noshot 0.3.8__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +74 -0
  4. noshot/data/ML TS XAI/ML Additional/LR.ipynb +69 -0
  5. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +2112 -0
  6. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +206 -0
  7. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +41189 -0
  8. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +69 -0
  9. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +78 -0
  10. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +81 -0
  11. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +1503 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  13. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  14. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  15. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  16. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  17. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  18. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  19. noshot-0.4.0.dist-info/RECORD +48 -0
  20. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  21. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  22. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  23. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  26. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  27. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  28. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  29. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  30. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  31. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  32. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  33. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  34. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  35. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  36. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  37. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  38. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  39. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  40. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  41. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  42. noshot-0.3.8.dist-info/RECORD +0 -53
  43. /noshot/data/ML TS XAI/{ML Lab CIA/1 → ML Additional}/airfoil_self_noise.dat +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  46. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  47. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  48. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  49. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  50. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  51. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  52. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  53. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  54. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  55. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  56. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  57. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1 @@
1
+ {"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMQedAbjhh676YEPF/onwBy"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["#***Pre Steps***"],"metadata":{"id":"zBwhq5JpdER4"}},{"cell_type":"code","source":["from google.colab import drive\n","drive.mount('/content/drive')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Pljtns0mdhHu","executionInfo":{"status":"ok","timestamp":1740468472392,"user_tz":-330,"elapsed":19805,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"fc3bcaa7-46bf-43d5-e015-112cefee0fe0"},"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}]},{"cell_type":"code","source":["#required packages.\n","\n","import pandas as pd\n","import numpy as np\n","import matplotlib.pyplot as plt"],"metadata":{"id":"xRtFzJbcdSY4","executionInfo":{"status":"ok","timestamp":1740468472395,"user_tz":-330,"elapsed":2,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":3,"outputs":[]},{"cell_type":"markdown","source":["# ***EX_1***\n","<ul>\n","<li>\n","<b>Perform PCA on given Dataset</b>\n","</li>\n","<li>\n","<b>Perfrom EDA on given Dataset</b>\n","</li>\n","</ul>"],"metadata":{"id":"MZ8v6YG1d10t"}},{"cell_type":"code","source":["data1=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/Lab 1/dataset_ex_1.csv',names=[\"Class name\"\n",",'Left weight','Left distance','Right weight','Right distance'])\n","display(data1.head())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"ZUCwaK-Kd_JR","executionInfo":{"status":"ok","timestamp":1740468473293,"user_tz":-330,"elapsed":892,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"a9be8b5a-9b06-41a7-a8c0-49b2630190a9"},"execution_count":4,"outputs":[{"output_type":"display_data","data":{"text/plain":[" Class name Left weight Left distance Right weight Right distance\n","0 B 1 1 1 1\n","1 R 1 1 1 2\n","2 R 1 1 1 3\n","3 R 1 1 1 4\n","4 R 1 1 1 5"],"text/html":["\n"," <div id=\"df-5bdd2b3b-78ba-4556-b227-3fd4aa62b6bf\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Class name</th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>B</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>2</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>3</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>4</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>5</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5bdd2b3b-78ba-4556-b227-3fd4aa62b6bf')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-5bdd2b3b-78ba-4556-b227-3fd4aa62b6bf button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-5bdd2b3b-78ba-4556-b227-3fd4aa62b6bf');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-6b3fcd20-32e5-4425-9a3b-7554b4212104\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-6b3fcd20-32e5-4425-9a3b-7554b4212104')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-6b3fcd20-32e5-4425-9a3b-7554b4212104 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(data1\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Class name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"R\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}}]},{"cell_type":"markdown","source":["## ***PCA***"],"metadata":{"id":"5WqzSFp4o36p"}},{"cell_type":"code","source":["from sklearn.preprocessing import StandardScaler\n","from sklearn.decomposition import PCA"],"metadata":{"id":"EcrdvAJLful_","executionInfo":{"status":"ok","timestamp":1740468473666,"user_tz":-330,"elapsed":374,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":5,"outputs":[]},{"cell_type":"code","source":["#Standardize everything.\n","\n","x=data1.loc[:,['Left weight','Left distance','Right weight','Right distance']]\n","y=data1.loc[:,'Class name']\n","display(x.head())\n","display(y.head())\n","\n","Standardized_x=StandardScaler().fit_transform(x)\n","display(Standardized_x)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"Ng5wH2fNhg-l","executionInfo":{"status":"ok","timestamp":1740468473687,"user_tz":-330,"elapsed":19,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"5b18773a-512d-4ffb-f717-6e3ce11e2d84"},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":[" Left weight Left distance Right weight Right distance\n","0 1 1 1 1\n","1 1 1 1 2\n","2 1 1 1 3\n","3 1 1 1 4\n","4 1 1 1 5"],"text/html":["\n"," <div id=\"df-4791c314-3ef9-4b16-b97f-40f92f6ea940\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>2</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>3</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>4</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>5</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4791c314-3ef9-4b16-b97f-40f92f6ea940')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-4791c314-3ef9-4b16-b97f-40f92f6ea940 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-4791c314-3ef9-4b16-b97f-40f92f6ea940');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-41e22d46-afd2-4cb6-9bad-2ae3474c8986\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-41e22d46-afd2-4cb6-9bad-2ae3474c8986')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-41e22d46-afd2-4cb6-9bad-2ae3474c8986 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(Standardized_x)\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["0 B\n","1 R\n","2 R\n","3 R\n","4 R\n","Name: Class name, dtype: object"],"text/html":["<div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Class name</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>B</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>R</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div><br><label><b>dtype:</b> object</label>"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["array([[-1.41421356, -1.41421356, -1.41421356, -1.41421356],\n"," [-1.41421356, -1.41421356, -1.41421356, -0.70710678],\n"," [-1.41421356, -1.41421356, -1.41421356, 0. ],\n"," ...,\n"," [ 1.41421356, 1.41421356, 1.41421356, 0. ],\n"," [ 1.41421356, 1.41421356, 1.41421356, 0.70710678],\n"," [ 1.41421356, 1.41421356, 1.41421356, 1.41421356]])"]},"metadata":{}}]},{"cell_type":"code","source":["#Applying PCA to reduce features from 4 to 2.\n","\n","pca=PCA(n_components=2)#n_components denotes required no of components from PCA.\n","Standardized_pca=pca.fit_transform(Standardized_x)\n","display(Standardized_pca)\n","\n","principal_data1=pd.DataFrame(Standardized_pca,columns=[\"pc1\",'pc2'])\n","display(principal_data1.head())\n","\n","final_data1=pd.concat([principal_data1,y],axis=1)\n","display(final_data1.head())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"urmqtSMoh8F5","executionInfo":{"status":"ok","timestamp":1740468473736,"user_tz":-330,"elapsed":34,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"4cd085ac-b806-4628-d6b6-37e582c19018"},"execution_count":7,"outputs":[{"output_type":"display_data","data":{"text/plain":["array([[-2.01392321, -1.05914461],\n"," [-1.36500608, -1.33984975],\n"," [-0.71608895, -1.62055489],\n"," ...,\n"," [ 0.71608895, 1.62055489],\n"," [ 1.36500608, 1.33984975],\n"," [ 2.01392321, 1.05914461]])"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":[" pc1 pc2\n","0 -2.013923 -1.059145\n","1 -1.365006 -1.339850\n","2 -0.716089 -1.620555\n","3 -0.067172 -1.901260\n","4 0.581745 -2.181965"],"text/html":["\n"," <div id=\"df-da4a4bae-621d-4944-b782-dcb7f759da14\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>pc1</th>\n"," <th>pc2</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>-2.013923</td>\n"," <td>-1.059145</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>-1.365006</td>\n"," <td>-1.339850</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>-0.716089</td>\n"," <td>-1.620555</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>-0.067172</td>\n"," <td>-1.901260</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>0.581745</td>\n"," <td>-2.181965</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-da4a4bae-621d-4944-b782-dcb7f759da14')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-da4a4bae-621d-4944-b782-dcb7f759da14 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-da4a4bae-621d-4944-b782-dcb7f759da14');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-c34cf298-8f38-49f9-b941-b8376b1b5a97\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-c34cf298-8f38-49f9-b941-b8376b1b5a97')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-c34cf298-8f38-49f9-b941-b8376b1b5a97 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(final_data1\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"pc1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0260280687448786,\n \"min\": -2.0139232109498026,\n \"max\": 0.5817453014483063,\n \"num_unique_values\": 5,\n \"samples\": [\n -1.3650060828502755,\n 0.5817453014483063,\n -0.7160889547507483\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pc2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.44383379666396744,\n \"min\": -2.1819651702023046,\n \"max\": -1.0591446101877613,\n \"num_unique_values\": 5,\n \"samples\": [\n -1.3398497501913973,\n -2.1819651702023046,\n -1.620554890195033\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":[" pc1 pc2 Class name\n","0 -2.013923 -1.059145 B\n","1 -1.365006 -1.339850 R\n","2 -0.716089 -1.620555 R\n","3 -0.067172 -1.901260 R\n","4 0.581745 -2.181965 R"],"text/html":["\n"," <div id=\"df-1d82cd31-49f9-44b1-b5d8-0d4ef233fb67\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>pc1</th>\n"," <th>pc2</th>\n"," <th>Class name</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>-2.013923</td>\n"," <td>-1.059145</td>\n"," <td>B</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>-1.365006</td>\n"," <td>-1.339850</td>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>-0.716089</td>\n"," <td>-1.620555</td>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>-0.067172</td>\n"," <td>-1.901260</td>\n"," <td>R</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>0.581745</td>\n"," <td>-2.181965</td>\n"," <td>R</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1d82cd31-49f9-44b1-b5d8-0d4ef233fb67')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-1d82cd31-49f9-44b1-b5d8-0d4ef233fb67 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-1d82cd31-49f9-44b1-b5d8-0d4ef233fb67');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-5d514182-2ded-4a24-a773-726bd75ffdbf\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-5d514182-2ded-4a24-a773-726bd75ffdbf')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-5d514182-2ded-4a24-a773-726bd75ffdbf button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(final_data1\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"pc1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.0260280687448786,\n \"min\": -2.0139232109498026,\n \"max\": 0.5817453014483063,\n \"num_unique_values\": 5,\n \"samples\": [\n -1.3650060828502755,\n 0.5817453014483063,\n -0.7160889547507483\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"pc2\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.44383379666396744,\n \"min\": -2.1819651702023046,\n \"max\": -1.0591446101877613,\n \"num_unique_values\": 5,\n \"samples\": [\n -1.3398497501913973,\n -2.1819651702023046,\n -1.620554890195033\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Class name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"R\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}}]},{"cell_type":"code","source":["fig=plt.figure(figsize=(8,8))\n","ax=fig.add_subplot(1,1,1)\n","ax.set_xlabel(\"Principal Component 1\")\n","ax.set_ylabel(\"Principal Component 2\")\n","ax.set_title(\"2 Component PCA\")\n","\n","targets=['L',\"B\",'R']\n","colors=['r','g','b']\n","\n","for target,color in zip(targets,colors):\n"," indices_to_be_kept= final_data1['Class name']==target\n"," ax.scatter(final_data1.loc[indices_to_be_kept,'pc1'],final_data1.loc[indices_to_be_kept,'pc2'],c=color,s=50)\n","ax.legend(targets)\n","ax.grid()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"nc7vgHt4kNqW","executionInfo":{"status":"ok","timestamp":1740468474177,"user_tz":-330,"elapsed":440,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"069eed15-e1d5-4d91-acaf-c89628a86340"},"execution_count":8,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 800x800 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAArEAAAK9CAYAAAAzGDRWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqNlJREFUeJzs3Xt4FOXZP/Dv7CYkixDd5byRgyaYoBtIlKZCAE0WBYshHEXQWpX2fSFYW8Bfr1ZTMDalLy1C31YD9BW0rRwU5KgVNYcKiDWIBNiWjRCFQBJA3YVw2IRkd35/TBJy3tlkd2YP38915QqZvZO9M0mYe595nucWRFEUQUREREQUQDRqJ0BERERE5CkWsUREREQUcFjEEhEREVHAYRFLRERERAGHRSwRERERBRwWsUREREQUcFjEEhEREVHAYRFLRERERAGHRSwRERERBRwWsUREREQUcFjEEpHfOnjwIJ555hncdddduOmmmzBo0CA88sgj+PLLLz36OsXFxXj88ccxcOBAREREwGAwYPz48Xj99dfhdDp9lH3oyM3NxRtvvCE7XhCExjeNRgOj0YgHH3wQ//znP1vFOp1OvP7667j//vthMBgQERGBIUOG4KmnnsLnn3/ebj6CIOD73/9+J78jIgoEgiiKotpJEBG1ZcaMGfjkk08wc+ZMDB8+HOfOncMrr7yCK1eu4F//+hdMJpPbr/Haa69h3rx56NevH374wx9i6NChuHz5MvLz8/Hee+8hJycHzz//vALfTfAymUzo3bt3m0VoWwRBwAMPPIAnnngCoiji66+/Rm5uLi5cuID33nsPDz30EADA4XBg2rRp2LNnD8aNG4f09HQYDAacOnUKb7/9Nr788kuUlZXh1ltvbfb1U1JSUFFRgVOnTuHEiROIjY319rdMRP5AJCLyU5988olYU1PT7NiXX34pRkREiI899pjbz//0009FrVYrjhkzRqyqqmr1+MGDB8XXX3/dW+mGrLvuuku87777ZMcDEBcsWNDs2NGjR0UA4oMPPth4bMGCBSIAcdWqVa2+Rl1dnfiHP/xBPHPmTLPjX331lQhA3LZtm9inTx/xxRdf9Oh7IaLAwekEROS3Ro8ejW7dujU7NnToUNx11104fvy428/Pzs6GIAjYsGEDevbs2erxkSNH4sknn2z8+OrVq1i8eHHjtIO4uDisWLECYosbVoIg4JlnnsGWLVtw5513QqfTYdSoUTh27BgAYO3atYiNjUVkZCTuv/9+nDp1qtnn33///TCZTDh06BBGjx4NnU6H2267DWvWrGmV44ULFzB37lz069cPkZGRGDFiBP761782izl16hQEQcCKFSvwl7/8BTExMYiIiMD3vvc9HDx4sNXXtFqtmDFjBgwGAyIjIzFy5Ejs2rWrWcwbb7wBQRDwySefYNGiRejTpw9uuukmTJ06Fd98801j3JAhQ/Dvf/8bH3/8ceMUgfvvv7/Nn0dHEhIS0Lt3b3z99dcAgLNnz2Lt2rV44IEH8POf/7xVvFarxXPPPddqFHbDhg3Q6/WYNGkSZsyYgQ0bNnicCxEFCLWraCIiT7hcLjE6OrrZiF1brl69KoaHh4tpaWmyv25aWpooCIL44x//WHzllVfE9PR0EYD485//vFksAHH48OHiwIEDxf/5n/8R/+d//ke8+eabxUGDBomvvPKKeOedd4ovv/yymJWVJXbr1k1MTU1t9vn33XefaDQaxb59+4rPPPOM+Kc//UkcM2aMCEBct25dY9y1a9fEYcOGieHh4eLChQvFP/3pT+LYsWNFAOIf//jHxrivv/5aBCAmJSWJsbGx4vLly8Xf//73Yu/evcVbb71VvH79emOsxWIRb775ZvHOO+8Uly9fLr7yyiviuHHjREEQxG3btjXGvf76641fMy0tTfzzn/8sLl68WNRqteIjjzzSGLd9+3bx1ltvFePj48W///3v4t///nfxww8/7PBco42RWJvNJmq1WvHee+8VRVEU//KXv4gAxL/97W/ufnTNxMfHi3PnzhVFURT37t0rAhCLioo8+hpEFBhYxBJRQPn73//eqthry5EjR0QA4s9+9jNZX3fHjh0iADEnJ6fZ8RkzZoiCIIgnT55sPAZAjIiIEL/++uvGY2vXrhUBiP379282deFXv/qVCKBZ7H333ScCEF9++eXGYzU1NWJiYqLYt2/fxqLzj3/8owhAfPPNNxvjrl+/Lo4aNUrs0aNH4/M0FLG9evUSbTZbY+zOnTtFAOLu3bsbj5nNZjEhIUGsrq5uPOZyucTRo0eLQ4cObTzWUMSOHz9edLlcjccXLlwoarVa8eLFi43HOjOdYO7cueI333wjXrhwQfzss89Es9nc7JwsXLhQBCAePnxY9tf9/PPPRQDiRx991Ph93XrrrbJ/B4gosHA6AREFDKvVigULFmDUqFH40Y9+1GFsVVUVALQ5jaAt//jHP6DVavHss882O7548WKIooj333+/2XGz2YwhQ4Y0ftywEn769OnNnrPh+FdffdXs88PCwvDf//3fjR9369YN//3f/40LFy7g0KFDjTn1798fs2fPbowLDw/Hs88+iytXruDjjz9u9jVnzZoFvV7f+PHYsWObPbfNZkNBQQEeeeQRXL58Gd9++y2+/fZbfPfdd5gwYQJOnDiB8vLyZl/zv/7rvyAIQrOv6XQ6cfr06Vbn0BPr1q1Dnz590LdvX3z/+99vnLbQMHXA058fIE0l6NevH1JTUwFI0z5mzZqFzZs3cxcKoiAUpnYCRERynDt3DpMmTcLNN9+MrVu3QqvVdhgfFRUFALh8+bKsr3/69GkYjcZWRdOwYcMaH29q0KBBzT6++eabAQADBw5s87jdbm923Gg04qabbmp27I477gAgzXG99957cfr0aQwdOhQaTfPxBrk5NRS0Dc998uRJiKKIX//61/j1r3+Ntly4cAHR0dGyv2ZnZWRk4JlnnoEgCOjZs2fjNmoNPP35OZ1ObN68GampqY3zagHpRcTLL7+M/Px8PPjgg13KmYj8C4tYIvJ7ly5dwkMPPYSLFy9i3759MBqNbj8nNjYWYWFhjYutvK29Irq946ICuxm6e26XywUAeO655zBhwoQ2Y1tuR+Wr7+fWW2/F+PHj2308Pj4eAHDs2DEkJia6/XoFBQWorKzE5s2bsXnz5laPb9iwgUUsUZBhEUtEfq26uhrp6en48ssvkZeXhzvvvFPW53Xv3h1paWkoKCjAmTNnWo2QtjR48GDk5eXh8uXLzUZjrVZr4+PeVFFRgatXrzYbfWxo4tAwTWHw4ME4evQoXC5Xs9HYzuZ0++23A5CmJHRUQHqq6XQDb3nooYeg1Wrx5ptv4oc//KHb+A0bNqBv37549dVXWz22bds2bN++HWvWrIFOp/N6rkSkDs6JJSK/5XQ6MWvWLHz66afYsmULRo0a5dHnL126FKIo4oc//CGuXLnS6vFDhw41blf1gx/8AE6nE6+88kqzmFWrVkEQhMYN+L2lrq4Oa9eubfz4+vXrWLt2Lfr06YN77rmnMadz587hrbfeavZ5f/7zn9GjRw/cd999Hj1n3759cf/992Pt2rWorKxs9XjTrbM8cdNNN+HixYud+tz2DBw4ED/5yU/w4Ycf4s9//nOrx10uF15++WWcPXsWDocD27Ztw8MPP4wZM2a0envmmWdw+fLlVtuIEVFg40gsEfmtxYsXY9euXUhPT4fNZsObb77Z7PHHH3+8w88fPXo0Xn31VWRmZiI+Pr5Zx65//vOf2LVrF3JycgAA6enpSE1NxQsvvIBTp05hxIgR+PDDD7Fz5078/Oc/R0xMjFe/N6PRiOXLl+PUqVO444478NZbb6G4uBh/+ctfEB4eDkBaVLV27Vo8+eSTOHToEIYMGYKtW7fik08+wR//+EePFj01ePXVVzFmzBgkJCTgJz/5CW6//XacP38en376Kc6ePYsjR454/DXvuecerF69Gjk5OYiNjUXfvn2Rlpbm8ddp6eWXX0ZpaSmeffbZxiJVr9ejrKwMW7ZsgdVqxaOPPopdu3bh8uXLmDx5cptf595770WfPn2wYcMGzJo1q8t5EZGfUHNrBCKijjRsRdXem1yHDh0S58yZIxqNRjE8PFzU6/Wi2WwW//rXv4pOp7Mx7vLly+LChQsb44YOHSr+4Q9/aLbFlCi2vc9pwzZXf/jDH5odLywsFAGIW7ZsafZ93XXXXeLnn38ujho1SoyMjBQHDx4svvLKK61yP3/+vPjUU0+JvXv3Frt16yYmJCS06jLW3nM35Lp06dJmx0pLS8UnnnhC7N+/vxgeHi5GR0eLDz/8sLh169bGmIYttg4ePNjm91NYWNh47Ny5c+KkSZPEnj17igDcbrfV1vlrT11dnfjaa6+JY8eOFW+++WYxPDxcHDx4sPjUU081br+Vnp4uRkZGilevXm336zz55JNieHi4+O2338p6XiLyf4IoKrDagIiIGt1///349ttvYbFY1E6FiChgcU4sEREREQUcFrFEREREFHBYxBIRERFRwOGcWCIiIiIKOByJJSIiIqKAwyKWiIiIiAJOSDU7cLlcqKioQM+ePX3SJpGIiIiIukYURVy+fBlGo7FZy+2WQqqIraiocNs/nYiIiIjUd+bMGdx6663tPh5SRWxDi8YzZ84gKipKseetra3Fhx9+iAcffLCxnSTxvLSH56VtPC9t43lpG89L23he2sbz0ja1zktVVRUGDhzotrV2SBWxDVMIoqKiFC9iu3fvjqioKP5xNMHz0jael7bxvLSN56VtPC9t43lpG89L29Q+L+6mfnJhFxEREREFHBaxRERERBRwWMQSERERUcAJqTmxRERERP5MFEXU1dXB6XSqnQpqa2sRFhaG6upqr+aj1WoRFhbW5e1OWcQSERER+YHr16+jsrIS165dUzsVAFJB3b9/f5w5c8br++t3794dAwYMQLdu3Tr9NVjEEhEREanM5XLh66+/hlarhdFoRLdu3VRvzORyuXDlyhX06NGjw6YDnhBFEdevX8c333yDr7/+GkOHDu3012YRS0RERKSy69evw+VyYeDAgejevbva6QCQitjr168jMjLSa0UsAOh0OoSHh+P06dONX78zuLCLiIiIyE94s1j0Z974PkPjTBERERFRUGERS0REREQBh0UsEREREQUcFrFEREREwcbhAM6fl9772JNPPokpU6b4/HlaYhFLREREFCz27wemTQN69AD695feT5sGfPKJ2pl5HYtYIiIiomCwejUwbhywezfgcknHXC7p47FjgTVr1M3Py1jEEhEREQW6/fuBBQsAUQTq6po/VlcnHc/MDKoRWRaxRERERIFu5UpAq+04RqsFVq1SJh8FsIglIiIiCmQOB7BzZ+sR2Jbq6oDt2xVZ7KUEFrFEREREgayq6sYcWHdcLik+CLCIJSIiIgpkUVGA3DauGo0UHwTC1E6AiEKTw2pB1ZEiRI1Ihi7epHY6RESBS6cDMjKkXQg6mlIQFibF6XReT+HSpUsoLi5udqxXr14YOHCg15+rAYtYIlLU/ifTsLK6EDvjAJcG0PwHyCgBFnc3I2V9ntrpEREFpkWLgB07Oo5xOoGFC33y9P/85z+RlJTU7NjcuXPx2muv+eT5AE4nICIFrZ5gwLghhdh9h1TAAtL73XcAYwflY82DBnUTJCIKVGPGALm5gCBII65NhYVJx3NzgZQUrz/1G2+8AVEUW735soAFWMQSkUL2P5mGBaPsEAWgrsUuMHVaQBSAzNF2fPL0eHUSJCIKdPPmAfv2SVMGGubIajTSx/v2SY8HEU4nICJFrKwuhNbVuoBtSusCVl3Nh/fHCYiIQkRKivTmcEi7EERF+WQOrD/gSCwR+ZzDasHOuI4LWEB6fHu8FE9ERF2g0wH9+gVtAQuwiCUiBVQdKWqcA+uOSyPFExERdYRFLBH5XNSIZGhk7sOtcUnxREREHWERS0Q+p4s3IaMECHN2HBfmBKZawX1jiYjILRaxRKSIRZGpcLr5H8epARbeZFYmISIiCmgsYolIEWPeKEDuAT0EsfWIbJgTEEQg94CeDQ+IiEgWFrFEpJh5H9qwr8yMjBI0zpHVuKSOXfvKzJj3oU3dBImIKGBwn1giUlTK+jykQNpGq+pIEaJGJHMOLBEReYwjsUSkCl28Cf1mPc0ClojIBxy1Dpy/ch6OWofPn+vJJ5+EIAiNb7169cLEiRNx9OhRnz4vi1giIiKiILG/bD+mvTUNPX7XA/1f7o8ev+uBaW9Nwydln/j0eSdOnIjKykpUVlYiPz8fYWFhePjhh336nCxiiYiIiILA6oOrMe71cdj95W64RGnhgUt0YfeXuzH29bFY8/kanz13REQE+vfvj/79+yMxMRG//OUvcebMGXzzzTc+e04WsUREREQBbn/Zfiz4xwKIEFHnqmv2WJ2rDiJEZL6X6fMRWQC4cuUK3nzzTcTGxqJXr14+ex4u7CIiIiIKcCs/XQmtRtuqgG1Kq9Fi1b9WIWVQitef/91330WPHj0AAFevXsWAAQPw7rvvQqPx3XgpR2KJiIiIApij1oGdJTs7LGABaUR2u3W7TxZ7paamori4GMXFxSgqKsKECRPw0EMP4fTp015/rgYsYomIiIgCWFVNVeMcWHdcogtVNVVez+Gmm25CbGwsYmNj8b3vfQ+vvfYarl69iv/7v//z+nM1YBFLREREFMCiIqKgEeSVdBpBg6iIKB9nBAiCAI1GA4fDd1t8sYglIiIiCmC6cB0y4jIQpul4qVOYJgxT46dCF67zeg41NTU4d+4czp07h+PHj+OnP/0prly5gvT0dK8/VwMu7CIiIiIKcItGLcIO644OY5wuJxbeu9Anz79nzx4MGDAAANCzZ0/Ex8djy5YtuP/++33yfABHYomIiIgC3phBY5A7KRcChFYjsmGaMAgQkDsp1yc7E7zxxhsQRbHxraqqCkVFRZg+fbrXn6spFrFE1GUOSynOr38PDkup