ]
38
- },
39
- {
40
- "cell_type": "code",
41
- "execution_count": null,
42
- "id": "a0a6c6ab-e310-465c-93d4-4c0cd4f4be7c",
43
- "metadata": {},
44
- "outputs": [],
45
- "source": [
46
- "df.isnull().sum()"
47
- ]
48
- },
49
- {
50
- "cell_type": "code",
51
- "execution_count": null,
52
- "id": "ddb04850-cfc2-4b3a-b52c-e6adca900e9d",
53
- "metadata": {},
54
- "outputs": [],
55
- "source": [
56
- "df.describe().T"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "id": "c25aee71-9dcd-478a-b3df-2423395b948c",
63
- "metadata": {},
64
- "outputs": [],
65
- "source": [
66
- "df.plot(kind='hist',bins=20,figsize=(8,4))\n",
67
- "plt.show()"
68
- ]
69
- },
70
- {
71
- "cell_type": "code",
72
- "execution_count": null,
73
- "id": "5b14dc33-237b-4e11-886b-4294ded57d6c",
74
- "metadata": {},
75
- "outputs": [],
76
- "source": [
77
- "df.plot(kind='kde',figsize=(8,4))\n",
78
- "plt.show()"
79
- ]
80
- },
81
- {
82
- "cell_type": "code",
83
- "execution_count": null,
84
- "id": "50b9c442-24ba-4afd-a41d-4449957ab056",
85
- "metadata": {},
86
- "outputs": [],
87
- "source": [
88
- "df.plot(kind='box',figsize=(4,4))\n",
89
- "plt.show()"
90
- ]
91
- },
92
- {
93
- "cell_type": "code",
94
- "execution_count": null,
95
- "id": "8b9f0eaa-7d81-4e43-a12f-22da8992390a",
96
- "metadata": {},
97
- "outputs": [],
98
- "source": [
99
- "df.plot(kind='line',figsize=(8,4))\n",
100
- "plt.show()"
101
- ]
102
- },
103
- {
104
- "cell_type": "code",
105
- "execution_count": null,
106
- "id": "ae4b74a2-ad44-4624-bd87-98f6feef4f17",
107
- "metadata": {},
108
- "outputs": [],
109
- "source": [
110
- "plt.figure(figsize=(8,4))\n",
111
- "plt.scatter(x=df.index,y=df['Temperature'])\n",
112
- "plt.xticks(rotation=45)\n",
113
- "plt.show()"
114
- ]
115
- },
116
- {
117
- "cell_type": "code",
118
- "execution_count": null,
119
- "id": "b3e047ce-c749-44e7-b250-9749649e3c1c",
120
- "metadata": {},
121
- "outputs": [],
122
- "source": [
123
- "plt.figure(figsize=(8,4))\n",
124
- "pd.plotting.autocorrelation_plot(df['Temperature'])\n",
125
- "plt.show()"
126
- ]
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "id": "dac6bf07-c177-46cc-9206-043b77abc8d3",
132
- "metadata": {},
133
- "outputs": [],
134
- "source": [
135
- "df.corr()"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": null,
141
- "id": "25daff75-977a-49ab-b642-f7d74dc481fb",
142
- "metadata": {},
143
- "outputs": [],
144
- "source": [
145
- "plt.figure(figsize=(3,3))\n",
146
- "sns.heatmap(df)\n",
147
- "plt.show()"
148
- ]
149
- }
150
- ],
151
- "metadata": {
152
- "kernelspec": {
153
- "display_name": "Python 3 (ipykernel)",
154
- "language": "python",
155
- "name": "python3"
156
- },
157
- "language_info": {
158
- "codemirror_mode": {
159
- "name": "ipython",
160
- "version": 3
161
- },
162
- "file_extension": ".py",
163
- "mimetype": "text/x-python",
164
- "name": "python",
165
- "nbconvert_exporter": "python",
166
- "pygments_lexer": "ipython3",
167
- "version": "3.12.4"
168
- }
169
- },
170
- "nbformat": 4,
171
- "nbformat_minor": 5
172
- }