2qkQEYWseSPnYd9T+5ARl9E4R1YjaJARl4F9T+3DvJHzVM7QuwJmOsHvfvc7bNu2DVarFTqdDqNHj8by5csRFxendmpEIWt/2hKsLEzETmTAhRho4EQGtmGx+QhS8rLVTo+IKOSkDEpByqAUOGodqKqpQlRElE/mwPqDgBmJ/fjjj7FgwQL861//wkcffYTa2lo8+OCDuHr1qtqpEYWk1YYXMK7wRexGOlzQAgBc0GI30jE2fynWGJ5XOUMiotClC9ehX49+QVvAAgE0Ertnz55mH7/xxhvo27cvDh06hHHjxqmUFVFo2p+2BAvsv4EIDepavBauQzgAINOeg4TxSzkiS0REPhEwRWxLly5dAgAYDIZ2Y2pqalBTU9P4cVWVtLlvbW0tamtrfZtgEw3PpeRzBgKel7YFwnn5878S0UNX3ViwtiUMtXjlwHAke+n7CITzogael7bxvLSN56Vt/nBeamtrIYoiXC4XXC55jQt8TRTFxvfezsnlckEURdTW1kKr1TZ7TO7PQRAbMgwgLpcLkydPxsWLF7F///5241588UVkZ7ceBdq4cSO6d+/uyxSJiIiIZAsLC0P//v0xcOBAdOvWTe10fO769es4c+YMzp07h7q65u1yr127hjlz5uDSpUuIimq/MUNAFrHz58/H+++/j/379+PWW29tN66tkdiBAwfi22+/7fCkeFttbS0++ugjPPDAAwgPb3/kKtTwvLTN38/LhTc/wNAFE2THn3j1A/R9XH58e/z9vKiF56VtPC9t43lpmz+cl+rqapw5cwZDhgxBZGSkKjm0JIoiLl++jJ49e0IQBK9+7erqapw6dQoDBw5s9f1WVVWhd+/ebovYgJtO8Mwzz+Ddd9/F3r17OyxgASAiIgIRERGtjoeHh6vyS6rW8/o7npe2+et5MXxvGGocmsbFXB3RwAnD94Z59fvw1/OiNp6XtvG8tI3npW1qnhen09nYqlWj8Y919w1TCBry8iaNRgNBENo853J/Bv5xlmQQRRHPPPMMtm/fjoKCAtx2221qp0QUknSmGGRgJ8LQ8ZylMNRiKnZAZ4pRKDMiIgolAVPELliwAG+++SY2btyInj17NvbndTgcaqdGFHIWpRbD6WYk1gktFpqPKpQRERE15XAA589L74NVwBSxq1evxqVLl3D//fdjwIABjW9vvfWW2qkRhZwxBS8hV58FAa5WI7JhqIUAF3L1Wdxei4hIYfv3A9OmAT16AP37S++nTQM++cR3z/nkk09CEITG6QG33XYbfvGLX6C6utp3T4oAmhMbgOvPiILaPNsyJIxfilX5w7EdU+CCtr5j1y4sNB9FSt4ytVMkIgopq1cDCxYAWi3QsCOWywXs3g3s2AHk5gLzfNR5duLEiXj99ddRW1uLQ4cO4Uc/+hEEQcDy5ct984QIoCKWiPxPSl42UgA4LKWoKrIiKjkeOtN0ANPVTo2asJWUoqLYCmNiPAxxnKNMFIz275cKWFEEWuxY1fhxZiaQkACkpHj/+SMiItC/f38AwMCBAzF+/Hh89NFHPi1iA2Y6ARH5L50pBv2ensRFXH4md/YSGAduQ69hQ5Dw6CT0GjYExoHbsPqxpWqnRkRetnKlNALbEa0WWLXK97lYLBYcOHDA5/vdciSWiCgIzU56AZuLfwNonIBYf2UTtaisSEfmxinY95/nsfEwp3wQBQOHA9i588YUgvbU1QHbt0vxOp13c3j33XfRo0cP1NXVoaamBhqNBq+88op3n6QFjsQSEQWZ3NlLpAIWGsDVYr9FVzgADTYV53BElihIVFW5L2AbuFxSvLelpqaiuLgYn332GX70ox/hqaeewvTpvp1axiKWiCjI5OxPlEZgO6JxImfvcEXyISLfiooC5PYi0GikeG+76aabEBsbixEjRmD9+vX47LPPsG7dOu8/URMsYomIgoitpBSV5RmtR2BbcoWjonwKbCWlyiRGRD6j0wEZGUCYm0miYWHA1Knen0rQkkajwfPPP4+srCyf7ufPIpaIKIhUFFtvzIF1R9RK8UQU8BYtApxubsA4ncDChcrkM3PmTGi1Wrz66qs+ew4WsUREQcSYGA8Ibq5kDQSnFE9EAW/MGGkfWEFoPSIbFiYdz831zfZabQkLC8MzzzyD3//+97h69apPnoNFLBFREDHExWBA9E5AU9txoKYWxugd3DeWKIjMmwfs2ydNLWiYI6vRSB/v2+e7RgdvvPEGduzY0er4L3/5S1y4cAE33XSTT56XRSwRUZDJGlMMuNxMKXBpkTXuqCL5EJFyUlKArVuBK1eAc+ek91u3KjcCqyQWsUREQSZz00uYnZgFwNV6RFZTC8CF2YlZmL8hW430iEgBOh3Qr5/vF3GpiUUsEVEQ2nh4GXLnZMNo3HVjjqzghNG4C7lzstnogIgCHjt2EVEzDkspqoqsiEqOZxvZADd/QzbmQ9p2q6LYCmNiPAxx0wH4dgNyIiIlsIglIgDA/rQlWFmYiJ3IgAsx0MCJDGzDYvMRpOTxtnMgM8TFcAEXUYAQRVHtFBThje+T0wmICKsNL2Bc4YvYjXS4IC0IckGL3UjH2PylWGN4XuUMiYiCW3i41KDk2rVrKmeijIbvs+H77gyOxBKFuP1pS7DA/huI0KCuxevaOkj/uWTac5AwfilHZImIfESr1eKWW27BhQsXAADdu3eHIAiq5uRyuXD9+nVUV1dDI7evrRuiKOLatWu4cOECbrnlFmi1MpuztIFFLFGIW1mYCC2crQrYprRwYlX+cAThDi1ERH6jf//+ANBYyKpNFEU4HA7odDqvF9S33HJL4/fbWSxiiUKYw1JaPwe241fCdQjHdkyBw1LKxV5ERD4iCAIGDBiAvn37orbWTcMSBdTW1mLv3r0YN25cl277txQeHt6lEdgGLGKJQlhVkRUuyCtKXdCiqsjKIpaIyMe0Wq1Xijxv5FFXV4fIyEivFrHewoVdRCEsKjkeGjhlxWrgRFRyvI8zIiIikodFLFEI05likIGdCEPHt63CUIup2MFRWCIi8hssYolC3KLUYjjdzIl1QouF5qMKZUREROQei1iiEDem4CXk6rMgwNVqRDYMtRDgQq4+i9trERGRX2ERS0SYZ1uGfeZsZGBX4xxZqWPXLuwzZ2OebZnKGRIRETXH3QmICACQkpeNFEjbblUVWRGVHA+daTqA6WqnRk3YLOWoKCqHMTkaBlO02ukQEamGRSwRNaMzxXABlx/KTduKnMLRqIQRQDQAEQNQgSUTD2DAPP/b+oaIyNc4nYCIyM/NNuzBgsLpqMQAAA1dcwRUYgAWfTxZzdSIiFTDIpaIyI/lpm3FZvsESMVry7aPN46tm7xT4cyIiNTFIpaIyI/lFI6WFfeHj5N9nAkRkX9hEUtE5KdslvIWUwjaV4n+sFnKfZ8UEZGfYBFLROSnKorKIaeAlQj18UREoYFFLBGRnzImS7sQyCPWxxMRhQYWsUREfspgisYAVEJOITsA57hvLBGFFBaxRER+LCv1gKy4/3dfkY8zISLyLyxiiYj8WGbBDMzWfwBpNLbliOyNY3N3ZSicGRGRuljEEhH5uY22icg1vwMjKnCjkBVhRAVW3rdLzdSIiFTDIpaIKADMz5uBcjEa3x2rwLF1RfjuWAXKxWiOwPqZ8pJy/HNzEcpLuFMEka+FqZ0AEfmOzVKOiqJyGJOjuegnSBhM/Fn6o0UztyL3vdGocRgBSLtKROgq8MykA1ixZYba6REFJY7EEgWh3LStMAoV6JVgRMLcZPRKMMIoVGD1+K1qp0YUdEbG7sGqrdNR42jamEJAjWMAXt46Hd8bukfN9IiCFotYoiAz27AHCwqnt+j0JKASA5CZPx1zDLygEnnLoplbcah0AqS/tZaNKaRjn5+cgOdm8gUkkbexiCUKIrlpW7HZ3vEFdZN9Akdkibwk973RsuJefW+UjzMhCj0sYomCSE6hvAtqTj4vqERdVV5S3mIKQXsEVDuMXOxF5GUsYomChM1S3mIKQXsEVMAIm4UXVKKuOHG4HO7/3hoI9fFE5C0sYomCREWRZxdUKZ6IOmtokrQLgTxifTwReQuLWKIgYUz27IIqxRNRZ0XHRSNCVwn3f3ciInUViI7j3xyRN7GIJQoSBlM0BkDeBdWIchjGJSiRFlFQy5x0QFbcgkmf+jgTotDDIpYoiGSlyrugZiEHsNuB8eN9nBFRcFu5ZQZGxn4A6cVjyxeQ0rGRsR+w4QGRD7CIJQoimQUzMFvf8QV1NjZiPtZKh/LzlU2QKAgdPDERi2e8g0hdBW783UlTCBbPeAcHT0xUMz2ioMUilijIbNx7K3IxH0aUo+kF1Yhy5GI+NuLx5p9gsSidItUrt9jwz/WlKLfY1E6FumjFlhlwXIvGWWsFCjcV4ay1Ao5r0RyBJfKhMLUTICIvKyrCfKzFfKyFDbegAtHSHFhcbDceJpOiKYa6RWmHkVs4DDXQAzAAEBGBajxjPo4VeUlqp0ddEB0XzQVcRAphEUsUbJKTG/9pwMX2i9c24sn3RhpKccieWP/RjbbANYjAy/mJ+NhQioO2GJWyIyIKHJxOQBRsPB1V5SisYhalHcYh++3oqC3w5/bb8dz4w8onR0QUYFjEEgWj1FR5cWazb/OgZnILh8mKezU/3seZEBEFPhaxRMGooADQ6zuO0euBvDxl8iGUW2yoQQTktAWuRiQXexERucEilihY2Wztj7SazdLjpJgTRXZ40hZYiiciovZwYRdRMGsYabVYpF0IkpM5B1YlQ5P1kLY8k1PIivXxRETUHhaxRKHAZGLxqrJokwERqJYxpUBEJKoRbTIolRoRUUDidAIiIoVkph6XFbfAbPVxJkREgY9FLBGRQlYWJGGk/it01BZ4pP4rNjwgIpKBRSwRkYIO2mKw2FyMSFSjaVvgSFRjsbmYjQ6IiGTinFgiIoWtyEvCCkjbbp0osmNosr5+DixHYP1J658PEfkTFrFEAcJidaDoCweS79bBFK9TOx3ygmiTgcWRH1qUdhi5hcNQAz0AAwAREajGM+bjnOpB5EdYxBL5ubT0Cyh8tzeASAA6SLegXTCnf4u8XX3VTY4oyIw0lOKQPbH+I6HxfQ0i8HJ+Ij42lHLKB5Gf4JxYIj9m6H8Zhe/2gXQxvXFBBQTk7+4Dw4Aq9ZIjCjKL0g7jkP12NP97ayAd+9x+O54bf1j55IioFRaxRH4qfdY3sJ/vgY4uqPZzPTF+8gXlkyMKQrmFw2TFvZof7+NMiEgOFrFEfmrvnl6y4vLflRdHRO0rt9hkNKIAAAHViES5hW2bidTGIpbIb7U1AttGjKiBxepQIiGioHWiyA55LYEBQKiPJyI1sYgl8lvyL6hFX7CIJeqKocl6tG5A0R6xPp6I1MQilshvyb+gJt/NLbeIuiLaZEAEauD+705qTMGt0YjUxyKWyG+11Zq0rRgX940l8oLM1OOy4haYrT7OhIjkYBFL5KfGTfxOXuBdb2HNgxwVIuqqlQVJGKn/Cm2/gJSOjdR/xYYHRH6CRSyRn9r9Vh/o+19GRxdU3HwKmPkYMkfb8cnT4xXPkSjYHLTFYLG5GJGoxo2/O2kKwWJzMRsdEPkRFrFEfsxWGYXet20C4ETTCyrgBO7aBCy8HQCgdQGrruarlCVRcFmRlwSHqMPZY3YUrivF2WN2OEQdR2D9zEmrDds2luKkldudhSq2nSXyYw6rBbYfPgZoHgO+GwKcHwH0OwL0OtUsrk4LbI+X4nXxJlVyDXUWqwNFXziQfLeOc5SDRLTJwAVcfmjWlMPY8u4wiE49AAMAEYK2GrMmH8embXyhEUpYxBL5saojRXA13C/pdapV8dqUSyPFs4hVVlr6BRS+2xtAJAAdGhbbmdO/Rd6uvuomRxRkBg8sRdnZxPqPbrTiFp0R2Lw9EQcGleJ0Gad8hApOJyDyY1EjkqFxyYvVuKR4Uo6h/2UUvtsHzRtTSP/O390HhgFV6iVHFGRmTTmMsrO3o6NW3GVnbsfsaYeVT45UwSKWyI/p4k3IKAHCnB3HhTmBqVZwFFZBaekXYD/fAx1dUO3nemL85AvKJ0cUhLa8O0xW3Nu74n2cCfkLFrFEfm5RZCqcbv5SnRpg4U1mZRIiAKifQuBe/ru9fJwJUfA7abVBdEZATitulzOSi71CBItYIj835o0C5B7QQxBbj8iGOQFBBHIP6JGyPk+dBEOQxepA2yOwLQmAqKmPJ6LOOvqFHZ604pbiKdixiCUKAPM+tGFfmRkZJWicI6txARklwL4yM+Z9yFEHJRV90VDEyiHUxxNRZw2/Ww9PWnFL8RTsuDsBUYBIWZ+HFEjbaFUdKULUiGTOgVVJ8t0NuxDIKWTF+ngi6qzYeAMEbbWMKQUiNNpqxMZza7RQwJFYogCjizeh36ynWcCqSNoHtq1Oai1Jj+8f/Rtfp0QU9GY+fFxW3COTrT7OhPwFi1giok5IffhbGVHSvNlMew4+Gb/U1ykRBbW3diRh0MCv0FEr7kEDv2LDgxDCIpaIqBMKdveFvv9lyBmR1cKJVfnDFcmLKJidLovBo1OLodFWo2krbo22Go9OLWajgxDDIpaIqJPKP/oGgAvu5sbWIRzbMQUOS6kieVFrFqsD6zfauFNEENi0LQnOOh1OHLfjnQ2lOHHcDmedjiOwIYgLu4iIOqmqyApA3siPC1pUFVmhM3GkSEnps77BB9v7g22Bg09svIELuEIcR2KJiDopKjkeGrhpp1ZPAyeiktlJSGl79/QG2wITBScWsUREnaQzxSADOxGG2g7jwlCLqdjBUVgFpc/6pv5fbAtMFKxYxBIRdcGi1GI4oe0wxgktFpqPKpQRAcDePfLa/bItMFHgYhFLRNQFYwpeQq4+CwJcrUZkw1ALAS7k6rOQkpetUoah50ZbYHfYFpgokLGIJSLqonm2ZdhnzkYGdjXOkdXAiQzswj5zNubZlqmcYWhhW2Ci0MDdCYiIvCAlL1tqC2wpRVWRFVHJ8dCZpgOYrnZqIedGW2A52BaYKFCxiCVSUfOCh4t+goHOFMOfpcqktsA1MiJFQHDVxxNRoOF0AiIV7E9bgmnCNvRIGIL+cyehR8IQTBO2sTUpkZeMm/idrDjzw/LiiMj/sIglUthqwwsYV/gidiMdrvpV7S5osRvpGJu/FOsHv6RyhkSBb/dbfer/1VZbYOmYvv9lNjwgCmAsYokUtD9tCRbYfwMRGtQhvNljdQiHCA0WXcxSKTui4HPfQ98Cggs3CllpCoE5/RvYKqPUTI2IuohzYokUtLIwEVo4UdfB60etzA5QROTers19EB6uhcXqQNEXDiTfraufA8sRWH/S+udD5B6LWCKFOCyl2ImMxikE7WkYoa0+/jXCh9+hRGrUgsUCFBUBycmAyaR2NuQNpngWR/4oLf0CCt/tDSASQMOuEi6Y07/lVA9yi0UskUKqiqxwQf6q9apDX6Ini1hFpaUBhYWtj5vNQF6e8vkQBTND/8uwn2+Yuyw0e5+/uw8MA6o45YM6xDmxRAqJSo5v3AhfVvw9LGCVZDC0XcACQH6+9DgReUda+gXYz/eAVLS2bEwhHbOf64nxky8onxwFDBaxRArRmWKQgZ2tWpO21PB45LDblEiLII3A2u0dx9jtwPjxyuRDFOykKQTu5b/by8eZUCBjEUukoEWpxXC6mRPr7nHyvvZGYFvKz/dtHkShwGJtaAvsrjWwAIia+nii1ljEEiloTMFLyNVnQYCr1YhsGGohwIWVt+SolF1oslh8G09EzRV90VDEyiHUxxO1xiKWSGHzbMuwz5yNDOxqnCOrgRMZ2IV95mw8fXqJyhmGlqIi38YTUXPJdzfsQiCHWB9P1Bp3JyBSQUpeNlIgbbtVVWRFVHI8dKbpAKajtrbjObPkXcnJvo0nouakrc5c9R91NCIrNabg1mjUHhaxRCrSmWKgM8nfdou8T/4+sGJ9vNzboETUntSHv0Xhu33cxpkf/g5sTEHt4XQCIgp5qanyY+ckPe+7RIhCRMHuvtD3vwzpxWHLqQXSMX3/y2x4QB1iEUtEIa+gANDrgbYvqA2k1dSbinOw+rGliuVGFKxslVEwp38DCC7c+LuTphCY079howNyi0UsEREAmw0I73befaDGiZy9w32fEFEIyNvVF6JLi2PHq7Fugw3HjldDdGk5Autnjn9ZjfUbbX633RmLWCIiALaSUtTW9oHbrX9c4agonwJbSakieVFrFguwfj23Owsmpngdnp5j4CIuP5M+6xsAwL3fi8DcxwxIGBYJQXD5TSc1FrFERAAqiq2AKLPRhKiV4klRaWmAIAAJCcDcudJ7QWAnNSJfMPS/jL17GjqrCU3eC8jf3QeGAVUqZXYDi1giIgDGxHhAcMoLFpxSPCnGYGi/s1p+vvQ4EXlHWvoF2M/3QNt3pqRC1n6up+ojsixiiYgAGOJiMCB6J6Bxs0+vphbG6B0wxHFrNKWkpQF2e8cxdjtHZIm8pfDd3u6DAOS/28vHmXSMRSwRUb2sMcWAy82UApcWWeOOKpIPSdobgW0pP9+3eRCFAmnxlgD3rYEFQNSoutiLRSwRUb3MTS9hdmIWAFfrEVlNLQAXZidmYf6GbDXSC0meLt7iYi+irin6oqGIlUOoj1cHi1gioiY2Hl6G3DnZMBp33ZgjKzhhNO5C7pxsbDy8TN0EQ0xRkW/jiai55Lt1aH+/7JbE+nh1sO0skZfYSkpRUWyFMTGe8yUD3PwN2ZiPlj/T6QCmq51ayElO9iRaRHIy2wITdYW0zZlLRqTUmELNbdE4EkvURbmzl8A4cBt6DRuChEcnodewITAO3MauTkHAEBcD06xJfFGiIpNJbqQ0crRs3B6f5UIUKlIf/lZWnPnh73ycSccCqojdu3cv0tPTYTQaIQgCduzYoXZKFOJmJ72ABZtfRGVF+o09RkUtKivSkblxKeYkPa9ugkRBIDVVTlR9W2D7BKwev9XHGREFt4LdfaHvfxltTyuQ2nPr+19WvbNaQBWxV69exYgRI/Dqq6+qnQoRcmcvwebi3wDQAK7w5g+6wgFosKk4hyOyRF1UUADo9UDDxdOdnPxRvk6JKOjZKqNw30MNI7LijfeCC+b0b2CrjFIrtUYBNSf2oYcewkMPPSQ7vqamBjU1NY0fV1VJ3SVqa2tRW+tmL0gvanguJZ8zEAT6eVnxeSJ0N1W3LmCb0tRiRdFw/NiD7zHQz4uv8Ly0LVTOi/WflRhyb3/IWTVtRx988++zAIL/vHhKid+X48eBQ4eAe+4Bhg3z2dN4Vaj8HXnqnb/fgo8+Ag58dhWHj13EPSN0GHZHJAC9T8+V3K8tiKIodwmaXxEEAdu3b8eUKVPajXnxxReRnd16K5yNGzeie/fuPsyOiIiIiDrj2rVrmDNnDi5duoSoqPZHfIO6iG1rJHbgwIH49ttvOzwp3lZbW4uPPvoIDzzwAMLDOxi1CzGBfF6Ob/sA9z41QXb8v17/AMOmyYsP5PPiSzwvbQuV82I/Ln8kFhBx8kA5Dp4+GvTnxVO++n0ZPBi4eLH9x2+5BTh92mtP53Wh8nfkKbXOS1VVFXr37u22iA2o6QSeioiIQERERKvj4eHhqvySqvW8/i4Qz8uticPgqNbcWMzVEcGJWxOHefw9BuJ5UQLPS9uC/bz0HT4ItzgqUIkB6LiQFWFEBfrcdStw+mjQn5fO8uZ5SUsDKis7jnE4gIceAvLyvPKUPsPfl7YpfV7kPldALewi8heGuBgMiN7ZuqtTS5paGI3buUUTkRdkpR6QF2f+1MeZUFNsC0xqYRFL1ElZY4oBl5uRWJcWWbWrAINBkZyIgllmwQzM1n+AtncpkI7N1n+A+XkzlE8uRLEtMKkpoIrYK1euoLi4GMXFxQCAr7/+GsXFxSgrK1M3MQpJmZtewuzELACu1iOymloALswelIn5Fw4AdjswfrwaaRIFlY22icg1vwMjKtB02x8jKpBrfgcbbRPVTC/ksC0wqSmgitjPP/8cSUlJSEpKAgAsWrQISUlJWLJkicqZUajaeHgZcvuOhXHATkBwSgcFJ4wDdiK371hsLFt7I5j30oi8Yn7eDJSL0fjuWAWOrSvCd8cqUC5GcwRWBZ61BfY8nqgjAbWw6/7770eAbqZAwcpiwfwLBzAfB2DTRqIiIgrGmioYyqvbjfegjyZ5kc1SjoqichiTo2EwRaudDnmBwcSfpdo8/e+M//2RNwXUSCyR32lyb8zgrIbp2gUYnO0UsC3iSRm5aVthFCrQK8GIhLnJ6JVghFGoYGtSIi+R1xYYMJt9mweFHhaxRF3Be2l+bbZhDxYUTm+xLZOASgxAZv50zDHsUTM9oqBwoy1w+/R6/99eiwIPi1iiruC9NL+Vm7YVm+0TIBWvLfcVlY5tsk/giCyRF9hs7Y+0ms3S40TexiKWqKt4L80v5RSOlheXP8rHmRCFhrw8QBSBY8eAdeuk96LIEVh/Y7EA69cHx3ZnAbWwi8gvFRRI+8Da7e3H8F6aomyWclTCCPctSgVUwAibpZwLhFRisUhTxZOTeaMiWJhM/Fn6o7S0thtTmM2Be3niSCyRN/Beml+pKCqH+wK2gVAfT0pKSwMEAUhIAObOld4LArdTJvIFg6H9zmr5+YHbj4cjsUTe0vBSlkNLqjMmR0PaCF9OISvWx5NSOrpx0XBB5es+Iu9IS+v4RiFwox9PoI3Isogl8jbeS1OdwRSNAahosStBW6ROT5xKoJxgvqAS+aP2RmBbCsR+PJxOQERBKSv1gLw486c+zoSaCuYLKpG/8XTxVqAt9mIRS0RBKbNgBmbrP4A0raBlpz/p2Gz9B2xVqqBgv6AS+RtP++sEWj8eFrFEFLQ22iYi1/wOjKjAjUJWmkKQa34HG20T1Uwv5AT7BZXI3wR7Px7OiSWioDY/bwbmQ9p2q6KoHMbk6Po5sByBVVqwX1CJ/E2w9+NhEUvUhpNWG45+Ycfwu/WIjQ/QvUeoGYMpmgu4VCb/AinWx8vdJo2I2pOaKm8ueiD24+F0AqImZk05DE1YNYYO02P6YzEYOkwPTVg1Zk87rHZqREFBboM7APje0D2+S4QoRBQUSP12OhKo/XhYxBLVGzywFG/vTITojMCNbZkEiM4IbN6eiMGDStVMjygo3LigtrXgroEAQMDnJyfguZlbFcuNKFgFaz8eFrFEkEZgy87ejoaLZ3PSsbIzt3NElsgLbDZAEGpkxb763igfZ0MUGvLyAFEEjh0D1q2T3otiYI7ANmARSwRgy7vDZMW9vSvex5kQBb/yknKIYtM7Hu0RUO0woryEbYHVYrEA69dzu7NgYjIBTz8deIu42sIilkLeSautxRSC9ghwOSNx0hqg912I/MSJw+WQ1xIYAIT6eFJSWhogCEBCAjB3rvReEKROakT+gkUshbyjX9jhyQVViieizhqaFI3258O2JNbHk1IMhvZXs+fnS48T+QMWsRTyht+thycXVCmeiDorOi4aEbpKuP+7ExGpq0B0HItYpaSlAXY3r9Ptdo7Ikn9gEUshLzbeAEFbAzkXVI3GgdjRsUqkRRTUMicdkBW3YNKnPs6EmpKznyggjcgSqY1FLBGAmQ8flxX3SPdXOQxB5AUrt8zAyNgP0PZWW9KxkbEfYMUWdlZTiqeLt7jYi9TGIpYIwFs7kjBo4Ffo6II6qPtBbLryC+kQhyGIuuzgiYlYPOMdROoqcOPvTppCsHjGOzh4YqKa6YWcoiLfxhN5G4tYonqn/+HAoz1WQKNxoOkFVaORjp++9v3mn8BhCNWctNqwbWMpd4oIAiu2zIDjWjTOWitQuKkIZ60VcFyL5gisCpKTPYkWPYwn8r4wtRMg8htFRdh05RfYhF/gpNAfRyPuwPCaLxHrOgdcaTs+KDbaCzC3GGpw7YoegAGACEFbjVmTj2PTtiS1U6MuiI6L5gIulcn/70x6kf/UuFIctMX4LB8idzgSS9SgybBCrHgO06r3IlY8JyuefM9059cAANHZDWwLTOQbqalyourbAttvx3Pj2cWQ1MMilqiBp6OqHIVVzKwph3GmfEj9R2wLTOQrBQWAXg+0vT6gtVfz2cWQ1MMilqgpecMQgNns2zyoGbYFJlLOsb0Nc81ltAVGJMotnJuullBvC8wilqipG8MQ7dPrgbw8ZfIhtgUmUtiJIs+6GErxpCS2BZawiCVqyWZrf6TVbJYeJ8WwLTCRsoYme9bFUIonpbAt8A0sYonakpcHiCJw7Biwbp30XhQ5AqsCtgUmUla0yYAIyOtiGIlqRJtCqGpSGdsCN8cilqgjJhPw9NNcxKUiT9oCC8J1xMbzgkrUVZmp8roYLjBbfZwJNcW2wM2xiCUivye3LbAodsMaw/M+zoYo+K0sSMJIfcddDEfqv8KKPO7PrBS2BW6NRSwR+b23diRh4K2n6j9qb0RW2mor056DT8YvVSYxoiB20BaDxeZiRKIazdoCoxqLzcVsdKAwtgVujUUsEQUEy79vkxWnhROr8of7OBui0LAiLwkOUYezx+woXFeKs8fscIg6jsCqwNP+OqHQj4dtZ4koIFQf/7r+Xx3vVFCHcGzHFDgspdCZOFKkhpNWG45+Ycfwu/Wcoxwkok0GLuBSGfvxtMaRWCIKCFWHvpQd64IWVUVccKK0WVMOQxNWjaHD9Jj+WAyGDtNDE1bNTmpEXsJ+PM2xiCWigBB1zx2yYzVwIiqZ3buUNHhgKd7emdiiMYUA0RmBzdsTMXhQqZrpEQUF9uNpjkUsEQWEyGHSnNgw1HYYF4ZaTMUOTiVQ0Kwph1F29nY0LK5rTjpWduZ2jsgSeQH78dzAIpaIAooTWrePLzQfVSgbAoAt7w6TFff2Lo6OE3kD+/FIWMQSUUBZeUsOBLhajciGoRYCXMjVZyElL1ul7ELPSautxRSC9ghwOSNx0hpCw0R+xmIB3nxT7SzIm0K9Hw+LWCIKKE+fXoJ95mxkYBc0cAKQ5sBmYBf2mbMxz7ZM5QxDy9Ev7HBfwDYQ6uNJSWlpgCAACQnAggXSsZtvDp3WpBS8uMUWEQWclLxspABwWEpRVWRFVHI8dKbpAKarnVrIGX63HtJG+HIKWbE+npRiMAD2dl435OdLj4fSHEoKLixiKWQ4rBZUHSlC1Ihk6OJD9N5LkNGZYriAS2Wx8QYI2moZUwpEaLTV3DdWQWlp7RewDex2aUQ21OZSUnDweDqBy+Vq93hZWVmXEyLytv1PpmHaowJ6bEpAf+tc9NiUgGmPCvjkad5LI/KGmQ8flxX3yGTu3aukwkJ5cfn5vs2DyFdkF7FVVVV45JFHcNNNN6Ffv35YsmQJnE5n4+PffPMNbrtNXltIIqWsnmDAuCGF2H0H4Kr/bXdpgN13AGMH5WPNgxwVIuqqt3YkYdDAryBNKxBbPCodGzTwK2zaxlalSrFYfBtP5A9kF7G//vWvceTIEfz973/Hb3/7W/ztb39DRkYGrl+/3hgjii3/8yJSz/4n07BglB2iANS12JWpTguIApA52s4RWSIvOF0Wg0enFkOjrcaNQlaaQvDo1GKcLuO0DyUVFfk2nsgfyC5id+zYgbVr12LGjBn48Y9/jM8//xzffPMN0tPTUVNTAwAQBLkrVIl8b2V1IbRtz35ppHUBq67yXhqRN2zalgRnnQ4njtvxzoZSnDhuh7NOxxFYFSQn+zaeyB/ILmK/+eYbDB48uPHj3r17Iy8vD5cvX8YPfvADXLt2zScJEnWGw2rBzrjWI7At1WmB7fFSPKnDYgHWr+ftzGASG2/AtDkxXMSlIvn7hkrTPUJ1n1EKbLKL2EGDBuH48eaT93v27IkPP/wQDocDU6dO9XpyRJ1VdaSocQ6sOy6NFE/Karp35dy50ntB4N6VRN6Smio/dvCgUt8lQuQjsovYBx98EK+//nqr4z169MAHH3yAyMhIryZG1BVRI5KhcTOVoIHGJcWTcgyG9ldON+xdSURdU1AA6PVA2wvuGggABJSduR2zpx1WLDcib5C9T2x2djYqKirafKxnz5746KOP8MUXX3gtMaKu0MWbkFEi7ULQ0ZSCMCeQUQLuG6sg7l1JpBybDRAEJwA3c6sAvL0rHpt8nxKR18geidXr9bjrrrvafbxnz5647777vJIUkTcsikyF081vuFMDLLzJrExCBIB7VxIp6aTVBqmAdbfwWoDLGVkfT2rg+gDPedzsgChQjHmjALkH9BBEacS1qTAnIIhA7gE9UtZzuE8p3LuSSFlHv7BDXktgABDq40lJXB/QeSxiKajN+9CGfWVmZJSgcY6sxiVNIdhXZsa8DznqoCTuXUmkrOF369H+fNiWxPp4UgrXB3SN7DmxRIEqZX0eUiBto1V1pAhRI5I5B1Ylnu1FKSI5mXtPE3VFbLwBgrYaojMCHY/ISo0puC2acrg+oOs4EkshQxdvQr9ZT7OAVZFne1cC+8c977NciELFzIePuw8C8Mhkq48zoaa4PqDrPC5itVotLly40Or4d999B63W/epHIgpt8vaulLb9ybTn4JPxS32cEVFwe2tHEgYN/Aptb7UlHRs08Ct2VlMQ1wd4h8dFrCi2PbempqYG3bp163JCRBTc5O1dKdHCiVX5w5VIiyionS6LwaNTi6HR1jQ5Kk0heHRqMU6XxaiWWyji+gDvkD0n9k9/+hMAQBAEvPbaa+jRo0fjY06nE3v37kV8fLz3MySioFO+txTdE4bA3d6VdQjHdkyBw1KKsLhBiuRGzVks0gU0OdmT6SDkjzZtS0JtbS3+8Q/gzde+xvC7e9fPgeUIrNK4PsA7ZBexq1atAiCNxK5Zs6bZ1IFu3bphyJAhWLNmjfczJKKgU1VkBSBv5McFLaqKrDCwiFVUWlrbc/bMZi4yCQbpM29DeHi42mmELE/XB0z6QSlHy9sgu4j9+uuvAQCpqanYtm0b9Hpuw0FEnROVHA8NnHDJ6CKkgRNRybzLoySDof1V0w3b/ti4Ox1Rl6SmylncJY3ANrQF5rzl5jyeE1tYWMgCloi6RGeKQQZ2Igy1HcaFoRZTsQM6E0cglOLJtj9E1HmerA8ApLbA1JzH+8Q6nU688cYbyM/Px4ULF+ByuZo9XlBQ4LXkiCh4LUotxo7CKR3GOKHFQvNRANMVyYm47Q+RkooO2DB0mB6etAXmXr43eDwS+7Of/Qw/+9nP4HQ6YTKZMGLEiGZvRERyjCl4Cbn6LAhwtRqRDUMtBLiQq89CSl62ShmGHm77Q6QstgXuGo9HYjdv3oy3334bP/jBD3yRDxGFkHm2ZUgYvxSr8odjO6bABS00cCIDu7DQfBQpecvUTjGkdGbbH+5YQNR5N9oCyylk2Ra4JY+L2G7duiE2NtYXuRBRCErJy5baAltKUVVkRVRyPHSm6eAUAuV5tu2P5/FE1BzbAneNx9MJFi9ejP/93/9tt+kBkRIcllKcX/8eHJZStVMhL9GZYtDv6UlcxKUiz7b9ETkKS+QFbAvceR6PxO7fvx+FhYV4//33cdddd7XaZ27btm1eS46opf1pS7CyMBE7kQEXYupvPW/DYvMRzp0k8gJ52/5I1hiexzwbp3wQdcVbO5Lwr0GlKDtze/2RpiOy0oAh2wK3zeOR2FtuuQVTp07Ffffdh969e+Pmm29u9kbkK6sNL2Bc4YvYjfTG/UVd0GI30jE2fynWGJ5XOUOiwCdv2x8BgIBMew4+Gb9UsdyIgtWNtsDVuPF3x7bA7ng8Evv666/7Ig+iDu1PW4IF9t9AhAZ1LV571UG6G5Bpz0HC+KUckSXqIpsN6COcx7fo12GcFk6syh+OFIXyIgpmm7YlYROAk1Ybjn5hx/C79WwL7IbHI7EAUFdXh7y8PKxduxaXL18GAFRUVODKlSteTY6owcrCRGjh7DCm4YJKRF3jsJTChj5wt2K6DuHYjimcm64iiwVYv57bnQWT2HgDps2J4SIuGTweiT19+jQmTpyIsrIy1NTU4IEHHkDPnj2xfPly1NTUYM2aNb7Ik0KYw1JaPwe24xalTS+oXBxE1HlVRVa4IO9vyAUtqoqs/JtTWFpa23OXzWYgL0/5fIjU0KlmByNHjoTdbodOp2s8PnXqVOSzhQv5gHRB7biAbdBwQSWizotKjofGzZ2PBho4EZXMdphKMhjaX3yXny89ThQKPC5i9+3bh6ysLHTr1q3Z8SFDhqC8vNxriRE14AWVSFk6UwwysLNVJ7WWwlCLqdjBUVgFpaUBdjdNm+x2YPx4ZfIhUpPHRazL5YLT2bqgOHv2LHr27OmVpIia8uyCup0XVCIvWJRaDKebOyBOaLHQfFShjAiQv/0Zb4xSKPC4iH3wwQfxxz/+sfFjQRBw5coVLF26lK1oyWdkX1CxivfSiLxgTMFLyNVnQYCr1QvIMNRCgAu5+izuBqIgTxdvcbGXerjgThkeF7Evv/wyPvnkE9x5552orq7GnDlzGqcSLF++3Bc5Esm7oCITKTjAe2lEXjLPtgz7zNnIwK7GKT1Sg5Fd2GfOZqMDhRUV+Taeui4tDRAEICEBmDtXei8IvCT5ise7E9x66604cuQINm/ejKNHj+LKlSuYO3cuHnvssWYLvYi8bZ5tGRKEFKzCQmzHVLigrb+g7sRCrJIK2Aa8l0bkFSl52UiBtEtIVZEVUcnx0JmmA5iudmohJznZt/HUNQZD+/OVGxbc2WzK5hTsPC5iASAsLAyPP/64t3Mh6pjFghQcQAoOwIFIVCEKUaiCDtXtxrO5uzpsJaWoKLbCmBgPQxznKAcDnSmG881V5ul/Z/zvTzmeLLjjFmje06ki9sSJEygsLMSFCxfgcrmaPbZkyRKvJEbUSpN7YzpUt1+8No3n/+KKyp29BDn7E1FZngGIMYDgxIDobfj1uCOYv4FzJ4m6KjVV3uIus9n3udANXHCnDo+L2P/7v//D/Pnz0bt3b/Tv3x+CcKOjiyAILGLJd3gvza/NTnoBm4t/A2icgFi/CE/UorIiHZkbp2Dff57HxsOcQ0nUFQUFHd+2BgC9nqN9SurMgjuOr3iHxwu7cnJy8Nvf/hbnzp1DcXExDh8+3Pj2xRdf+CJHIgnvpfmt3NlLpAIWGsAV3vxBVzgADTYV52D1Y0vVSI8oqNhs7Y+0ms2cd6k0LrhTj8dFrN1ux8yZM32RC5F7qany4ngvTVE5+xOlEdiOaJzI2TtckXyIgl1eHiCKwLFjwLp10ntR5AisGniTUD0eF7EzZ87Ehx9+6ItciNwrKJDulXWE99IUZSsplebAthyBbckVjoryKbCVlCqTGLXCvSuDj8kEPP00bzypSf65Fz2MJ3c8nhMbGxuLX//61/jXv/6FhIQEhIc3v3A9++yzXkuOqE02m7TEs60Z8mYzC1iFVRRbpUVccohaVBRbuWOBwtLS2l54wj8XIu+Qu+BOG14LwM0LfpLN4yL2L3/5C3r06IGPP/4YH3/8cbPHBEFgEUvKaLjyWizSBKPkZL68VYkxMR4Qmizm6ojglOJJMdy7ksj3CgqA8HAn6uo0AIR2ogQ4a8MwfvIF5O3qq2R6QcvjIvbrr7/2RR5EnWMysXhVmSEuBgOit6GyIr3jKQWaWhiNu2CI4yb5SuHelUTKqatrr3htLv/dXj7OJHR4PCe2KVEUIYqit3IhogCVNaYYcLkZiXVpkTXuqCL5kIR7VxIpw2J1QBqBdVfICoCoqY+nrupUEfu3v/0NCQkJ0Ol00Ol0GD58OP7+9797OzciChCZm17C7MQsAC5AU9v8QU0tABdmJ2ax4YGCOrN3JRF1TtEXDUWsHEJ9PHWVx0XsypUrMX/+fPzgBz/A22+/jbfffhsTJ07EvHnzsGrVKl/kSEQBYOPhZcidkw2jcZc0RxaQ5sAadyF3TjYbHSiMe1cSKSf5bh0adh9wT6yPp67yeE7sn//8Z6xevRpPPPFE47HJkyfjrrvuwosvvoiFCxd6NUEKfpUnKvHV0XMYmhSN6LhotdOhLpi/IRvzIW27VVFshTExvn4OLOfBKs2zvShFJCfLHUUiopZM8ToArvqPOvpbEgHBVR9PXeXxSGxlZSVGjx7d6vjo0aNRWVnplaQoNDz/o50AgPiR/ZE6Oxm3xhsR2b0Cz83cqnJm1FWGuBiYZk3iVloq8nTvymXj9vgsF6JQkPrwt7LizA9/5+NMQofHRWxsbCzefvvtVsffeustDB061CtJUfAbGbsHr+6YXP+R0Pi+xjEAL2+dju8N5QWVqKvkNbiTFqNssk/A6vF8AUnUWQW7+0Lf/zKkF4YtpxZIx/T9L3N7LS/yeDpBdnY2Zs2ahb179yIlJQUA8MknnyA/P7/N4paopUUzt+JQ6XTodHVtPCoVtJ+fnIDnZm7Fii0zlE2OKIgUFDTsE9twQe14ykBO/ijM931aREHLVhmF8ZMvSNtoiQ17xkpTCMwPf8cC1ss8HomdPn06PvvsM/Tu3Rs7duzAjh070Lt3bxQVFWHq1Km+yJGCTO57raejtOXV90b5OBOi4Hdyb3n9v9xv/VMBI2yWcjdx5CtsCxwc8nb1hejS4tjxaqzbYMOx49UQXVoWsD7g8UgsANxzzz148803vZ0LhYDyknLUOIyQc0GtdhhRXlLOxV5EXVBRVA5A7t+QgIqichhM/JtTEtsCBydTvI4LuHysU0Ws0+nE9u3bcfz4cQDAnXfeiYyMDISFderLUQg5cdizC+qJwyxiibrCmBwNaT6enN0HxPp4UgrbAhN1nsdV57///W9MnjwZ586dQ1xcHABg+fLl6NOnD3bv3g0TW4BSB4YmeXZBleKJqLMMpmgMQAUqMQDutv4xooKjsApiW2CirvF4TuyPf/xj3HXXXTh79iy++OILfPHFFzhz5gyGDx+O//qv//JFjhREouOiEaGrhPtNoUVERnIUlsgbslIPyIszf+rjTKgptgUm6hqPi9ji4mL87ne/g16vbzym1+vx29/+FocPH/ZqchScMifJu6AuiMyR7qURUZdkFszAbP0H6Gjrn9n6DzA/j7uBKIVtgYm6zuMi9o477sD58+dbHb9w4QJiY2O9khQFt5VbZmBkbMMFtSXpgjpSvxErLq69cS+NiLpko20ics3vwIgK3Pjbk6YQ5JrfwUbbRDXTCzlsC0zUdR4Xsb/73e/w7LPPYuvWrTh79izOnj2LrVu34uc//zmWL1+Oqqqqxjei9hw8MRE/vXlR/Uc3LqiRkeVYfMt8HLQ/fiOY99KIvGJ+3gyUi9H47lgFjq0rwnfHKlAuRnMEVgWetQX2PJ4oFHi8sOvhhx8GADzyyCMQBGmRgChKRUh6enrjx4IgwOl0eitPCjYWC3Iurcc/8ACsmsH4StcLQ2vKEV19EahuO96DPprkReUl5ThxuBxDk6I5RzlIGEzRXMClMk/bAptMchbDEoUWj4vYQrkz0Yk60uTe2ADXJQxynHMfzyJWUYtmbkXue6Pr9/WVdpWI0FXgmUkH2EmNyAtSU+Uv7ppj2MMpH0QteFzE3nfffb7Ig0IN76X5tZGxe3CodHr9R0Lj+xrHALy8dTo+HroHB0/wgkrUFfLaAkvHNtknYOz4rZz6QdREp7oTVFdX4+jRo7hw4QJcLlezxyZPnuyVxCjIeTqqylFYxSyaubW+gG3/gvr5yQl4buZWjsgSdZHNBkQINbiOCLexOfmjMF+BnIgChcdF7J49e/DEE0/g22+/bfUY58GSR8aNkxdnNvs2D2om973RsuJefW8UVvg4F6JgZ7OU4zrkteKugBE2C9sCq8FikWa1JSdzTMWfeLw7wU9/+lPMnDkTlZWVcLlczd5YwJJHdu92H6PXs1WNgspLylHjcNfZCQAEVDuMKC8pVyItoqBVUVQOeR0MAUCojyelpKUBggAkJABz50rvBYE7P/oLj4vY8+fPY9GiRejXr58v8qFQ1N48a7OZTcMVduKwZxdUKZ6IOsuY3NCKWw6xPp6UYDC0v/AuP5+9ePyBx0XsjBkz8M9//tMHqVDI2rULEEXg2DFg3TrpvShyBFYFQ5M8u6BK8UTUWQZTNAZAXituIyo4lUAhaWlSr52OsBeP+jyeE/vKK69g5syZ2LdvHxISEhAeHt7s8WeffdZryVGIMZk42Uhl0XHRiNBVyJhSIDWmiI67VanUiIJWVuoBLCic7j7O/CkALqZUgtytz9iLR10eF7GbNm3Chx9+iMjISPzzn/9sbHgASAu7WMQSBbbMSQewaqv7C+qCyBzA8DanfBB1UWbBDOw37MEm+4T6I01fQEojtLP1H3B7LYVYLJ7Hc/xFHR5PJ3jhhReQnZ2NS5cu4dSpU/j6668b37766itf5EhEClq5ZQZGxn4A6eLZ8handGykfiNWXFzL+2lEXrLRNhG55ndgRAWatuI2ogK55nfY6EBBTXrx+CSevMfjIvb69euYNWsWNBqPP5WIAsTBExOx+Jb5iIwsR9MLamRkORbfMh8H7Y/fCOb9NCKvmJ83A+ViNL47VoFj64rw3bEKlIvRHIFVGHvxBA6PK9Ef/ehHeOutt3yRCxH5C4sFKy6uhaN6IM5qDCjUmXBWY4CjeqA0AttGPKmj8kRls/cU+AymaJieTuYiLpWwF0/g8HhOrNPpxO9//3t88MEHGD58eKuFXStXrvRackSkkib3x6JdFxHtuOg+nv+TK2rRzK3IfW80NOiPTZuA+JH94UIFnpl0gJ3UiLooNVXe4i724lGXxyOxx44dQ1JSEjQaDSwWCw4fPtz4Vlxc7IMUm3v11VcxZMgQREZG4vvf/z6KOBmFyPt4P82vjYzdg1Vbp7fYRUJAjWMAXt46Hd8bukfN9IgCXkGB1GunI+zFoz6PR2IL5e474QNvvfUWFi1ahDVr1uD73/8+/vjHP2LChAkoKSlB3759VcuLKOjwfprfWjRzKw6VTkfbW6BJxz4/OQHPzdzKEVmiLrDZpHWrbU37N5tZwPqDLq3OOnv2LM6ePeutXNxauXIlfvKTn+Cpp57CnXfeiTVr1qB79+5Yv369YjkQhYzUVHlxvJ+mqNz3RsuKe/W9UT7OhCj45eWxF48/83gk1uVyIScnBy+//DKuXLkCAOjZsycWL16MF154wWe7Fly/fh2HDh3Cr371q8ZjGo0G48ePx6efftrm59TU1KCmpqbx46qqKgBAbW0tamtrfZJnWxqeS8nnDAQ8L23zm/PywQfA4MHAxYvtx9xyC/D++4ACufrNeVFR5YlKaNAfOl1d4zGdrrbZ+xv6oOw/ZRgwdICCGfoPtX9fjh8HDh0C7rkHGDZMlRTapPZ58VfuzktcnPQmxSiVlfrU+n2R+3yCKIpye0wCAH71q19h3bp1yM7ORkpKCgBg//79ePHFF/GTn/wEv/3tbz3PVoaKigpER0fjwIEDGDXqxgjDL37xC3z88cf47LPPWn3Oiy++iOzs7FbHN27ciO7du/skTyIiIiLqvGvXrmHOnDm4dOkSoqKi2o3zeCT2r3/9K1577TVMnjy58djw4cMRHR2NzMxMnxWxnfGrX/0KixYtavy4qqoKAwcOxIMPPtjhSfG22tpafPTRR3jggQda7eYQtGQMQ4TkeZHBb8+LykNLfnteFFR5ohLxI/uj6XxYna4W69d/hKeffgAOR9PzIsL6+bmQHolV+vdFzo2L06cVSaVd/DtqG89L29Q6Lw13zt3xuIi12WyIj49vdTw+Ph42H7af7N27N7RaLc6fP9/s+Pnz59G/f/82PyciIgIRERGtjoeHh6vyS6rW8yoqLa3tfUk6mAUfEuelE/zuvAwfLr2pzO/Oi4IG3TkILlS02JVA4nCENyliRUTqKjDozkGK5+hvlPp9SUsDKt1s1etwAA895B/zKUP576gjPC9tU/q8yH0ujyewjhgxAq+88kqr46+88gpGjBjh6ZeTrVu3brjnnnuQ32SZoMvlQn5+frPpBaQig6H9jfXy86XHiahLMicdkBW3YFLbawXIN+Ru3MMGd0Te4/FI7O9//3tMmjQJeXl5jcXjp59+ijNnzuAf//iH1xNsatGiRfjRj36EkSNHIjk5GX/84x9x9epVPPXUUz59XpIhLQ2w2zuOsdul/Ur8YRiCKECt3DID+4buwecnJ7TxqLTEYWTsB9xeS0GeNqyzWLgrHZE3eDwSe9999+HLL7/E1KlTcfHiRVy8eBHTpk1DSUkJxo4d64scG82aNQsrVqzAkiVLkJiYiOLiYuzZswf9+vXz6fOSDByGIFLMwRMTsXjGO4jUVaChcG2YQrB4xjs4eGKimumFHE977rBHD5F3eDwSCwBGo1G1BVzPPPMMnnnmGVWem9rBYYiAYbFIF9DkZP4IAt2KLTOwAkDZf8pw+ARg/fxc/RxYjsAqzbOGdSKSk9tqVEFEnpI9EnvixAnMnj27zRVjly5dwpw5c/DVV195NTkKEByG8HtpaYAgAAkJwNy50ntBkGZ3UGBr2H0gVHch8AfyXxBKo+ZPTWVbYCJvkF3E/uEPf8DAgQPb3Jrq5ptvxsCBA/GHP/zBq8lRgPBsGMLzeOoSrrcj8j15De4EAEJjW2Ai6hrZRezHH3+MmTNntvv4I488goKCAq8kRQHG0/vSvI+tGE/W2xFR5xUUAHo9II22uu8hxLbARF0nu4gtKytD37592328d+/eOHPmjFeSogAkbxhC2i+WFMP1dkTKOfZpef2/3M15FVDtMKK8pNxNHPmCxQKsX+/5cg7yP7KL2JtvvhmlpaXtPn7y5ElFu2CRn7kxDNE+vZ7baymoM+vtiKjzThwuh/sCtoFQH09K4dqA4CO7iB03bhz+/Oc/t/v4n/70J59vsUV+zmZrf6TVbJYeJ8VwvR2RsoYmRUPOVAKJWB9PSnC3NmDwYGXzIe+QvcXWr371K4waNQozZszAL37xC8TFxQEArFYrfv/73+ODDz7AgQPyOslQEGsYaeVeTqrjejsiZUXHRSNC13Zb4OakPX2j41jEKkHO2oCLFxVJhbxMdhGblJSErVu34umnn8b27dubPdarVy+8/fbbuPvuu72eIAUok4nFq8o83fbHZOLelURdlTnpAFZtne42TmoLzD19lSB3bQAFHo+aHTz88MM4ffo09uzZg5MnT0IURdxxxx148MEH0b17d1/lSESdlJoq8z/w2z7CmgcfxbwPOeWDqCtatwVu+uKQbYGV5ulc/+PHgeHDfZMLeZ/HHbt0Oh2mTp3qi1yIyMsKCqS5YHZ7wzy91hdURH4H/GgCMkUg4enxSFnPxXdEXXHwxEQ8N3MrXn1vFKodRkh/d9IUggWTPmUBqyBP5/ofOsQiNpDIXthFRIHJZgN69/0IzfevrP/3bR8Bv+wDANC6gFVXudcWkTes2DIDjmvROGutQOGmIpy1VsBxLZoFrMI8net/zz2+yYN8w+ORWCIKLA6rBbZ5E6SXrOfjgPLvA9GfAf1KmsXVaYHt8VK8Lp7zmdVw0uLA0SIHhifrEGvSqZ0OeUF0XDQXcKnI07UBw4b5LBXyAY7EEgW5qiNFcDX8pfcrAe7+W6sCtoFLI8WTsmalXYBGcGFoQiSmzzVgaEIkNIILs8dfUDs1ooAntxcPANyfxOlUgYRFLFGQixqRDI1LXqzGJcWTcgYbLuPtwj4QIeDGnGUBIgRszu+DwYYqNdMjCnjyWgJLf3uHvzLjuZlbFcqMukpWEVtVVSX7jYj8iy7ehIwSIMzZcVyYE5hqBacSKGhW2gWU2XsAzQrYBtKxMntPjsgSdZHNBghCjazYV98b5eNsyFtkzYm95ZZbIAgd7yEpiiIEQYDT6eZKSUSKWxSZih2ajvfacmqAhTe103GNfGJLYW9ZcW/n98ImH+dCFMzKS8ohig07RXREQLXDiPKScs5lDgCyithC7hRMFNDGvFGA3AcNyBxth9YlLeJqEOaUCtjcA3qkfMj5YEo5aXFARCTkXFRd0OCkxcHFXkSddOJwOQC5RamAE4dZxAYCWUXsfffd5+s8iMjH5n1oQ8LT47Hqaj62x0uLuDQuIKNEGoFlAauso0UOAHKLUgFHi1jEEnXW0KRoSPNh5XQmFOvjyd91eouta9euoaysDNevX292fDh3CSbyWynr85ACaRutqiNFiBqRzDmwKhmerIMnF1Upnog6IzouGhG6CtQ4BqDjvzmpKQVHYQODx0XsN998g6eeegrvv/9+m49zTmzwYcETfHTxJv4sVRZr0kGAq36tdMcXVQEujsISdVHmpANYtXW627gFkz4FwKYUgcDjLbZ+/vOf4+LFi/jss8+g0+mwZ88e/PWvf8XQoUOxa9cuX+RIKtn/ZBqmPSqgx6YE9LfORY9NCZj2qIBPnh6vdmpEQWFm6rey4kRosMbwvI+zIQpuK7fMwMjYD9D2VlvSx0m357OrWgDxuIgtKCjAypUrMXLkSGg0GgwePBiPP/44fv/73+N3v/udL3IkFayeYMC4IYXYfQcaN8p3aYDddwBjB+VjzYMGdRMkCgJvFfTFIP1luN+/UkCmPQefjF+qXHJEQejgiYlYPOMdROoq0LQNd6TuHADgn4c5SBNIPC5ir169ir59+wIA9Ho9vvnmGwBAQkICvvjiC+9mR6rY/2QaFoyyQxSar2IHpI9FAcgcbeeILJEXnLZFIRpn3MZp4cSqfK45IOqqFVtmwHEtGmetFSjcVISz1gqcPzdA7bSoEzwuYuPi4lBSIrWsHDFiBNauXYvy8nKsWbMGAwbwlyAYrKwuhNZNhyetC1h1NV+ZhIiCmMNSikpEw90CrzqEYzumwGEpVSYxauWk1YZtG0tx0mpTOxXygui4aNz/aDIXcQUwj4vYn/3sZ6isrAQALF26FO+//z4GDRqEP/3pT1i2bJnXEyRlOawW7IxrPQLbUp0W2B4vxRNR51UVWeGCmz+4ei5oUVVk9XFG1NKsKYehCavG0GF6TH8sBkOH6aEJq8bsaYfVTo0opHm8O8Hjjz/e+O977rkHp0+fhtVqxaBBg9C7t7zuM+S/qo4UNc6BdcelkeK5yp2o86KS46GBU1Yhq4ETUcnxCmRFDQYPLEXZ2cT6j4TG96IzApu3J+LAoFKcLotRKTui0ObxSGxToihCp9Ph7rvvZgEbJKJGJEPjZipBA41LiieiztOZYpCBnQhDbYdxYajFVOyAzsSCSSmzphxG2dnb0bC4rjnpWNmZ2zkiS6SSThWx69atg8lkQmRkJCIjI2EymfDaa695OzdSgS7ehIwSqRVpR8KcwFQroBs9TpnEiILYotRiON2MxDqhxULzUYUyIgDY8u4wWXFv7+LoOJEaPC5ilyxZgp/97GdIT0/Hli1bsGXLFqSnp2PhwoVYsmSJL3IkhS2KTIXTzW+GUwMs/BSA3Q6M5y4FRF0xpuAl5OqzIMDVakQ2DLUQ4EKuPgspedkqZRh6TlptEJ0RcN9RTYDLGcnFXiqxWID166X3FHo8nhO7evVq/N///R9mz57deGzy5MkYPnw4fvrTn+Kll17yaoKkvDFvFCD3QQMyR9uhdTVf5BXmlArY3PeAlIZdgfK5SwFRV82zLUPC+KVYlT8c2zEFLmihgRMZ2IWF5qNIyePCWSUd/cIOQO5+2AKOfmFHbDz3z1ZKWhpQWNj6uNkM5OUpnw+pw+Mitra2FiNHjmx1/J577kFdXZ1XkiL1zVu5Fwk/SMCqUdIuBC6NNAc2o0QagU1pua2lxQKYuMBLDQ5LKaqKrIhKjud8yQCXkpeNFLT8mU4H4L5VJnnX8Lv1kDbDdzcSCwBifTwpwWCQbgK2JT9fetzGgfGQ4HER+8Mf/hCrV6/GypUrmx3/y1/+gscee8xriZHKioqQckYqVh1hQFUEEFUD6Np7nVJUxCJWYfvTlmBlYSJ2IgMuxNSP2m3DYvMR3nYOcDpTDF+QqCw23gBBWy1jSoEIjbaao7AKSUtrv4Bt0DDLjSOywc/jIhaQFnZ9+OGHuPfeewEAn332GcrKyvDEE09g0aJFjXEtC10KIMk3dh3Q1XVQvLYRT7632vACFth/A22TrZlc0GI30rEjfwpyDc9jno23n4m6YubDx/H2zkS3cY9MtgJI8nk+1PYUgrZwllto8LiItVgsuPvuuwEApaVS55jevXujd+/esDSZWS0Icm7BkN/ydFSVo7CK2Z+2BAvsv4EIDeparM2sQzgAINOeg4TxSzkiS9QFb+1Iwr8GlaLszO31R5pe10QAwKCBX2HTNhawSvB08RZnuQU/j4vYQrkvgyjwpabKe9lrNvs+F2q0sjARWjhbFbBNaeHEqvzhSFEwL6JgdLosBrOnHcbbu+LhckZCKmSlKQSPTLaygFVQUZHn8Sxig1uXmh1QkCsoAPRuFivo9Zx4pCCHpRQ7kdE44tqeOoRjO6bAYSlVKDNqiVv/BI9N25LgrNPhxHE73tlQihPH7XDW6VjAKsyzWWsiZ7mFAFkjsdOmTcMbb7yBqKgoTJs2rcPYbdu2eSUx8hM2mzRDvq0JRtzLRHFVRVa4IG/BjwtaVBVZuUBIYdz6J3jFxhu4gEtF8kdVpakeT40rxUEb//8LZrKK2JtvvrlxjuvNN9/s04TIDzVceS0W6f5McjLv0agkKjkemiaLuTqigRNRyewkpCRu/UPkW/JmuUn1yuf22/Hc+MNYkccR82Alq4h9/fXX2/w3hRiTicWrynSmGGRgG3YjvcMpBWGoRQZ21e8xSkrg1j9EvldQ0PBiUaw/0vEi8lfz47HC92mRSjyeE/v111/jxIkTrY6fOHECp06d8kZORNSBRanFcLoZiXVCi4XmowplRAC3/iFSyrG9Dbcz3LcErkYkyi28/RGsPC5in3zySRw4cKDV8c8++wxPPvmkN3Iiog6MKXgJufosCHAhDLXNHgtDLQS4kKvP4vZaCurM1j9E1DkniuyQ10kNAIT6eApGHhexhw8fRkpK64177r33XhQXF3sjJyJyY55tGfaZs5GBXdDACQD1Hbt2YZ85m40OFNaZrX+IqHOGJje0BJZDrI+nYOTxPrGCIODy5cutjl+6dAlOp9MrSRGReyl52UiBtO1WVZEVUcnx9XNgOQ9WaZ5u5cOtf4g6L9pkQASqUQP3LYEjUY1oE3eUCFYej8SOGzcOv/vd75oVrE6nE7/73e8wZswYryZH3mcrKYXlrfdgK+H+ocFCZ4pBv6cncSstFXm29Y/I9ZFEXZSZelxW3AKz1ceZkJo8Holdvnw5xo0bh7i4OIwdOxYAsG/fPlRVVaGgoMDrCZJ35M5egpz9iagszwDEGEBwYkD0Nvx63BHM38C5k0RdJbfBHQCsMTzPKR9EXbCyIAn7DKX43N5+S+CR+q+4vVaQ83gk9s4778TRo0fxyCOP4MKFC7h8+TKeeOIJWK1WmDi84JdmJ72ABZtfRGVFOiDWr2oXtaisSEfmxqWYk/S8ugkSBYEbDe5EtD9fTwAgINOeg0/GL1UsN6JgdNAWg8XmYkSiGjf+5qQpBIvNxWx0EAI8HokFAKPRiGXLOIoQCHJnL8Hm4t8A0ACuFq9ZXNI+o5uKczD2saUckSXqIpsN6COcx7fo12GcFk6syh+O1ktkicgTK/KSsAJAucWGE0V2DE3W18+B5QhsKOhUEXvx4kUUFRXhwoULcLlczR574oknvJIYeUfO/kRA42xdwDalcSJn73DMVywrouDksJTChiFwt/1PHcKxHVPgsJRyLrNK2IAwuESbDFzAFYI8LmJ3796Nxx57DFeuXEFUVFRjO1pA2rmARaz/sJWU1s+BddOi1BWOivIpsJWUwhDHCypRZ1UVWeGCvL8hF7SoKrKyiFVYWlrbc5fNZnZSIwo0Hs+JXbx4MZ5++mlcuXIFFy9ehN1ub3yzsSm4X6kotrovYBuIWimeiDotKjm+cd9edzRwIio53scZUVMGQ/uL7/LzpceJKHB4XMSWl5fj2WefRffu3X2RD3mRMTEeEGTu3Ss4pXgi6jSdKQYZ2Nmqk1pLYajFVOzgKKyC0tIAu5vGTXY7MH68MvkQUdd5XMROmDABn3/+uS9yIS8zxMVgQPROQNPxBRWaWhiN2zmVgMgLFqUWw4mO74A4ocVC81GFMiJA/vZn+fm+zYOIvMfjObGTJk3C//t//w//+c9/kJCQgPDw8GaPT5482WvJUddljSnGgs1TOg5yaZFVuwow/Je0vJqIOm1MwUvINTyPTHsOtHCiDjf+jwxDLZzQIlefhZQ87vCiFIvF83gu9iLyfx4XsT/5yU8AAC+99FKrxwRBYOtZP5O56SXstz6PTcU59bsUNHnRoakFXFrMHpSJ+WUHpGPjx3N1A1EXzbMtQ8L4pViVPxzbMQUuaKGBExnYhYXmoyxgFVZU5Hk8i1gi/+dxEdtySy3yfxsPL8PYfinICV+Iioqp0mIvwQnjgJ3Iql11o4AFeC+NyEtS8rKRAmnbraoiK6KS46EzTQcwXe3UQk5ysm/jiUgdndonlgKMxYL5Fw5gPg7Apo1ERUQUjDVVMJRXtxvPYQh12EpKcbb4OBCpdibkLTpTDBdwqUz+f2difXzH+/wSkX+QVcT+6U9/wn/9138hMjISf/rTnzqMffbZZ72SGHlRk3tpBmc1DNfaKV6bxrOIVVTu7CXI2Z+IyvIM6CIHYdOmfyDuzt34f8lH2EmNyAtSU+Uv7lpjeB7zbJzyQeTvZBWxq1atwmOPPYbIyEisWrWq3ThBEFjE+iPeS/Nrs5NekFoDa5z1+/pKU3bOVU5E5sYp2Pef57HxMC+oRF1RUCDtA2u3i/VH2hptlY5l2nOQMH4pUvL4ApLIn8kqYr/++us2/00BwtNRVY7CKiZ39hKpgIWmdWtgVzgADTYV52DsY0s5IkvURTYb0Ec4j2/Rr8M4LZxYlT8cKQrlRUSd49E+sbW1tYiJicHx48d9lQ/5SmqqvDiz2bd5UDM5+xOlEdiOaJzI2TtckXyIgpnDUgob+qDtUdgb6hCO7ZgCh6VUmcSoGYvVgfUbbbBYHWqnQn7OoyI2PDwc1dVu5lOSfyooAPT6jmP0em6vpSBbSSkqyzOab3vWFlc4KsqnwFbCCypRV1QVWeFy04iigQtaVBWxFbeS0tIvQBBcSBgWibmPGZAwLBKC4ML4yRfUTo38lMcduxYsWIDly5ejrq7OF/mQL9ls7Y+0ms1sdKCwimJr/RxYGUStFE9EnRaVHA8N5O1lroETUclsxa0UQ//LKHy3YZS8YaRc+nf+7j4wDKhSLznyWx5vsXXw4EHk5+fjww8/REJCAm666aZmj2/bts1ryZEPNIy0WizSLgTJyZwDqxJjYjwgOOUVsoJTiieiTtOZYpCBbdiN9Gad1FoKQy0ysKt+X1/ytbT0C7Cfb2+ah3TMfq4nxk++gLxdfRXNjfybx0XsLbfcgunT+Ycd8EwmFq8qM8TFYED0NlRWpHc8pUBTC+OAnTCMYltgoq5alFqMHYVTOoxxQouF5qNgYwplFL7bW1Zc/ru9fJwJBRqPi9jXX3/dF3kQhaSsMcVYsHlKx0EuLbJqVwF2O9sCE3XRmIKXkGt4Hpn2HGjhbDYiG4ZaOKFFrj6LrYEVIi3eioS7xXaAAIgaWKwOmOJ1CmRGgUD2nFiXy4Xly5cjJSUF3/ve9/DLX/4SDgdXDhJ1ReamlzA7MQuAC9DUNn9QUwvAhdmDMjH/Qn1rYLYFJuqyebZl2GfORgZ2Nc6R1cCJDOzCPnM2Gx0oqOgLB9wXsA2E+ngiiewi9re//S2ef/559OjRA9HR0fjf//1fLFiwwJe5EYWEjX+fg9y+Y2EcsFOaI1tvQP9/ILfvWGwsW9v8EywWhTOkBraSUljeeo87RQSBlLxsbBWn48qxUzi37j1cOXYKW8XpbHCgsOS7dWho9+ueWB9PJJFdxP7tb39Dbm4uPvjgA+zYsQO7d+/Ghg0b4HK5fJkfUfArKsL8CwdQXj4T32l64F/dYwEA1oonbozAtognZeXOXgLjwG3oNWwIEh6dhF7DhsA4cBtWP7ZU7dSoi3SmGPR7ehJ0phi1UwlJ0tQAEe4LWREQXJxKQM3ILmLLysrwgx/8oPHj8ePHQxAEVFRU+CQxopDRpM2vwVmNYde+kR1Pvjc76QUs2PyitACvYScJUYvKinRkblyKOUnPq5sgUYBLffhbWXHmh7/zcSYUaGQXsXV1dYiMjGx2LDw8HLW1te18BhHJwrbAfqt5W+AWO0g0aQvMEVmizivY3Rf6/pfR9oisdEzf/zK316JWZO9OIIoinnzySURERDQeq66uxrx585rtFct9Yok6ITUVKCx0H8e2wIpqbAvs6uD1fn1b4PmKZUUUfGyVURg/+YK0jZaogbTYS5pCYH74Oxaw1CbZReyPfvSjVscef/xxryZDFLIKCgCDQdpGqz1sC6yoxrbA7ppRNGkLbIjjvEo1sHdLcGgoVC1WB4q+cCD5bl39HFgWsNQ22UUs94cl8jGbTdoH9kAbi7nMZhawCpPaAsssSuvbArOIVVZaWts3MMxm4P33lc+HvMMUr+MCLpJF9pxYIlJAXh5w6ZL071dfBY4dA0SRBawKGtsCy8G2wIozGNqfgZOfDwwerGw+RKQ8FrHBwGIB1q/n/qHB5vHHeW9URVJb4J2tm1C0pKmFMXoHR2EVlJbW8cwbALh4UZFUiEhFLGIDWVoaIAhAQgIwd670XhCkW9JE1GVZY4oBl7s5sVpkjTuqSD4kkbMGkoiCH4vYQOXuXprBoGw+REFIVlvgxCzM38AuT0rx9IbT8eO+yYOI1MciNhDJuZdmt3NElsgLNh5ehtw52TAad92YIys4YTTuQu6cbGw8vEzdBEOMpw3rDh3yTR5EpD7ZuxOQH5F7Ly0/37d5EIWI+RuyMR/StlsVxVYYE+NhiJsOYLraqYUcTxvW3XOPb/IgIvWxiA00nt5Ls1i4OEglJ602HP3CjuF36xEbz+kdwcAQF8MFXCqT/9+Z1Plp2DCfpUJEKuN0gkDj6b00T+Opy2ZNOQxNWDWGDtNj+mMxGDpMD01YNWZPO6x2akRBITVVfuzcsS/5LhEiUhWL2EDj6b00T+OpSwYPLMXbOxMhOiMgtU0EAAGiMwKbtydi8KBSNdMjCgoFBVIDO2m0VWwnSvr723o0C6sfW6pQZkSkJBaxgcbTqQGcSqCYWVMOo+zs7ZAunkKLR6VjZWdu54gskRfYbEB4t/PuAzVO5Owd7vuEiEhxLGIDkdx7aWazb/OgZra8K2/y3du72NmJqKtsJaWore2D1i8YW3CFo6J8CmwlvAuiBvbiIV9iERuIbtxLa59ez1alCjpptbWYQtAeAS5nJE5abUqkRRS0KoqtgOimEUUDUSvFk2LYi4eUwCI2UNls7Y+0ms3S46SYo1/Y4b6AbSDUxxNRZxkT42/s2+uO4JTiSRHsxUNKYREbyPLyAFEEjh0D1q2T3osiR2BVMPxuPdpfYNKSWB9PRJ1liIvBgOidrTuptaSphTF6B7dGUwh78ZCSWMQGA5MJePppLuJSUWy8AYK2Bu4LWREaTTX3jSXygqwxxYDLzZQClxZZ444qkg+xFw8pi0UskZfMfFhek/ZHur/C+2lEXpC56SXMTswC4Go9Ilv/8YzhOZi/IVv55EJQZ3rxEHUFi1giL3lrRxIGDfwKbe9dKR0b1P0gNl35Be+nEXnJxsPLkDsnG0bjrhtzZAUnBgx4HwCwbt8SFbMLLezFQ0pjEUvkRafLYvBojxXQaBy4UciK0GgceLTHCpy+9v0bwbyfRuQV8zdko/zMdHx3/BSObX4P3x0/Bet/JqudVshhLx5SWpjaCRAFFYsFm678ApvwC5wU+uNoxB0YXvMlYl3ngCttx3MuszrKS8px4nA5hiZFIzouWu10yAsMcTGNC7hqa90s+CKvk/9fmVgfL3dHF6K2cSSWyJua3B+LFc9hWvVexIrnZMWTMhbN3IrI7hW4Nd6I1NnJuDXeiMjuFXhu5la1UyMKeHJ78QDAnKTnfZcIhQQWsUTexPtpfm1k7B6s2jodNY4BuLGvr4AaxwC8vHU6vjd0j5rpEQW8G7142lob0EBqw72pOAerH1uqWG4UfFjEEnmTp1MDOJVAMYtmbsWh0glouIA2Jx37/OQEjsgSdZHNBoR3O+8+UONEzt7hvk+IghaLWCJvk3s/rb2Oa+QTue+NlhX36nujfJwJUXCzlZSitrYP3HYxdIWjonwKbCWliuRFwYdFLJG33bif1j69np3VFFReUt5iCkF7BFQ7jCgvKVciLaKgVFFsBUQ3TSgaiFopnqgTWMQS+YLN1v5Iq9ksPU6KOXG4HO4L2AZCfTwRdYYxMf7Gnr3uCE4pnqgTWMT6G4sFWL+erUyCQV4eIIrAsWPAunXSe1HkCKwKhiZFw31L4AZifTwRdYYhLgYDone27qLWkqYWxugdjduiEXmKRay/SEsDBAFISADmzpXeCwK7OgUDkwl4+mku4lJRdFw0InSVcF/IioiMLEf0qAQl0iIKWlljigGXmykFLi2yxh1VJB8KTixi/YHBABQWtv1Yfr70OBF1SeakA7LiFkTmsC0wURdlbnoJsxOzALhaj8hqagG4MDsxC/M3ZKuRHgUJFrFqS0uTLpgd4QWVqMtWbpmBkbEfoO39K6VjI/UbseLiWukQ2wITdcnGw8uQOycbRuOuG3NkBSeMxl3InZONjYeXqZsgBTwWsWprbwS2JV5Qibrs4PZbsfiW+YiMLMeNQlaaQrD4lvk4aH+8+SdwbroqbJZyWNYXwWbhArtAN39DNsrPTMd3x0/h2Ob38N3xUyg/M50jsOQVLGLV5OkFkhdUoq4pKsKKi2vhqB6IsxoDCnUmnNUY4KgeeGMEtkU8KSc3bSuMQgV6JRiRMDcZvRKMMAoVWD2eDSgCnSEuBqZZk7iIi7yKRayaPL1A8oJK1DVN2vxGuy7ifse/Ee26KCuefGu2YQ8WFE5HJZq3BK7EAGTmT8ccA1sCE1FzLGLV5OkFkhdUoq5hW2C/lJu2FZvtHbcE3mSfwBFZImqGRayaeEElUh7bAvudnEJ5LYFz8tkSmIhuYBGrNl5QiZTFtsB+xWYpbzGFoD0CKmDkYi8VsRcP+RsWsWrjBZVIeWwL7DcqijxrCSzFk5LYi4f8FYtYf8ALKpHy2BbYLxiTPWsJLMWTUtiLh/xZmNoJUL2GC6fFIu1CkJzMObD+iD+f4GMy8WepIoMpGgNQIWNKgQgjKmAwsYhViie9ePjaj9TAkVh/YzIBTz/Ni6q/4f00Ip/JSpXXEjjL/KmPM6Gm2IuH/B2LWCJ3eD+NyKcyC2Zgtr7jlsCz9R9gft4M5ZMLUezFQ4GARSxRRzy5n0ZEnbbRNhG55ndgRAWatgQ2ogK55new0TZRzfRCDnvxUCDgnFiijvB+GpFi5ufNwHxI225VFJXDmBxdPweWI7BKYy8eCgQsYona05n7aZzLrAqutwsuBlM0F3CpTP7fkVgfL3ebNCLv4XQCovbwfprf43o7It+R24sHAOYY9vguEaJ2BEwR+9vf/hajR49G9+7dccstt6idDoUC3k/za1xvR+RbN3rxtLXgroEAQMAm+wSsHr9VsdyIgAAqYq9fv46ZM2di/vz5aqdCocLT+9K8j60YrrcjUobNBnRDjazYnPxRPs6GqLmAKWKzs7OxcOFCJCQkqJ0KhRK599Pa67hGPsH1dkTKsFnKcR0RcN8aWEAFjLBZ2BaYlBPUC7tqampQU3PjFWRVVRUAoLa2FrW1tYrl0fBcSj5nIAiI8/LBB8DgwcDFi+3H3HIL8P77gJe+j4A4LypoOB///nctdDr5n3f0KDBsmI+S8gP8fWkbz0vbPD0vZw+egU7XV/bXP3vwDHrGyY/3F/x9aZta50Xu8wmiKMptWu0X3njjDfz85z/HxY6KinovvvgisrOzWx3fuHEjunfv7oPsiIiIiKgrrl27hjlz5uDSpUuIiopqN07Vkdhf/vKXWL58eYcxx48fR3x8fKe+/q9+9SssWrSo8eOqqioMHDgQDz74YIcnxdtqa2vx0Ucf4YEHHkB4eLhiz+vvAvK8HD8OHDoE3HOPz4b3AvK8KKDhvAwe/ABGj5Z/Xv71r+AfieXvS2s8L23rzHmJu/kczqEfOp5SIGIAzsF6aYBX8lQaf1/aptZ5abhz7o6qRezixYvx5JNPdhhz++23d/rrR0REICIiotXx8PBwRX4YDqsFVUeK0N00UtHnDTQBdV6GD5feFBBQ50VBd90VDodDznmRbjINHx4a+1fy96VtPC9t8+S8PHfvZ1hQOB3uitjnzEUIDw/sxhT8fWmb0udF7nOpWsT26dMHffr0UTMFn9j/ZBpWVhdiZxzg0gA3WXXYkLgJ/1owGWP/8r7a6REFvNRUeYu7zPgIMDwqLbEmok7JLJiB/YY92GSfUH+kaTErvVicrf8A8/MCu4ClwBMwuxOUlZWhuLgYZWVlcDqdKC4uRnFxMa5cuaJ2as2snmDAuCGF2H2HVMACN95PvPVjrHmQm1cSdVXH+1dKx/T4DnmYwL22iLxgo20ics3vwIgK3PibE2FEBXLN72CjbaKa6VGICpgidsmSJUhKSsLSpUtx5coVJCUlISkpCZ9//rnaqTXa/2QaFoyyQxSAOm3rx0UByBxtxydP84JK1FU2W/1Ia7NCVvq3GR/BhiZ3ebjXFlGXzc+bgXIxGt8dq8CxdUX47lgFysVojsCSagJmi6033ngDb7zxhtppdGhldSG0rrYL2AZaF7Dqaj5SlEuLKDhZLNJIKwAL4lCE7yMZn8GEknbj2ZBCeSetNhz9wo7hd+sRG887UcHAYIqGwRStdhpEgTMS6+8cVgt2xnVcwALS49vjpXgi6oKiosZ/mlCCp/G39gvYFvHke7OmHIYmrBpDh+kx/bEYDB2mhyasGrOnHVY7NSIKEixivaTqSFHj3Fd3XBopnoi6IDnZt/HUaYMHluLtnYkQnU07PQkQnRHYvD0RgweVqpkeEQUJFrFeEjUiGRqXvFiNS4onoi7wdGoApxIoYtaUwyg7ezuk4rXllkzSsbIzt3NEloi6jEWsl+jiTcgoAcKcHceFOYGpVimeiLooNVVenNns2zyo0ZZ35XWWeHtX55rYEBE1YBHrRYsiU+F0c0adGmDhTbygEnnFjb222qfXA3l5yuQT4k5abS2mELRHgMsZiZNW7t9LRJ3HItaLxrxRgNwDeghi2yOyggjkHtAjZT0vqEReY7O1P9JqNrPRgYKOfmGH+wK2gVAfT0TUOSxivWzehzbsKzMjowSNc2Qb3u85ex/mfcgLqr9wWC04/9Z67hQRDPLyAFEEjh0D1q2T3osiR2AVNvxuPVo3n2iPWB9PRNQ5AbNPbCBJWZ+HFEhFUtWRInQ3jUTBya9x76u71E6N0LotsOY/QEYJsLi7maPkgc5k4gIuFcXGGyBoq2VMKRCh0TgQOzqWI+VE1GkcifUhXbwJ/WY9jcg75C10IN9rry3w7juAsYPy2RaYqItmPnxcVtwj3V9lS2Ai6hIWsRQyOmoLXKdlW2Aib3hrRxIGDfwKzdsBN5CODep+EJuu/EI6xJbARNRJLGIpZDS0Be5IQ1tgIuq80/9w4NEeK6DROHCjkJWmEDzaYwVOX/t+80+wcF66WsotNvxzfSnKLZzWQYGHRSyFBLYFJlJQURE2XfkFnK6bcEIw4p3I+3BCMMLpuunGCGyLeFLW8+lHESlU49YEPVLnxuDWBD0ihWo8N55NKChwsIilkMC2wEQKatLiN1Y8h2nVexErnpMVT8p4dW8CatC8LXANIvByfiK+Z2BbYAoMLGIpJLAtMJGC2BLYbz2ffrT+X+23Bf7cfjtHZCkgsIilkMC2wEQKY0tgv/Ta3jhZca/msy0w+T8WsRQy2BaYSEFsCex3yi021KCbjEgB1YjkYi/yeyxiKWR01BY4zMm2wERex5bAfuVEkWdtgaV4Iv/FIpZCSnttgTNKgH1lZrYFJvI2tgT2G0OTPWsLLMUT+S+2naWQ07ItcNSIZM6B9UP8+QQZtgRWXbTJgAhckREpIhLViDaxgyH5NxaxFLJ08SYWR35o/5NpWFldiJ1x0nZnmv9II+ULoyYCk+apnR5RQPvxuBJZcQvMVgBJvk2GqIs4nYCI/MbqCQaMG1KI3XegcV9flwbYfQcw8daP1U2OKAgs2z28/l/ttwUeqf8KK/JYwJL/YxFLRH5h/5NpWDDKDlFo3VmtTguI9etR/rVgsvLJEQWZn953DJGoRtO2wJGoxmJzMQ7aYtRMjUg2TicgIr+wsroQWpf71sC5Vz/GWGVSIgpaObuGY3l4OMotNpwosmNosr5+DixHYClwsIglItU5rJbGObDu7L5Diud8ZuVZLEBRkdQllmu0gkO0ycAFXBSwWMQSkeqqjhTJKmABqdCtOlLEIlZBaWlAYWHr42Yzd8oiIvWwiCUi1UWNSIbmP/JGYjUuKZ6UYTAA9nb2vM/Plx5nzwIiUgMXdhGR6nTxJmSUtO6k1pb0L8FRWIWkpbVfwDaw24Hx45XJh4ioKRaxROQXFkWmwinjf6TMm+7zfTIEoO0pBG3Jz/dtHkREbWERS0R+YcwbBcg9oIcgth6RDXMCQv1OQPe+ukv55EKQxeLbeCKirmIRS0R+Y96HNuwrMyOjRJr7CkjvM0qAPWc5AqukoiLfxhMRdRUXdhGRX0lZn4cUSNtoVR0pQtSIZOjiTaitrcU//vEPtdMLGckerp3zNJ6IqKtYxFJQsJWUoqLYCmNiPAxx7DYTDHTxJi7gUpH8fWDF+njBZ7kQEbWF0wkooOXOXgLjwG3oNWwIEh6dhF7DhsA4cBtWP7ZU7dSIAl5qqszA2z7Cmge5YT4RKYtFLAWs2UkvYMHmF1FZkQ6I9b1KRS0qK9KRuXEp5iQ9r26CRAGuoADQ6wFptFVs8Wj9scjvgB9NQOZoOz55mnttEZFyWMRSQMqdvQSbi38DQAO4wps/6AoHoMGm4hyOyBJ1kc0G9O77EZoXsvX/vu0j4Jd9AABaF7DqKvfaIiLlcE4sBaSc/YmAxtlxiyeNEzl7h2O+YlkRBR+H1QLbvAnSkMf5OKD8+0D0Z0C/kmZxdVpge7wUz7nM6rBYHSj6woHku3UwxevUTofI51jEUsCxlZSisjzjxhSC9rjCUVE+BbaSUi72IuqkqiNFN14r9itpVbw25dJI8SxilZWWfgGF7/YGEAlAB2mk3AVz+rfI29VX3eSIfIjTCSjgVBRb3RewDUStFE9EnRI1Irlxz153NC4pnpRj6H8Zhe/2ASDUv6Hx3/m7+8AwoEq95Ih8jEUsBRxjYjwgON0HAoDglOKJqFN08SZklLTuotZSmBOYagVHYRWUln4B9vM90LyAbSAds5/rifGTLyifHJECWMRSwDHExWBA9E5AU9txoKYWxugdnEpA1EWLIlPhdHO1cGqAhTeZlUmIAKB+CoF7+e/28nEmROpgEUsBKWtMMeByNydWi6xxRxXJhyiYjXmjALkH9BDE1iOyYU5AEIHcA3qkrM9TJ8EQZLE60PYIbEsCIGrq44mCC4tYCkiZm17C7MQsAK7WI7KaWgAuzE7MwvwN2WqkRxR05n1ow74yMzJK0DhHVuMCMkqAfWVmzPvQpm6CIaboi4YiVg6hPp4ouHB3AgpYGw8vw9jHliJn73BUlE+RFnsJThiNu5A17ijmb1imdopUz2EpRVWRFVHJ8dCZOL0jUKWsz0MKpG20qo4UIWpEMufAqiT57oZdCOQUsmJ9PFFwYRFLAW3+hmzMh7TtVkWxFcbEeBjipgOYrnZqBGB/2hKsLEzETmTAhRho4EQGtmGx+QhS8jhKHqh08SYWryqT9oFt2Daio0JWBODE/mejYeJoOQUZTiegoGCIi4Fp1iQu4vIjqw0vYFzhi9iNdLggzV92QYvdSMfY/KVYY2BbYKKuSH34W3mBd73NtsAUlFjEEpHX7U9bggX230CEBnVo3ha4DuEQoUGmPQefjGdbYKLOKtjdF/r+l9G8JXCD+mM3nwJmPsa2wBSUWMQSkdetLEyEFh1vLKqFE6vyhyuUEVFwKi8sA+7aBMCJG4WsNIUAd20CFt4O4EZb4Oovj6uUKZH3cU4sEXmVw1JaPwe24y3Q6hCO7ZgCh6WUi72IOqnqSBEwcy4w8zHguyHA+RFAvyNAr1OtYl0aoMpyCIg0KJ4nkS9wJJaIvKqqyOq2gG3gghZVRWwLTNRZzdoC9zoF3LmzzQIWqG8LbLpHqdSIfI5FLBF5VVRyPDRuphI00MCJqGS2BSbqLE/bAkfeMUyZxIgUwCKWiLxKZ4pBBnYiDB23BQ5DLaZiB6cSEHUR2wJTqGIRS0Retyi1GE43Uwqc0GKhmW2BibqKbYEpVLGIJSKvG1PwEnL1WRDgajUiG4ZaCHAhV5/FhgdEXsK2wBSKuDsBEfnEPNsyJIxfilX5w7EdU+CCtr5j1y4sNB9FSh7bAhN5E9sCU6hhEUtEPpOSly1dVC2lqCqyIio5HjoT2wL7k+Y/G85PDgZsC0yhgkUsEfmczhTDAsnP7E9bgpWFifV7+sbUj5Jvw2LzEU7zIKKAwDmxREQhZrXhBYwrfBG7kd64p68LWuxGOsbmL8Uaw/MqZ0hE5B6LWCKiELI/bQkW2H8DERrUIbzZY3UIhwgNMu05+GT8UpUyJCKSh0UsEVEIWVmYCK2bZhRaOLEqf7hCGRERdQ6LWCKiEOGwlGInMlqNwLZUh3BsxxQ4LKUKZUYtWSzA+vXSeyJqG4tYIqIQUVVkbZwD644LWlQVWX2cEbWUlgYIApCQAMydK70XBGD8eLUzI/I/3J2AiChERCXHQwOnrEJWAyeikuMVyIoaGAyA3d72Y/n50uM29iwgasSRWCKiEKEzxSADO1t1UWspDLWYih3cFk1BaWntF7AN7HaOyBI1xSKWiCiELEothtPNSKwTWiw0H1UoIwKAwkJ5cfn5vs2DKJCwiCUiCiFjCl5Crj4LAlytRmTDUAsBLuTqs9jwQEGeLt7iYi8iCYtYIqIQM8+2DPvM2cjALmjqt9uSOnbtwj5zNubZlqmcYWgpKvJtPFGw4sIuIqIQlJKXjRRI225VFVkRlRwPnWk6gOlqpxZykpN9G08UrFjEEpFHykvKceJwOYYmRSM6LlrtdKiLdKYYLuBSmckkN1Ksjxd8lgtRIOF0AiKSZdHMrYjsXoFb441InZ2MW+ONiOxegedmblU7NaKAl5oqP3aN4XnfJUIUQFjEEpFbI2P3YNXW6ahxDADQMAokoMYxAC9vnY7vDd2jZnpEAa+gANDrAWm0VWwnSgAgINOeg0/GL1UsNyJ/xSKWiDq0aOZWHCqdgIYLaHPSsc9PTuCILFEX2WxAb5x3G6eFE6vyhyuQEZF/YxFLRB3KfW+0rLhX3xvl40yIgpvDUgob+qD1i8Xm6hCO7ZgCh6VUmcSI/BSLWCJqV3lJeYspBO0RUO0worykXIm0iIJSVZFVVktgAHBBi6oiq48zIvJvLGKJqF0nDpfDfQHbQKiPJ6LOiEqOb9y31x0NnIhKjvdxRkT+jUUsEbVraFI02l9k0pJYH09EnaEzxSADO1t1UmspDLWYih3cGo1CHotYImpXdFw0InSVcF/IiojUVXDfWKIuWpRaDKebKQVOaLHQfFShjIj8F4tYIupQ5qQDsuIWTPrUx5kQBb8xBS8hV58FAa5WI7JhqIUAF3L1WUjJy1YpQyL/wSKWiDq0cssMjIz9AG3vXykdGxn7AVZsmaF8ckRBaJ5tGfaZs5GBXY1zZDVwIgO7sM+cjXm2ZSpnSOQf2HaWiNw6eGIinpu5Fa++NwrVDiOkxV7SFIIFkz5lAesnbCWlqCi2wpgYD0Mc50sGspS8bKRA2narqsiKqOR46EzTAUxXOzUiv8EilohkWbFlBlZA2nbrxOFyDE2Krp8DywLWH8TduRtfl2YAYgwgODEgeht+Pe4I5m/gbedApjPFcAEXUTs4nYCIPBIdF437H03mIi4/8fTYlwAA5yonAmL9giBRi8qKdGRuXIo5Sc+rmB0Rke+wiCUiClC5s5fgnaNZ0geu8OYPusIBaLCpOAerH1uqeG5ERL7GIpaIKEDl7E8ENG42x9c4kbN3uCL5EBEpiUUsEVEAspWUorI8o/UIbEuucFSUT4GtpFSZxIiIFMIilogoAFUUW2/MgXVH1ErxRERBhEUsEVEAMibGA4KbqQQNBKcUT0QURFjEEhEFIENcDAZE7wQ0tR0HamphjN7BfWOJKOiwiCUiClBZY4oBl5spBS4tssYdVSQfIiIlsYglIgpQmZtewozhOdIHLUdkNbUAXJidmMWGB0QUlFjEEhEFsHX7lgAABgx4/8YcWcEJo3EXcudkY+PhZSpmR0TkO2w7S0QUBKz/mYzLX51CRbEVxsR4GOKmA5iudlrUhMNSiqoiK6KS49lKlsgLWMQSEQUJQ1wMF3D5of1pS7CyMBE7kQEXYqCBExnYhsXmI0jJ41QPos7idAIiIiIfWW14AeMKX8RupMMFaRGeC1rsRjrG5i/FGsPzKmdIFLhYxBIREfnA/rQlWGD/DURoUIfmndXqEA4RGmTac/DJ+KUqZUgU2FjEEhER+cDKwkRo0XFDCi2cWJU/XKGMiIILi1giIiIvc1hKsRMZrUZgW6pDOLZjChyWUoUyIwoeLGKJiIi8rKrI2jgH1h0XtKgqsvo4I6LgwyKWiIjIy6KS46FxM5WggQZORCXH+zgjouDDIpaIiMjLdKYYZGAnwlDbYVwYajEVO7hvLFEnsIglIiLygUWpxXC6mVLghBYLzUcVyogouLCIJSIi8oExBS8hV58FAa5WI7JhqIUAF3L1WWx4QNRJLGKJiIh8ZJ5tGfaZs5GBXY1zZKWOXbuwz5yNebZlKmdIFLjYdpaIiMiHUvKykQJp262qIiuikuOhM00HMF3t1IgCGotYIiI/dNJqw9Ev7Bh+tx6x8Qa10yEv0JliuICLyIs4nYCIyI/MmnIYmrBqDB2mx/THYjB0mB6asGrMnnZY7dSIiPwKi1giIj8xeGAp3t6ZCNEZAUCoPypAdEZg8/ZEDB7Erk5ERA1YxBIR+YFZUw6j7OztkIpXocWj0rGyM7dzRJaIqB6LWCIiP7Dl3WGy4t7exc5OREQAi1giItWdtNpaTCFojwCXMxInrTYl0iIi8mssYomIVHb0CzvcF7ANhPp4IqLQxiKWiEhlw+/WAxBlRov18UREoY1FLBGRymLjDRC0NXBfyIrQaKu5bywREVjEEhH5hZkPH5cV98hkq48zISIKDCxiiYj8wFs7kjBo4FeQRmNbjshKxwYN/AqbtiUpnxwRkR9iEUtE5CdOl8Xg0anF0GircaOQlaYQPDq1GKfL2LLUX9gs5bCsL4LNUq52KkQhi0UsEZEf2bQtCc46HU4ct+OdDaU4cdwOZ52OI7B+IjdtK4xCBXolGJEwNxm9EowwChVYPX6r2qkRhZwwtRMgIqLWYuMNXMDlZ2Yb9mCzfXr9RzfaAldiADLzp2OfYQ822iaqlR5RyAmIkdhTp05h7ty5uO2226DT6RATE4OlS5fi+vXraqdGREQhIDdtKzbbJ6CjtsCb7BM4IkukoIAYibVarXC5XFi7di1iY2NhsVjwk5/8BFevXsWKFSvUTo+IiIJcTuFoeXH5ozDfx7kQkSQgitiJEydi4sQbt2huv/12lJSUYPXq1SxiiYjIp2yWclTCCDltgStghM1SDoMpWonUiEJaQBSxbbl06RIMho7ni9XU1KCmpqbx46qqKgBAbW0tamtrfZpfUw3PpeRzBgKel7bxvLSN56VtPC9t8+Z5OXvwDHS6vh7F94yTH68k/r60jeelbWqdF7nPJ4iiKLfXod84efIk7rnnHqxYsQI/+clP2o178cUXkZ2d3er4xo0b0b17d1+mSERERESdcO3aNcyZMweXLl1CVFRUu3GqFrG//OUvsXz58g5jjh8/jvj4+MaPy8vLcd999+H+++/Ha6+91uHntjUSO3DgQHz77bcdnhRvq62txUcffYQHHngA4eHhij2vv+N5aRvPS9t4XtrG89I2b5+XuJvP4Rz6oeMpBSIG4ByslwZ0+fl8hb8vbeN5aZta56Wqqgq9e/d2W8SqOp3g/7d351FRnOkawJ8G2aRZRPYoiKK44YYbmAiMC0SvwpjBdYxkHI2IDo57PCYqJidGSZyM43WJEzEZrybOdUmIGQ+iqCGIiqBoAMGgRgSNKyAqKO/9w9DX1gZB6Q2e3zl9Qld9X9VbLx+V16+rqufMmYPIyMha27Rt21b185UrVxAcHIyAgABs3Ljxudu3sLCAhYXFM8vNzMz0Mkj1tV9Dx7xoxrxoxrxoxrxo1lB5mds/DdEH38Dziti5g47BzOwPL70/beN40Yx50UzXeanrvvRaxDo5OcHJyalObQsLCxEcHAw/Pz9s3rwZJiZG8XQwIiJqBKYf+AN+cPgPtt0K+W3Jk8Xs4w80x7XYh6j9hl/AEjUWRlEJFhYWIigoCB4eHoiLi8Ovv/6K4uJiFBcX6zs0IiJqIv7nZij+e9D/wh1X8OTXArvjCv570P/yiw6IdMwonk6QmJiI/Px85Ofno1WrVmrrjPC+NCIiMlJR+/+AKDx+7NaVY4Vw7/vKb4/T4gwska4ZxUxsZGQkRETji4iISNccur6Crn/qy+fBEumRURSxRERERERPYhFLREREREaHRSwRERERGR0WsURERERkdFjEEhEREZHRYRFLREREREaHRSwRERERGR0WsURERERkdFjEEhEREZHRYRFLREREREaHRSwRERERGR0WsURE1KSdybmHz//nJs7k3NN3KERUD830HQAREZE+/G7ENRxMcARgCcAKgACowqAR17H/G2f9BkdEz8UiloiImhwH11Lcuur02zuF2n+TvnWCg1sJbhbZ6iU2IqobXk5ARERNyu9GXMOtq0o8LloVT619vOxWsQ0Gj7ym++CIqM5YxBIRUZPy+BKC50tKaKnlSIjoZbCIJSKiJuPxzVuaZmCfpgDEhDd7ERkwFrFERNRkHDtZXcTWheK39kRkiFjEEhFRk9G3V/VTCOpCfmtPRIaIRSwRETUZXTtWF7HPK2QFUFT91p6IDBGLWCIialKC/+t6ndoN+q8bWo6EiF4Gi1giImpSDnzrjBaupdA8I/t4WQvXUn7hAZGBYxFLRERNzs0iWwwa8SugqML/F7KPLyEYNOJXftEBkRHgN3YREVGTVD3TeibnHo6dvIe+vax+uwaWM7BExoBFLBERNWldO1rxBi4iI8TLCYiIiIjI6LCIJSIiIiKjwyKWiIiIiIwOi1giIiIiMjosYomIiIjI6LCIJSIiIiKjwyKWiIiIiIwOi1giIiIiMjosYomIiIjI6LCIJSIiIiKjwyKWiIiIiIwOi1giIiIiMjosYomIiIjI6LCIJSIiIiKjwyKWiIiIiIwOi1giIiIiMjosYomIiIjI6LCIJSIiIiKjwyKWiIiIiIxOM30HoEsiAgAoKSnR6X4rKytRXl6OkpISmJmZ6XTfhox50Yx50Yx50Yx50Yx50Yx50Yx50Uxfeamu06rrtpo0qSK2tLQUANC6dWs9R0JEREREtSktLYWdnV2N6xXyvDK3EamqqsKVK1dgY2MDhUKhs/2WlJSgdevW+OWXX2Bra6uz/Ro65kUz5kUz5kUz5kUz5kUz5kUz5kUzfeVFRFBaWgp3d3eYmNR85WuTmok1MTFBq1at9LZ/W1tb/nFowLxoxrxoxrxoxrxoxrxoxrxoxrxopo+81DYDW403dhERERGR0WERS0RERERGh0WsDlhYWGDJkiWwsLDQdygGhXnRjHnRjHnRjHnRjHnRjHnRjHnRzNDz0qRu7CIiIiKixoEzsURERERkdFjEEhEREZHRYRFLREREREaHRSwRERERGR0WsVpw4cIFTJ48GV5eXrCyskK7du2wZMkSVFRU1Nrv/v37iI6ORsuWLaFUKvHGG2/g6tWrOopaNz744AMEBASgefPmsLe3r1OfyMhIKBQKtVdoaKh2A9WhF8mJiOC9996Dm5sbrKysMHjwYOTl5Wk3UD24efMmJkyYAFtbW9jb22Py5MkoKyurtU9QUNAz42XatGk6ilg71q5dizZt2sDS0hL9+vXDsWPHam2/Y8cOdOzYEZaWlvD19cXevXt1FKlu1Scv8fHxz4wLS0tLHUarfYcPH8aIESPg7u4OhUKB3bt3P7dPcnIyevXqBQsLC3h7eyM+Pl7rcepaffOSnJz8zFhRKBQoLi7WTcA68uGHH6JPnz6wsbGBs7MzwsPDkZub+9x+hnR+YRGrBTk5OaiqqsKGDRtw9uxZrF69GuvXr8eiRYtq7ffXv/4V3377LXbs2IFDhw7hypUrGDVqlI6i1o2KigpEREQgKiqqXv1CQ0NRVFSkem3btk1LEerei+Rk5cqV+Pvf/47169cjLS0N1tbWCAkJwf3797UYqe5NmDABZ8+eRWJiIhISEnD48GFMnTr1uf2mTJmiNl5Wrlypg2i146uvvsLs2bOxZMkSnDx5Et27d0dISAiuXbumsf2PP/6IcePGYfLkycjIyEB4eDjCw8Nx5swZHUeuXfXNC/D4W4eeHBcXL17UYcTad/fuXXTv3h1r166tU/uCggIMHz4cwcHByMzMxKxZs/DnP/8Z+/bt03KkulXfvFTLzc1VGy/Ozs5ailA/Dh06hOjoaBw9ehSJiYmorKzE0KFDcffu3Rr7GNz5RUgnVq5cKV5eXjWuv337tpiZmcmOHTtUy7KzswWApKam6iJEndq8ebPY2dnVqe2kSZMkLCxMq/EYgrrmpKqqSlxdXWXVqlWqZbdv3xYLCwvZtm2bFiPUrZ9++kkAyPHjx1XLvv/+e1EoFFJYWFhjv8DAQImJidFBhLrRt29fiY6OVr1/9OiRuLu7y4cffqix/ejRo2X48OFqy/r16ydvv/22VuPUtfrmpT7nnMYAgOzatavWNvPnz5cuXbqoLRszZoyEhIRoMTL9qkteDh48KADk1q1bOonJUFy7dk0AyKFDh2psY2jnF87E6sidO3fg4OBQ4/r09HRUVlZi8ODBqmUdO3aEh4cHUlNTdRGiQUtOToazszN8fHwQFRWFGzdu6DskvSkoKEBxcbHaWLGzs0O/fv0a1VhJTU2Fvb09evfurVo2ePBgmJiYIC0trda+W7duhaOjI7p27Yp33nkH5eXl2g5XKyoqKpCenq72uzYxMcHgwYNr/F2npqaqtQeAkJCQRjU2XiQvAFBWVgZPT0+0bt0aYWFhOHv2rC7CNVhNYay8jB49esDNzQ1DhgxBSkqKvsPRujt37gBArbWKoY2ZZnrZaxOTn5+PNWvWIC4ursY2xcXFMDc3f+aaSBcXl0Z3HU59hYaGYtSoUfDy8sL58+exaNEivP7660hNTYWpqam+w9O56vHg4uKitryxjZXi4uJnPr5r1qwZHBwcaj3O8ePHw9PTE+7u7jh9+jQWLFiA3Nxc7Ny5U9shN7jr16/j0aNHGn/XOTk5GvsUFxc3+rHxInnx8fHB559/jm7duuHOnTuIi4tDQEAAzp49i1atWukibINT01gpKSnBvXv3YGVlpafI9MvNzQ3r169H79698eDBA2zatAlBQUFIS0tDr1699B2eVlRVVWHWrFkYMGAAunbtWmM7Qzu/cCa2HhYuXKjxYu8nX0+fQAsLCxEaGoqIiAhMmTJFT5Fr14vkpT7Gjh2LkSNHwtfXF+Hh4UhISMDx48eRnJzccAfRwLSdE2Om7dxMnToVISEh8PX1xYQJE/DFF19g165dOH/+fAMeBRkbf39/vPnmm+jRowcCAwOxc+dOODk5YcOGDfoOjQyMj48P3n77bfj5+SEgIACff/45AgICsHr1an2HpjXR0dE4c+YMtm/fru9Q6oUzsfUwZ84cREZG1tqmbdu2qp+vXLmC4OBgBAQEYOPGjbX2c3V1RUVFBW7fvq02G3v16lW4urq+TNhaV9+8vKy2bdvC0dER+fn5GDRoUINttyFpMyfV4+Hq1atwc3NTLb969Sp69OjxQtvUpbrmxtXV9ZmbdB4+fIibN2/W62+iX79+AB5/ItKuXbt6x6tPjo6OMDU1feYpJbWdF1xdXevV3hi9SF6eZmZmhp49eyI/P18bIRqFmsaKra1tk52FrUnfvn3xww8/6DsMrZgxY4bqxtnnfSphaOcXFrH14OTkBCcnpzq1LSwsRHBwMPz8/LB582aYmNQ+6e3n5wczMzMkJSXhjTfeAPD4zshLly7B39//pWPXpvrkpSFcvnwZN27cUCvgDI02c+Ll5QVXV1ckJSWpitaSkhKkpaXV+6kP+lDX3Pj7++P27dtIT0+Hn58fAODAgQOoqqpSFaZ1kZmZCQAGPV5qYm5uDj8/PyQlJSE8PBzA44/9kpKSMGPGDI19/P39kZSUhFmzZqmWJSYmGvx5pD5eJC9Pe/ToEbKysjBs2DAtRmrY/P39n3k8UmMbKw0lMzPTKM8htRERzJw5E7t27UJycjK8vLye28fgzi96uZ2skbt8+bJ4e3vLoEGD5PLly1JUVKR6PdnGx8dH0tLSVMumTZsmHh4ecuDAATlx4oT4+/uLv7+/Pg5Bay5evCgZGRmybNkyUSqVkpGRIRkZGVJaWqpq4+PjIzt37hQRkdLSUpk7d66kpqZKQUGB7N+/X3r16iXt27eX+/fv6+swGlR9cyIismLFCrG3t5c9e/bI6dOnJSwsTLy8vOTevXv6OAStCQ0NlZ49e0paWpr88MMP0r59exk3bpxq/dN/R/n5+RIbGysnTpyQgoIC2bNnj7Rt21YGDhyor0N4adu3bxcLCwuJj4+Xn376SaZOnSr29vZSXFwsIiITJ06UhQsXqtqnpKRIs2bNJC4uTrKzs2XJkiViZmYmWVlZ+joErahvXpYtWyb79u2T8+fPS3p6uowdO1YsLS3l7Nmz+jqEBldaWqo6fwCQTz75RDIyMuTixYsiIrJw4UKZOHGiqv3PP/8szZs3l3nz5kl2drasXbtWTE1N5T//+Y++DkEr6puX1atXy+7duyUvL0+ysrIkJiZGTExMZP/+/fo6BK2IiooSOzs7SU5OVqtTysvLVW0M/fzCIlYLNm/eLAA0vqoVFBQIADl48KBq2b1792T69OnSokULad68ufz+979XK3wbg0mTJmnMy5N5ACCbN28WEZHy8nIZOnSoODk5iZmZmXh6esqUKVNU/6NqDOqbE5HHj9l69913xcXFRSwsLGTQoEGSm5ur++C17MaNGzJu3DhRKpVia2srb731llpx//Tf0aVLl2TgwIHi4OAgFhYW4u3tLfPmzZM7d+7o6Qgaxpo1a8TDw0PMzc2lb9++cvToUdW6wMBAmTRpklr7r7/+Wjp06CDm5ubSpUsX+e6773QcsW7UJy+zZs1StXVxcZFhw4bJyZMn9RC19lQ/GurpV3UeJk2aJIGBgc/06dGjh5ibm0vbtm3VzjONRX3z8tFHH0m7du3E0tJSHBwcJCgoSA4cOKCf4LWopjrlyTFg6OcXhYiINmd6iYiIiIgaGp9OQERERERGh0UsERERERkdFrFEREREZHRYxBIRERGR0WERS0RERERGh0UsERERERkdFrFEREREZHRYxBIRERGR0WERS0RGr02bNvjb3/7WYNuLjIxEeHh4g20PAJKTk6FQKHD79u0G3S4RUVPFIpaIDEZkZCQUCgUUCgXMzc3h7e2N2NhYPHz4sNZ+x48fx9SpUxssjk8//RTx8fENtr36yMjIQEREBFxcXGBpaYn27dtjypQpOHfunF7iMVR1/YfLxo0bERQUBFtbW/4jgqiRYRFLRAYlNDQURUVFyMvLw5w5c7B06VKsWrVKY9uKigoAgJOTE5o3b95gMdjZ2cHe3r7BtldXCQkJ6N+/Px48eICtW7ciOzsb//rXv2BnZ4d3331X5/E0BuXl5QgNDcWiRYv0HQoRNTQhIjIQkyZNkrCwMLVlQ4YMkf79+6utf//998XNzU3atGkjIiKenp6yevVqVR8A8tlnn0l4eLhYWVmJt7e37NmzR227Z86ckeHDh4uNjY0olUp59dVXJT8/X2McgYGBEh0dLdHR0WJraystW7aUxYsXS1VVlarNF198IX5+fqJUKsXFxUXGjRsnV69eVa0/ePCgAJBbt25pPPa7d++Ko6OjhIeHa1z/ZL/k5GTp06ePmJubi6urqyxYsEAqKyvV4p0xY4bExMSIvb29ODs7y8aNG6WsrEwiIyNFqVRKu3btZO/evc/El5CQIL6+vmJhYSH9+vWTrKwstTj+/e9/S+fOncXc3Fw8PT0lLi5Obb2np6d88MEH8tZbb4lSqZTWrVvLhg0b1NpcunRJIiIixM7OTlq0aCEjR46UgoIC1frq/K9atUpcXV3FwcFBpk+fLhUVFarjA6D2ep7n5Z+IjA9nYonIoFlZWalmXAEgKSkJubm5SExMREJCQo39li1bhtGjR+P06dMYNmwYJkyYgJs3bwIACgsLMXDgQFhYWODAgQNIT0/Hn/70p1ovW9iyZQuaNWuGY8eO4dNPP8Unn3yCTZs2qdZXVlZi+fLlOHXqFHbv3o0LFy4gMjKyzse5b98+XL9+HfPnz9e4vnpmuLCwEMOGDUOfPn1w6tQprFu3Dv/85z/x/vvvPxOvo6Mjjh07hpkzZyIqKgoREREICAjAyZMnMXToUEycOBHl5eVq/ebNm4ePP/4Yx48fh5OTE0aMGIHKykoAQHp6OkaPHo2xY8ciKysLS5cuxbvvvvvMpRcff/wxevfujYyMDEyfPh1RUVHIzc1V5SkkJAQ2NjY4cuQIUlJSoFQqERoaqvZ7PnjwIM6fP4+DBw9iy5YtiI+PV+1n586daNWqFWJjY1FUVISioqI655mIGhF9V9FERNWenAGtqqqSxMREsbCwkLlz56rWu7i4yIMHD9T6aZqJXbx4sep9WVmZAJDvv/9eRETeeecd8fLyUs3s1RaHyOOZv06dOqnNvC5YsEA6depU47EcP35cAEhpaamIPH8m8KOPPhIAcvPmzRq3KSKyaNEi8fHxUYtl7dq1olQq5dGjR6p4X331VdX6hw8firW1tUycOFG1rKioSABIamqqWnzbt29Xtblx44ZYWVnJV199JSIi48ePlyFDhqjFM2/ePOncubPqvaenp/zxj39Uva+qqhJnZ2dZt26diIh8+eWXz8T/4MEDsbKykn379onI4/x7enrKw4cPVW0iIiJkzJgxavt58nf+PJyJJWp8OBNLRAYlISEBSqUSlpaWeP311zFmzBgsXbpUtd7X1xfm5ubP3U63bt1UP1tbW8PW1hbXrl0DAGRmZuK1116DmZlZnePq378/FAqF6r2/vz/y8vLw6NEjAI9nKUeMGAEPDw/Y2NggMDAQAHDp0qU6bV9E6tQuOzsb/v7+arEMGDAAZWVluHz5smrZk8dvamqKli1bwtfXV7XMxcUFAFQ5efK4qjk4OMDHxwfZ2dmqfQ8YMECt/YABA9Ty8PS+FQoFXF1dVfs5deoU8vPzYWNjA6VSCaVSCQcHB9y/fx/nz59X9evSpQtMTU1V793c3J6JlYiatmb6DoCI6EnBwcFYt24dzM3N4e7ujmbN1E9T1tbWddrO0wWqQqFAVVUVgMeXKDSku3fvIiQkBCEhIdi6dSucnJxw6dIlhISEqH1EXpsOHToAAHJyctQKyRel6fifXFZdBFfnpCHVlvuysjL4+flh69atz/RzcnKq0zaIiAA+nYCIDIy1tTW8vb3h4eHxTAHbULp164YjR46orvWsi7S0NLX3R48eRfv27WFqaoqcnBzcuHEDK1aswGuvvYaOHTvWe9Zw6NChcHR0xMqVKzWur340VKdOnZCamqo2c5uSkgIbGxu0atWqXvvU5OjRo6qfb926hXPnzqFTp06qfaekpKi1T0lJQYcOHdRmTWvTq1cv5OXlwdnZGd7e3movOzu7Osdpbm6uNvtLRE0Pi1gianJmzJiBkpISjB07FidOnEBeXh6+/PJL1c1Hmly6dAmzZ89Gbm4utm3bhjVr1iAmJgYA4OHhAXNzc6xZswY///wzvvnmGyxfvrxeMVlbW2PTpk347rvvMHLkSOzfvx8XLlzAiRMnMH/+fEybNg0AMH36dPzyyy+YOXMmcnJysGfPHixZsgSzZ8+GicnLn9JjY2ORlJSEM2fOIDIyEo6OjqovfpgzZw6SkpKwfPlynDt3Dlu2bME//vEPzJ07t87bnzBhAhwdHREWFoYjR46goKAAycnJ+Mtf/qJ2OcTztGnTBocPH0ZhYSGuX79eY7vi4mJkZmYiPz8fAJCVlYXMzEzVTX5EZLxYxBJRk9OyZUscOHAAZWVlCAwMhJ+fHz777LNar5F98803ce/ePfTt2xfR0dGIiYlRfcGCk5MT4uPjsWPHDnTu3BkrVqxAXFxcveMKCwvDjz/+CDMzM4wfPx4dO3bEuHHjcOfOHdXTB1555RXs3bsXx44dQ/fu3TFt2jRMnjwZixcvfrFkPGXFihWIiYmBn58fiouL8e2336quQe7Vqxe+/vprbN++HV27dsV7772H2NjYej2FoXnz5jh8+DA8PDwwatQodOrUCZMnT8b9+/dha2tb5+3ExsbiwoULaNeundplCE9bv349evbsiSlTpgAABg4ciJ49e+Kbb76p876IyDAppK53ExARNVFBQUHo0aNHg361raFJTk5GcHAwbt26pZcveiAiqi/OxBIRERGR0WERS0RERERGh5cTEBEREZHR4UwsERERERkdFrFEREREZHRYxBIRERGR0WERS0RERERGh0UsERERERkdFrFEREREZHRYxBIRERGR0WERS0RERERG5/8Aq16cdb97YrMAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","source":["## ***EDA***"],"metadata":{"id":"jovn6Rp9orAh"}},{"cell_type":"code","source":["print('Shape of Dataset : ',data1.shape)\n","\n","print(\"\\n\\nColumns in Dataset : \",data1.columns.values)\n","\n","print(\"\\n\\nSUmmary Statistics : \")\n","display(data1.describe())\n","\n","print(\"\\n\\nData Types in the Dataset : \")\n","display(data1.dtypes)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"1_3K0b8DvCp6","executionInfo":{"status":"ok","timestamp":1740468474188,"user_tz":-330,"elapsed":10,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"e8679712-06db-493a-c9a5-37d6db8da8bd"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of Dataset : (625, 5)\n","\n","\n","Columns in Dataset : ['Class name' 'Left weight' 'Left distance' 'Right weight'\n"," 'Right distance']\n","\n","\n","SUmmary Statistics : \n"]},{"output_type":"display_data","data":{"text/plain":[" Left weight Left distance Right weight Right distance\n","count 625.000000 625.000000 625.000000 625.000000\n","mean 3.000000 3.000000 3.000000 3.000000\n","std 1.415346 1.415346 1.415346 1.415346\n","min 1.000000 1.000000 1.000000 1.000000\n","25% 2.000000 2.000000 2.000000 2.000000\n","50% 3.000000 3.000000 3.000000 3.000000\n","75% 4.000000 4.000000 4.000000 4.000000\n","max 5.000000 5.000000 5.000000 5.000000"],"text/html":["\n"," <div id=\"df-35708cc5-f250-4aa1-b918-7b19604b5933\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>count</th>\n"," <td>625.000000</td>\n"," <td>625.000000</td>\n"," <td>625.000000</td>\n"," <td>625.000000</td>\n"," </tr>\n"," <tr>\n"," <th>mean</th>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," </tr>\n"," <tr>\n"," <th>std</th>\n"," <td>1.415346</td>\n"," <td>1.415346</td>\n"," <td>1.415346</td>\n"," <td>1.415346</td>\n"," </tr>\n"," <tr>\n"," <th>min</th>\n"," <td>1.000000</td>\n"," <td>1.000000</td>\n"," <td>1.000000</td>\n"," <td>1.000000</td>\n"," </tr>\n"," <tr>\n"," <th>25%</th>\n"," <td>2.000000</td>\n"," <td>2.000000</td>\n"," <td>2.000000</td>\n"," <td>2.000000</td>\n"," </tr>\n"," <tr>\n"," <th>50%</th>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," <td>3.000000</td>\n"," </tr>\n"," <tr>\n"," <th>75%</th>\n"," <td>4.000000</td>\n"," <td>4.000000</td>\n"," <td>4.000000</td>\n"," <td>4.000000</td>\n"," </tr>\n"," <tr>\n"," <th>max</th>\n"," <td>5.000000</td>\n"," <td>5.000000</td>\n"," <td>5.000000</td>\n"," <td>5.000000</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-35708cc5-f250-4aa1-b918-7b19604b5933')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-35708cc5-f250-4aa1-b918-7b19604b5933 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-35708cc5-f250-4aa1-b918-7b19604b5933');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-b86b909e-a751-4ed6-b224-2b6c8f17a30e\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-b86b909e-a751-4ed6-b224-2b6c8f17a30e')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-b86b909e-a751-4ed6-b224-2b6c8f17a30e button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(data1\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 219.9941917700617,\n \"min\": 1.0,\n \"max\": 625.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 625.0,\n 3.0,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 219.9941917700617,\n \"min\": 1.0,\n \"max\": 625.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 625.0,\n 3.0,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 219.9941917700617,\n \"min\": 1.0,\n \"max\": 625.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 625.0,\n 3.0,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 219.9941917700617,\n \"min\": 1.0,\n \"max\": 625.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 625.0,\n 3.0,\n 4.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}},{"output_type":"stream","name":"stdout","text":["\n","\n","Data Types in the Dataset : \n"]},{"output_type":"display_data","data":{"text/plain":["Class name object\n","Left weight int64\n","Left distance int64\n","Right weight int64\n","Right distance int64\n","dtype: object"],"text/html":["<div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>0</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>Class name</th>\n"," <td>object</td>\n"," </tr>\n"," <tr>\n"," <th>Left weight</th>\n"," <td>int64</td>\n"," </tr>\n"," <tr>\n"," <th>Left distance</th>\n"," <td>int64</td>\n"," </tr>\n"," <tr>\n"," <th>Right weight</th>\n"," <td>int64</td>\n"," </tr>\n"," <tr>\n"," <th>Right distance</th>\n"," <td>int64</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div><br><label><b>dtype:</b> object</label>"]},"metadata":{}}]},{"cell_type":"code","source":["#working with data types.\n","\n","for col in data1.columns:\n"," try:\n"," data1[col]=pd.to_numeric(data1[col])\n"," except:\n"," pass\n","\n","display(data1.head())\n","data1.info"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"7brEHGrW6kAL","executionInfo":{"status":"ok","timestamp":1740468474203,"user_tz":-330,"elapsed":14,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"ad8e6249-5300-49c3-f906-8a13416da472"},"execution_count":10,"outputs":[{"output_type":"display_data","data":{"text/plain":[" Class name Left weight Left distance Right weight Right distance\n","0 B 1 1 1 1\n","1 R 1 1 1 2\n","2 R 1 1 1 3\n","3 R 1 1 1 4\n","4 R 1 1 1 5"],"text/html":["\n"," <div id=\"df-dbd24669-9a2f-4dee-9175-5980b9dd3115\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Class name</th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>B</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>2</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>3</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>4</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>5</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-dbd24669-9a2f-4dee-9175-5980b9dd3115')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-dbd24669-9a2f-4dee-9175-5980b9dd3115 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-dbd24669-9a2f-4dee-9175-5980b9dd3115');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-45a3e730-e4ac-4a59-a1db-a773d396b3c7\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-45a3e730-e4ac-4a59-a1db-a773d396b3c7')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-45a3e730-e4ac-4a59-a1db-a773d396b3c7 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"data1\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Class name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"R\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}},{"output_type":"execute_result","data":{"text/plain":["<bound method DataFrame.info of Class name Left weight Left distance Right weight Right distance\n","0 B 1 1 1 1\n","1 R 1 1 1 2\n","2 R 1 1 1 3\n","3 R 1 1 1 4\n","4 R 1 1 1 5\n",".. ... ... ... ... ...\n","620 L 5 5 5 1\n","621 L 5 5 5 2\n","622 L 5 5 5 3\n","623 L 5 5 5 4\n","624 B 5 5 5 5\n","\n","[625 rows x 5 columns]>"],"text/html":["<div style=\"max-width:800px; border: 1px solid var(--colab-border-color);\"><style>\n"," pre.function-repr-contents {\n"," overflow-x: auto;\n"," padding: 8px 12px;\n"," max-height: 500px;\n"," }\n","\n"," pre.function-repr-contents.function-repr-contents-collapsed {\n"," cursor: pointer;\n"," max-height: 100px;\n"," }\n"," </style>\n"," <pre style=\"white-space: initial; background:\n"," var(--colab-secondary-surface-color); padding: 8px 12px;\n"," border-bottom: 1px solid var(--colab-border-color);\"><b>pandas.core.frame.DataFrame.info</b><br/>def info(verbose: bool | None=None, buf: WriteBuffer[str] | None=None, max_cols: int | None=None, memory_usage: bool | str | None=None, show_counts: bool | None=None) -&gt; None</pre><pre class=\"function-repr-contents function-repr-contents-collapsed\" style=\"\"><a class=\"filepath\" style=\"display:none\" href=\"#\">/usr/local/lib/python3.11/dist-packages/pandas/core/frame.py</a>Print a concise summary of a DataFrame.\n","\n","This method prints information about a DataFrame including\n","the index dtype and columns, non-null values and memory usage.\n","\n","Parameters\n","----------\n","verbose : bool, optional\n"," Whether to print the full summary. By default, the setting in\n"," ``pandas.options.display.max_info_columns`` is followed.\n","buf : writable buffer, defaults to sys.stdout\n"," Where to send the output. By default, the output is printed to\n"," sys.stdout. Pass a writable buffer if you need to further process\n"," the output.\n","max_cols : int, optional\n"," When to switch from the verbose to the truncated output. If the\n"," DataFrame has more than `max_cols` columns, the truncated output\n"," is used. By default, the setting in\n"," ``pandas.options.display.max_info_columns`` is used.\n","memory_usage : bool, str, optional\n"," Specifies whether total memory usage of the DataFrame\n"," elements (including the index) should be displayed. By default,\n"," this follows the ``pandas.options.display.memory_usage`` setting.\n","\n"," True always show memory usage. False never shows memory usage.\n"," A value of &#x27;deep&#x27; is equivalent to &quot;True with deep introspection&quot;.\n"," Memory usage is shown in human-readable units (base-2\n"," representation). Without deep introspection a memory estimation is\n"," made based in column dtype and number of rows assuming values\n"," consume the same memory amount for corresponding dtypes. With deep\n"," memory introspection, a real memory usage calculation is performed\n"," at the cost of computational resources. See the\n"," :ref:`Frequently Asked Questions &lt;df-memory-usage&gt;` for more\n"," details.\n","show_counts : bool, optional\n"," Whether to show the non-null counts. By default, this is shown\n"," only if the DataFrame is smaller than\n"," ``pandas.options.display.max_info_rows`` and\n"," ``pandas.options.display.max_info_columns``. A value of True always\n"," shows the counts, and False never shows the counts.\n","\n","Returns\n","-------\n","None\n"," This method prints a summary of a DataFrame and returns None.\n","\n","See Also\n","--------\n","DataFrame.describe: Generate descriptive statistics of DataFrame\n"," columns.\n","DataFrame.memory_usage: Memory usage of DataFrame columns.\n","\n","Examples\n","--------\n","&gt;&gt;&gt; int_values = [1, 2, 3, 4, 5]\n","&gt;&gt;&gt; text_values = [&#x27;alpha&#x27;, &#x27;beta&#x27;, &#x27;gamma&#x27;, &#x27;delta&#x27;, &#x27;epsilon&#x27;]\n","&gt;&gt;&gt; float_values = [0.0, 0.25, 0.5, 0.75, 1.0]\n","&gt;&gt;&gt; df = pd.DataFrame({&quot;int_col&quot;: int_values, &quot;text_col&quot;: text_values,\n","... &quot;float_col&quot;: float_values})\n","&gt;&gt;&gt; df\n"," int_col text_col float_col\n","0 1 alpha 0.00\n","1 2 beta 0.25\n","2 3 gamma 0.50\n","3 4 delta 0.75\n","4 5 epsilon 1.00\n","\n","Prints information of all columns:\n","\n","&gt;&gt;&gt; df.info(verbose=True)\n","&lt;class &#x27;pandas.core.frame.DataFrame&#x27;&gt;\n","RangeIndex: 5 entries, 0 to 4\n","Data columns (total 3 columns):\n"," # Column Non-Null Count Dtype\n","--- ------ -------------- -----\n"," 0 int_col 5 non-null int64\n"," 1 text_col 5 non-null object\n"," 2 float_col 5 non-null float64\n","dtypes: float64(1), int64(1), object(1)\n","memory usage: 248.0+ bytes\n","\n","Prints a summary of columns count and its dtypes but not per column\n","information:\n","\n","&gt;&gt;&gt; df.info(verbose=False)\n","&lt;class &#x27;pandas.core.frame.DataFrame&#x27;&gt;\n","RangeIndex: 5 entries, 0 to 4\n","Columns: 3 entries, int_col to float_col\n","dtypes: float64(1), int64(1), object(1)\n","memory usage: 248.0+ bytes\n","\n","Pipe output of DataFrame.info to buffer instead of sys.stdout, get\n","buffer content and writes to a text file:\n","\n","&gt;&gt;&gt; import io\n","&gt;&gt;&gt; buffer = io.StringIO()\n","&gt;&gt;&gt; df.info(buf=buffer)\n","&gt;&gt;&gt; s = buffer.getvalue()\n","&gt;&gt;&gt; with open(&quot;df_info.txt&quot;, &quot;w&quot;,\n","... encoding=&quot;utf-8&quot;) as f: # doctest: +SKIP\n","... f.write(s)\n","260\n","\n","The `memory_usage` parameter allows deep introspection mode, specially\n","useful for big DataFrames and fine-tune memory optimization:\n","\n","&gt;&gt;&gt; random_strings_array = np.random.choice([&#x27;a&#x27;, &#x27;b&#x27;, &#x27;c&#x27;], 10 ** 6)\n","&gt;&gt;&gt; df = pd.DataFrame({\n","... &#x27;column_1&#x27;: np.random.choice([&#x27;a&#x27;, &#x27;b&#x27;, &#x27;c&#x27;], 10 ** 6),\n","... &#x27;column_2&#x27;: np.random.choice([&#x27;a&#x27;, &#x27;b&#x27;, &#x27;c&#x27;], 10 ** 6),\n","... &#x27;column_3&#x27;: np.random.choice([&#x27;a&#x27;, &#x27;b&#x27;, &#x27;c&#x27;], 10 ** 6)\n","... })\n","&gt;&gt;&gt; df.info()\n","&lt;class &#x27;pandas.core.frame.DataFrame&#x27;&gt;\n","RangeIndex: 1000000 entries, 0 to 999999\n","Data columns (total 3 columns):\n"," # Column Non-Null Count Dtype\n","--- ------ -------------- -----\n"," 0 column_1 1000000 non-null object\n"," 1 column_2 1000000 non-null object\n"," 2 column_3 1000000 non-null object\n","dtypes: object(3)\n","memory usage: 22.9+ MB\n","\n","&gt;&gt;&gt; df.info(memory_usage=&#x27;deep&#x27;)\n","&lt;class &#x27;pandas.core.frame.DataFrame&#x27;&gt;\n","RangeIndex: 1000000 entries, 0 to 999999\n","Data columns (total 3 columns):\n"," # Column Non-Null Count Dtype\n","--- ------ -------------- -----\n"," 0 column_1 1000000 non-null object\n"," 1 column_2 1000000 non-null object\n"," 2 column_3 1000000 non-null object\n","dtypes: object(3)\n","memory usage: 165.9 MB</pre>\n"," <script>\n"," if (google.colab.kernel.accessAllowed && google.colab.files && google.colab.files.view) {\n"," for (const element of document.querySelectorAll('.filepath')) {\n"," element.style.display = 'block'\n"," element.onclick = (event) => {\n"," event.preventDefault();\n"," event.stopPropagation();\n"," google.colab.files.view(element.textContent, 3646);\n"," };\n"," }\n"," }\n"," for (const element of document.querySelectorAll('.function-repr-contents')) {\n"," element.onclick = (event) => {\n"," event.preventDefault();\n"," event.stopPropagation();\n"," element.classList.toggle('function-repr-contents-collapsed');\n"," };\n"," }\n"," </script>\n"," </div>"]},"metadata":{},"execution_count":10}]},{"cell_type":"code","source":["data1['Class name'].hist(bins=20)\n","plt.title('Class name')\n","plt.show()\n","\n","data1['Left distance'].hist(bins=50)\n","plt.title('Left Distance')\n","plt.show()\n","\n","data1['Right distance'].hist(bins=50)\n","plt.title('Right Distance')\n","plt.show()\n","\n","data1['Left weight'].hist(bins=50)\n","plt.title('Left Weight')\n","plt.show()\n","\n","data1['Right weight'].hist(bins=50)\n","plt.title('Right Weight')\n","plt.show()\n","\n","data1.plot.scatter(x='Left distance',y='Left weight')\n","plt.title('Left Distance vs Left Weight')\n","plt.show()\n","\n","data1.plot.scatter(x='Right distance',y='Right weight')\n","plt.title('Right Distance vs Right Weight')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"jaWOq9oP3bbc","executionInfo":{"status":"ok","timestamp":1740468475327,"user_tz":-330,"elapsed":1121,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"d19c24ae-bed7-437d-bb54-ceb0306e2db2"},"execution_count":11,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKXRJREFUeJzt3Xt01OWB//FPLpPJBZIYILclBBArBCJQEBihFiEXEKgoWGhZBcqCYnBXU4WGg5BA2/yKF2o1gBcKu0eyulhvXAoZQaCUyM2yXFRWkC64kCChSUhShoGZ3x81cxzDJQMzzmN4v86Zc5zvPHnm+bbncd5+ZzIJcbvdbgEAABgkNNgLAAAA+CYCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgWAJKljx46aNGlSsJcBAJIIFKDFO3LkiB566CF17txZkZGRio2N1cCBA/X888/r73//e7CXBwCXFB7sBQAInLVr1+r++++X1WrVgw8+qB49euj8+fPatm2bnnzySR08eFAvv/xysJcJAE0QKEALdfToUY0fP17p6enatGmTUlJSPI/l5eXp8OHDWrt2bRBXCACXx1s8QAu1cOFC1dXVadmyZV5x0qhLly76t3/7t8v+/JkzZ/TEE08oMzNTrVq1UmxsrIYPH67//u//bjL2hRdeUPfu3RUdHa2bbrpJffv2VWlpqefxs2fP6rHHHlPHjh1ltVqVmJio7OxsffTRR1c8h8LCQoWEhOjw4cOaNGmS4uPjFRcXp8mTJ6uhocFr7PLlyzVkyBAlJibKarUqIyNDS5YsaTJnx44dNXLkSG3evFl9+/ZVVFSUMjMztXnzZknSW2+9pczMTEVGRqpPnz76y1/+0mSOTz/9VGPHjlVCQoIiIyPVt29fvffee1c8FwC+CXG73e5gLwKA/7Vv315Wq1VHjhxp1viOHTtq8ODBWrFihSRp9+7dGj9+vO6//3516tRJlZWVeumll1RXV6ePP/5YqampkqRXXnlF06ZN09ixY5Wdna1z585p3759iomJ0fPPPy9JmjBhgt58803NmDFDGRkZqqqq0rZt2zRu3DhNmDDhsmsqLCxUUVGRevfurU6dOikrK0sfffSRXn31Vc2cOVO/+c1vPGP79eun7t27q2fPngoPD9fq1atVVlamF198UXl5eV7nGRkZqdraWj300EOKi4vTM888o5qaGi1dulSzZ8/WI488IkkqLi5Wu3btdOjQIYWG/uO/5w4ePKiBAwfqn/7pnzRx4kTFxMTov/7rv/SnP/1Jf/jDH3Tvvfc2//8kAJfnBtDi1NTUuCW577nnnmb/THp6unvixIme++fOnXNfvHjRa8zRo0fdVqvVPX/+fM+xe+65x929e/crzh0XF+fOy8tr9loazZs3zy3J/bOf/czr+L333utu06aN17GGhoYmP5+bm+vu3Lmz17H09HS3JPf27ds9xzZs2OCW5I6KinL/7//+r+f4Sy+95Jbk/uCDDzzHhg4d6s7MzHSfO3fOc8zlcrnvuOMO9y233OLzOQK4NN7iAVqg2tpaSVLr1q2veQ6r1eq5anDx4kVVVVWpVatWuvXWW73emomPj9cXX3yhXbt2XXau+Ph47dixQydOnLimtTz88MNe93/wgx+oqqrKc56SFBUV5fnnmpoanT59Wj/84Q/1+eefq6amxuvnMzIyZLPZPPf79+8vSRoyZIg6dOjQ5Pjnn38u6R9ve23atEk//vGPdfbsWZ0+fVqnT59WVVWVcnNz9dlnn+n//u//rukcAXgjUIAWKDY2VtI/PvtxrVwulxYtWqRbbrlFVqtVbdu2Vbt27bRv3z6vF/xZs2apVatW6tevn2655Rbl5eXpz3/+s9dcCxcu1IEDB5SWlqZ+/fqpsLDQ86LfHF+PBkm66aabJEl/+9vfPMf+/Oc/KysrSzExMYqPj1e7du00e/ZsSWoSKN+cLy4uTpKUlpZ2yeONz3P48GG53W499dRTateunddt3rx5kqRTp041+7wAXB6BArRAsbGxSk1N1YEDB655jl//+tfKz8/XnXfeqddee00bNmyQ3W5X9+7d5XK5POO6deumQ4cO6fXXX9egQYP0hz/8QYMGDfK8YEvSj3/8Y33++ed64YUXlJqaqqefflrdu3fXH//4x2atJSws7JLH3V99hO7IkSMaOnSoTp8+reeee05r166V3W7X448/Lkle673SfFd7nsZ5nnjiCdnt9kveunTp0qxzAnBl/Jox0EKNHDlSL7/8ssrLy73ezmiuN998U3fddZeWLVvmdby6ulpt27b1OhYTE6Nx48Zp3LhxOn/+vO677z796le/UkFBgSIjIyVJKSkpeuSRR/TII4/o1KlT+v73v69f/epXGj58+LWf5FdWr14th8Oh9957z+vqyAcffHDdc39d586dJUkWi0VZWVl+nRuAN66gAC3UzJkzFRMTo3/5l39RZWVlk8ePHDni+S2bSwkLC/NcOWi0atWqJp+xqKqq8rofERGhjIwMud1uOZ1OXbx4sclbLImJiUpNTZXD4fD1tC67Vkle662pqdHy5cv9Mn+jxMREDR48WC+99JJOnjzZ5PEvv/zSr88H3Mi4ggK0UDfffLNKS0s1btw4devWzeubZLdv365Vq1Zd8W/vjBw5UvPnz9fkyZN1xx13aP/+/Vq5cqXnKkKjnJwcJScna+DAgUpKStInn3yiF198USNGjFDr1q1VXV2t9u3ba+zYserZs6datWql999/X7t27dKzzz7rl3PNyclRRESERo0apYceekh1dXV65ZVXlJiYeMmQuB4lJSUaNGiQMjMzNXXqVHXu3FmVlZUqLy/XF198ccnviQHgOwIFaMF+9KMfad++fXr66af17rvvasmSJbJarbrtttv07LPPaurUqZf92dmzZ6u+vl6lpaV644039P3vf19r167VL37xC69xDz30kFauXKnnnntOdXV1at++vf71X/9Vc+bMkSRFR0frkUceUVlZmd566y25XC516dJFixcv1vTp0/1ynrfeeqvefPNNzZkzR0888YSSk5M1ffp0tWvXTj/72c/88hyNMjIytHv3bhUVFWnFihWqqqpSYmKievfurblz5/r1uYAbGV/UBgAAjMNnUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHJ++B2XJkiVasmSJ/vrXv0qSunfvrrlz53q+qvrcuXP6+c9/rtdff10Oh0O5ublavHixkpKSPHMcO3ZM06dP1wcffKBWrVpp4sSJKi4uVnh485ficrl04sQJtW7dWiEhIb6cAgAACBK3262zZ88qNTXV89fSrzS42d577z332rVr3f/zP//jPnTokHv27Nlui8XiPnDggNvtdrsffvhhd1pamnvjxo3u3bt3uwcMGOC+4447PD9/4cIFd48ePdxZWVnuv/zlL+5169a527Zt6y4oKPBlGe7jx4+7JXHjxo0bN27cvoO348ePX/W1/rq/qC0hIUFPP/20xo4dq3bt2qm0tFRjx46VJH366afq1q2bysvLNWDAAP3xj3/UyJEjdeLECc9VlaVLl2rWrFn68ssvFRER0aznrKmpUXx8vI4fP+75s/L+4nQ6VVZWppycHFksFr/ODeDq2INA8AVqH9bW1iotLU3V1dWKi4u74thr/qr7ixcvatWqVaqvr5fNZtOePXvkdDq9/sJn165d1aFDB0+glJeXKzMz0+stn9zcXE2fPl0HDx5U7969L/lcDofD64+KnT17VpIUFRWlqKioaz2FSwoPD1d0dLSioqL4lyMQBOxBIPgCtQ+dTqckNevjGT4Hyv79+2Wz2XTu3Dm1atVKb7/9tjIyMrR3715FREQoPj7ea3xSUpIqKiokSRUVFV5x0vh442OXU1xcrKKioibHy8rKFB0d7espNIvdbg/IvACahz0IBJ+/92FDQ0Ozx/ocKLfeeqv27t2rmpoavfnmm5o4caK2bNni6zQ+KSgoUH5+vud+4yWinJycgLzFY7fblZ2dzX+9AUHAHgSCL1D7sLa2ttljfQ6UiIgIdenSRZLUp08f7dq1S88//7zGjRun8+fPq7q62usqSmVlpZKTkyVJycnJ2rlzp9d8lZWVnscux2q1ymq1NjlusVgC9i+wQM4N4OrYg0Dw+Xsf+jLXdX8PisvlksPhUJ8+fWSxWLRx40bPY4cOHdKxY8dks9kkSTabTfv379epU6c8Y+x2u2JjY5WRkXG9SwEAAC2ET1dQCgoKNHz4cHXo0EFnz55VaWmpNm/erA0bNiguLk5TpkxRfn6+EhISFBsbq0cffVQ2m00DBgyQJOXk5CgjI0MPPPCAFi5cqIqKCs2ZM0d5eXmXvEICAABuTD4FyqlTp/Tggw/q5MmTiouL02233aYNGzYoOztbkrRo0SKFhoZqzJgxXl/U1igsLExr1qzR9OnTZbPZFBMTo4kTJ2r+/Pn+PSsAAPCd5lOgLFu27IqPR0ZGqqSkRCUlJZcdk56ernXr1vnytAAA4AbD3+IBAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYByf/xYPAHwbehRukOPi1f8ku6/++v9G+H1OIFg6/mJtQOa1hrm1sF9Apm42rqAAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDg+BUpxcbFuv/12tW7dWomJiRo9erQOHTrkNWbw4MEKCQnxuj388MNeY44dO6YRI0YoOjpaiYmJevLJJ3XhwoXrPxsAANAihPsyeMuWLcrLy9Ptt9+uCxcuaPbs2crJydHHH3+smJgYz7ipU6dq/vz5nvvR0dGef7548aJGjBih5ORkbd++XSdPntSDDz4oi8WiX//61344JQAA8F3nU6CsX7/e6/6KFSuUmJioPXv26M477/Qcj46OVnJy8iXnKCsr08cff6z3339fSUlJ6tWrlxYsWKBZs2apsLBQERER13AaAACgJfEpUL6ppqZGkpSQkOB1fOXKlXrttdeUnJysUaNG6amnnvJcRSkvL1dmZqaSkpI843NzczV9+nQdPHhQvXv3bvI8DodDDofDc7+2tlaS5HQ65XQ6r+cUmmicz9/zAmiexr1nDXUHdH6gJbCGBWafNO6/QL3GNsc1B4rL5dJjjz2mgQMHqkePHp7jP/3pT5Wenq7U1FTt27dPs2bN0qFDh/TWW29JkioqKrziRJLnfkVFxSWfq7i4WEVFRU2Ol5WVeb195E92uz0g8wJongV9XQGZd926dQGZFwiGhf0CO7+/XwsbGhqaPfaaAyUvL08HDhzQtm3bvI5PmzbN88+ZmZlKSUnR0KFDdeTIEd18883X9FwFBQXKz8/33K+trVVaWppycnIUGxt7bSdwGU6nU3a7XdnZ2bJYLH6dG8DVNe7Bp3aHyuEK8fv8Bwpz/T4nECw9CjcEZF5rqFsL+rr8/lrY+A5Ic1xToMyYMUNr1qzR1q1b1b59+yuO7d+/vyTp8OHDuvnmm5WcnKydO3d6jamsrJSky35uxWq1ymq1NjlusVgCFhGBnBvA1TlcIXJc9H+gsK/RkgRij3ydv18LfZnLp18zdrvdmjFjht5++21t2rRJnTp1uurP7N27V5KUkpIiSbLZbNq/f79OnTrlGWO32xUbG6uMjAxflgMAAFoon66g5OXlqbS0VO+++65at27t+cxIXFycoqKidOTIEZWWluruu+9WmzZttG/fPj3++OO68847ddttt0mScnJylJGRoQceeEALFy5URUWF5syZo7y8vEteJQEAADcen66gLFmyRDU1NRo8eLBSUlI8tzfeeEOSFBERoffff185OTnq2rWrfv7zn2vMmDFavXq1Z46wsDCtWbNGYWFhstls+ud//mc9+OCDXt+bAgAAbmw+XUFxu6/860xpaWnasmXLVedJT0/nk/QAAOCy+Fs8AADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwjk+BUlxcrNtvv12tW7dWYmKiRo8erUOHDnmNOXfunPLy8tSmTRu1atVKY8aMUWVlpdeYY8eOacSIEYqOjlZiYqKefPJJXbhw4frPBgAAtAg+BcqWLVuUl5enDz/8UHa7XU6nUzk5Oaqvr/eMefzxx7V69WqtWrVKW7Zs0YkTJ3Tfffd5Hr948aJGjBih8+fPa/v27fr3f/93rVixQnPnzvXfWQEAgO+0cF8Gr1+/3uv+ihUrlJiYqD179ujOO+9UTU2Nli1bptLSUg0ZMkSStHz5cnXr1k0ffvihBgwYoLKyMn388cd6//33lZSUpF69emnBggWaNWuWCgsLFRER4b+zAwAA30k+Bco31dTUSJISEhIkSXv27JHT6VRWVpZnTNeuXdWhQweVl5drwIABKi8vV2ZmppKSkjxjcnNzNX36dB08eFC9e/du8jwOh0MOh8Nzv7a2VpLkdDrldDqv5xSaaJzP3/MCaJ7GvWcNdQd0fqAlsIYFZp807r9AvcY2xzUHisvl0mOPPaaBAweqR48ekqSKigpFREQoPj7ea2xSUpIqKio8Y74eJ42PNz52KcXFxSoqKmpyvKysTNHR0dd6Cldkt9sDMi+A5lnQ1xWQedetWxeQeYFgWNgvsPP7+7WwoaGh2WOvOVDy8vJ04MABbdu27VqnaLaCggLl5+d77tfW1iotLU05OTmKjY3163M5nU7Z7XZlZ2fLYrH4dW4AV9e4B5/aHSqHK8Tv8x8ozPX7nECw9CjcEJB5raFuLejr8vtrYeM7IM1xTYEyY8YMrVmzRlu3blX79u09x5OTk3X+/HlVV1d7XUWprKxUcnKyZ8zOnTu95mv8LZ/GMd9ktVpltVqbHLdYLAGLiEDODeDqHK4QOS76P1DY12hJArFHvs7fr4W+zOXTb/G43W7NmDFDb7/9tjZt2qROnTp5Pd6nTx9ZLBZt3LjRc+zQoUM6duyYbDabJMlms2n//v06deqUZ4zdbldsbKwyMjJ8WQ4AAGihfLqCkpeXp9LSUr377rtq3bq15zMjcXFxioqKUlxcnKZMmaL8/HwlJCQoNjZWjz76qGw2mwYMGCBJysnJUUZGhh544AEtXLhQFRUVmjNnjvLy8i55lQQAANx4fAqUJUuWSJIGDx7sdXz58uWaNGmSJGnRokUKDQ3VmDFj5HA4lJubq8WLF3vGhoWFac2aNZo+fbpsNptiYmI0ceJEzZ8///rOBAAAtBg+BYrbffVfZ4qMjFRJSYlKSkouOyY9PZ1P0gMAgMvib/EAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4PgfK1q1bNWrUKKWmpiokJETvvPOO1+OTJk1SSEiI123YsGFeY86cOaMJEyYoNjZW8fHxmjJliurq6q7rRAAAQMvhc6DU19erZ8+eKikpueyYYcOG6eTJk57bf/7nf3o9PmHCBB08eFB2u11r1qzR1q1bNW3aNN9XDwAAWqRwX39g+PDhGj58+BXHWK1WJScnX/KxTz75ROvXr9euXbvUt29fSdILL7ygu+++W88884xSU1N9XRIAAGhhfA6U5ti8ebMSExN10003aciQIfrlL3+pNm3aSJLKy8sVHx/viRNJysrKUmhoqHbs2KF77723yXwOh0MOh8Nzv7a2VpLkdDrldDr9uvbG+fw9L4Dmadx71lB3QOcHWgJrWGD2SeP+C9RrbHP4PVCGDRum++67T506ddKRI0c0e/ZsDR8+XOXl5QoLC1NFRYUSExO9FxEeroSEBFVUVFxyzuLiYhUVFTU5XlZWpujoaH+fgiTJbrcHZF4AzbOgrysg865bty4g8wLBsLBfYOf392thQ0NDs8f6PVDGjx/v+efMzEzddtttuvnmm7V582YNHTr0muYsKChQfn6+535tba3S0tKUk5Oj2NjY617z1zmdTtntdmVnZ8tisfh1bgBX17gHn9odKocrxO/zHyjM9fucQLD0KNwQkHmtoW4t6Ovy+2th4zsgzRGQt3i+rnPnzmrbtq0OHz6soUOHKjk5WadOnfIac+HCBZ05c+ayn1uxWq2yWq1NjlssloBFRCDnBnB1DleIHBf9Hyjsa7QkgdgjX+fv10Jf5gr496B88cUXqqqqUkpKiiTJZrOpurpae/bs8YzZtGmTXC6X+vfvH+jlAACA7wCfr6DU1dXp8OHDnvtHjx7V3r17lZCQoISEBBUVFWnMmDFKTk7WkSNHNHPmTHXp0kW5uf+4rNqtWzcNGzZMU6dO1dKlS+V0OjVjxgyNHz+e3+ABAACSruEKyu7du9W7d2/17t1bkpSfn6/evXtr7ty5CgsL0759+/SjH/1I3/ve9zRlyhT16dNHf/rTn7zeolm5cqW6du2qoUOH6u6779agQYP08ssv+++sAADAd5rPV1AGDx4st/vyv9a0YcPVP7CTkJCg0tJSX58aAADcIPhbPAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMI7PgbJ161aNGjVKqampCgkJ0TvvvOP1uNvt1ty5c5WSkqKoqChlZWXps88+8xpz5swZTZgwQbGxsYqPj9eUKVNUV1d3XScCAABaDp8Dpb6+Xj179lRJScklH1+4cKF+97vfaenSpdqxY4diYmKUm5urc+fOecZMmDBBBw8elN1u15o1a7R161ZNmzbt2s8CAAC0KOG+/sDw4cM1fPjwSz7mdrv129/+VnPmzNE999wjSfqP//gPJSUl6Z133tH48eP1ySefaP369dq1a5f69u0rSXrhhRd0991365lnnlFqaup1nA4AAGgJfA6UKzl69KgqKiqUlZXlORYXF6f+/furvLxc48ePV3l5ueLj4z1xIklZWVkKDQ3Vjh07dO+99zaZ1+FwyOFweO7X1tZKkpxOp5xOpz9PwTOfv+cF0DyNe88a6g7o/EBLYA0LzD5p3H+Beo1tDr8GSkVFhSQpKSnJ63hSUpLnsYqKCiUmJnovIjxcCQkJnjHfVFxcrKKioibHy8rKFB0d7Y+lN2G32wMyL4DmWdDXFZB5161bF5B5gWBY2C+w8/v7tbChoaHZY/0aKIFSUFCg/Px8z/3a2lqlpaUpJydHsbGxfn0up9Mpu92u7OxsWSwWv84N4Ooa9+BTu0PlcIX4ff4Dhbl+nxMIlh6FGwIyrzXUrQV9XX5/LWx8B6Q5/BooycnJkqTKykqlpKR4jldWVqpXr16eMadOnfL6uQsXLujMmTOen/8mq9Uqq9Xa5LjFYglYRARybgBX53CFyHHR/4HCvkZLEog98nX+fi30ZS6/fg9Kp06dlJycrI0bN3qO1dbWaseOHbLZbJIkm82m6upq7dmzxzNm06ZNcrlc6t+/vz+XAwAAvqN8voJSV1enw4cPe+4fPXpUe/fuVUJCgjp06KDHHntMv/zlL3XLLbeoU6dOeuqpp5SamqrRo0dLkrp166Zhw4Zp6tSpWrp0qZxOp2bMmKHx48fzGzwAAEDSNQTK7t27ddddd3nuN342ZOLEiVqxYoVmzpyp+vp6TZs2TdXV1Ro0aJDWr1+vyMhIz8+sXLlSM2bM0NChQxUaGqoxY8bod7/7nR9OBwAAtAQ+B8rgwYPldl/+15pCQkI0f/58zZ8//7JjEhISVFpa6utTAwCAGwR/iwcAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMbxe6AUFhYqJCTE69a1a1fP4+fOnVNeXp7atGmjVq1aacyYMaqsrPT3MgAAwHdYQK6gdO/eXSdPnvTctm3b5nns8ccf1+rVq7Vq1Spt2bJFJ06c0H333ReIZQAAgO+o8IBMGh6u5OTkJsdramq0bNkylZaWasiQIZKk5cuXq1u3bvrwww81YMCAQCwHAAB8xwQkUD777DOlpqYqMjJSNptNxcXF6tChg/bs2SOn06msrCzP2K5du6pDhw4qLy+/bKA4HA45HA7P/draWkmS0+mU0+n069ob5/P3vACap3HvWUPdAZ0faAmsYYHZJ437L1Cvsc3h90Dp37+/VqxYoVtvvVUnT55UUVGRfvCDH+jAgQOqqKhQRESE4uPjvX4mKSlJFRUVl52zuLhYRUVFTY6XlZUpOjra36cgSbLb7QGZF0DzLOjrCsi869atC8i8QDAs7BfY+f39WtjQ0NDssSFutzsw+fWV6upqpaen67nnnlNUVJQmT57sdTVEkvr166e77rpLv/nNby45x6WuoKSlpen06dOKjY3163qdTqfsdrue2h0qhyvEr3MfKMz163xASxTIPSixD9Gy9CjcEJB5raFuLejrUnZ2tiwWi9/mra2tVdu2bVVTU3PV1++AvMXzdfHx8fre976nw4cPKzs7W+fPn1d1dbXXVZTKyspLfmalkdVqldVqbXLcYrH49X+4r3O4QuS46N9/OQZqrUBLFIg9KLEP0bIEYo98nb9fZ32ZK+Dfg1JXV6cjR44oJSVFffr0kcVi0caNGz2PHzp0SMeOHZPNZgv0UgAAwHeE36+gPPHEExo1apTS09N14sQJzZs3T2FhYfrJT36iuLg4TZkyRfn5+UpISFBsbKweffRR2Ww2foMHAAB4+D1QvvjiC/3kJz9RVVWV2rVrp0GDBunDDz9Uu3btJEmLFi1SaGioxowZI4fDodzcXC1evNjfywAAAN9hfg+U119//YqPR0ZGqqSkRCUlJf5+agAA0ELwt3gAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGCcoAZKSUmJOnbsqMjISPXv3187d+4M5nIAAIAhghYob7zxhvLz8zVv3jx99NFH6tmzp3Jzc3Xq1KlgLQkAABgiaIHy3HPPaerUqZo8ebIyMjK0dOlSRUdH6/e//32wlgQAAAwRHownPX/+vPbs2aOCggLPsdDQUGVlZam8vLzJeIfDIYfD4blfU1MjSTpz5oycTqdf1+Z0OtXQ0KBwZ6guukL8OndVVZVf5wNaokDuQYl9iJYl/EJ9YOZ1udXQ4FJVVZUsFovf5j179qwkye12X30NfntWH5w+fVoXL15UUlKS1/GkpCR9+umnTcYXFxerqKioyfFOnToFbI2B0PbZYK8AAPsQaJ6fBnDus2fPKi4u7opjghIoviooKFB+fr7nvsvl0pkzZ9SmTRuFhPj3v7Bqa2uVlpam48ePKzY21q9zA7g69iAQfIHah263W2fPnlVqaupVxwYlUNq2bauwsDBVVlZ6Ha+srFRycnKT8VarVVar1etYfHx8IJeo2NhY/uUIBBF7EAi+QOzDq105aRSUD8lGRESoT58+2rhxo+eYy+XSxo0bZbPZgrEkAABgkKC9xZOfn6+JEyeqb9++6tevn37729+qvr5ekydPDtaSAACAIYIWKOPGjdOXX36puXPnqqKiQr169dL69eubfHD222a1WjVv3rwmbykB+HawB4HgM2Efhrib87s+AAAA3yL+Fg8AADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BImnSpEkKCQnx3Nq0aaNhw4Zp3759wV4acMP4+j60WCzq1KmTZs6cqXPnzgV7acANY9KkSRo9enSwlyGJQPEYNmyYTp48qZMnT2rjxo0KDw/XyJEjg70s4IbSuA8///xzLVq0SC+99JLmzZsX7GUBCAIC5StWq1XJyclKTk5Wr1699Itf/ELHjx/Xl19+GeylATeMxn2Ylpam0aNHKysrS3a7PdjLAhAEBMol1NXV6bXXXlOXLl3Upk2bYC8HuCEdOHBA27dvV0RERLCXAiAIgvZV96ZZs2aNWrVqJUmqr69XSkqK1qxZo9BQGg74tjTuwwsXLsjhcCg0NFQvvvhisJcFIAgIlK/cddddWrJkiSTpb3/7mxYvXqzhw4dr586dSk9PD/LqgBtD4z6sr6/XokWLFB4erjFjxgR7WQCCgMsDX4mJiVGXLl3UpUsX3X777Xr11VdVX1+vV155JdhLA24YjfuwZ8+e+v3vf68dO3Zo2bJlwV4WgCAgUC4jJCREoaGh+vvf/x7spQA3pNDQUM2ePVtz5sxhHwI3IALlKw6HQxUVFaqoqNAnn3yiRx99VHV1dRo1alSwlwbcsO6//36FhYWppKQk2EsBbhg1NTXau3ev1+348ePf+jr4DMpX1q9fr5SUFElS69at1bVrV61atUqDBw8O7sKAG1h4eLhmzJihhQsXavr06YqJiQn2koAWb/Pmzerdu7fXsSlTpujVV1/9VtcR4na73d/qMwIAAFwFb/EAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwzv8H7U7heMm9u9AAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAL4NJREFUeJzt3X9U1HW+x/HXQDD4CwhTgQ2L0vyZetM0tNISpTLTXTczrcgsOwUluaeSezLxRz/seM0syryV3tq4lZVuuZtGWnpNM9Tc1OsxNTc9mVAZoHAdJ/jcP1pm+TEg0ACf7/R8nDPnMN/5zHfe73nzdV7OD8ZljDECAACwSEhLFwAAAFAdAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBYBPfn6+/vjHP6p9+/ZyuVxatGhRs9zu+eefr9tvv71ZbguAMxBQAAdbvny5XC6Xtm3bFpD9PfDAA1q7dq0yMzP12muv6ZprrtHf/vY3ZWVl1Xsfw4YNk8vlksvlUkhIiCIjI9WtWzfdeuutys3NDUidkhpcFwBncfFdPIBzLV++XJMnT1ZeXp4GDBjwq/cXGxur5ORk/fnPf/ZtS09PV3Z2tur7T8WwYcN08OBBPfHEE5KkkpISHThwQO+++66+/vprjR8/Xn/+858VFhbmu47H41FISEiVbWfS0LoAOMtZLV0AAHsUFBQoOjr6V+8nKipKt9xyS5VtTz75pO6//349//zzOv/88zV//nzfZW63+1ffJoDgwks8wG/At99+qzvuuEOdOnWS2+1Wr1699Morr/gur3ipyBij7Oxs30s0t99+u7KzsyXJt83lcjWqhtDQUC1evFg9e/bUc889p6KiIt9l1d+D4vV6NXv2bHXt2lURERFq3769Lr/8ct9LRGeqa8GCBRo8eLDat2+vVq1aqX///nr77bdr1ORyuZSenq5Vq1apd+/evvtmzZo1fu/DKVOmKD4+Xm63W4mJibrnnnt0+vRp35rCwkJlZGQoISFBbrdbXbp00fz581VeXt6o+wz4LeMZFCDI5efn67LLLvM9GHfo0EEffPCBpkyZouLiYmVkZOjKK6/Ua6+9pltvvVUjRozQbbfdJkm68MILdfToUeXm5uq111771bWEhobq5ptv1syZM7Vp0yaNGjXK77qsrCw98cQTuvPOOzVw4EAVFxdr27Zt2rFjh0aMGKG77767zrqeeeYZ3XDDDZo0aZJOnz6tN954QzfeeKNWr15d4zY3bdqkd999V/fee6/atWunxYsXa9y4cTp8+LDat28vSTp69KgGDhyowsJCTZ06Vd27d9e3336rt99+W6WlpQoPD1dpaamGDh2qb7/9Vnfffbc6d+6szZs3KzMzU999912zveEYCBoGgGMtW7bMSDJ5eXm1rpkyZYqJi4szP/zwQ5XtEyZMMFFRUaa0tNS3TZJJS0ursi4tLc005J+KoUOHml69etV6+cqVK40k88wzz/i2nXfeeSY1NdV3vm/fvmbUqFF13k5ddVXuyRhjTp8+bXr37m2uvvrqKtslmfDwcHPgwAHftr///e9Gknn22Wd922677TYTEhLi934uLy83xhgzd+5c06ZNG/PVV19VuXzGjBkmNDTUHD58uM5+AFTFSzxAEDPG6J133tHo0aNljNEPP/zgO6WkpKioqEg7duxo1pratm0rSTpx4kSta6Kjo7Vnzx7t37+/UbfRqlUr388//fSTioqKdMUVV/jtNTk5WRdeeKHvfJ8+fRQZGamvv/5aklReXq5Vq1Zp9OjRft+IXPHS0ooVK3TFFVfo7LPPrnI/Jycnq6ysTBs3bmxUL8BvFS/xAEHs+++/V2FhoZYuXaqlS5f6XVNQUNCsNZ08eVKS1K5du1rXzJkzR2PGjNFFF12k3r1765prrtGtt96qPn361Os2Vq9erXnz5mnnzp3yeDy+7f7eP9O5c+ca284++2z99NNPkn65D4uLi9W7d+86b3P//v368ssv1aFDB7+XN/f9DDgdAQUIYhVvzrzllluUmprqd019H/QDZffu3ZKkLl261Lrmyiuv1MGDB/WXv/xFH374oV566SU9/fTTWrJkie6888469/8///M/uuGGG3TllVfq+eefV1xcnMLCwrRs2TLl5OTUWB8aGup3P6aBH18uLy/XiBEj9NBDD/m9/KKLLmrQ/oDfOgIKEMQ6dOigdu3aqaysTMnJyY3aR2M/teNPWVmZcnJy1Lp1a11++eV1ro2JidHkyZM1efJknTx5UldeeaWysrJ8AaW2ut555x1FRERo7dq1VT6+vGzZskbV3KFDB0VGRvqCVW0uvPBCnTx5stH3M4CqeA8KEMRCQ0M1btw4vfPOO34fYL///vsz7qNNmzaSfvkI7a9RVlam+++/X3v37tX999+vyMjIWtf++OOPVc63bdtWXbp0qfJyTW11hYaGyuVyqayszLftH//4h1atWtWoukNCQjR27Fi9//77fv9ib8UzLePHj9eWLVu0du3aGmsKCwv1888/N+r2gd8qnkEBgsArr7zi9293TJs2TU8++aQ+/vhjDRo0SHfddZd69uyp48ePa8eOHfroo490/PjxOvfdv39/SdL999+vlJQUhYaGasKECXVep6ioyPfXaEtLS31/SfbgwYOaMGGC5s6dW+f1e/bsqWHDhql///6KiYnRtm3b9Pbbbys9Pf2MdY0aNUoLFy7UNddco4kTJ6qgoEDZ2dnq0qWLvvzyyzpvtzaPP/64PvzwQw0dOlRTp05Vjx499N1332nFihXatGmToqOj9eCDD+q9997T9ddfr9tvv139+/dXSUmJdu3apbffflv/+Mc/dM455zTq9oHfpJb9EBGAX6PiY8a1nY4cOWKMMSY/P9+kpaWZhIQEExYWZmJjY83w4cPN0qVLq+xPfj5m/PPPP5v77rvPdOjQwbhcrjN+5Hjo0KFVamjbtq3p2rWrueWWW8yHH37o9zrVP2Y8b948M3DgQBMdHW1atWplunfvbh577DFz+vTpetX18ssvm65duxq32226d+9uli1bZmbNmlWjdn/9+qvHGGO++eYbc9ttt5kOHToYt9ttLrjgApOWlmY8Ho9vzYkTJ0xmZqbp0qWLCQ8PN+ecc44ZPHiwWbBgQZXaAZwZ38UDAACsw3tQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACs48g/1FZeXq6jR4+qXbt2Af0z3AAAoOkYY3TixAnFx8crJKTu50gcGVCOHj2qhISEli4DAAA0wpEjR3TuuefWucaRAaXia9qPHDlS5/d5NIbX69WHH36okSNHKiwsLKD7tgH9OV+w90h/zhfsPQZ7f1LT9VhcXKyEhATf43hdHBlQKl7WiYyMbJKA0rp1a0VGRgblLx79OV+w90h/zhfsPQZ7f1LT91ift2fwJlkAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA65zV0gXYqnfWWnnKav866H88OaoZq0Fdzp/xV9/P7lCjpwbWnB/zch6OQeeofAxK/o9D5mWX6jOrrmKGLYlnUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOg0OKBs3btTo0aMVHx8vl8ulVatW+S7zer16+OGHdfHFF6tNmzaKj4/XbbfdpqNHj1bZx/HjxzVp0iRFRkYqOjpaU6ZM0cmTJ391MwAAIDg0OKCUlJSob9++ys7OrnFZaWmpduzYoZkzZ2rHjh169913tW/fPt1www1V1k2aNEl79uxRbm6uVq9erY0bN2rq1KmN7wIAAASVBn9Z4LXXXqtrr73W72VRUVHKzc2tsu25557TwIEDdfjwYXXu3Fl79+7VmjVrlJeXpwEDBkiSnn32WV133XVasGCB4uPja+zX4/HI4/H4zhcXF0v65Rkbr9fb0BbqVLE/d4ip1zqnqajbqfX74w7916wq5lZ9fsHUbzDOsDKOQeepfAxK/o/DYOo3GGZYfWY1Lv/n7JrqMbY+XMaYuqus68oul1auXKmxY8fWuuajjz7SyJEjVVhYqMjISL3yyiv605/+pJ9++sm35ueff1ZERIRWrFih3//+9zX2kZWVpdmzZ9fYnpOTo9atWze2fAAA0IxKS0s1ceJEFRUVKTIyss61DX4GpSFOnTqlhx9+WDfffLOvkGPHjqljx45VizjrLMXExOjYsWN+95OZmanp06f7zhcXFyshIUEjR448Y4MN5fV6lZubq5nbQuQpr/2r3ndnpQT0dptLRX8jRoxQWFhYS5cTEL2z1vp+docYzR1QXmN+Tp2XP8E4w8o4Bp2n8jEo+T8OnTovf4JhhtVnVl3FDAPdY8UrIPXRZAHF6/Vq/PjxMsbohRde+FX7crvdcrvdNbaHhYU12S+Hp9wlT1nt/zg69ZeyQlPed83N35yqzy9Yeq0smGboD8egc9Q2p8ozDJZeK3PyDOs6tioLdI8N2VeTBJSKcPLNN99o/fr1VZ7liI2NVUFBQZX1P//8s44fP67Y2NimKAcAADhMwP8OSkU42b9/vz766CO1b9++yuVJSUkqLCzU9u3bfdvWr1+v8vJyDRo0KNDlAAAAB2rwMygnT57UgQMHfOcPHTqknTt3KiYmRnFxcfrjH/+oHTt2aPXq1SorK/O9ryQmJkbh4eHq0aOHrrnmGt11111asmSJvF6v0tPTNWHCBL+f4AEAAL89DQ4o27Zt01VXXeU7X/Hm1dTUVGVlZem9996TJPXr16/K9T7++GMNGzZMkvT6668rPT1dw4cPV0hIiMaNG6fFixc3sgUAABBsGhxQhg0bpro+mVyfTy3HxMQoJyenoTcNAAB+I/guHgAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANZpcEDZuHGjRo8erfj4eLlcLq1atarK5cYYPfroo4qLi1OrVq2UnJys/fv3V1lz/PhxTZo0SZGRkYqOjtaUKVN08uTJX9UIAAAIHg0OKCUlJerbt6+ys7P9Xv7UU09p8eLFWrJkibZu3ao2bdooJSVFp06d8q2ZNGmS9uzZo9zcXK1evVobN27U1KlTG98FAAAIKmc19ArXXnutrr32Wr+XGWO0aNEiPfLIIxozZowk6dVXX1WnTp20atUqTZgwQXv37tWaNWuUl5enAQMGSJKeffZZXXfddVqwYIHi4+N/RTsAACAYNDig1OXQoUM6duyYkpOTfduioqI0aNAgbdmyRRMmTNCWLVsUHR3tCyeSlJycrJCQEG3dulW///3va+zX4/HI4/H4zhcXF0uSvF6vvF5vIFvw7c8dYuq1zmkq6nZq/f64Q/81q4q5VZ9fMPUbjDOsjGPQeSofg5L/4zCY+g2GGVafWY3L/zm7pnqMrQ+XMabuKuu6ssullStXauzYsZKkzZs3a8iQITp69Kji4uJ868aPHy+Xy6U333xTjz/+uP7rv/5L+/btq7Kvjh07avbs2brnnntq3E5WVpZmz55dY3tOTo5at27d2PIBAEAzKi0t1cSJE1VUVKTIyMg61wb0GZSmkpmZqenTp/vOFxcXKyEhQSNHjjxjgw3l9XqVm5urmdtC5Cl31bpud1ZKQG+3uVT0N2LECIWFhbV0OQHRO2ut72d3iNHcAeU15ufUefkTjDOsjGPQeSofg5L/49Cp8/InGGZYfWbVVcww0D1WvAJSHwENKLGxsZKk/Pz8Ks+g5Ofnq1+/fr41BQUFVa73888/6/jx477rV+d2u+V2u2tsDwsLa7JfDk+5S56y2v9xdOovZYWmvO+am785VZ9fsPRaWTDN0B+OQeeobU6VZxgsvVbm5BnWdWxVFugeG7KvgP4dlMTERMXGxmrdunW+bcXFxdq6dauSkpIkSUlJSSosLNT27dt9a9avX6/y8nINGjQokOUAAACHavAzKCdPntSBAwd85w8dOqSdO3cqJiZGnTt3VkZGhubNm6euXbsqMTFRM2fOVHx8vO99Kj169NA111yju+66S0uWLJHX61V6eromTJjAJ3gAAICkRgSUbdu26aqrrvKdr3hvSGpqqpYvX66HHnpIJSUlmjp1qgoLC3X55ZdrzZo1ioiI8F3n9ddfV3p6uoYPH66QkBCNGzdOixcvDkA7AAAgGDQ4oAwbNkx1ffDH5XJpzpw5mjNnTq1rYmJilJOT09CbBgAAvxF8Fw8AALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrBDyglJWVaebMmUpMTFSrVq104YUXau7cuTLG+NYYY/Too48qLi5OrVq1UnJysvbv3x/oUgAAgEMFPKDMnz9fL7zwgp577jnt3btX8+fP11NPPaVnn33Wt+app57S4sWLtWTJEm3dulVt2rRRSkqKTp06FehyAACAA50V6B1u3rxZY8aM0ahRoyRJ559/vv77v/9bn3/+uaRfnj1ZtGiRHnnkEY0ZM0aS9Oqrr6pTp05atWqVJkyYEOiSAACAwwQ8oAwePFhLly7VV199pYsuukh///vftWnTJi1cuFCSdOjQIR07dkzJycm+60RFRWnQoEHasmWL34Di8Xjk8Xh854uLiyVJXq9XXq83oPVX7M8dYuq1zmkq6nZq/f64Q/81q4q5VZ9fMPUbjDOsjGPQeSofg5L/4zCY+g2GGVafWY3L/zm7pnqMrQ+XqfzmkAAoLy/Xv//7v+upp55SaGioysrK9NhjjykzM1PSL8+wDBkyREePHlVcXJzveuPHj5fL5dKbb75ZY59ZWVmaPXt2je05OTlq3bp1IMsHAABNpLS0VBMnTlRRUZEiIyPrXBvwZ1Deeustvf7668rJyVGvXr20c+dOZWRkKD4+XqmpqY3aZ2ZmpqZPn+47X1xcrISEBI0cOfKMDTaU1+tVbm6uZm4LkafcVeu63VkpAb3d5lLR34gRIxQWFtbS5QRE76y1vp/dIUZzB5TXmJ9T5+VPMM6wMo5B56l8DEr+j0OnzsufYJhh9ZlVVzHDQPdY8QpIfQQ8oDz44IOaMWOG76Waiy++WN98842eeOIJpaamKjY2VpKUn59f5RmU/Px89evXz+8+3W633G53je1hYWFN9svhKXfJU1b7P45O/aWs0JT3XXPzN6fq8wuWXisLphn6wzHoHLXNqfIMg6XXypw8w7qOrcoC3WND9hXwT/GUlpYqJKTqbkNDQ1VeXi5JSkxMVGxsrNatW+e7vLi4WFu3blVSUlKgywEAAA4U8GdQRo8erccee0ydO3dWr1699MUXX2jhwoW64447JEkul0sZGRmaN2+eunbtqsTERM2cOVPx8fEaO3ZsoMsBAAAOFPCA8uyzz2rmzJm69957VVBQoPj4eN1999169NFHfWseeughlZSUaOrUqSosLNTll1+uNWvWKCIiItDlAAAABwp4QGnXrp0WLVqkRYsW1brG5XJpzpw5mjNnTqBvHgAABAG+iwcAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1miSgfPvtt7rlllvUvn17tWrVShdffLG2bdvmu9wYo0cffVRxcXFq1aqVkpOTtX///qYoBQAAOFDAA8pPP/2kIUOGKCwsTB988IH+93//V//xH/+hs88+27fmqaee0uLFi7VkyRJt3bpVbdq0UUpKik6dOhXocgAAgAOdFegdzp8/XwkJCVq2bJlvW2Jiou9nY4wWLVqkRx55RGPGjJEkvfrqq+rUqZNWrVqlCRMmBLokAADgMAEPKO+9955SUlJ04403asOGDfrd736ne++9V3fddZck6dChQzp27JiSk5N914mKitKgQYO0ZcsWvwHF4/HI4/H4zhcXF0uSvF6vvF5vQOuv2J87xNRrndNU1O3U+v1xh/5rVhVzqz6/YOo3GGdYGceg81Q+BiX/x2Ew9RsMM6w+sxqX/3N2TfUYWx8uY0zdVTZQRESEJGn69Om68cYblZeXp2nTpmnJkiVKTU3V5s2bNWTIEB09elRxcXG+640fP14ul0tvvvlmjX1mZWVp9uzZNbbn5OSodevWgSwfAAA0kdLSUk2cOFFFRUWKjIysc23AA0p4eLgGDBigzZs3+7bdf//9ysvL05YtWxoVUPw9g5KQkKAffvjhjA02lNfrVW5urmZuC5Gn3FXrut1ZKQG93eZS0d+IESMUFhbW0uUERO+stb6f3SFGcweU15ifU+flTzDOsDKOQeepfAxK/o9Dp87Ln2CYYfWZVVcxw0D3WFxcrHPOOadeASXgL/HExcWpZ8+eVbb16NFD77zzjiQpNjZWkpSfn18loOTn56tfv35+9+l2u+V2u2tsDwsLa7JfDk+5S56y2v9xdOovZYWmvO+am785VZ9fsPRaWTDN0B+OQeeobU6VZxgsvVbm5BnWdWxVFugeG7KvgH+KZ8iQIdq3b1+VbV999ZXOO+88Sb+8YTY2Nlbr1q3zXV5cXKytW7cqKSkp0OUAAAAHCvgzKA888IAGDx6sxx9/XOPHj9fnn3+upUuXaunSpZIkl8uljIwMzZs3T127dlViYqJmzpyp+Ph4jR07NtDlAAAABwp4QLn00ku1cuVKZWZmas6cOUpMTNSiRYs0adIk35qHHnpIJSUlmjp1qgoLC3X55ZdrzZo1vjfYAgCA37aABxRJuv7663X99dfXernL5dKcOXM0Z86cprh5AADgcHwXDwAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHWaPKA8+eSTcrlcysjI8G07deqU0tLS1L59e7Vt21bjxo1Tfn5+U5cCAAAcokkDSl5enl588UX16dOnyvYHHnhA77//vlasWKENGzbo6NGj+sMf/tCUpQAAAAdpsoBy8uRJTZo0Sf/5n/+ps88+27e9qKhIL7/8shYuXKirr75a/fv317Jly7R582Z99tlnTVUOAABwkLOaasdpaWkaNWqUkpOTNW/ePN/27du3y+v1Kjk52bete/fu6ty5s7Zs2aLLLrusxr48Ho88Ho/vfHFxsSTJ6/XK6/UGtO6K/blDTL3WOU1F3U6t3x936L9mVTG36vMLpn6DcYaVcQw6T+VjUPJ/HAZTv8Eww+ozq3H5P2fXVI+x9eEyxtRdZSO88cYbeuyxx5SXl6eIiAgNGzZM/fr106JFi5STk6PJkydXCRySNHDgQF111VWaP39+jf1lZWVp9uzZNbbn5OSodevWgS4fAAA0gdLSUk2cOFFFRUWKjIysc23An0E5cuSIpk2bptzcXEVERARkn5mZmZo+fbrvfHFxsRISEjRy5MgzNthQXq9Xubm5mrktRJ5yV63rdmelBPR2m0tFfyNGjFBYWFhLlxMQvbPW+n52hxjNHVBeY35OnZc/wTjDyjgGnafyMSj5Pw6dOi9/gmGG1WdWXcUMA91jxSsg9RHwgLJ9+3YVFBTokksu8W0rKyvTxo0b9dxzz2nt2rU6ffq0CgsLFR0d7VuTn5+v2NhYv/t0u91yu901toeFhTXZL4en3CVPWe3/ODr1l7JCU953zc3fnKrPL1h6rSyYZugPx6Bz1DanyjMMll4rc/IM6zq2Kgt0jw3ZV8ADyvDhw7Vr164q2yZPnqzu3bvr4YcfVkJCgsLCwrRu3TqNGzdOkrRv3z4dPnxYSUlJgS4HAAA4UMADSrt27dS7d+8q29q0aaP27dv7tk+ZMkXTp09XTEyMIiMjdd999ykpKcnvG2QBAMBvT5N9iqcuTz/9tEJCQjRu3Dh5PB6lpKTo+eefb4lSAACAhZoloHzyySdVzkdERCg7O1vZ2dnNcfMAAMBh+C4eAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1gl4QHniiSd06aWXql27durYsaPGjh2rffv2VVlz6tQppaWlqX379mrbtq3GjRun/Pz8QJcCAAAcKuABZcOGDUpLS9Nnn32m3Nxceb1ejRw5UiUlJb41DzzwgN5//32tWLFCGzZs0NGjR/WHP/wh0KUAAACHOivQO1yzZk2V88uXL1fHjh21fft2XXnllSoqKtLLL7+snJwcXX311ZKkZcuWqUePHvrss8902WWXBbokAADgMAEPKNUVFRVJkmJiYiRJ27dvl9frVXJysm9N9+7d1blzZ23ZssVvQPF4PPJ4PL7zxcXFkiSv1yuv1xvQeiv25w4x9VrnNBV1O7V+f9yh/5pVxdyqzy+Y+g3GGVbGMeg8lY9Byf9xGEz9BsMMq8+sxuX/nF1TPcbWh8sYU3eVv0J5ebluuOEGFRYWatOmTZKknJwcTZ48uUrgkKSBAwfqqquu0vz582vsJysrS7Nnz66xPScnR61bt26a4gEAQECVlpZq4sSJKioqUmRkZJ1rm/QZlLS0NO3evdsXThorMzNT06dP950vLi5WQkKCRo4cecYGG8rr9So3N1czt4XIU+6qdd3urJSA3m5zqehvxIgRCgsLa+lyAqJ31lrfz+4Qo7kDymvMz6nz8icYZ1gZx6DzVD4GJf/HoVPn5U8wzLD6zKqrmGGge6x4BaQ+miygpKena/Xq1dq4caPOPfdc3/bY2FidPn1ahYWFio6O9m3Pz89XbGys33253W653e4a28PCwprsl8NT7pKnrPZ/HJ36S1mhKe+75uZvTtXnFyy9VhZMM/SHY9A5aptT5RkGS6+VOXmGdR1blQW6x4bsK+Cf4jHGKD09XStXrtT69euVmJhY5fL+/fsrLCxM69at823bt2+fDh8+rKSkpECXAwAAHCjgz6CkpaUpJydHf/nLX9SuXTsdO3ZMkhQVFaVWrVopKipKU6ZM0fTp0xUTE6PIyEjdd999SkpK4hM8AABAUhMElBdeeEGSNGzYsCrbly1bpttvv12S9PTTTyskJETjxo2Tx+NRSkqKnn/++UCXAgAAHCrgAaU+HwqKiIhQdna2srOzA33zAAAgCPBdPAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKzTogElOztb559/viIiIjRo0CB9/vnnLVkOAACwRIsFlDfffFPTp0/XrFmztGPHDvXt21cpKSkqKChoqZIAAIAlWiygLFy4UHfddZcmT56snj17asmSJWrdurVeeeWVlioJAABY4qyWuNHTp09r+/btyszM9G0LCQlRcnKytmzZUmO9x+ORx+PxnS8qKpIkHT9+XF6vN6C1eb1elZaW6ixviMrKXbWu+/HHHwN6u82lor8ff/xRYWFhLV1OQJz1c8m/fi43Ki0trzE/p87Ln2CcYWUcg85T+RiU/B+HTp2XP8Eww+ozq3H5P2cY6B5PnDghSTLGnHmxaQHffvutkWQ2b95cZfuDDz5oBg4cWGP9rFmzjCROnDhx4sSJUxCcjhw5csas0CLPoDRUZmampk+f7jtfXl6u48ePq3379nK5av8fVmMUFxcrISFBR44cUWRkZED3bQP6c75g75H+nC/Yewz2/qSm69EYoxMnTig+Pv6Ma1skoJxzzjkKDQ1Vfn5+le35+fmKjY2tsd7tdsvtdlfZFh0d3ZQlKjIyMmh/8ST6CwbB3iP9OV+w9xjs/UlN02NUVFS91rXIm2TDw8PVv39/rVu3zretvLxc69atU1JSUkuUBAAALNJiL/FMnz5dqampGjBggAYOHKhFixappKREkydPbqmSAACAJVosoNx00036/vvv9eijj+rYsWPq16+f1qxZo06dOrVUSZJ+eTlp1qxZNV5SChb053zB3iP9OV+w9xjs/Ul29Ogypj6f9QEAAGg+fBcPAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADr/KYCysaNGzV69GjFx8fL5XJp1apVZ7zOJ598oksuuURut1tdunTR8uXLm7zOX6OhPX7yySdyuVw1TseOHWueghvgiSee0KWXXqp27dqpY8eOGjt2rPbt23fG661YsULdu3dXRESELr74Yv3tb39rhmobpzE9Ll++vMb8IiIimqnihnnhhRfUp08f31+nTEpK0gcffFDndZw0P6nhPTppfv48+eSTcrlcysjIqHOd0+ZYoT79OW2GWVlZNert3r17nddpifn9pgJKSUmJ+vbtq+zs7HqtP3TokEaNGqWrrrpKO3fuVEZGhu68806tXbu2iSttvIb2WGHfvn367rvvfKeOHTs2UYWNt2HDBqWlpemzzz5Tbm6uvF6vRo4cqZKS2r+Vc/Pmzbr55ps1ZcoUffHFFxo7dqzGjh2r3bt3N2Pl9deYHqVf/hx15fl98803zVRxw5x77rl68skntX37dm3btk1XX321xowZoz179vhd77T5SQ3vUXLO/KrLy8vTiy++qD59+tS5zolzlOrfn+S8Gfbq1atKvZs2bap1bYvNLzDfT+w8kszKlSvrXPPQQw+ZXr16Vdl20003mZSUlCasLHDq0+PHH39sJJmffvqpWWoKpIKCAiPJbNiwodY148ePN6NGjaqybdCgQebuu+9u6vICoj49Llu2zERFRTVfUQF29tlnm5deesnvZU6fX4W6enTq/E6cOGG6du1qcnNzzdChQ820adNqXevEOTakP6fNcNasWaZv3771Xt9S8/tNPYPSUFu2bFFycnKVbSkpKdqyZUsLVdR0+vXrp7i4OI0YMUKffvppS5dTL0VFRZKkmJiYWtc4fYb16VGSTp48qfPOO08JCQln/N+6LcrKyvTGG2+opKSk1u/gcvr86tOj5Mz5paWladSoUTXm448T59iQ/iTnzXD//v2Kj4/XBRdcoEmTJunw4cO1rm2p+bXYn7p3gmPHjtX40/udOnVScXGx/u///k+tWrVqocoCJy4uTkuWLNGAAQPk8Xj00ksvadiwYdq6dasuueSSli6vVuXl5crIyNCQIUPUu3fvWtfVNkMb32NTXX177Natm1555RX16dNHRUVFWrBggQYPHqw9e/bo3HPPbcaK62fXrl1KSkrSqVOn1LZtW61cuVI9e/b0u9ap82tIj06bnyS98cYb2rFjh/Ly8uq13mlzbGh/TpvhoEGDtHz5cnXr1k3fffedZs+erSuuuEK7d+9Wu3btaqxvqfkRUH7junXrpm7duvnODx48WAcPHtTTTz+t1157rQUrq1taWpp2795d5+umTlffHpOSkqr873zw4MHq0aOHXnzxRc2dO7epy2ywbt26aefOnSoqKtLbb7+t1NRUbdiwodYHcCdqSI9Om9+RI0c0bdo05ebmWv1G0MZqTH9Om+G1117r+7lPnz4aNGiQzjvvPL311luaMmVKC1ZWFQGlDrGxscrPz6+yLT8/X5GRkUHx7EltBg4caPUDf3p6ulavXq2NGzee8X8ntc0wNja2KUv81RrSY3VhYWH6t3/7Nx04cKCJqvt1wsPD1aVLF0lS//79lZeXp2eeeUYvvvhijbVOnV9DeqzO9vlt375dBQUFVZ5hLSsr08aNG/Xcc8/J4/EoNDS0ynWcNMfG9Fed7TOsLjo6WhdddFGt9bbU/HgPSh2SkpK0bt26Kttyc3PrfC05GOzcuVNxcXEtXUYNxhilp6dr5cqVWr9+vRITE894HafNsDE9VldWVqZdu3ZZOUN/ysvL5fF4/F7mtPnVpq4eq7N9fsOHD9euXbu0c+dO32nAgAGaNGmSdu7c6ffB20lzbEx/1dk+w+pOnjypgwcP1lpvi82vSd+Ca5kTJ06YL774wnzxxRdGklm4cKH54osvzDfffGOMMWbGjBnm1ltv9a3/+uuvTevWrc2DDz5o9u7da7Kzs01oaKhZs2ZNS7VwRg3t8emnnzarVq0y+/fvN7t27TLTpk0zISEh5qOPPmqpFmp1zz33mKioKPPJJ5+Y7777zncqLS31rbn11lvNjBkzfOc//fRTc9ZZZ5kFCxaYvXv3mlmzZpmwsDCza9eulmjhjBrT4+zZs83atWvNwYMHzfbt282ECRNMRESE2bNnT0u0UKcZM2aYDRs2mEOHDpkvv/zSzJgxw7hcLvPhhx8aY5w/P2Ma3qOT5leb6p9yCYY5Vnam/pw2wz/96U/mk08+MYcOHTKffvqpSU5ONuecc44pKCgwxtgzv99UQKn4SG31U2pqqjHGmNTUVDN06NAa1+nXr58JDw83F1xwgVm2bFmz190QDe1x/vz55sILLzQREREmJibGDBs2zKxfv75lij8Df31JqjKToUOH+nqt8NZbb5mLLrrIhIeHm169epm//vWvzVt4AzSmx4yMDNO5c2cTHh5uOnXqZK677jqzY8eO5i++Hu644w5z3nnnmfDwcNOhQwczfPhw3wO3Mc6fnzEN79FJ86tN9QfwYJhjZWfqz2kzvOmmm0xcXJwJDw83v/vd78xNN91kDhw44Lvclvm5jDGmaZ+jAQAAaBjegwIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6/w/w+WHBcMrMOkAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMPxJREFUeJzt3Xt0VOW5x/HfBJIJBAIGgSQQMEUERAEFoQEst0BEFKhUQKhGiuCxUAl4AVqRBK9wFJGLorVCVXK8FqT2CEauVS5y7QGkiIpIQYKKJEBkHJL3/GEzTTKTkMQJeffw/aw1a2X2vLPnefJkkx97LnEZY4wAAAAsElbdBQAAAJREQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAUJQz5491bNnz0rf94orrghuQZWUnp4ul8tV3WUAqAYEFMABFi9eLJfL5bvUrFlTTZo00e23367Dhw9XS01HjhxRenq6du7cWa71JXuIjIxUfHy8UlJSNHfuXJ08ebJa6gJgp5rVXQCA8psxY4YSExN15swZbdq0SYsXL9YHH3yg3bt3KzIy0rfuvffeq/Jajhw5ooyMDF1yySXq0KFDue9X2IPX69XRo0e1du1apaWlafbs2Vq+fLnatWvnW/vAAw9oypQp56UuAHYhoAAO0r9/f3Xq1EmSdMcdd+jiiy/WzJkztXz5cg0dOtS3LiIiorpKPKeiPUjS1KlTtXr1at1www0aOHCg9u7dq1q1akmSatasqZo1+WcKuBDxFA/gYNdee60k6bPPPiu2PdBrUA4ePKiBAwcqKipKjRo10sSJE7Vy5Uq5XC6tXbvWb98ff/yxevXqpdq1a6tJkyaaNWuW77a1a9fqmmuukSSNGjXK97TN4sWLK9VH7969NW3aNB08eFCvvPKKb3ug16BkZWWpe/fuql+/vurUqaNWrVrp97//fbnq+vvf/66bb75ZzZo1k9vtVkJCgiZOnKjvv/++2GPcfvvtqlOnjg4fPqzBgwerTp06atiwoe69917l5+cXW1tQUKCnn35aV155pSIjI9WwYUNdd9112rp1a7F1r7zyijp27KhatWopJiZGw4cP16FDhyr1/QIuBAQUwMG++OILSdJFF11U5rrTp0+rd+/eev/993X33XfrD3/4gzZs2KDJkycHXP/dd9/puuuuU/v27fXkk0+qdevWmjx5st59911JUps2bTRjxgxJ0tixY/Xyyy/r5Zdf1i9+8YtK93LrrbdKKvvpqT179uiGG26Qx+PRjBkz9OSTT2rgwIH68MMPy1XXG2+8oby8PN11112aN2+eUlJSNG/ePN12221+j5Wfn6+UlBQ1aNBATzzxhHr06KEnn3xSzz//fLF1o0ePVlpamhISEjRz5kxNmTJFkZGR2rRpk2/NI488ottuu00tW7bU7NmzlZaWplWrVukXv/iFTpw4UenvGRDSDADrLVq0yEgy77//vvn666/NoUOHzJtvvmkaNmxo3G63OXToULH1PXr0MD169PBdf/LJJ40ks2zZMt+277//3rRu3dpIMmvWrCl2X0nmpZde8m3zeDwmNjbWDBkyxLdty5YtRpJZtGhRhXrYsmVLqWvq1atnrrrqKt/16dOnm6L/TD311FNGkvn6669L3UdZdeXl5flte+yxx4zL5TIHDx70bUtNTTWSzIwZM4qtveqqq0zHjh1911evXm0kmbvvvttvvwUFBcYYY7744gtTo0YN88gjjxS7fdeuXaZmzZp+2wH8iDMogIMkJyerYcOGSkhI0K9+9StFRUVp+fLlatq0aZn3W7FihZo0aaKBAwf6tkVGRmrMmDEB19epU0e//vWvfdcjIiLUuXNnff7558FppBR16tQp89089evXlyS9/fbbKigoqPD+C1/bIv14Vumbb75R165dZYzRjh07/Nb/13/9V7Hr1157bbHvwVtvvSWXy6Xp06f73bfwqam//OUvKigo0NChQ/XNN9/4LrGxsWrZsqXWrFlT4T6ACwEBBXCQBQsWKCsrS2+++aauv/56ffPNN3K73ee838GDB9WiRQu/13NceumlAdc3bdrUb+1FF12k7777rvLFl8OpU6dUt27dUm8fNmyYunXrpjvuuEONGzfW8OHD9frrr5c7rHz55Ze6/fbbFRMT43tdSY8ePSRJOTk5xdYWvp6kqJLfg88++0zx8fGKiYkp9TH3798vY4xatmyphg0bFrvs3btXx44dK1ftwIWGl8cDDtK5c2ffO2AGDx6s7t27a8SIEdq3b5/q1KkTtMepUaNGwO3GmKA9Rkn/+te/lJOTU2pokn48A7J+/XqtWbNGf/vb37RixQq99tpr6t27t957771S65Z+fE1J3759dfz4cU2ePFmtW7dWVFSUDh8+rNtvv90v5JS1r4ooKCiQy+XSu+++G3CfwZwbEEoIKIBD1ahRQ4899ph69eql+fPnl/l5Ic2bN9fHH38sY0yxMyOffvpppR8/2J/w+vLLL0uSUlJSylwXFhamPn36qE+fPpo9e7YeffRR/eEPf9CaNWuUnJxcal27du3SJ598oj//+c/FXhSblZVV6ZpbtGihlStX6vjx46WeRWnRooWMMUpMTNRll11W6ccCLjQ8xQM4WM+ePdW5c2fNmTNHZ86cKXVdSkqKDh8+rOXLl/u2nTlzRn/84x8r/dhRUVGSFJR3oaxevVoPPfSQEhMTNXLkyFLXHT9+3G9b4YexeTyeMusqPHtR9CyQMUZPP/10peseMmSIjDHKyMjwu63wcW666SbVqFFDGRkZfmegjDH69ttvK/34QCjjDArgcPfdd59uvvlmLV682O9FnYXuvPNOzZ8/X7fccosmTJiguLg4LVmyxPfps5U5G9KiRQvVr19fCxcuVN26dRUVFaUuXbooMTGxzPu9++67+uc//6mzZ88qOztbq1evVlZWlpo3b67ly5cX+0TckmbMmKH169drwIABat68uY4dO6ZnnnlGTZs2Vffu3cusq3Xr1mrRooXuvfdeHT58WNHR0Xrrrbd+0utqevXqpVtvvVVz587V/v37dd1116mgoEB///vf1atXL40fP14tWrTQww8/rKlTp+qLL77Q4MGDVbduXR04cEBLly7V2LFjde+991a6BiBkVdO7hwBUQFlv0c3PzzctWrQwLVq0MGfPnjXG+L/N2BhjPv/8czNgwABTq1Yt07BhQ3PPPfeYt956y0gymzZt8q3r0aOHadu2rd/jpKammubNmxfb9vbbb5vLL7/c1KxZ85xvOS7sofASERFhYmNjTd++fc3TTz9tcnNz/e5T8m3Gq1atMoMGDTLx8fEmIiLCxMfHm1tuucV88skn5arr448/NsnJyaZOnTrm4osvNmPGjDH/+Mc//GpPTU01UVFR56zHGGPOnj1r/vu//9u0bt3aREREmIYNG5r+/fubbdu2FVv31ltvme7du5uoqCgTFRVlWrdubcaNG2f27dtX6vcMuJC5jKnCV70BsNqcOXM0ceJE/etf/1KTJk2quxwA8CGgABeI77//vtjngJw5c0ZXXXWV8vPz9cknn1RjZQDgj9egABeIm266Sc2aNVOHDh2Uk5OjV155Rf/85z+1ZMmS6i4NAPwQUIALREpKil544QUtWbJE+fn5uvzyy/Xqq69q2LBh1V0aAPjhKR4AAGAdPgcFAABYh4ACAACs48jXoBQUFOjIkSOqW7du0D9uGwAAVA1jjE6ePKn4+HiFhZV9jsSRAeXIkSNKSEio7jIAAEAlHDp0SE2bNi1zjSMDSuGfYz906JCio6ODum+v16v33ntP/fr1U3h4eFD3bQP6c75Q75H+nC/Uewz1/qSq6zE3N1cJCQm+3+NlcWRAKXxaJzo6ukoCSu3atRUdHR2SP3j053yh3iP9OV+o9xjq/UlV32N5Xp7Bi2QBAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArFOzuguw1RXpK+XJL/3PQX/x+IDzWA3KcsmUv/m+dtcwmtXZf37My3k4Bp2j6DEoBT4OmZddSs6spMIZVifOoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdSocUNavX68bb7xR8fHxcrlcWrZsme82r9eryZMn68orr1RUVJTi4+N122236ciRI8X2cfz4cY0cOVLR0dGqX7++Ro8erVOnTv3kZgAAQGiocEA5ffq02rdvrwULFvjdlpeXp+3bt2vatGnavn27/vKXv2jfvn0aOHBgsXUjR47Unj17lJWVpXfeeUfr16/X2LFjK98FAAAIKRX+Y4H9+/dX//79A95Wr149ZWVlFds2f/58de7cWV9++aWaNWumvXv3asWKFdqyZYs6deokSZo3b56uv/56PfHEE4qPj/fbr8fjkcfj8V3Pzc2V9OMZG6/XW9EWylS4P3eYKdc6pyms26n1B+Ku8Z9ZFc6t5PxCqd9QnGFRHIPOU/QYlAIfh6HUbyjMsOTM/G7/9+yq6ndsebiMMWVXWdadXS4tXbpUgwcPLnXN+++/r379+unEiROKjo7Wiy++qHvuuUffffedb83Zs2cVGRmpN954Q7/85S/99pGenq6MjAy/7ZmZmapdu3ZlywcAAOdRXl6eRowYoZycHEVHR5e5tsJnUCrizJkzmjx5sm655RZfIUePHlWjRo2KF1GzpmJiYnT06NGA+5k6daomTZrku56bm6uEhAT169fvnA1WlNfrVVZWlqZtDZOnoPQ/9b47PSWoj3u+FPbXt29fhYeHV3c5QXFF+krf1+4wo4c6FfjNz6nzCiQUZ1gUx6DzFD0GpcDHoVPnFUgozLDkzEoqnGGweyx8BqQ8qiygeL1eDR06VMYYPfvssz9pX263W2632297eHh4lf1weApc8uSX/o+jU38oC1Xl9+58CzSnkvMLlV6LCqUZBsIx6BylzanoDEOl16KcPMOyjq2igt1jRfZVJQGlMJwcPHhQq1evLnaWIzY2VseOHSu2/uzZszp+/LhiY2OrohwAAOAwQf8clMJwsn//fr3//vtq0KBBsduTkpJ04sQJbdu2zbdt9erVKigoUJcuXYJdDgAAcKAKn0E5deqUPv30U9/1AwcOaOfOnYqJiVFcXJx+9atfafv27XrnnXeUn5/ve11JTEyMIiIi1KZNG1133XUaM2aMFi5cKK/Xq/Hjx2v48OEB38EDAAAuPBUOKFu3blWvXr181wtfvJqamqr09HQtX75cktShQ4di91uzZo169uwpSVqyZInGjx+vPn36KCwsTEOGDNHcuXMr2QIAAAg1FQ4oPXv2VFnvTC7Pu5ZjYmKUmZlZ0YcGAAAXCP4WDwAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOtUOKCsX79eN954o+Lj4+VyubRs2bJitxtj9OCDDyouLk61atVScnKy9u/fX2zN8ePHNXLkSEVHR6t+/foaPXq0Tp069ZMaAQAAoaPCAeX06dNq3769FixYEPD2WbNmae7cuVq4cKE2b96sqKgopaSk6MyZM741I0eO1J49e5SVlaV33nlH69ev19ixYyvfBQAACCk1K3qH/v37q3///gFvM8Zozpw5euCBBzRo0CBJ0ksvvaTGjRtr2bJlGj58uPbu3asVK1Zoy5Yt6tSpkyRp3rx5uv766/XEE08oPj7+J7QDAABCQYUDSlkOHDigo0ePKjk52betXr166tKlizZu3Kjhw4dr48aNql+/vi+cSFJycrLCwsK0efNm/fKXv/Tbr8fjkcfj8V3Pzc2VJHm9Xnm93mC24NufO8yUa53TFNbt1PoDcdf4z6wK51ZyfqHUbyjOsCiOQecpegxKgY/DUOo3FGZYcmZ+t/97dlX1O7Y8XMaYsqss684ul5YuXarBgwdLkjZs2KBu3brpyJEjiouL860bOnSoXC6XXnvtNT366KP685//rH379hXbV6NGjZSRkaG77rrL73HS09OVkZHhtz0zM1O1a9eubPkAAOA8ysvL04gRI5STk6Po6Ogy1wb1DEpVmTp1qiZNmuS7npubq4SEBPXr1++cDVaU1+tVVlaWpm0Nk6fAVeq63ekpQX3c86Wwv759+yo8PLy6ywmKK9JX+r52hxk91KnAb35OnVcgoTjDojgGnafoMSgFPg6dOq9AQmGGJWdWUuEMg91j4TMg5RHUgBIbGytJys7OLnYGJTs7Wx06dPCtOXbsWLH7nT17VsePH/fdvyS32y232+23PTw8vMp+ODwFLnnyS//H0ak/lIWq8nt3vgWaU8n5hUqvRYXSDAPhGHSO0uZUdIah0mtRTp5hWcdWUcHusSL7CurnoCQmJio2NlarVq3ybcvNzdXmzZuVlJQkSUpKStKJEye0bds235rVq1eroKBAXbp0CWY5AADAoSp8BuXUqVP69NNPfdcPHDignTt3KiYmRs2aNVNaWpoefvhhtWzZUomJiZo2bZri4+N9r1Np06aNrrvuOo0ZM0YLFy6U1+vV+PHjNXz4cN7BAwAAJFUioGzdulW9evXyXS98bUhqaqoWL16s+++/X6dPn9bYsWN14sQJde/eXStWrFBkZKTvPkuWLNH48ePVp08fhYWFaciQIZo7d24Q2gEAAKGgwgGlZ8+eKuuNPy6XSzNmzNCMGTNKXRMTE6PMzMyKPjQAALhA8Ld4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWCfoASU/P1/Tpk1TYmKiatWqpRYtWuihhx6SMca3xhijBx98UHFxcapVq5aSk5O1f//+YJcCAAAcKugBZebMmXr22Wc1f/587d27VzNnztSsWbM0b94835pZs2Zp7ty5WrhwoTZv3qyoqCilpKTozJkzwS4HAAA4UM1g73DDhg0aNGiQBgwYIEm65JJL9D//8z/66KOPJP149mTOnDl64IEHNGjQIEnSSy+9pMaNG2vZsmUaPnx4sEsCAAAOE/SA0rVrVz3//PP65JNPdNlll+kf//iHPvjgA82ePVuSdODAAR09elTJycm++9SrV09dunTRxo0bAwYUj8cjj8fju56bmytJ8nq98nq9Qa2/cH/uMFOudU5TWLdT6w/EXeM/syqcW8n5hVK/oTjDojgGnafoMSgFPg5Dqd9QmGHJmfnd/u/ZVdXv2PJwmaIvDgmCgoIC/f73v9esWbNUo0YN5efn65FHHtHUqVMl/XiGpVu3bjpy5Iji4uJ89xs6dKhcLpdee+01v32mp6crIyPDb3tmZqZq164dzPIBAEAVycvL04gRI5STk6Po6Ogy1wb9DMrrr7+uJUuWKDMzU23bttXOnTuVlpam+Ph4paamVmqfU6dO1aRJk3zXc3NzlZCQoH79+p2zwYryer3KysrStK1h8hS4Sl23Oz0lqI97vhT217dvX4WHh1d3OUFxRfpK39fuMKOHOhX4zc+p8wokFGdYFMeg8xQ9BqXAx6FT5xVIKMyw5MxKKpxhsHssfAakPIIeUO677z5NmTLF91TNlVdeqYMHD+qxxx5TamqqYmNjJUnZ2dnFzqBkZ2erQ4cOAffpdrvldrv9toeHh1fZD4enwCVPfun/ODr1h7JQVX7vzrdAcyo5v1DptahQmmEgHIPOUdqcis4wVHotyskzLOvYKirYPVZkX0F/F09eXp7CworvtkaNGiooKJAkJSYmKjY2VqtWrfLdnpubq82bNyspKSnY5QAAAAcK+hmUG2+8UY888oiaNWumtm3baseOHZo9e7Z+85vfSJJcLpfS0tL08MMPq2XLlkpMTNS0adMUHx+vwYMHB7scAADgQEEPKPPmzdO0adP029/+VseOHVN8fLzuvPNOPfjgg741999/v06fPq2xY8fqxIkT6t69u1asWKHIyMhglwMAABwo6AGlbt26mjNnjubMmVPqGpfLpRkzZmjGjBnBfngAABAC+Fs8AADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArFMlAeXw4cP69a9/rQYNGqhWrVq68sortXXrVt/txhg9+OCDiouLU61atZScnKz9+/dXRSkAAMCBgh5QvvvuO3Xr1k3h4eF699139fHHH+vJJ5/URRdd5Fsza9YszZ07VwsXLtTmzZsVFRWllJQUnTlzJtjlAAAAB6oZ7B3OnDlTCQkJWrRokW9bYmKi72tjjObMmaMHHnhAgwYNkiS99NJLaty4sZYtW6bhw4cHuyQAAOAwQQ8oy5cvV0pKim6++WatW7dOTZo00W9/+1uNGTNGknTgwAEdPXpUycnJvvvUq1dPXbp00caNGwMGFI/HI4/H47uem5srSfJ6vfJ6vUGtv3B/7jBTrnVOU1i3U+sPxF3jP7MqnFvJ+YVSv6E4w6I4Bp2n6DEoBT4OQ6nfUJhhyZn53f7v2VXV79jycBljyq6ygiIjIyVJkyZN0s0336wtW7ZowoQJWrhwoVJTU7VhwwZ169ZNR44cUVxcnO9+Q4cOlcvl0muvvea3z/T0dGVkZPhtz8zMVO3atYNZPgAAqCJ5eXkaMWKEcnJyFB0dXebaoAeUiIgIderUSRs2bPBtu/vuu7VlyxZt3LixUgEl0BmUhIQEffPNN+dssKK8Xq+ysrI0bWuYPAWuUtftTk8J6uOeL4X99e3bV+Hh4dVdTlBckb7S97U7zOihTgV+83PqvAIJxRkWxTHoPEWPQSnwcejUeQUSCjMsObOSCmcY7B5zc3N18cUXlyugBP0pnri4OF1++eXFtrVp00ZvvfWWJCk2NlaSlJ2dXSygZGdnq0OHDgH36Xa75Xa7/baHh4dX2Q+Hp8AlT37p/zg69YeyUFV+7863QHMqOb9Q6bWoUJphIByDzlHanIrOMFR6LcrJMyzr2Coq2D1WZF9BfxdPt27dtG/fvmLbPvnkEzVv3lzSjy+YjY2N1apVq3y35+bmavPmzUpKSgp2OQAAwIGCfgZl4sSJ6tq1qx599FENHTpUH330kZ5//nk9//zzkiSXy6W0tDQ9/PDDatmypRITEzVt2jTFx8dr8ODBwS4HAAA4UNADyjXXXKOlS5dq6tSpmjFjhhITEzVnzhyNHDnSt+b+++/X6dOnNXbsWJ04cULdu3fXihUrfC+wBQAAF7agBxRJuuGGG3TDDTeUervL5dKMGTM0Y8aMqnh4AADgcPwtHgAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOtUeUB5/PHH5XK5lJaW5tt25swZjRs3Tg0aNFCdOnU0ZMgQZWdnV3UpAADAIao0oGzZskXPPfec2rVrV2z7xIkT9de//lVvvPGG1q1bpyNHjuimm26qylIAAICDVFlAOXXqlEaOHKk//vGPuuiii3zbc3Jy9Kc//UmzZ89W79691bFjRy1atEgbNmzQpk2bqqocAADgIDWrasfjxo3TgAEDlJycrIcffti3fdu2bfJ6vUpOTvZta926tZo1a6aNGzfq5z//ud++PB6PPB6P73pubq4kyev1yuv1BrXuwv25w0y51jlNYd1OrT8Qd43/zKpwbiXnF0r9huIMi+IYdJ6ix6AU+DgMpX5DYYYlZ+Z3+79nV1W/Y8vDZYwpu8pKePXVV/XII49oy5YtioyMVM+ePdWhQwfNmTNHmZmZGjVqVLHAIUmdO3dWr169NHPmTL/9paenKyMjw297ZmamateuHezyAQBAFcjLy9OIESOUk5Oj6OjoMtcG/QzKoUOHNGHCBGVlZSkyMjIo+5w6daomTZrku56bm6uEhAT169fvnA1WlNfrVVZWlqZtDZOnwFXqut3pKUF93POlsL++ffsqPDy8ussJiivSV/q+docZPdSpwG9+Tp1XIKE4w6I4Bp2n6DEoBT4OnTqvQEJhhiVnVlLhDIPdY+EzIOUR9ICybds2HTt2TFdffbVvW35+vtavX6/58+dr5cqV+uGHH3TixAnVr1/ftyY7O1uxsbEB9+l2u+V2u/22h4eHV9kPh6fAJU9+6f84OvWHslBVfu/Ot0BzKjm/UOm1qFCaYSAcg85R2pyKzjBUei3KyTMs69gqKtg9VmRfQQ8offr00a5du4ptGzVqlFq3bq3JkycrISFB4eHhWrVqlYYMGSJJ2rdvn7788kslJSUFuxwAAOBAQQ8odevW1RVXXFFsW1RUlBo0aODbPnr0aE2aNEkxMTGKjo7W7373OyUlJQV8gSwAALjwVNm7eMry1FNPKSwsTEOGDJHH41FKSoqeeeaZ6igFAABY6LwElLVr1xa7HhkZqQULFmjBggXn4+EBAIDD8Ld4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWCfoAeWxxx7TNddco7p166pRo0YaPHiw9u3bV2zNmTNnNG7cODVo0EB16tTRkCFDlJ2dHexSAACAQwU9oKxbt07jxo3Tpk2blJWVJa/Xq379+un06dO+NRMnTtRf//pXvfHGG1q3bp2OHDmim266KdilAAAAh6oZ7B2uWLGi2PXFixerUaNG2rZtm37xi18oJydHf/rTn5SZmanevXtLkhYtWqQ2bdpo06ZN+vnPfx7skgAAgMMEPaCUlJOTI0mKiYmRJG3btk1er1fJycm+Na1bt1azZs20cePGgAHF4/HI4/H4rufm5kqSvF6vvF5vUOst3J87zJRrndMU1u3U+gNx1/jPrArnVnJ+odRvKM6wKI5B5yl6DEqBj8NQ6jcUZlhyZn63/3t2VfU7tjxcxpiyq/wJCgoKNHDgQJ04cUIffPCBJCkzM1OjRo0qFjgkqXPnzurVq5dmzpzpt5/09HRlZGT4bc/MzFTt2rWrpngAABBUeXl5GjFihHJychQdHV3m2io9gzJu3Djt3r3bF04qa+rUqZo0aZLvem5urhISEtSvX79zNlhRXq9XWVlZmrY1TJ4CV6nrdqenBPVxz5fC/vr27avw8PDqLicorkhf6fvaHWb0UKcCv/k5dV6BhOIMi+IYdJ6ix6AU+Dh06rwCCYUZlpxZSYUzDHaPhc+AlEeVBZTx48frnXfe0fr169W0aVPf9tjYWP3www86ceKE6tev79uenZ2t2NjYgPtyu91yu91+28PDw6vsh8NT4JInv/R/HJ36Q1moKr9351ugOZWcX6j0WlQozTAQjkHnKG1ORWcYKr0W5eQZlnVsFRXsHiuyr6C/i8cYo/Hjx2vp0qVavXq1EhMTi93esWNHhYeHa9WqVb5t+/bt05dffqmkpKRglwMAABwo6GdQxo0bp8zMTL399tuqW7eujh49KkmqV6+eatWqpXr16mn06NGaNGmSYmJiFB0drd/97ndKSkriHTwAAEBSFQSUZ599VpLUs2fPYtsXLVqk22+/XZL01FNPKSwsTEOGDJHH41FKSoqeeeaZYJcCAAAcKugBpTxvCoqMjNSCBQu0YMGCYD88AAAIAfwtHgAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANap1oCyYMECXXLJJYqMjFSXLl300UcfVWc5AADAEtUWUF577TVNmjRJ06dP1/bt29W+fXulpKTo2LFj1VUSAACwRLUFlNmzZ2vMmDEaNWqULr/8ci1cuFC1a9fWiy++WF0lAQAAS9Ssjgf94YcftG3bNk2dOtW3LSwsTMnJydq4caPfeo/HI4/H47uek5MjSTp+/Li8Xm9Qa/N6vcrLy1NNb5jyC1ylrvv222+D+rjnS2F/3377rcLDw6u7nKCoefb0f74uMMrLK/Cbn1PnFUgozrAojkHnKXoMSoGPQ6fOK5BQmGHJmfnd/u8ZBrvHkydPSpKMMedebKrB4cOHjSSzYcOGYtvvu+8+07lzZ7/106dPN5K4cOHChQsXLiFwOXTo0DmzQrWcQamoqVOnatKkSb7rBQUFOn78uBo0aCCXq/T/YVVGbm6uEhISdOjQIUVHRwd13zagP+cL9R7pz/lCvcdQ70+quh6NMTp58qTi4+PPubZaAsrFF1+sGjVqKDs7u9j27OxsxcbG+q13u91yu93FttWvX78qS1R0dHTI/uBJ9BcKQr1H+nO+UO8x1PuTqqbHevXqlWtdtbxINiIiQh07dtSqVat82woKCrRq1SolJSVVR0kAAMAi1fYUz6RJk5SamqpOnTqpc+fOmjNnjk6fPq1Ro0ZVV0kAAMAS1RZQhg0bpq+//loPPvigjh49qg4dOmjFihVq3LhxdZUk6cenk6ZPn+73lFKooD/nC/Ue6c/5Qr3HUO9PsqNHlzHlea8PAADA+cPf4gEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYJ0LKqCsX79eN954o+Lj4+VyubRs2bJz3mft2rW6+uqr5Xa7demll2rx4sVVXudPUdEe165dK5fL5Xc5evTo+Sm4Ah577DFdc801qlu3rho1aqTBgwdr375957zfG2+8odatWysyMlJXXnml/vd///c8VFs5lelx8eLFfvOLjIw8TxVXzLPPPqt27dr5Pp0yKSlJ7777bpn3cdL8pIr36KT5BfL444/L5XIpLS2tzHVOm2Oh8vTntBmmp6f71du6desy71Md87ugAsrp06fVvn17LViwoFzrDxw4oAEDBqhXr17auXOn0tLSdMcdd2jlypVVXGnlVbTHQvv27dNXX33luzRq1KiKKqy8devWady4cdq0aZOysrLk9XrVr18/nT5d+l/l3LBhg2655RaNHj1aO3bs0ODBgzV48GDt3r37PFZefpXpUfrx46iLzu/gwYPnqeKKadq0qR5//HFt27ZNW7duVe/evTVo0CDt2bMn4HqnzU+qeI+Sc+ZX0pYtW/Tcc8+pXbt2Za5z4hyl8vcnOW+Gbdu2LVbvBx98UOraaptfcP4+sfNIMkuXLi1zzf3332/atm1bbNuwYcNMSkpKFVYWPOXpcc2aNUaS+e67785LTcF07NgxI8msW7eu1DVDhw41AwYMKLatS5cu5s4776zq8oKiPD0uWrTI1KtX7/wVFWQXXXSReeGFFwLe5vT5FSqrR6fO7+TJk6Zly5YmKyvL9OjRw0yYMKHUtU6cY0X6c9oMp0+fbtq3b1/u9dU1vwvqDEpFbdy4UcnJycW2paSkaOPGjdVUUdXp0KGD4uLi1LdvX3344YfVXU655OTkSJJiYmJKXeP0GZanR0k6deqUmjdvroSEhHP+b90W+fn5evXVV3X69OlS/waX0+dXnh4lZ85v3LhxGjBggN98AnHiHCvSn+S8Ge7fv1/x8fH62c9+ppEjR+rLL78sdW11za/aPureCY4ePer30fuNGzdWbm6uvv/+e9WqVauaKgueuLg4LVy4UJ06dZLH49ELL7ygnj17avPmzbr66quru7xSFRQUKC0tTd26ddMVV1xR6rrSZmjja2xKKm+PrVq10osvvqh27dopJydHTzzxhLp27ao9e/aoadOm57Hi8tm1a5eSkpJ05swZ1alTR0uXLtXll18ecK1T51eRHp02P0l69dVXtX37dm3ZsqVc6502x4r257QZdunSRYsXL1arVq301VdfKSMjQ9dee612796tunXr+q2vrvkRUC5wrVq1UqtWrXzXu3btqs8++0xPPfWUXn755WqsrGzjxo3T7t27y3ze1OnK22NSUlKx/5137dpVbdq00XPPPaeHHnqoqsussFatWmnnzp3KycnRm2++qdTUVK1bt67UX+BOVJEenTa/Q4cOacKECcrKyrL6haCVVZn+nDbD/v37+75u166dunTpoubNm+v111/X6NGjq7Gy4ggoZYiNjVV2dnaxbdnZ2YqOjg6Jsyel6dy5s9W/+MePH6933nlH69evP+f/TkqbYWxsbFWW+JNVpMeSwsPDddVVV+nTTz+toup+moiICF166aWSpI4dO2rLli16+umn9dxzz/mtder8KtJjSbbPb9u2bTp27FixM6z5+flav3695s+fL4/Hoxo1ahS7j5PmWJn+SrJ9hiXVr19fl112Wan1Vtf8eA1KGZKSkrRq1api27Kyssp8LjkU7Ny5U3FxcdVdhh9jjMaPH6+lS5dq9erVSkxMPOd9nDbDyvRYUn5+vnbt2mXlDAMpKCiQx+MJeJvT5leasnosyfb59enTR7t27dLOnTt9l06dOmnkyJHauXNnwF/eTppjZforyfYZlnTq1Cl99tlnpdZbbfOr0pfgWubkyZNmx44dZseOHUaSmT17ttmxY4c5ePCgMcaYKVOmmFtvvdW3/vPPPze1a9c29913n9m7d69ZsGCBqVGjhlmxYkV1tXBOFe3xqaeeMsuWLTP79+83u3btMhMmTDBhYWHm/fffr64WSnXXXXeZevXqmbVr15qvvvrKd8nLy/OtufXWW82UKVN81z/88ENTs2ZN88QTT5i9e/ea6dOnm/DwcLNr167qaOGcKtNjRkaGWblypfnss8/Mtm3bzPDhw01kZKTZs2dPdbRQpilTpph169aZAwcOmP/7v/8zU6ZMMS6Xy7z33nvGGOfPz5iK9+ik+ZWm5LtcQmGORZ2rP6fN8J577jFr1641Bw4cMB9++KFJTk42F198sTl27Jgxxp75XVABpfAttSUvqampxhhjUlNTTY8ePfzu06FDBxMREWF+9rOfmUWLFp33uiuioj3OnDnTtGjRwkRGRpqYmBjTs2dPs3r16uop/hwC9SWp2Ex69Ojh67XQ66+/bi677DITERFh2rZta/72t7+d38IroDI9pqWlmWbNmpmIiAjTuHFjc/3115vt27ef/+LL4Te/+Y1p3ry5iYiIMA0bNjR9+vTx/eI2xvnzM6biPTppfqUp+Qs8FOZY1Ln6c9oMhw0bZuLi4kxERIRp0qSJGTZsmPn00099t9syP5cxxlTtORoAAICK4TUoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALDO/wNIZr83RrX58AAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAALzdJREFUeJzt3X9U1HW+x/HXgMOgJiqaAoUuqaVp5qZpoFuWKJmZbu4aq7VU3uoUthJdS+7NBO2Xrre8JmXeVr11ol/b6m3b0khTr0rmz029HdPWTcuEbQ1QyGmEz/2jZZYfA4IN8vmOz8c5nMN8v5/5zvvNm6+8/M4MuIwxRgAAABYJa+kCAAAAaiOgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAaLTCwkL94he/UKdOneRyubRgwYKWLqleLpdL2dnZZ3zfqVOnBrcgAE1CQAFC2PLly+VyubRt27agHO+BBx7Q6tWrlZWVpZdfflnXX3+93n333UYHgRtuuEEdO3ZU7b+wsXPnTrlcLnXv3r3OfdauXSuXy6UlS5YEo4Wg2rx5s7Kzs1VcXNzSpQAhh4ACoNHWrl2rcePG6V//9V916623qnfv3nr33XeVk5PTqPsPGzZMxcXF2rNnT43tmzZtUqtWrXTo0CF9+eWXdfZV3bcpvvvuOz3yyCNNuk9Tbd68WTk5OQQUoBkQUAA0WlFRkTp06HDG968KGRs3bqyxfdOmTbrhhht03nnn1dm3ceNGderUSX369GnSY0VGRqpVq1ZnXCuAlkVAAaCvvvpKd955p7p27SqPx6O+fftq6dKl/v1VTxUZY5SbmyuXyyWXy6Xbb79dubm5kuTf5nK56n2cwYMHKyIiwn9VpMqmTZt09dVXa/DgwTX2VVZW6qOPPlJSUpL/uMXFxcrIyFB8fLw8Ho969uypuXPnqrKyssYxA70GZd26dRo0aJAiIyPVo0cPvfDCC8rOzq635pUrV6pfv37+r8mqVav8+7KzszV9+nRJUkJCgr/3v/71r/X2D6Dx+O8FcI4rLCzUVVdd5X9h6Pnnn6/33ntPU6ZMUWlpqTIyMnT11Vfr5Zdf1m233aaRI0fq17/+tSSpR48eOnLkiPLz8/Xyyy+f9rEiIyM1cODAGldJDh8+rMOHDyspKUnFxcX605/+5N+3e/dulZaW+q+8lJeX65prrtFXX32le+65R926ddPmzZuVlZWlr7/+usEX7e7cuVPXX3+9YmNjlZOTo4qKCs2ePVvnn39+wPUbN27UH/7wB913331q166dFi5cqAkTJujQoUPq1KmTbr75Zn322Wd69dVX9cwzz6hz586SVO/xADSRARCyli1bZiSZrVu31rtmypQpJjY21nzzzTc1tqemppr27dub8vJy/zZJJj09vca69PR005R/SqZPn24kmS+//NIYY8yrr75qIiMjjdfrNe+++64JDw83paWlxhhjFi1aZCSZTZs2GWOMmTNnjmnbtq357LPPahxzxowZJjw83Bw6dKhGrbNmzfLfHjt2rGnTpo356quv/Nv2799vWrVqVad+SSYiIsIcOHDAv+3Pf/6zkWSeffZZ/7bf/va3RpI5ePBgo/sH0Dg8xQOcw4wxeuuttzR27FgZY/TNN9/4P1JSUlRSUqIdO3YE9TGrrob87//+r6Qfnt4ZOHCgIiIilJiY6H9ap2pfZGSkBg0aJEl688039bOf/UwdO3asUWtycrIqKiq0YcOGgI9ZUVGhDz74QOPHj1dcXJx/e8+ePTV69OiA90lOTlaPHj38t/v376+oqCj95S9/+fFfBACnxVM8wDnsb3/7m4qLi7VkyZJ638ZbVFQU1MccOnSoXC6XNm3apNTUVG3atEkjR46UJHXo0EGXXnqpf9umTZt05ZVXKiIiQpK0f/9+ffLJJ/U+jVJfrUVFRfruu+/Us2fPOvsCbZOkbt261dnWsWNHffvtt43qE8CPQ0ABzmFVLyy99dZblZaWFnBN//79g/qYnTp1Uu/evbVx40adOHFCn3zyiWbNmuXfn5SUpI0bN+rLL7/UoUOHNHny5Br1jhw5Ug899FDAY1988cVBqzM8PDzgdlPrd7gAaB4EFOAcdv7556tdu3aqqKhQcnLyGR2joXft1GfYsGFaunSp3n//fVVUVCgpKcm/LykpSa+++qrWrVvnX1ulR48eOnHiRJNr7dKliyIjI3XgwIE6+wJta6wz6R1A4/AaFOAcFh4ergkTJuitt96q88vTpB+eAjqdtm3bSlKTflnZsGHDVFFRofnz56tXr141nrJJSkrSiRMn9NxzzyksLKxGeJk4caIKCgq0evXqOscsLi7WqVOnAj5eeHi4kpOTtXLlSh05csS//cCBA3rvvfcaXXdtZ9I7gMbhCgpwDli6dGmN3+FRZdq0aXrqqaf04YcfasiQIbrrrrt06aWX6tixY9qxY4c++OADHTt2rMFjDxw4UJL0m9/8RikpKQoPD1dqamqD96m6KlJQUKDbb7+9xr6LL75YnTt3VkFBgS677LIavxhu+vTpevvtt3XjjTfq9ttv18CBA1VWVqbdu3fr97//vf7617/63+5bW3Z2tt5//30NHTpU9957ryoqKrRo0SL169dPu3btarDe0/X+7//+70pNTZXb7dbYsWP9wQXAj9DC7yIC0Iyq3mZc38fhw4eNMcYUFhaa9PR0Ex8fb9xut4mJiTEjRowwS5YsqXE8BXib8alTp8z9999vzj//fONyuRr9luO4uDgjqc5jGGPMTTfdZCSZe++9t86+48ePm6ysLNOzZ08TERFhOnfubJKSksz8+fPN999/X6PW6m8zNsaYNWvWmJ/+9KcmIiLC9OjRw7z44ovmwQcfNJGRkaft0xhjunfvbtLS0mpsmzNnjrngggtMWFgYbzkGgshlDK/4AnDuGj9+vPbu3av9+/e3dCkAquE1KADOGd99912N2/v379e7776r4cOHt0xBAOrFFRQA54zY2Fjdfvvtuuiii/TFF1/o+eefl9fr1c6dO9WrV6+WLg9ANbxIFsA54/rrr9err76qo0ePyuPxKDExUU888QThBLAQV1AAAIB1eA0KAACwDgEFAABYx5GvQamsrNSRI0fUrl07ftU0AAAOYYzR8ePHFRcXp7Cwhq+RODKgHDlyRPHx8S1dBgAAOAOHDx/WhRde2OAaRwaUdu3aSfqhwaioqKAe2+fz6f3339eoUaPkdruDemwb0J/zhXqP9Od8od5jqPcnNV+PpaWlio+P9/8cb4gjA0rV0zpRUVHNElDatGmjqKiokPzGoz/nC/Ue6c/5Qr3HUO9Pav4eG/PyDF4kCwAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGCdVi1dgK36Za+Wt6L+Pwf916fGnMVq0JCfzPiT/3NPuNG8wXXnx7ych3PQOaqfg1Lg85B52aX2zGqrmmFL4goKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFinyQFlw4YNGjt2rOLi4uRyubRy5Ur/Pp/Pp4cffliXXXaZ2rZtq7i4OP3617/WkSNHahzj2LFjmjx5sqKiotShQwdNmTJFJ06c+NHNAACA0NDkgFJWVqbLL79cubm5dfaVl5drx44dmjlzpnbs2KE//OEP2rdvn2666aYa6yZPnqy9e/cqPz9f77zzjjZs2KC77777zLsAAAAhpcl/LHD06NEaPXp0wH3t27dXfn5+jW2LFi3S4MGDdejQIXXr1k2ffvqpVq1apa1bt2rQoEGSpGeffVY33HCD5s+fr7i4uDrH9Xq98nq9/tulpaWSfrhi4/P5mtpCg6qO5wkzjVrnNFV1O7X+QDzh/5xV1dxqzy+U+g3FGVbHOeg81c9BKfB5GEr9hsIMa8+szv5/zK65fsY2hssY03CVDd3Z5dKKFSs0fvz4etd88MEHGjVqlIqLixUVFaWlS5fqwQcf1Lfffutfc+rUKUVGRurNN9/Uz3/+8zrHyM7OVk5OTp3teXl5atOmzZmWDwAAzqLy8nJNmjRJJSUlioqKanBtk6+gNMXJkyf18MMP61e/+pW/kKNHj6pLly41i2jVStHR0Tp69GjA42RlZSkzM9N/u7S0VPHx8Ro1atRpG2wqn8+n/Px8zdwWJm9l/X/qfU92SlAf92yp6m/kyJFyu90tXU5Q9Mte7f/cE2Y0Z1Blnfk5dV6BhOIMq+McdJ7q56AU+Dx06rwCCYUZ1p5ZbVUzDHaPVc+ANEazBRSfz6eJEyfKGKPnn3/+Rx3L4/HI4/HU2e52u5vtm8Nb6ZK3ov5/HJ36TVmlOb92Z1ugOdWeX6j0Wl0ozTAQzkHnqG9O1WcYKr1W5+QZNnRuVRfsHptyrGYJKFXh5IsvvtDatWtrXOWIiYlRUVFRjfWnTp3SsWPHFBMT0xzlAAAAhwn670GpCif79+/XBx98oE6dOtXYn5iYqOLiYm3fvt2/be3ataqsrNSQIUOCXQ4AAHCgJl9BOXHihA4cOOC/ffDgQe3atUvR0dGKjY3VL37xC+3YsUPvvPOOKioq/K8riY6OVkREhPr06aPrr79ed911lxYvXiyfz6epU6cqNTU14Dt4AADAuafJAWXbtm269tpr/berXryalpam7Oxsvf3225KkAQMG1Ljfhx9+qOHDh0uSXnnlFU2dOlUjRoxQWFiYJkyYoIULF55hCwAAINQ0OaAMHz5cDb0zuTHvWo6OjlZeXl5THxoAAJwj+Fs8AADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArNPkgLJhwwaNHTtWcXFxcrlcWrlyZY39xhg9+uijio2NVevWrZWcnKz9+/fXWHPs2DFNnjxZUVFR6tChg6ZMmaITJ078qEYAAEDoaHJAKSsr0+WXX67c3NyA++fNm6eFCxdq8eLF2rJli9q2bauUlBSdPHnSv2by5Mnau3ev8vPz9c4772jDhg26++67z7wLAAAQUlo19Q6jR4/W6NGjA+4zxmjBggV65JFHNG7cOEnSSy+9pK5du2rlypVKTU3Vp59+qlWrVmnr1q0aNGiQJOnZZ5/VDTfcoPnz5ysuLu5HtAMAAEJBkwNKQw4ePKijR48qOTnZv619+/YaMmSICgoKlJqaqoKCAnXo0MEfTiQpOTlZYWFh2rJli37+85/XOa7X65XX6/XfLi0tlST5fD75fL5gtuA/nifMNGqd01TV7dT6A/GE/3NWVXOrPb9Q6jcUZ1gd56DzVD8HpcDnYSj1GwozrD2zOvv/Mbvm+hnbGC5jTMNVNnRnl0srVqzQ+PHjJUmbN2/W0KFDdeTIEcXGxvrXTZw4US6XS6+//rqeeOIJ/fd//7f27dtX41hdunRRTk6O7r333jqPk52drZycnDrb8/Ly1KZNmzMtHwAAnEXl5eWaNGmSSkpKFBUV1eDaoF5BaS5ZWVnKzMz03y4tLVV8fLxGjRp12gabyufzKT8/XzO3hclb6ap33Z7slKA+7tlS1d/IkSPldrtbupyg6Je92v+5J8xozqDKOvNz6rwCCcUZVsc56DzVz0Ep8Hno1HkFEgozrD2z2qpmGOweq54BaYygBpSYmBhJUmFhYY0rKIWFhRowYIB/TVFRUY37nTp1SseOHfPfvzaPxyOPx1Nnu9vtbrZvDm+lS96K+v9xdOo3ZZXm/NqdbYHmVHt+odJrdaE0w0A4B52jvjlVn2Go9Fqdk2fY0LlVXbB7bMqxgvp7UBISEhQTE6M1a9b4t5WWlmrLli1KTEyUJCUmJqq4uFjbt2/3r1m7dq0qKys1ZMiQYJYDAAAcqslXUE6cOKEDBw74bx88eFC7du1SdHS0unXrpoyMDD322GPq1auXEhISNHPmTMXFxflfp9KnTx9df/31uuuuu7R48WL5fD5NnTpVqampvIMHAABIOoOAsm3bNl177bX+21WvDUlLS9Py5cv10EMPqaysTHfffbeKi4s1bNgwrVq1SpGRkf77vPLKK5o6dapGjBihsLAwTZgwQQsXLgxCOwAAIBQ0OaAMHz5cDb3xx+Vyafbs2Zo9e3a9a6Kjo5WXl9fUhwYAAOcI/hYPAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6wQ9oFRUVGjmzJlKSEhQ69at1aNHD82ZM0fGGP8aY4weffRRxcbGqnXr1kpOTtb+/fuDXQoAAHCooAeUuXPn6vnnn9eiRYv06aefau7cuZo3b56effZZ/5p58+Zp4cKFWrx4sbZs2aK2bdsqJSVFJ0+eDHY5AADAgVoF+4CbN2/WuHHjNGbMGEnST37yE7366qv6+OOPJf1w9WTBggV65JFHNG7cOEnSSy+9pK5du2rlypVKTU0NdkkAAMBhgh5QkpKStGTJEn322We6+OKL9ec//1kbN27U008/LUk6ePCgjh49quTkZP992rdvryFDhqigoCBgQPF6vfJ6vf7bpaWlkiSfzyefzxfU+quO5wkzjVrnNFV1O7X+QDzh/5xV1dxqzy+U+g3FGVbHOeg81c9BKfB5GEr9hsIMa8+szv5/zK65fsY2hstUf3FIEFRWVurf/u3fNG/ePIWHh6uiokKPP/64srKyJP1whWXo0KE6cuSIYmNj/febOHGiXC6XXn/99TrHzM7OVk5OTp3teXl5atOmTTDLBwAAzaS8vFyTJk1SSUmJoqKiGlwb9Csob7zxhl555RXl5eWpb9++2rVrlzIyMhQXF6e0tLQzOmZWVpYyMzP9t0tLSxUfH69Ro0adtsGm8vl8ys/P18xtYfJWuupdtyc7JaiPe7ZU9Tdy5Ei53e6WLico+mWv9n/uCTOaM6iyzvycOq9AQnGG1XEOOk/1c1AKfB46dV6BhMIMa8+stqoZBrvHqmdAGiPoAWX69OmaMWOG/6mayy67TF988YWefPJJpaWlKSYmRpJUWFhY4wpKYWGhBgwYEPCYHo9HHo+nzna3291s3xzeSpe8FfX/4+jUb8oqzfm1O9sCzan2/EKl1+pCaYaBcA46R31zqj7DUOm1OifPsKFzq7pg99iUYwX9XTzl5eUKC6t52PDwcFVWVkqSEhISFBMTozVr1vj3l5aWasuWLUpMTAx2OQAAwIGCfgVl7Nixevzxx9WtWzf17dtXO3fu1NNPP60777xTkuRyuZSRkaHHHntMvXr1UkJCgmbOnKm4uDiNHz8+2OUAAAAHCnpAefbZZzVz5kzdd999KioqUlxcnO655x49+uij/jUPPfSQysrKdPfdd6u4uFjDhg3TqlWrFBkZGexyAACAAwU9oLRr104LFizQggUL6l3jcrk0e/ZszZ49O9gPDwAAQgB/iwcAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1miWgfPXVV7r11lvVqVMntW7dWpdddpm2bdvm32+M0aOPPqrY2Fi1bt1aycnJ2r9/f3OUAgAAHCjoAeXbb7/V0KFD5Xa79d577+n//u//9B//8R/q2LGjf828efO0cOFCLV68WFu2bFHbtm2VkpKikydPBrscAADgQK2CfcC5c+cqPj5ey5Yt829LSEjwf26M0YIFC/TII49o3LhxkqSXXnpJXbt21cqVK5WamhrskgAAgMMEPaC8/fbbSklJ0S9/+UutX79eF1xwge677z7dddddkqSDBw/q6NGjSk5O9t+nffv2GjJkiAoKCgIGFK/XK6/X679dWloqSfL5fPL5fEGtv+p4njDTqHVOU1W3U+sPxBP+z1lVza32/EKp31CcYXWcg85T/RyUAp+HodRvKMyw9szq7P/H7JrrZ2xjuIwxDVfZRJGRkZKkzMxM/fKXv9TWrVs1bdo0LV68WGlpadq8ebOGDh2qI0eOKDY21n+/iRMnyuVy6fXXX69zzOzsbOXk5NTZnpeXpzZt2gSzfAAA0EzKy8s1adIklZSUKCoqqsG1QQ8oERERGjRokDZv3uzf9pvf/EZbt25VQUHBGQWUQFdQ4uPj9c0335y2waby+XzKz8/XzG1h8la66l23JzslqI97tlT1N3LkSLnd7pYuJyj6Za/2f+4JM5ozqLLO/Jw6r0BCcYbVcQ46T/VzUAp8Hjp1XoGEwgxrz6y2qhkGu8fS0lJ17ty5UQEl6E/xxMbG6tJLL62xrU+fPnrrrbckSTExMZKkwsLCGgGlsLBQAwYMCHhMj8cjj8dTZ7vb7W62bw5vpUveivr/cXTqN2WV5vzanW2B5lR7fqHSa3WhNMNAOAedo745VZ9hqPRanZNn2NC5VV2we2zKsYL+Lp6hQ4dq3759NbZ99tln6t69u6QfXjAbExOjNWvW+PeXlpZqy5YtSkxMDHY5AADAgYJ+BeWBBx5QUlKSnnjiCU2cOFEff/yxlixZoiVLlkiSXC6XMjIy9Nhjj6lXr15KSEjQzJkzFRcXp/Hjxwe7HAAA4EBBDyhXXnmlVqxYoaysLM2ePVsJCQlasGCBJk+e7F/z0EMPqaysTHfffbeKi4s1bNgwrVq1yv8CWwAAcG4LekCRpBtvvFE33nhjvftdLpdmz56t2bNnN8fDAwAAh+Nv8QAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFin2QPKU089JZfLpYyMDP+2kydPKj09XZ06ddJ5552nCRMmqLCwsLlLAQAADtGsAWXr1q164YUX1L9//xrbH3jgAf3xj3/Um2++qfXr1+vIkSO6+eabm7MUAADgIM0WUE6cOKHJkyfrv/7rv9SxY0f/9pKSEv3ud7/T008/reuuu04DBw7UsmXLtHnzZn300UfNVQ4AAHCQVs114PT0dI0ZM0bJycl67LHH/Nu3b98un8+n5ORk/7bevXurW7duKigo0FVXXVXnWF6vV16v13+7tLRUkuTz+eTz+YJad9XxPGGmUeucpqpup9YfiCf8n7Oqmlvt+YVSv6E4w+o4B52n+jkoBT4PQ6nfUJhh7ZnV2f+P2TXXz9jGcBljGq7yDLz22mt6/PHHtXXrVkVGRmr48OEaMGCAFixYoLy8PN1xxx01AockDR48WNdee63mzp1b53jZ2dnKycmpsz0vL09t2rQJdvkAAKAZlJeXa9KkSSopKVFUVFSDa4N+BeXw4cOaNm2a8vPzFRkZGZRjZmVlKTMz03+7tLRU8fHxGjVq1GkbbCqfz6f8/HzN3BYmb6Wr3nV7slOC+rhnS1V/I0eOlNvtbulygqJf9mr/554wozmDKuvMz6nzCiQUZ1gd56DzVD8HpcDnoVPnFUgozLD2zGqrmmGwe6x6BqQxgh5Qtm/frqKiIl1xxRX+bRUVFdqwYYMWLVqk1atX6/vvv1dxcbE6dOjgX1NYWKiYmJiAx/R4PPJ4PHW2u93uZvvm8Fa65K2o/x9Hp35TVmnOr93ZFmhOtecXKr1WF0ozDIRz0Dnqm1P1GYZKr9U5eYYNnVvVBbvHphwr6AFlxIgR2r17d41td9xxh3r37q2HH35Y8fHxcrvdWrNmjSZMmCBJ2rdvnw4dOqTExMRglwMAABwo6AGlXbt26tevX41tbdu2VadOnfzbp0yZoszMTEVHRysqKkr333+/EhMTA75AFgAAnHua7V08DXnmmWcUFhamCRMmyOv1KiUlRc8991xLlAIAACx0VgLKunXratyOjIxUbm6ucnNzz8bDAwAAh+Fv8QAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALBO0APKk08+qSuvvFLt2rVTly5dNH78eO3bt6/GmpMnTyo9PV2dOnXSeeedpwkTJqiwsDDYpQAAAIcKekBZv3690tPT9dFHHyk/P18+n0+jRo1SWVmZf80DDzygP/7xj3rzzTe1fv16HTlyRDfffHOwSwEAAA7VKtgHXLVqVY3by5cvV5cuXbR9+3ZdffXVKikp0e9+9zvl5eXpuuuukyQtW7ZMffr00UcffaSrrroq2CUBAACHCXpAqa2kpESSFB0dLUnavn27fD6fkpOT/Wt69+6tbt26qaCgIGBA8Xq98nq9/tulpaWSJJ/PJ5/PF9R6q47nCTONWuc0VXU7tf5APOH/nFXV3GrPL5T6DcUZVsc56DzVz0Ep8HkYSv2Gwgxrz6zO/n/Mrrl+xjaGyxjTcJU/QmVlpW666SYVFxdr48aNkqS8vDzdcccdNQKHJA0ePFjXXnut5s6dW+c42dnZysnJqbM9Ly9Pbdq0aZ7iAQBAUJWXl2vSpEkqKSlRVFRUg2ub9QpKenq69uzZ4w8nZyorK0uZmZn+26WlpYqPj9eoUaNO22BT+Xw+5efna+a2MHkrXfWu25OdEtTHPVuq+hs5cqTcbndLlxMU/bJX+z/3hBnNGVRZZ35OnVcgoTjD6jgHnaf6OSgFPg+dOq9AQmGGtWdWW9UMg91j1TMgjdFsAWXq1Kl65513tGHDBl144YX+7TExMfr+++9VXFysDh06+LcXFhYqJiYm4LE8Ho88Hk+d7W63u9m+ObyVLnkr6v/H0anflFWa82t3tgWaU+35hUqv1YXSDAPhHHSO+uZUfYah0mt1Tp5hQ+dWdcHusSnHCvq7eIwxmjp1qlasWKG1a9cqISGhxv6BAwfK7XZrzZo1/m379u3ToUOHlJiYGOxyAACAAwX9Ckp6erry8vL0P//zP2rXrp2OHj0qSWrfvr1at26t9u3ba8qUKcrMzFR0dLSioqJ0//33KzExkXfwAAAASc0QUJ5//nlJ0vDhw2tsX7ZsmW6//XZJ0jPPPKOwsDBNmDBBXq9XKSkpeu6554JdCgAAcKigB5TGvCkoMjJSubm5ys3NDfbDAwCAEMDf4gEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGCdFg0oubm5+slPfqLIyEgNGTJEH3/8cUuWAwAALNFiAeX1119XZmamZs2apR07dujyyy9XSkqKioqKWqokAABgiRYLKE8//bTuuusu3XHHHbr00ku1ePFitWnTRkuXLm2pkgAAgCVatcSDfv/999q+fbuysrL828LCwpScnKyCgoI6671er7xer/92SUmJJOnYsWPy+XxBrc3n86m8vFytfGGqqHTVu+7vf/97UB/3bKnq7+9//7vcbndLlxMUrU6V/fPzSqPy8so683PqvAIJxRlWxznoPNXPQSnweejUeQUSCjOsPbM6+/8xw2D3ePz4cUmSMeb0i00L+Oqrr4wks3nz5hrbp0+fbgYPHlxn/axZs4wkPvjggw8++OAjBD4OHz582qzQIldQmiorK0uZmZn+25WVlTp27Jg6deokl6v+/2GdidLSUsXHx+vw4cOKiooK6rFtQH/OF+o90p/zhXqPod6f1Hw9GmN0/PhxxcXFnXZtiwSUzp07Kzw8XIWFhTW2FxYWKiYmps56j8cjj8dTY1uHDh2as0RFRUWF7DeeRH+hINR7pD/nC/UeQ70/qXl6bN++faPWtciLZCMiIjRw4ECtWbPGv62yslJr1qxRYmJiS5QEAAAs0mJP8WRmZiotLU2DBg3S4MGDtWDBApWVlemOO+5oqZIAAIAlWiyg3HLLLfrb3/6mRx99VEePHtWAAQO0atUqde3ataVKkvTD00mzZs2q85RSqKA/5wv1HunP+UK9x1DvT7KjR5cxjXmvDwAAwNnD3+IBAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGCdcyqgbNiwQWPHjlVcXJxcLpdWrlx52vusW7dOV1xxhTwej3r27Knly5c3e50/RlN7XLdunVwuV52Po0ePnp2Cm+DJJ5/UlVdeqXbt2qlLly4aP3689u3bd9r7vfnmm+rdu7ciIyN12WWX6d133z0L1Z6ZM+lx+fLldeYXGRl5lipumueff179+/f3/3bKxMREvffeew3ex0nzk5reo5PmF8hTTz0ll8uljIyMBtc5bY5VGtOf02aYnZ1dp97evXs3eJ+WmN85FVDKysp0+eWXKzc3t1HrDx48qDFjxujaa6/Vrl27lJGRoX/5l3/R6tWrm7nSM9fUHqvs27dPX3/9tf+jS5cuzVThmVu/fr3S09P10UcfKT8/Xz6fT6NGjVJZWf1/lXPz5s361a9+pSlTpmjnzp0aP368xo8frz179pzFyhvvTHqUfvh11NXn98UXX5ylipvmwgsv1FNPPaXt27dr27Ztuu666zRu3Djt3bs34HqnzU9qeo+Sc+ZX29atW/XCCy+of//+Da5z4hylxvcnOW+Gffv2rVHvxo0b613bYvMLzt8ndh5JZsWKFQ2ueeihh0zfvn1rbLvllltMSkpKM1YWPI3p8cMPPzSSzLfffntWagqmoqIiI8msX7++3jUTJ040Y8aMqbFtyJAh5p577mnu8oKiMT0uW7bMtG/f/uwVFWQdO3Y0L774YsB9Tp9flYZ6dOr8jh8/bnr16mXy8/PNNddcY6ZNm1bvWifOsSn9OW2Gs2bNMpdffnmj17fU/M6pKyhNVVBQoOTk5BrbUlJSVFBQ0EIVNZ8BAwYoNjZWI0eO1KZNm1q6nEYpKSmRJEVHR9e7xukzbEyPknTixAl1795d8fHxp/3fui0qKir02muvqaysrN6/weX0+TWmR8mZ80tPT9eYMWPqzCcQJ86xKf1Jzpvh/v37FRcXp4suukiTJ0/WoUOH6l3bUvNrsV917wRHjx6t86v3u3btqtLSUn333Xdq3bp1C1UWPLGxsVq8eLEGDRokr9erF198UcOHD9eWLVt0xRVXtHR59aqsrFRGRoaGDh2qfv361buuvhna+Bqb2hrb4yWXXKKlS5eqf//+Kikp0fz585WUlKS9e/fqwgsvPIsVN87u3buVmJiokydP6rzzztOKFSt06aWXBlzr1Pk1pUenzU+SXnvtNe3YsUNbt25t1HqnzbGp/TlthkOGDNHy5ct1ySWX6Ouvv1ZOTo5+9rOfac+ePWrXrl2d9S01PwLKOe6SSy7RJZdc4r+dlJSkzz//XM8884xefvnlFqysYenp6dqzZ0+Dz5s6XWN7TExMrPG/86SkJPXp00cvvPCC5syZ09xlNtkll1yiXbt2qaSkRL///e+Vlpam9evX1/sD3Ima0qPT5nf48GFNmzZN+fn5Vr8Q9EydSX9Om+Ho0aP9n/fv319DhgxR9+7d9cYbb2jKlCktWFlNBJQGxMTEqLCwsMa2wsJCRUVFhcTVk/oMHjzY6h/8U6dO1TvvvKMNGzac9n8n9c0wJiamOUv80ZrSY21ut1s//elPdeDAgWaq7seJiIhQz549JUkDBw7U1q1b9Z//+Z964YUX6qx16vya0mNtts9v+/btKioqqnGFtaKiQhs2bNCiRYvk9XoVHh5e4z5OmuOZ9Feb7TOsrUOHDrr44ovrrbel5sdrUBqQmJioNWvW1NiWn5/f4HPJoWDXrl2KjY1t6TLqMMZo6tSpWrFihdauXauEhITT3sdpMzyTHmurqKjQ7t27rZxhIJWVlfJ6vQH3OW1+9Wmox9psn9+IESO0e/du7dq1y/8xaNAgTZ48Wbt27Qr4w9tJczyT/mqzfYa1nThxQp9//nm99bbY/Jr1JbiWOX78uNm5c6fZuXOnkWSefvpps3PnTvPFF18YY4yZMWOGue222/zr//KXv5g2bdqY6dOnm08//dTk5uaa8PBws2rVqpZq4bSa2uMzzzxjVq5cafbv3292795tpk2bZsLCwswHH3zQUi3U69577zXt27c369atM19//bX/o7y83L/mtttuMzNmzPDf3rRpk2nVqpWZP3+++fTTT82sWbOM2+02u3fvbokWTutMeszJyTGrV682n3/+udm+fbtJTU01kZGRZu/evS3RQoNmzJhh1q9fbw4ePGg++eQTM2PGDONyucz7779vjHH+/Ixpeo9Oml99ar/LJRTmWN3p+nPaDB988EGzbt06c/DgQbNp0yaTnJxsOnfubIqKiowx9szvnAooVW+prf2RlpZmjDEmLS3NXHPNNXXuM2DAABMREWEuuugis2zZsrNed1M0tce5c+eaHj16mMjISBMdHW2GDx9u1q5d2zLFn0agviTVmMk111zj77XKG2+8YS6++GITERFh+vbta/70pz+d3cKb4Ex6zMjIMN26dTMRERGma9eu5oYbbjA7duw4+8U3wp133mm6d+9uIiIizPnnn29GjBjh/8FtjPPnZ0zTe3TS/OpT+wd4KMyxutP157QZ3nLLLSY2NtZERESYCy64wNxyyy3mwIED/v22zM9ljDHNe40GAACgaXgNCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACs8//QVYXVPu9xwwAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMLpJREFUeJzt3XtclHXe//H3gDB4QsVUQNHINE1LS9MFbT2EkrUV5aam25Lrattq66GT/jYTTCt9qLklmx02rVa2s97W3mmkqbfHPLZq3aatmbcmtpmQENME398fLbMcBgQa4HtNr+fjwePBXNd3rvl8/HDB22tmwGWMMQIAALBISH0XAAAAUBYBBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEF+AkaOHCgBg4cWOP7du/ePbAF1aE77rhDF154YY3v26RJk8AWBMAvAgoQBJYvXy6Xy+X7aNCggdq2bas77rhDJ06cqJeaTp48qbS0NO3bt++8a1999VW5XC6tXLmy3L4ePXrI5XLp/fffL7evffv2SkxMDES5AZWfn6+0tDRt2LChvksBHKtBfRcAIHBmz56t+Ph4FRQUaPv27Vq+fLk2b96sAwcOKCIiwrfu3XffrfVaTp48qfT0dF144YXq2bNnpWv79+8vSdq8ebNuvvlm3/bc3FwdOHBADRo00JYtWzRo0CDfvuPHj+v48eMaNWpUtep69tlnVVRUVK37VFd+fr7S09MlqcZXqoCfOgIKEESGDRum3r17S5J++9vf6oILLtC8efO0evVqjRgxwrcuPDy8vkr0KzY2VvHx8dq8eXOp7du2bZMxRrfeemu5fcW3i8NNVYWFhf24YgHUCZ7iAYLY1VdfLUn69NNPS2339xqUY8eO6cYbb1Tjxo3VunVrTZ06VWvXrpXL5fL7VMVHH32kQYMGqVGjRmrbtq3mz5/v27dhwwZdddVVkqSxY8f6nnpavnx5hbX2799fe/fu1bfffuvbtmXLFnXr1k3Dhg3T9u3bS1352LJli1wul/r16+fb9te//lW9evVSw4YNFRUVpVGjRun48eOlHsffa1C++uor3X777YqMjFTz5s2VmpqqDz/8sMKaT5w4oZSUFDVp0kStWrXSvffeq8LCQknSZ599platWkmS0tPTfb2npaVV2DuA8ggoQBD77LPPJEktWrSodF1eXp4GDx6s9957T3/4wx/0xz/+UVu3btUDDzzgd/3XX3+ta6+9Vj169NDChQvVpUsXPfDAA3rnnXckSV27dtXs2bMlSRMmTNBLL72kl156ST//+c8rrKF///7yer3asWOHb9uWLVuUmJioxMRE5eTk6MCBA6X2denSRS1btpQkzZ07V7/+9a/VqVMnLVq0SFOmTNG6dev085//XGfPnq3wcYuKinTDDTfob3/7m1JTUzV37lx98cUXSk1N9bu+sLBQycnJatmypRYsWKABAwZo4cKFeuaZZyRJrVq10lNPPSVJuvnmm32933LLLRXWAMAPA8Dxli1bZiSZ9957z3z55Zfm+PHj5vXXXzetWrUybrfbHD9+vNT6AQMGmAEDBvhuL1y40Egyq1at8m379ttvTZcuXYwk8/7775e6ryTz4osv+rZ5PB4THR1thg8f7tu2c+dOI8ksW7asSj0cPHjQSDIPP/ywMcYYr9drGjdubF544QVjjDFt2rQxGRkZxhhjcnNzTWhoqBk/frwxxpjPPvvMhIaGmrlz55Y65v79+02DBg1KbU9NTTUdOnTw3X7jjTeMJLN48WLftsLCQjN48OBy9aemphpJZvbs2aUe54orrjC9evXy3f7yyy+NJDNr1qwq9Q6gPK6gAEEkKSlJrVq1UlxcnH75y1+qcePGWr16tdq1a1fp/dasWaO2bdvqxhtv9G2LiIjQ+PHj/a5v0qSJfvWrX/luh4eHq0+fPvrnP/9Z49q7du2qli1b+l5b8uGHHyovL8/3Lp3ExERt2bJF0g+vTSksLPS9/uTNN99UUVGRRowYoX/961++j+joaHXq1MnvO4BK9h4WFlaq15CQEE2cOLHC+/zud78rdfvqq6/+Ub0DKI8XyQJBJCMjQ507d1ZOTo6ef/55bdq0SW63+7z3O3bsmDp27CiXy1Vq+8UXX+x3fbt27cqtbdGihf7xj3/UuHaXy6XExERt2rRJRUVF2rJli1q3bu2rITExUUuWLJEkX1ApDiiHDx+WMUadOnXye+zKXhh77NgxxcTEqFGjRqW2V9R7RESE7zUmxVq0aKGvv/66Cl0CqCoCChBE+vTp43sXT0pKivr376/Ro0fr0KFDAf0FY6GhoX63G2N+1HH79++vt956S/v37/e9/qRYYmKi7rvvPp04cUKbN29WbGysLrroIkk/vI7E5XLpnXfe8VtbXfQOILAIKECQCg0N1aOPPqpBgwZpyZIlmj59eoVrO3TooI8++kjGmFJXRo4cOVLjxy97haUqSv4+lC1btmjKlCm+fb169ZLb7daGDRu0Y8cOXXfddb59HTt2lDFG8fHx6ty5c7Ues0OHDnr//feVn59f6ipKXfcOoDRegwIEsYEDB6pPnz5avHixCgoKKlyXnJysEydOaPXq1b5tBQUFevbZZ2v82I0bN5akSt9BU1bv3r0VERGhFStW6MSJE6WuoLjdbl155ZXKyMhQXl5eqd9/cssttyg0NFTp6enlruIYY/TVV19V+JjJycnyer2lei0qKlJGRkaV6y6rOOhUp3cApXEFBQhy9913n2699VYtX7683Is7i915551asmSJbrvtNk2ePFkxMTFasWKF77fP1uSKQMeOHdW8eXMtXbpUTZs2VePGjdW3b1/Fx8dXeJ/w8HBdddVV+p//+R+53W716tWr1P7ExEQtXLhQUulf0NaxY0fNmTNHM2bM0GeffaaUlBQ1bdpUR48e1cqVKzVhwgTde++9fh8zJSVFffr00T333KMjR46oS5cuWr16tc6cOVPj3hs2bKhLL71Ur7zyijp37qyoqCh1797d0X/DCKhrXEEBgtwtt9yijh07asGCBb5fJlZWkyZNtH79eg0ePFh/+tOfNGfOHF199dWaOXOmJJX6NflVFRYWphdeeEGhoaH63e9+p9tuu00bN2487/2Kg0fxUzolFf9StqZNm6pHjx6l9k2fPl1vvPGGQkJClJ6ernvvvVerV6/W0KFDS707qazQ0FD9/e9/18iRI/XCCy/oj3/8o2JjY31XUGrSuyQ999xzatu2raZOnarbbrtNr7/+eo2OA/xUucyPfVUbgKC1ePFiTZ06Vf/3f/+ntm3b1nc5dWrVqlW6+eabtXnz5lK/rRZA3SCgAJAkffvtt2rYsKHvdkFBga644goVFhbqk08+qcfKal/Z3gsLCzV06FDt2rVLp06dKrUPQN3gNSgAJP3wVFD79u3Vs2dP5eTk6K9//av+93//VytWrKjv0mrd3XffrW+//VYJCQnyeDx68803tXXrVj3yyCOEE6CecAUFgKQfns557rnn9Nlnn6mwsFCXXnqp7r//fo0cObK+S6t1mZmZWrhwoY4cOaKCggJdfPHFuuuuuzRp0qT6Lg34ySKgAAAA6/AuHgAAYB0CCgAAsI4jXyRbVFSkkydPqmnTpvxKaQAAHMIYo2+++UaxsbEKCan8GokjA8rJkycVFxdX32UAAIAaOH78uNq1a1fpGkcGlKZNm0r6ocHIyMiAHtvr9erdd9/V0KFDK/0T7U5Ff84X7D3Sn/MFe4/B3p9Uez3m5uYqLi7O93O8Mo4MKMVP60RGRtZKQGnUqJEiIyOD8guP/pwv2HukP+cL9h6DvT+p9nusysszeJEsAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUa1HcBtuqetlaewor/HPRnj11fh9WgMhdO/7vvc3eo0fw+5efHvJyHc9A5Sp6Dkv/zkHnZpezMyiqeYX3iCgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWKfaAWXTpk264YYbFBsbK5fLpVWrVvn2eb1ePfDAA7rsssvUuHFjxcbG6te//rVOnjxZ6hhnzpzRmDFjFBkZqebNm2vcuHE6d+7cj24GAAAEh2oHlLy8PPXo0UMZGRnl9uXn52vPnj2aOXOm9uzZozfffFOHDh3SjTfeWGrdmDFjdPDgQWVlZentt9/Wpk2bNGHChJp3AQAAgkq1/1jgsGHDNGzYML/7mjVrpqysrFLblixZoj59+ujzzz9X+/bt9fHHH2vNmjXauXOnevfuLUl68skndd1112nBggWKjY0td1yPxyOPx+O7nZubK+mHKzZer7e6LVSq+HjuEFOldU5TXLdT6/fHHfqfWRXPrez8gqnfYJxhSZyDzlPyHJT8n4fB1G8wzLDszMrt//fsautnbFW4jDGVV1nZnV0urVy5UikpKRWuee+99zR06FCdPXtWkZGRev7553XPPffo66+/9q35/vvvFRERoddee00333xzuWOkpaUpPT293PbMzEw1atSopuUDAIA6lJ+fr9GjRysnJ0eRkZGVrq32FZTqKCgo0AMPPKDbbrvNV8ipU6fUunXr0kU0aKCoqCidOnXK73FmzJihadOm+W7n5uYqLi5OQ4cOPW+D1eX1epWVlaWZu0LkKar4T70fSEsO6OPWleL+hgwZorCwsPouJyC6p631fe4OMXq4d1G5+Tl1Xv4E4wxL4hx0npLnoOT/PHTqvPwJhhmWnVlZxTMMdI/Fz4BURa0FFK/XqxEjRsgYo6eeeupHHcvtdsvtdpfbHhYWVmtfHJ4ilzyFFX9zdOoXZbHa/Lera/7mVHZ+wdJrScE0Q384B52jojmVnGGw9FqSk2dY2blVUqB7rM6xaiWgFIeTY8eOaf369aWuckRHR+v06dOl1n///fc6c+aMoqOja6McAADgMAH/PSjF4eTw4cN677331LJly1L7ExISdPbsWe3evdu3bf369SoqKlLfvn0DXQ4AAHCgal9BOXfunI4cOeK7ffToUe3bt09RUVGKiYnRL3/5S+3Zs0dvv/22CgsLfa8riYqKUnh4uLp27aprr71W48eP19KlS+X1ejVp0iSNGjXK7zt4AADAT0+1A8quXbs0aNAg3+3iF6+mpqYqLS1Nq1evliT17Nmz1P3ef/99DRw4UJK0YsUKTZo0Sddcc41CQkI0fPhwPfHEEzVsAQAABJtqB5SBAweqsncmV+Vdy1FRUcrMzKzuQwMAgJ8I/hYPAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA61Q7oGzatEk33HCDYmNj5XK5tGrVqlL7jTF66KGHFBMTo4YNGyopKUmHDx8utebMmTMaM2aMIiMj1bx5c40bN07nzp37UY0AAIDgUe2AkpeXpx49eigjI8Pv/vnz5+uJJ57Q0qVLtWPHDjVu3FjJyckqKCjwrRkzZowOHjyorKwsvf3229q0aZMmTJhQ8y4AAEBQaVDdOwwbNkzDhg3zu88Yo8WLF+vBBx/UTTfdJEl68cUX1aZNG61atUqjRo3Sxx9/rDVr1mjnzp3q3bu3JOnJJ5/UddddpwULFig2NvZHtAMAAIJBtQNKZY4ePapTp04pKSnJt61Zs2bq27evtm3bplGjRmnbtm1q3ry5L5xIUlJSkkJCQrRjxw7dfPPN5Y7r8Xjk8Xh8t3NzcyVJXq9XXq83kC34jucOMVVa5zTFdTu1fn/cof+ZVfHcys4vmPoNxhmWxDnoPCXPQcn/eRhM/QbDDMvOrNz+f8+utn7GVoXLGFN5lZXd2eXSypUrlZKSIknaunWr+vXrp5MnTyomJsa3bsSIEXK5XHrllVf0yCOP6IUXXtChQ4dKHat169ZKT0/XXXfdVe5x0tLSlJ6eXm57ZmamGjVqVNPyAQBAHcrPz9fo0aOVk5OjyMjIStcG9ApKbZkxY4amTZvmu52bm6u4uDgNHTr0vA1Wl9frVVZWlmbuCpGnyFXhugNpyQF93LpS3N+QIUMUFhZW3+UERPe0tb7P3SFGD/cuKjc/p87Ln2CcYUmcg85T8hyU/J+HTp2XP8Eww7IzK6t4hoHusfgZkKoIaECJjo6WJGVnZ5e6gpKdna2ePXv61pw+fbrU/b7//nudOXPGd/+y3G633G53ue1hYWG19sXhKXLJU1jxN0enflEWq81/u7rmb05l5xcsvZYUTDP0h3PQOSqaU8kZBkuvJTl5hpWdWyUFusfqHCugvwclPj5e0dHRWrdunW9bbm6uduzYoYSEBElSQkKCzp49q927d/vWrF+/XkVFRerbt28gywEAAA5V7Sso586d05EjR3y3jx49qn379ikqKkrt27fXlClTNGfOHHXq1Enx8fGaOXOmYmNjfa9T6dq1q6699lqNHz9eS5culdfr1aRJkzRq1CjewQMAACTVIKDs2rVLgwYN8t0ufm1Iamqqli9frvvvv195eXmaMGGCzp49q/79+2vNmjWKiIjw3WfFihWaNGmSrrnmGoWEhGj48OF64oknAtAOAAAIBtUOKAMHDlRlb/xxuVyaPXu2Zs+eXeGaqKgoZWZmVvehAQDATwR/iwcAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1Ah5QCgsLNXPmTMXHx6thw4bq2LGjHn74YRljfGuMMXrooYcUExOjhg0bKikpSYcPHw50KQAAwKECHlDmzZunp556SkuWLNHHH3+sefPmaf78+XryySd9a+bPn68nnnhCS5cu1Y4dO9S4cWMlJyeroKAg0OUAAAAHahDoA27dulU33XSTrr/+eknShRdeqL/97W/64IMPJP1w9WTx4sV68MEHddNNN0mSXnzxRbVp00arVq3SqFGjAl0SAABwmIAHlMTERD3zzDP65JNP1LlzZ3344YfavHmzFi1aJEk6evSoTp06paSkJN99mjVrpr59+2rbtm1+A4rH45HH4/Hdzs3NlSR5vV55vd6A1l98PHeIqdI6pymu26n1++MO/c+siudWdn7B1G8wzrAkzkHnKXkOSv7Pw2DqNxhmWHZm5fb/e3a19TO2Klym5ItDAqCoqEj/7//9P82fP1+hoaEqLCzU3LlzNWPGDEk/XGHp16+fTp48qZiYGN/9RowYIZfLpVdeeaXcMdPS0pSenl5ue2Zmpho1ahTI8gEAQC3Jz8/X6NGjlZOTo8jIyErXBvwKyquvvqoVK1YoMzNT3bp10759+zRlyhTFxsYqNTW1RsecMWOGpk2b5rudm5uruLg4DR069LwNVpfX61VWVpZm7gqRp8hV4boDackBfdy6UtzfkCFDFBYWVt/lBET3tLW+z90hRg/3Lio3P6fOy59gnGFJnIPOU/IclPyfh06dlz/BMMOyMyureIaB7rH4GZCqCHhAue+++zR9+nTfUzWXXXaZjh07pkcffVSpqamKjo6WJGVnZ5e6gpKdna2ePXv6Pabb7Zbb7S63PSwsrNa+ODxFLnkKK/7m6NQvymK1+W9X1/zNqez8gqXXkoJphv5wDjpHRXMqOcNg6bUkJ8+wsnOrpED3WJ1jBfxdPPn5+QoJKX3Y0NBQFRUVSZLi4+MVHR2tdevW+fbn5uZqx44dSkhICHQ5AADAgQJ+BeWGG27Q3Llz1b59e3Xr1k179+7VokWL9Jvf/EaS5HK5NGXKFM2ZM0edOnVSfHy8Zs6cqdjYWKWkpAS6HAAA4EABDyhPPvmkZs6cqd///vc6ffq0YmNjdeedd+qhhx7yrbn//vuVl5enCRMm6OzZs+rfv7/WrFmjiIiIQJcDAAAcKOABpWnTplq8eLEWL15c4RqXy6XZs2dr9uzZgX54AAAQBPhbPAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxTKwHlxIkT+tWvfqWWLVuqYcOGuuyyy7Rr1y7ffmOMHnroIcXExKhhw4ZKSkrS4cOHa6MUAADgQAEPKF9//bX69eunsLAwvfPOO/roo4+0cOFCtWjRwrdm/vz5euKJJ7R06VLt2LFDjRs3VnJysgoKCgJdDgAAcKAGgT7gvHnzFBcXp2XLlvm2xcfH+z43xmjx4sV68MEHddNNN0mSXnzxRbVp00arVq3SqFGjAl0SAABwmIAHlNWrVys5OVm33nqrNm7cqLZt2+r3v/+9xo8fL0k6evSoTp06paSkJN99mjVrpr59+2rbtm1+A4rH45HH4/Hdzs3NlSR5vV55vd6A1l98PHeIqdI6pymu26n1++MO/c+siudWdn7B1G8wzrAkzkHnKXkOSv7Pw2DqNxhmWHZm5fb/e3a19TO2KlzGmMqrrKaIiAhJ0rRp03Trrbdq586dmjx5spYuXarU1FRt3bpV/fr108mTJxUTE+O734gRI+RyufTKK6+UO2ZaWprS09PLbc/MzFSjRo0CWT4AAKgl+fn5Gj16tHJychQZGVnp2oAHlPDwcPXu3Vtbt271bfvDH/6gnTt3atu2bTUKKP6uoMTFxelf//rXeRusLq/Xq6ysLM3cFSJPkavCdQfSkgP6uHWluL8hQ4YoLCysvssJiO5pa32fu0OMHu5dVG5+Tp2XP8E4w5I4B52n5Dko+T8PnTovf4JhhmVnVlbxDAPdY25uri644IIqBZSAP8UTExOjSy+9tNS2rl276o033pAkRUdHS5Kys7NLBZTs7Gz17NnT7zHdbrfcbne57WFhYbX2xeEpcslTWPE3R6d+URarzX+7uuZvTmXnFyy9lhRMM/SHc9A5KppTyRkGS68lOXmGlZ1bJQW6x+ocK+Dv4unXr58OHTpUatsnn3yiDh06SPrhBbPR0dFat26db39ubq527NihhISEQJcDAAAcKOBXUKZOnarExEQ98sgjGjFihD744AM988wzeuaZZyRJLpdLU6ZM0Zw5c9SpUyfFx8dr5syZio2NVUpKSqDLAQAADhTwgHLVVVdp5cqVmjFjhmbPnq34+HgtXrxYY8aM8a25//77lZeXpwkTJujs2bPq37+/1qxZ43uBLQAA+GkLeECRpF/84hf6xS9+UeF+l8ul2bNna/bs2bXx8AAAwOH4WzwAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWqfWA8thjj8nlcmnKlCm+bQUFBZo4caJatmypJk2aaPjw4crOzq7tUgAAgEPUakDZuXOnnn76aV1++eWltk+dOlVvvfWWXnvtNW3cuFEnT57ULbfcUpulAAAAB6m1gHLu3DmNGTNGzz77rFq0aOHbnpOTo7/85S9atGiRBg8erF69emnZsmXaunWrtm/fXlvlAAAAB2lQWweeOHGirr/+eiUlJWnOnDm+7bt375bX61VSUpJvW5cuXdS+fXtt27ZNP/vZz8ody+PxyOPx+G7n5uZKkrxer7xeb0DrLj6eO8RUaZ3TFNft1Pr9cYf+Z1bFcys7v2DqNxhnWBLnoPOUPAcl/+dhMPUbDDMsO7Ny+/89u9r6GVsVLmNM5VXWwMsvv6y5c+dq586dioiI0MCBA9WzZ08tXrxYmZmZGjt2bKnAIUl9+vTRoEGDNG/evHLHS0tLU3p6erntmZmZatSoUaDLBwAAtSA/P1+jR49WTk6OIiMjK10b8Csox48f1+TJk5WVlaWIiIiAHHPGjBmaNm2a73Zubq7i4uI0dOjQ8zZYXV6vV1lZWZq5K0SeIleF6w6kJQf0cetKcX9DhgxRWFhYfZcTEN3T1vo+d4cYPdy7qNz8nDovf4JxhiVxDjpPyXNQ8n8eOnVe/gTDDMvOrKziGQa6x+JnQKoi4AFl9+7dOn36tK688krftsLCQm3atElLlizR2rVr9d133+ns2bNq3ry5b012draio6P9HtPtdsvtdpfbHhYWVmtfHJ4ilzyFFX9zdOoXZbHa/Lera/7mVHZ+wdJrScE0Q384B52jojmVnGGw9FqSk2dY2blVUqB7rM6xAh5QrrnmGu3fv7/UtrFjx6pLly564IEHFBcXp7CwMK1bt07Dhw+XJB06dEiff/65EhISAl0OAABwoIAHlKZNm6p79+6ltjVu3FgtW7b0bR83bpymTZumqKgoRUZG6u6771ZCQoLfF8gCAICfnlp7F09lHn/8cYWEhGj48OHyeDxKTk7Wn//85/ooBQAAWKhOAsqGDRtK3Y6IiFBGRoYyMjLq4uEBAIDD8Ld4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWCfgAeXRRx/VVVddpaZNm6p169ZKSUnRoUOHSq0pKCjQxIkT1bJlSzVp0kTDhw9XdnZ2oEsBAAAOFfCAsnHjRk2cOFHbt29XVlaWvF6vhg4dqry8PN+aqVOn6q233tJrr72mjRs36uTJk7rlllsCXQoAAHCoBoE+4Jo1a0rdXr58uVq3bq3du3fr5z//uXJycvSXv/xFmZmZGjx4sCRp2bJl6tq1q7Zv366f/exngS4JAAA4TMADSlk5OTmSpKioKEnS7t275fV6lZSU5FvTpUsXtW/fXtu2bfMbUDwejzwej+92bm6uJMnr9crr9Qa03uLjuUNMldY5TXHdTq3fH3fof2ZVPLey8wumfoNxhiVxDjpPyXNQ8n8eBlO/wTDDsjMrt//fs6utn7FV4TLGVF7lj1BUVKQbb7xRZ8+e1ebNmyVJmZmZGjt2bKnAIUl9+vTRoEGDNG/evHLHSUtLU3p6erntmZmZatSoUe0UDwAAAio/P1+jR49WTk6OIiMjK11bq1dQJk6cqAMHDvjCSU3NmDFD06ZN893Ozc1VXFychg4det4Gq8vr9SorK0szd4XIU+SqcN2BtOSAPm5dKe5vyJAhCgsLq+9yAqJ72lrf5+4Qo4d7F5Wbn1Pn5U8wzrAkzkHnKXkOSv7PQ6fOy59gmGHZmZVVPMNA91j8DEhV1FpAmTRpkt5++21t2rRJ7dq1822Pjo7Wd999p7Nnz6p58+a+7dnZ2YqOjvZ7LLfbLbfbXW57WFhYrX1xeIpc8hRW/M3RqV+UxWrz366u+ZtT2fkFS68lBdMM/eEcdI6K5lRyhsHSa0lOnmFl51ZJge6xOscK+Lt4jDGaNGmSVq5cqfXr1ys+Pr7U/l69eiksLEzr1q3zbTt06JA+//xzJSQkBLocAADgQAG/gjJx4kRlZmbqv/7rv9S0aVOdOnVKktSsWTM1bNhQzZo107hx4zRt2jRFRUUpMjJSd999txISEngHDwAAkFQLAeWpp56SJA0cOLDU9mXLlumOO+6QJD3++OMKCQnR8OHD5fF4lJycrD//+c+BLgUAADhUwANKVd4UFBERoYyMDGVkZAT64QEAQBDgb/EAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwTr0GlIyMDF144YWKiIhQ37599cEHH9RnOQAAwBL1FlBeeeUVTZs2TbNmzdKePXvUo0cPJScn6/Tp0/VVEgAAsES9BZRFixZp/PjxGjt2rC699FItXbpUjRo10vPPP19fJQEAAEs0qI8H/e6777R7927NmDHDty0kJERJSUnatm1bufUej0cej8d3OycnR5J05swZeb3egNbm9XqVn5+vBt4QFRa5Klz31VdfBfRx60pxf1999ZXCwsLqu5yAaPB93n8+LzLKzy8qNz+nzsufYJxhSZyDzlPyHJT8n4dOnZc/wTDDsjMrt//fMwx0j998840kyRhz/sWmHpw4ccJIMlu3bi21/b777jN9+vQpt37WrFlGEh988MEHH3zwEQQfx48fP29WqJcrKNU1Y8YMTZs2zXe7qKhIZ86cUcuWLeVyVfw/rJrIzc1VXFycjh8/rsjIyIAe2wb053zB3iP9OV+w9xjs/Um116MxRt98841iY2PPu7ZeAsoFF1yg0NBQZWdnl9qenZ2t6Ojocuvdbrfcbnepbc2bN6/NEhUZGRm0X3gS/QWDYO+R/pwv2HsM9v6k2umxWbNmVVpXLy+SDQ8PV69evbRu3TrftqKiIq1bt04JCQn1URIAALBIvT3FM23aNKWmpqp3797q06ePFi9erLy8PI0dO7a+SgIAAJaot4AycuRIffnll3rooYd06tQp9ezZU2vWrFGbNm3qqyRJPzydNGvWrHJPKQUL+nO+YO+R/pwv2HsM9v4kO3p0GVOV9/oAAADUHf4WDwAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6/ykAsqmTZt0ww03KDY2Vi6XS6tWrTrvfTZs2KArr7xSbrdbF198sZYvX17rdf4Y1e1xw4YNcrlc5T5OnTpVNwVXw6OPPqqrrrpKTZs2VevWrZWSkqJDhw6d936vvfaaunTpooiICF122WX67//+7zqotmZq0uPy5cvLzS8iIqKOKq6ep556Spdffrnvt1MmJCTonXfeqfQ+TpqfVP0enTQ/fx577DG5XC5NmTKl0nVOm2OxqvTntBmmpaWVq7dLly6V3qc+5veTCih5eXnq0aOHMjIyqrT+6NGjuv766zVo0CDt27dPU6ZM0W9/+1utXbu2liutuer2WOzQoUP64osvfB+tW7eupQprbuPGjZo4caK2b9+urKwseb1eDR06VHl5Ff9Vzq1bt+q2227TuHHjtHfvXqWkpCglJUUHDhyow8qrriY9Sj/8OuqS8zt27FgdVVw97dq102OPPabdu3dr165dGjx4sG666SYdPHjQ73qnzU+qfo+Sc+ZX1s6dO/X000/r8ssvr3SdE+coVb0/yXkz7NatW6l6N2/eXOHaeptfYP4+sfNIMitXrqx0zf3332+6detWatvIkSNNcnJyLVYWOFXp8f333zeSzNdff10nNQXS6dOnjSSzcePGCteMGDHCXH/99aW29e3b19x55521XV5AVKXHZcuWmWbNmtVdUQHWokUL89xzz/nd5/T5FausR6fO75tvvjGdOnUyWVlZZsCAAWby5MkVrnXiHKvTn9NmOGvWLNOjR48qr6+v+f2krqBU17Zt25SUlFRqW3JysrZt21ZPFdWenj17KiYmRkOGDNGWLVvqu5wqycnJkSRFRUVVuMbpM6xKj5J07tw5dejQQXFxcef937otCgsL9fLLLysvL6/Cv8Hl9PlVpUfJmfObOHGirr/++nLz8ceJc6xOf5LzZnj48GHFxsbqoosu0pgxY/T5559XuLa+5ldvv+reCU6dOlXuV++3adNGubm5+vbbb9WwYcN6qixwYmJitHTpUvXu3Vsej0fPPfecBg4cqB07dujKK6+s7/IqVFRUpClTpqhfv37q3r17hesqmqGNr7Epq6o9XnLJJXr++ed1+eWXKycnRwsWLFBiYqIOHjyodu3a1WHFVbN//34lJCSooKBATZo00cqVK3XppZf6XevU+VWnR6fNT5Jefvll7dmzRzt37qzSeqfNsbr9OW2Gffv21fLly3XJJZfoiy++UHp6uq6++modOHBATZs2Lbe+vuZHQPmJu+SSS3TJJZf4bicmJurTTz/V448/rpdeeqkeK6vcxIkTdeDAgUqfN3W6qvaYkJBQ6n/niYmJ6tq1q55++mk9/PDDtV1mtV1yySXat2+fcnJy9Prrrys1NVUbN26s8Ae4E1WnR6fN7/jx45o8ebKysrKsfiFoTdWkP6fNcNiwYb7PL7/8cvXt21cdOnTQq6++qnHjxtVjZaURUCoRHR2t7OzsUtuys7MVGRkZFFdPKtKnTx+rf/BPmjRJb7/9tjZt2nTe/51UNMPo6OjaLPFHq06PZYWFhemKK67QkSNHaqm6Hyc8PFwXX3yxJKlXr17auXOn/vSnP+npp58ut9ap86tOj2XZPr/du3fr9OnTpa6wFhYWatOmTVqyZIk8Ho9CQ0NL3cdJc6xJf2XZPsOymjdvrs6dO1dYb33Nj9egVCIhIUHr1q0rtS0rK6vS55KDwb59+xQTE1PfZZRjjNGkSZO0cuVKrV+/XvHx8ee9j9NmWJMeyyosLNT+/futnKE/RUVF8ng8fvc5bX4VqazHsmyf3zXXXKP9+/dr3759vo/evXtrzJgx2rdvn98f3k6aY036K8v2GZZ17tw5ffrppxXWW2/zq9WX4Frmm2++MXv37jV79+41ksyiRYvM3r17zbFjx4wxxkyfPt3cfvvtvvX//Oc/TaNGjcx9991nPv74Y5ORkWFCQ0PNmjVr6quF86puj48//rhZtWqVOXz4sNm/f7+ZPHmyCQkJMe+99159tVChu+66yzRr1sxs2LDBfPHFF76P/Px835rbb7/dTJ8+3Xd7y5YtpkGDBmbBggXm448/NrNmzTJhYWFm//799dHCedWkx/T0dLN27Vrz6aefmt27d5tRo0aZiIgIc/DgwfpooVLTp083GzduNEePHjX/+Mc/zPTp043L5TLvvvuuMcb58zOm+j06aX4VKfsul2CYY0nn689pM7znnnvMhg0bzNGjR82WLVtMUlKSueCCC8zp06eNMfbM7ycVUIrfUlv2IzU11RhjTGpqqhkwYEC5+/Ts2dOEh4ebiy66yCxbtqzO666O6vY4b94807FjRxMREWGioqLMwIEDzfr16+un+PPw15ekUjMZMGCAr9dir776quncubMJDw833bp1M3//+9/rtvBqqEmPU6ZMMe3btzfh4eGmTZs25rrrrjN79uyp++Kr4De/+Y3p0KGDCQ8PN61atTLXXHON7we3Mc6fnzHV79FJ86tI2R/gwTDHks7Xn9NmOHLkSBMTE2PCw8NN27ZtzciRI82RI0d8+22Zn8sYY2r3Gg0AAED18BoUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFjn/wMXO8xvNfyyUgAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARSZJREFUeJzt3Xl4VPXd///XEJIQIAsgJCwhCftmEFAhAQIINKyC9lakyGJZqg0irdAbrFQUJaBWpaKgUkHx5ktFBFuRJYatQKxAoCJaNJStQMIiSQhgwOTz+4Nfpg5ZJ0wyOcfn47rOdZHP2d4nb7jmxTmfmXEYY4wAAABsopq3CwAAAPAkwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg0AALAVwg1QATIyMvQ///M/qlevnhwOh1555ZVKOW9kZKTGjRtXKeeCZyxfvlxt2rSRr6+vQkJCvF1OsWbPni2Hw3FT+547d87DVQFFI9wAkpYtWyaHw6E9e/Z45Hi/+c1vtHHjRs2cOVPLly/XgAED9Mknn2j27NllPkbv3r3lcDjkcDhUrVo1BQUFqXXr1ho9erSSkpI8Uqckt+v6qYuMjNSQIUM8cqx//etfGjdunJo3b6633npLb775pi5fvqzZs2dr69atpe7/+eefy+Fw6OWXXy60btiwYXI4HFq6dGmhdXFxcWrcuLEnLsHj5s6dq7Vr13q7DFidAWCWLl1qJJndu3d75HihoaFm1KhRLmMJCQnGnX9yvXr1Mk2aNDHLly83y5cvN4sXLzbTpk0zzZo1M5LM/fffb65eveqyz/fff19orDTu1vVTFxERYQYPHuyRYy1atMhIMt9++61z7OzZs0aSeeqpp0rd/9q1a6ZmzZrm3nvvLbTulltuMdWrVzfjx493Gc/NzTU1atQw9913n1u1Xrt2zVy5csWtfQo89dRTRpI5e/ZsqdvWqlXLjB07tlznAQpU92KuAmzrzJkzHnnEEBwcrAcffNBlbN68eZoyZYpef/11RUZGav78+c51/v7+N31OVJ4zZ85IUrn/rlSvXl1du3bVzp07XcYPHTqkc+fO6Re/+IV27Njhsm7v3r36/vvv1aNHD7fPVb06LxmwBh5LAW44efKkfvnLXyo0NFT+/v5q37693n77bef6gsdbxhi99tprzsdK48aN02uvvSZJzrHyzl/w8fHRn/70J7Vr104LFy5UVlaWc92Nc26uXbump59+Wi1btlSNGjVUr1499ejRw/lYq7S6XnzxRcXGxqpevXoKCAhQly5d9MEHHxSqyeFwaPLkyVq7dq06dOjg/N1s2LChyN/h+PHj1ahRI/n7+ysqKkqPPPKIrl696twmMzNTU6dOVXh4uPz9/dWiRQvNnz9f+fn5Jf5uhgwZombNmhW5LiYmRrfffrvz56SkJPXo0UMhISGqXbu2WrdurSeeeKLE47vjvffeU5cuXRQQEKC6devqgQce0IkTJ5zrIyMj9dRTT0mS6tev7/x7Ur9+fUnS008/7exHSY8Ne/TooYyMDKWlpTnHdu7cqaCgIE2aNMkZdH68rmC/AuvXr1fPnj1Vq1YtBQYGavDgwTp48KDLeYqac3PlyhVNmTJFt9xyiwIDA3X33Xfr5MmTxdacmZmpcePGKSQkRMHBwXrooYd0+fJl53qHw6FLly7pnXfecfm3A7iLGA6UUUZGhrp16+Z8Ia9fv77Wr1+v8ePHKzs7W1OnTlVcXJyWL1+u0aNHq3///hozZowkqXnz5jp16pSSkpK0fPnym67Fx8dHI0eO1KxZs7Rjxw4NHjy4yO1mz56txMRETZgwQXfeeaeys7O1Z88epaamqn///vrVr35VYl0LFizQ3XffrVGjRunq1atauXKl7rvvPn388ceFzrljxw59+OGH+vWvf63AwED96U9/0s9//nMdP35c9erVkySdOnVKd955pzIzMzVp0iS1adNGJ0+e1AcffKDLly/Lz89Ply9fVq9evXTy5En96le/UtOmTbVr1y7NnDlTp0+fLnFy9ogRIzRmzBjt3r1bd9xxh3P82LFj+uyzz/TCCy9Ikg4ePKghQ4YoOjpazzzzjPz9/ZWWllboDkh5Pffcc5o1a5buv/9+TZgwQWfPntWrr76quLg47du3TyEhIXrllVf07rvvas2aNVq0aJFq166tW2+9Vd26ddMjjzyie+65R/fee68kKTo6uthzFYSUHTt2qEWLFpKuB5hu3bqpa9eu8vX11a5du3T33Xc71wUGBqpjx46Srk9oHjt2rOLj4zV//nxdvnxZixYtUo8ePbRv3z5FRkYWe+5x48bp/fff1+jRo9WtWzdt27at2L+LknT//fcrKipKiYmJSk1N1ZIlS9SgQQPn3cfly5c7/65OmjRJ0vV/O4DbvP1cDKgKyjLnZvz48aZhw4bm3LlzLuMPPPCACQ4ONpcvX3aOSTIJCQku25Vnzk379u2LXb9mzRojySxYsMA5FhER4TJfoWPHjqXODymprh9fkzHGXL161XTo0MHcddddLuOSjJ+fn0lLS3OO/fOf/zSSzKuvvuocGzNmjKlWrVqRv+f8/HxjjDFz5swxtWrVMt98843L+hkzZhgfHx9z/PjxYq8lKyvL+Pv7m8cff9xl/PnnnzcOh8McO3bMGGPMyy+/XOY5IDcqbc7N0aNHjY+Pj3nuuedcxg8cOGCqV6/uMl7UXBR35twYY0x2drbx8fFxmVvTunVr8/TTTxtjjLnzzjvN9OnTnevq169v+vfvb4wx5uLFiyYkJMRMnDjR5Zjp6ekmODjYZbyg1gJ79+41kszUqVNd9h03blyh+gv2/eUvf+my7T333GPq1avnMsacG3gCj6WAMjDGaPXq1Ro6dKiMMTp37pxziY+PV1ZWllJTUyu1ptq1a0uSLl68WOw2ISEhOnjwoL799ttynSMgIMD55wsXLigrK0s9e/Ys8lr79evn8r/s6OhoBQUF6d///rckKT8/X2vXrtXQoUNdHg8VKHjksWrVKvXs2VN16tRx+T3369dPeXl52r59e7H1BgUFaeDAgXr//fdljHGO/+Uvf1G3bt3UtGlTSf+d4/LRRx+V+qjLXR9++KHy8/N1//33u9QfFhamli1basuWLR49X2BgoKKjo51za86dO6dDhw4pNjZWktS9e3fnHalvvvlGZ8+edd7tSUpKUmZmpkaOHOlSq4+Pj7p27VpirQWPHH/961+7jD/66KPF7vPwww+7/NyzZ0+dP39e2dnZbl41UDIeSwFlcPbsWWVmZurNN9/Um2++WeQ2BZNDK0tOTo6k6y9uxXnmmWc0bNgwtWrVSh06dNCAAQM0evToEh9z/NjHH3+sZ599Vvv371dubq5zvKj5QgXB4cfq1KmjCxcuSLr+O8zOzlaHDh1KPOe3336rL774wjn35Eal/Z5HjBihtWvXKiUlRbGxsTp8+LD27t3r8jhrxIgRWrJkiSZMmKAZM2aob9++uvfee/U///M/qlbt5v7P9+2338oYo5YtWxa53tfX96aOX5QePXro1Vdf1blz57Rr1y75+PioW7dukqTY2Fi9/vrrys3NLTTfpiD03nXXXUUeNygoqNhzHjt2TNWqVVNUVJTLeMGjsaLc+HekTp06kq4H55LOBbiLcAOUQcH/7h988EGNHTu2yG3KGhg85csvv5RU8otJXFycDh8+rI8++kibNm3SkiVL9PLLL2vx4sWaMGFCicf/+9//rrvvvltxcXF6/fXX1bBhQ/n6+mrp0qVasWJFoe19fHyKPM6P76CURX5+vvr376/f/e53Ra5v1apVifsPHTpUNWvW1Pvvv6/Y2Fi9//77qlatmu677z7nNgEBAdq+fbu2bNmidevWacOGDfrLX/6iu+66S5s2bSr2Wspav8Ph0Pr164s8TsEdN08qCDc7d+7Url27dOuttzrPExsbq9zcXO3evVs7duxQ9erVncGn4O/18uXLFRYWVui4nn53lKf+jgClIdwAZVC/fn0FBgYqLy9P/fr1K9cxyvvuqKLk5eVpxYoVqlmzZqlv6a1bt64eeughPfTQQ8rJyVFcXJxmz57tDDfF1bV69WrVqFFDGzdudHmLeVEfClcW9evXV1BQkDOUFad58+bKyckp9++5Vq1aGjJkiFatWqWXXnpJf/nLX9SzZ081atTIZbtq1aqpb9++6tu3r1566SXNnTtXv//977Vly5Zyn7ugfmOMoqKiSg1iRSnP35MfTypOSUlR9+7dnesaNWqkiIgI7dy5Uzt37lSnTp1Us2ZNZ62S1KBBA7evOSIiQvn5+Tpy5IjLXaofv2urPDz57wQ/Xcy5AcrAx8dHP//5z7V69eoiX5zPnj1b6jFq1aol6frbYW9GXl6epkyZoq+//lpTpkwp8Xb++fPnXX6uXbu2WrRo4fKIqbi6fHx85HA4lJeX5xw7evRouT89tlq1aho+fLj+9re/FflJ0AX/e7///vuVkpKijRs3FtomMzNTP/zwQ6nnGjFihE6dOqUlS5bon//8p0aMGOGy/rvvviu0z2233SZJLr+b8rj33nvl4+Ojp59+utAdCWNMoZ7cqCB4uPP3pFGjRoqKilJycrL27NnjnG9TIDY2VmvXrtWhQ4dcwnB8fLyCgoI0d+5cXbt2rdBxS/p7HR8fL0l6/fXXXcZfffXVMtddlFq1at30vxGAOzfAj7z99ttFfjbLY489pnnz5mnLli3q2rWrJk6cqHbt2um7775TamqqPv300yJfMH+sS5cukqQpU6YoPj5ePj4+euCBB0rcJysrS++9954k6fLly0pLS9OHH36ow4cP64EHHtCcOXNK3L9du3bq3bu3unTporp162rPnj364IMPNHny5FLrGjx4sF566SUNGDBAv/jFL3TmzBm99tpratGihb744osSz1ucuXPnatOmTerVq5cmTZqktm3b6vTp01q1apV27NihkJAQTZ8+XX/96181ZMgQjRs3Tl26dNGlS5d04MABffDBBzp69KhuueWWEs8zaNAgBQYGatq0ac5g+mPPPPOMtm/frsGDBysiIkJnzpzR66+/riZNmpTpw+3S0tL07LPPFhrv1KmTBg8erGeffVYzZ87U0aNHNXz4cAUGBurIkSNas2aNJk2apGnTphV77ICAALVr105/+ctf1KpVK9WtW1cdOnQoda5Sjx49nG/n//GdG+l6uPl//+//ObcrEBQUpEWLFmn06NHq3LmzHnjgAdWvX1/Hjx/XunXr1L17dy1cuLDI83Xp0kU///nP9corr+j8+fPOt4J/8803ksp/B6ZLly769NNP9dJLLzlDW9euXct1LPyEeettWkBVUvBW8OKWEydOGGOMycjIMAkJCSY8PNz4+vqasLAw07dvX/Pmm2+6HE9FvBX8hx9+MI8++qipX7++cTgcpb4tvFevXi411K5d27Rs2dI8+OCDZtOmTUXuc+NbwZ999llz5513mpCQEBMQEGDatGljnnvuOZevaCiprj//+c+mZcuWxt/f37Rp08YsXbq00FuCi7veouoxxphjx46ZMWPGmPr16xt/f3/TrFkzk5CQYHJzc53bXLx40cycOdO0aNHC+Pn5mVtuucXExsaaF198scxfLzFq1CgjyfTr16/QuuTkZDNs2DDTqFEj4+fnZxo1amRGjhxZ6O3nRYmIiCj278mP3469evVq06NHD1OrVi1Tq1Yt06ZNG5OQkGAOHTrk3Ka4ryXYtWuX6dKli/Hz8yvz28LfeOMNI8k0bty40LrU1FRnjRkZGYXWb9myxcTHx5vg4GBTo0YN07x5czNu3DizZ8+eQrX+2KVLl0xCQoKpW7euqV27thk+fLg5dOiQkWTmzZtX6nUW/Ls7cuSIc+xf//qXiYuLMwEBAUYSbwtHuTiMYSYXAMAz9u/fr06dOum9997TqFGjvF0OfqKYcwMAKJcrV64UGnvllVdUrVo1xcXFeaEi4Drm3AAAyuX555/X3r171adPH1WvXl3r16/X+vXrNWnSJIWHh3u7PPyE8VgKAFAuSUlJevrpp/XVV18pJydHTZs21ejRo/X73/+ebxCHVxFuAACArTDnBgAA2ArhBgAA2MpP7qFofn6+Tp06pcDAQD7mGwAAizDG6OLFi2rUqFGpX3D7kws3p06dYhY/AAAWdeLECTVp0qTEbX5y4SYwMFDS9V9OSd/JAwAAqo7s7GyFh4c7X8dL8pMLNwWPooKCggg3AABYTFmmlDChGAAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2IpXw83s2bPlcDhcljZt2pS4z6pVq9SmTRvVqFFDt956qz755JNKqrZ0kTPWKXLGOkXNWOftUlBO9NDa6J/10UPrqwo9dBhjjLdOPnv2bH3wwQf69NNPnWPVq1fXLbfcUuT2u3btUlxcnBITEzVkyBCtWLFC8+fPV2pqqjp06FCmc2ZnZys4OFhZWVke+26puHmf6nhmbqHx5vUClDz9Lo+cAxWLHlob/bM+emh9Fd1Dd16/vf5Yqnr16goLC3MuxQUbSVqwYIEGDBig6dOnq23btpozZ446d+6shQsXVmLFhRXVTEk6fP5KJVeC8qKH1kb/rI8eWl9V6qHXw823336rRo0aqVmzZho1apSOHz9e7LYpKSnq16+fy1h8fLxSUlKK3Sc3N1fZ2dkuiydFlnLbjVurVR89tDb6Z3300PqqWg+9Gm66du2qZcuWacOGDVq0aJGOHDminj176uLFi0Vun56ertDQUJex0NBQpaenF3uOxMREBQcHO5fw8HCPXkNpvPbMDx5DD62N/lkfPbS+yu6hV8PNwIEDdd999yk6Olrx8fH65JNPlJmZqffff99j55g5c6aysrKcy4kTJzx27LJwVOrZUBHoobXRP+ujh9ZX2T30+mOpHwsJCVGrVq2UlpZW5PqwsDBlZGS4jGVkZCgsLKzYY/r7+ysoKMhl8aSj8waXuP5IKevhffTQ2uif9dFD66tqPaxS4SYnJ0eHDx9Ww4YNi1wfExOj5ORkl7GkpCTFxMRURnnFal4vwK1xVD300Nron/XRQ+urSj306lvBp02bpqFDhyoiIkKnTp3SU089pf379+urr75S/fr1NWbMGDVu3FiJiYmSrr8VvFevXpo3b54GDx6slStXau7cuV5/K3iBqBnrZHT99hv/07Amemht9M/66KH1VVQP3Xn99mq4eeCBB7R9+3adP39e9evXV48ePfTcc8+pefPmkqTevXsrMjJSy5Ytc+6zatUqPfnkkzp69Khatmyp559/XoMGDSrzOSsy3AAAgIphmXDjDYQbAACsx1If4gcAAOBJhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArhBsAAGArVSbczJs3Tw6HQ1OnTi12m2XLlsnhcLgsNWrUqLwiAQBAlVfd2wVI0u7du/XGG28oOjq61G2DgoJ06NAh588Oh6MiSwMAABbj9Ts3OTk5GjVqlN566y3VqVOn1O0dDofCwsKcS2hoaCVUCQAArMLr4SYhIUGDBw9Wv379yrR9Tk6OIiIiFB4ermHDhungwYMlbp+bm6vs7GyXBQAA2JdXw83KlSuVmpqqxMTEMm3funVrvf322/roo4/03nvvKT8/X7GxsfrPf/5T7D6JiYkKDg52LuHh4Z4qHwAAVEEOY4zxxolPnDih22+/XUlJSc65Nr1799Ztt92mV155pUzHuHbtmtq2bauRI0dqzpw5RW6Tm5ur3Nxc58/Z2dkKDw9XVlaWgoKCbvo6AABAxcvOzlZwcHCZXr+9NqF47969OnPmjDp37uwcy8vL0/bt27Vw4ULl5ubKx8enxGP4+vqqU6dOSktLK3Ybf39/+fv7e6xuAABQtXkt3PTt21cHDhxwGXvooYfUpk0b/e///m+pwUa6HoYOHDigQYMGVVSZAADAYrwWbgIDA9WhQweXsVq1aqlevXrO8TFjxqhx48bOOTnPPPOMunXrphYtWigzM1MvvPCCjh07pgkTJlR6/QAAoGqqEp9zU5zjx4+rWrX/znm+cOGCJk6cqPT0dNWpU0ddunTRrl271K5dOy9WCQAAqhKvTSj2FncmJAEAgKrBnddvr3/ODQAAgCcRbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK0QbgAAgK1UmXAzb948ORwOTZ06tcTtVq1apTZt2qhGjRq69dZb9cknn1ROgWUQOWOdImesU9SMdd4uBeVED62N/lkfPbS+qtBDhzHGeO3s/7/du3fr/vvvV1BQkPr06aNXXnmlyO127dqluLg4JSYmasiQIVqxYoXmz5+v1NRUdejQoUznys7OVnBwsLKyshQUFOSR+uPmfarjmbmFxpvXC1Dy9Ls8cg5ULHpobfTP+uih9VV0D915/fb6nZucnByNGjVKb731lurUqVPitgsWLNCAAQM0ffp0tW3bVnPmzFHnzp21cOHCSqq2aEU1U5IOn79SyZWgvOihtdE/66OH1leVeuj1cJOQkKDBgwerX79+pW6bkpJSaLv4+HilpKQUu09ubq6ys7NdFk+KLOW2G7dWqz56aG30z/roofVVtR5Wr9Sz3WDlypVKTU3V7t27y7R9enq6QkNDXcZCQ0OVnp5e7D6JiYl6+umnb6rOm+H1Z364afTQ2uif9dFD66vsHnrtzs2JEyf02GOP6f/+7/9Uo0aNCjvPzJkzlZWV5VxOnDhRYecqiqNSz4aKQA+tjf5ZHz20vsruodfCzd69e3XmzBl17txZ1atXV/Xq1bVt2zb96U9/UvXq1ZWXl1don7CwMGVkZLiMZWRkKCwsrNjz+Pv7KygoyGXxpKPzBpe4/kgp6+F99NDa6J/10UPrq2o99Fq46du3rw4cOKD9+/c7l9tvv12jRo3S/v375ePjU2ifmJgYJScnu4wlJSUpJiamssouUvN6AW6No+qhh9ZG/6yPHlpfVephlXgreIHevXvrtttuc74VfMyYMWrcuLESExMlXX8reK9evTRv3jwNHjxYK1eu1Ny5c73+VvACUTPWyej67Tf+p2FN9NDa6J/10UPrq6geuvP67dUJxaU5fvy4qlX7782l2NhYrVixQk8++aSeeOIJtWzZUmvXri1zsKlo/EO0PnpobfTP+uih9VWFHlapOzeVoSLv3AAAgIphqQ/xAwAA8CTCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBWvhptFixYpOjpaQUFBCgoKUkxMjNavX1/s9suWLZPD4XBZatSoUYkVAwCAqq66N0/epEkTzZs3Ty1btpQxRu+8846GDRumffv2qX379kXuExQUpEOHDjl/djgclVUuAACwAK+Gm6FDh7r8/Nxzz2nRokX67LPPig03DodDYWFhlVEeAACwoCoz5yYvL08rV67UpUuXFBMTU+x2OTk5ioiIUHh4uIYNG6aDBw+WeNzc3FxlZ2e7LAAAwL68Hm4OHDig2rVry9/fXw8//LDWrFmjdu3aFblt69at9fbbb+ujjz7Se++9p/z8fMXGxuo///lPscdPTExUcHCwcwkPD6+oSwEAAFWAwxhjvFnA1atXdfz4cWVlZemDDz7QkiVLtG3btmIDzo9du3ZNbdu21ciRIzVnzpwit8nNzVVubq7z5+zsbIWHhysrK0tBQUEeuw4AAFBxsrOzFRwcXKbXb6/OuZEkPz8/tWjRQpLUpUsX7d69WwsWLNAbb7xR6r6+vr7q1KmT0tLSit3G399f/v7+HqsXAABUbV5/LHWj/Px8lzstJcnLy9OBAwfUsGHDCq4KAABYhdt3bo4fP67w8PBCb8E2xujEiRNq2rRpmY81c+ZMDRw4UE2bNtXFixe1YsUKbd26VRs3bpQkjRkzRo0bN1ZiYqIk6ZlnnlG3bt3UokULZWZm6oUXXtCxY8c0YcIEdy8DAADYlNvhJioqSqdPn1aDBg1cxr/77jtFRUUpLy+vzMc6c+aMxowZo9OnTys4OFjR0dHauHGj+vfvL+l6kKpW7b83ly5cuKCJEycqPT1dderUUZcuXbRr164yzc8BAAA/DW5PKK5WrZoyMjJUv359l/Fjx46pXbt2unTpkkcL9DR3JiQBAICqoUImFP/2t7+VdP1D9GbNmqWaNWs61+Xl5ekf//iHbrvttvJVDAAA4CFlDjf79u2TdH1uzYEDB+Tn5+dc5+fnp44dO2ratGmerxAAAMANZQ43W7ZskSQ99NBDWrBgAY90AABAleT2hOKlS5dWRB0AAAAe4Xa4uXTpkubNm6fk5GSdOXNG+fn5Luv//e9/e6w4AAAAd7kdbiZMmKBt27Zp9OjRatiwYaHPuwEAAPAmt8PN+vXrtW7dOnXv3r0i6gEAALgpbn/9Qp06dVS3bt2KqAUAAOCmuR1u5syZoz/84Q+6fPlyRdQDAABwU8r0WKpTp04uc2vS0tIUGhqqyMhI+fr6umybmprq2QoBAADcUKZwM3z48AouAwAAwDPc/m4pq+O7pQAAsB53Xr/dnnMDAABQlbn9VvA6deoU+dk2DodDNWrUUIsWLTRu3Dg99NBDHikQAADAHW6Hmz/84Q967rnnNHDgQN15552SpM8//1wbNmxQQkKCjhw5okceeUQ//PCDJk6c6PGCAQAASuJ2uNmxY4eeffZZPfzwwy7jb7zxhjZt2qTVq1crOjpaf/rTnwg3AACg0rk952bjxo3q169fofG+fftq48aNkqRBgwbxHVMAAMAr3A43devW1d/+9rdC43/729+cn1x86dIlBQYG3nx1AAAAbnL7sdSsWbP0yCOPaMuWLc45N7t379Ynn3yixYsXS5KSkpLUq1cvz1YKAABQBuX6nJudO3dq4cKFOnTokCSpdevWevTRRxUbG+vxAj2Nz7kBAMB63Hn95kP8AABAlefO63eZHktlZ2c7D5SdnV3itgQGAADgTWUKN3Xq1NHp06fVoEEDhYSEFPkhfsYYORwO5eXlebxIAACAsipTuNm8ebPznVBbtmyp0IIAAABuBnNuAABAlVfhX5z597//XQ8++KBiY2N18uRJSdLy5cu1Y8eO8hwOAADAY9wON6tXr1Z8fLwCAgKUmpqq3NxcSVJWVpbmzp3r8QIBAADc4Xa4efbZZ7V48WK99dZb8vX1dY53795dqampHi0OAADAXW6Hm0OHDikuLq7QeHBwsDIzMz1REwAAQLm5HW7CwsKUlpZWaHzHjh1q1qyZR4oCAAAoL7fDzcSJE/XYY4/pH//4hxwOh06dOqX/+7//07Rp0/TII49URI0AAABl5vYXZ86YMUP5+fnq27evLl++rLi4OPn7+2vatGl69NFH3TrWokWLtGjRIh09elSS1L59e/3hD3/QwIEDi91n1apVmjVrlo4ePaqWLVtq/vz5GjRokLuXUSEiZ6yTJDkkHZk32LvFoFzoobXRP+ujh9ZXFXpY7s+5uXr1qtLS0pSTk6N27dqpdu3abh/jb3/7m3x8fNSyZUsZY/TOO+/ohRde0L59+9S+fftC2+/atUtxcXFKTEzUkCFDtGLFCs2fP1+pqanq0KFDmc5ZEZ9zEzfvUx3PzC003rxegJKn3+WRc6Bi0UNro3/WRw+tr6J7WKGfc7N582Z9//338vPzU7t27XTnnXeWK9hI0tChQzVo0CC1bNlSrVq10nPPPafatWvrs88+K3L7BQsWaMCAAZo+fbratm2rOXPmqHPnzlq4cGG5zu8pRTVTkg6fv1LJlaC86KG10T/ro4fWV5V66Ha4ufvuuxUSEqKePXtq1qxZ+vTTT3Xlys0XnpeXp5UrV+rSpUuKiYkpcpuUlBT169fPZSw+Pl4pKSnFHjc3N1fZ2dkuiycV3H4rTlQp6+F99NDa6J/10UPrq2o9dDvcXLhwQcnJyRo4cKA+//xz3XPPPQoJCVH37t315JNPul3AgQMHVLt2bfn7++vhhx/WmjVr1K5duyK3TU9PV2hoqMtYaGio0tPTiz1+YmKigoODnUt4eLjbNd6Mn9R3W9gUPbQ2+md99ND6KruHbocbX19fde/eXU888YQ2btyozz77TCNHjtTnn3+uxMREtwto3bq19u/fr3/84x965JFHNHbsWH311VduH6c4M2fOVFZWlnM5ceKEx45dFoW/Px1WQw+tjf5ZHz20vsruodvh5ptvvtGbb76pX/ziF2rcuLF69eqlrKwsvfjii+X6hGI/Pz+1aNFCXbp0UWJiojp27KgFCxYUuW1YWJgyMjJcxjIyMhQWFlbs8f39/RUUFOSyeNLRUmaCM9u/6qOH1kb/rI8eWl9V66Hb4aZNmzaaNWuWOnTooPXr1+vs2bNas2aNHnvsMXXs2PGmC8rPz3d+X9WNYmJilJyc7DKWlJRU7BydytK8XoBb46h66KG10T/ro4fWV5V66PZbwadOnart27frq6++UufOndW7d2/17t1bPXr0UM2aNd06+cyZMzVw4EA1bdpUFy9edL61e+PGjerfv7/GjBmjxo0bOx937dq1S7169dK8efM0ePBgrVy5UnPnzvX6W8ELRM1YJyM+n8HK6KG10T/ro4fWV1E9dOf1u9yfc5OZmam///3v2rZtm7Zt26aDBw+qU6dO2rlzZ5mPMX78eCUnJ+v06dMKDg5WdHS0/vd//1f9+/eXJPXu3VuRkZFatmyZc59Vq1bpySefdH6I3/PPP+/Wh/hVZLgBAAAVw53Xb7c/obhAXl6erl27ptzcXH3//ffKzc3VoUOH3DrGn//85xLXb926tdDYfffdp/vuu8+t8wAAgJ8Ot+fcTJkyRdHR0QoNDdWvfvUrnTp1ShMnTtS+fft09uzZiqgRAACgzNy+c3P69GlNmjRJvXv3LvM8FwAAgMridrhZtWpVRdQBAADgEW4/lgIAAKjKCDcAAMBWCDcAAMBWCDcAAMBW3A43zZo10/nz5wuNZ2ZmqlmzZh4pCgAAoLzcDjdHjx5VXl5eofHc3FydPHnSI0UBAACUV5nfCv7Xv/7V+eeNGzcqODjY+XNeXp6Sk5MVGRnp0eIAAADcVeZwM3z4cOefx44d67LO19dXkZGR+uMf/+ixwgAAAMqjTOHmiy++0LVr1+Tj46OoqCjt3r1bt9xyS0XXBgAA4LYyzbnp1KmTvvvuO0mSw+GQw+Go0KIAAADKq0zhJiQkRP/+978lSceOHVN+fn6FFgUAAFBeZXos9fOf/1y9evVSw4YNJUm33367fHx8ity2IAQBAAB4Q5nCzZtvvql7771XaWlpmjJliiZOnKjAwMCKrg0AAMBtZX631IABAyRJe/fu1WOPPUa4AQAAVZLbH+K3dOlSBQYGKi0tTRs3btSVK1ckScYYjxcHAADgLrfDzXfffae+ffuqVatWGjRokE6fPi1JGj9+vB5//HGPFwgAAOAOt8PN1KlT5evrq+PHj6tmzZrO8REjRmjDhg0eLQ4AAMBdZZ5zU2DTpk3auHGjmjRp4jLesmVLHTt2zGOFAQAAlIfbd24uXbrkcsemwHfffSd/f3+PFAUAAFBeboebnj176t1333X+7HA4lJ+fr+eff159+vTxaHEAAADucvux1PPPP6++fftqz549unr1qn73u9/p4MGD+u6777Rz586KqBEAAKDM3L5z06FDB33zzTfq0aOHhg0bpkuXLunee+/Vvn371Lx584qoEQAAoMzcvnMjScHBwfr973/vMvaf//xHkyZN0ptvvumRwgAAAMrD7Ts3xTl//rz+/Oc/e+pwAAAA5eKxcAMAAFAVEG4AAICtEG4AAICtlHlC8b333lvi+szMzJutBQAA4KaV+c5NcHBwiUtERITGjBnj1skTExN1xx13KDAwUA0aNNDw4cN16NChEvdZtmyZHA6Hy1KjRg23zgsAAOyrzHduli5d6vGTb9u2TQkJCbrjjjv0ww8/6IknntDPfvYzffXVV6pVq1ax+wUFBbmEIIfD4fHaAACANZXrc2485cZvEV+2bJkaNGigvXv3Ki4urtj9HA6HwsLCKro8AABgQVVqQnFWVpYkqW7duiVul5OTo4iICIWHh2vYsGE6ePBgsdvm5uYqOzvbZQEAAPZVZcJNfn6+pk6dqu7du6tDhw7Fbte6dWu9/fbb+uijj/Tee+8pPz9fsbGx+s9//lPk9omJiS5zg8LDwyvqEgAAQBXgMMYYbxchSY888ojWr1+vHTt2qEmTJmXe79q1a2rbtq1GjhypOXPmFFqfm5ur3Nxc58/Z2dkKDw9XVlaWgoKCPFI7AACoWNnZ2QoODi7T67dX59wUmDx5sj7++GNt377drWAjSb6+vurUqZPS0tKKXO/v7y9/f39PlAkAACzAq4+ljDGaPHmy1qxZo82bNysqKsrtY+Tl5enAgQNq2LBhBVQIAACsxqt3bhISErRixQp99NFHCgwMVHp6uqTrn6kTEBAgSRozZowaN26sxMRESdIzzzyjbt26qUWLFsrMzNQLL7ygY8eOacKECV67DgAAUHV4NdwsWrRIktS7d2+X8aVLl2rcuHGSpOPHj6tatf/eYLpw4YImTpyo9PR01alTR126dNGuXbvUrl27yiobAABUYVVmQnFlcWdCEgAAqBrcef2uMm8FBwAA8ATCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsJXq3jx5YmKiPvzwQ/3rX/9SQECAYmNjNX/+fLVu3brE/VatWqVZs2bp6NGjatmypebPn69BgwZVUtXFi5yxTpLkkHRk3mDvFoNyoYfWRv+sjx5aX1XoocMYY7xyZkkDBgzQAw88oDvuuEM//PCDnnjiCX355Zf66quvVKtWrSL32bVrl+Li4pSYmKghQ4ZoxYoVmj9/vlJTU9WhQ4dSz5mdna3g4GBlZWUpKCjII9cRN+9THc/MLTTevF6Akqff5ZFzoGLRQ2ujf9ZHD62vonvozuu3V+/cbNiwweXnZcuWqUGDBtq7d6/i4uKK3GfBggUaMGCApk+fLkmaM2eOkpKStHDhQi1evLjCay5KUc2UpMPnr1RyJSgvemht9M/66KH1VaUeVqk5N1lZWZKkunXrFrtNSkqK+vXr5zIWHx+vlJSUIrfPzc1Vdna2y+JJBbffihNVynp4Hz20NvpnffTQ+qpaD6tMuMnPz9fUqVPVvXv3Eh8vpaenKzQ01GUsNDRU6enpRW6fmJio4OBg5xIeHu7RukvjtWd+8Bh6aG30z/roofVVdg+rTLhJSEjQl19+qZUrV3r0uDNnzlRWVpZzOXHihEePXxpHpZ4NFYEeWhv9sz56aH2V3cMqEW4mT56sjz/+WFu2bFGTJk1K3DYsLEwZGRkuYxkZGQoLCytye39/fwUFBbksnnS0lJngzPav+uihtdE/66OH1lfVeujVcGOM0eTJk7VmzRpt3rxZUVFRpe4TExOj5ORkl7GkpCTFxMRUVJmlal4vwK1xVD300Nron/XRQ+urSj306lvBf/3rX2vFihX66KOPXD7bJjg4WAEB138ZY8aMUePGjZWYmCjp+lvBe/XqpXnz5mnw4MFauXKl5s6d69W3gheImrFORnw+g5XRQ2ujf9ZHD62vonrozuu3V8ONw1H0U7ilS5dq3LhxkqTevXsrMjJSy5Ytc65ftWqVnnzySeeH+D3//PNl/hC/igw3AACgYlgm3HgD4QYAAOtx5/W7SkwoBgAA8BTCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBXCDQAAsBWvhpvt27dr6NChatSokRwOh9auXVvi9lu3bpXD4Si0pKenV07BAACgyvNquLl06ZI6duyo1157za39Dh06pNOnTzuXBg0aVFCFAADAaqp78+QDBw7UwIED3d6vQYMGCgkJ8XxBAADA8iw55+a2225Tw4YN1b9/f+3cubPEbXNzc5Wdne2yAAAA+7JUuGnYsKEWL16s1atXa/Xq1QoPD1fv3r2Vmppa7D6JiYkKDg52LuHh4ZVYMQAAqGwOY4zxdhGS5HA4tGbNGg0fPtyt/Xr16qWmTZtq+fLlRa7Pzc1Vbm6u8+fs7GyFh4crKytLQUFBN1MyAACoJNnZ2QoODi7T67dX59x4wp133qkdO3YUu97f31/+/v6VWBEAAPAmSz2WKsr+/fvVsGFDb5cBAACqCK/eucnJyVFaWprz5yNHjmj//v2qW7eumjZtqpkzZ+rkyZN69913JUmvvPKKoqKi1L59e33//fdasmSJNm/erE2bNnnrEgAAQBXj1XCzZ88e9enTx/nzb3/7W0nS2LFjtWzZMp0+fVrHjx93rr969aoef/xxnTx5UjVr1lR0dLQ+/fRTl2MAAICftiozobiyuDMhCQAAVA3uvH5bfs4NAADAjxFuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArRBuAACArXg13Gzfvl1Dhw5Vo0aN5HA4tHbt2lL32bp1qzp37ix/f3+1aNFCy5Ytq/A6yypyxjpFzlinqBnrvF0KyokeWhv9sz56aH1VoYcOY4zx1snXr1+vnTt3qkuXLrr33nu1Zs0aDR8+vNjtjxw5og4dOujhhx/WhAkTlJycrKlTp2rdunWKj48v0zmzs7MVHBysrKwsBQUFeeQ64uZ9quOZuYXGm9cLUPL0uzxyDlQsemht9M/66KH1VXQP3Xn9rn7TZ7sJAwcO1MCBA8u8/eLFixUVFaU//vGPkqS2bdtqx44devnll8scbipCUc2UpMPnr1RyJSgvemht9M/66KH1VaUeWmrOTUpKivr16+cyFh8fr5SUlGL3yc3NVXZ2tsviSZGl3Hbj1mrVRw+tjf5ZHz20vqrWQ0uFm/T0dIWGhrqMhYaGKjs7W1euFJ0MExMTFRwc7FzCw8Mro1Qnrz3zg8fQQ2ujf9ZHD62vsntoqXBTHjNnzlRWVpZzOXHiRKWe31GpZ0NFoIfWRv+sjx5aX2X30FLhJiwsTBkZGS5jGRkZCgoKUkBAQJH7+Pv7KygoyGXxpKPzBpe4/kgp6+F99NDa6J/10UPrq2o9tFS4iYmJUXJysstYUlKSYmJivFTRdc3rFR2sihtH1UMPrY3+WR89tL6q1EOvvhU8JydHaWlpkqROnTrppZdeUp8+fVS3bl01bdpUM2fO1MmTJ/Xuu+9K+u9bwRMSEvTLX/5Smzdv1pQpU7z+VvACUTPWyej67Tf+p2FN9NDa6J/10UPrq6geuvP67dVws3XrVvXp06fQ+NixY7Vs2TKNGzdOR48e1datW132+c1vfqOvvvpKTZo00axZszRu3Lgyn7Miww0AAKgYlgk33kC4AQDAetx5/bbUnBsAAIDSEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtEG4AAICtVPd2AZWt4AOZs7OzvVwJAAAoq4LX7bJ8scJPLtxcvHhRkhQeHu7lSgAAgLsuXryo4ODgErf5yX23VH5+vk6dOqXAwEA5HA6PHjs7O1vh4eE6ceKELb+3yu7XJ9n/Grk+67P7NXJ91ldR12iM0cWLF9WoUSNVq1byrJqf3J2batWqqUmTJhV6jqCgINv+pZXsf32S/a+R67M+u18j12d9FXGNpd2xKcCEYgAAYCuEGwAAYCuEGw/y9/fXU089JX9/f2+XUiHsfn2S/a+R67M+u18j12d9VeEaf3ITigEAgL1x5wYAANgK4QYAANgK4QYAANgK4QYAANgK4aaMtm/frqFDh6pRo0ZyOBxau3Ztqfts3bpVnTt3lr+/v1q0aKFly5ZVeJ03w91r3Lp1qxwOR6ElPT29cgp2U2Jiou644w4FBgaqQYMGGj58uA4dOlTqfqtWrVKbNm1Uo0YN3Xrrrfrkk08qoVr3lef6li1bVqh/NWrUqKSK3bNo0SJFR0c7PxgsJiZG69evL3Efq/SugLvXaKX+FWXevHlyOByaOnVqidtZrY8FynJ9Vuvh7NmzC9Xbpk2bEvfxRv8IN2V06dIldezYUa+99lqZtj9y5IgGDx6sPn36aP/+/Zo6daomTJigjRs3VnCl5efuNRY4dOiQTp8+7VwaNGhQQRXenG3btikhIUGfffaZkpKSdO3aNf3sZz/TpUuXit1n165dGjlypMaPH699+/Zp+PDhGj58uL788stKrLxsynN90vVPEf1x/44dO1ZJFbunSZMmmjdvnvbu3as9e/borrvu0rBhw3Tw4MEit7dS7wq4e42Sdfp3o927d+uNN95QdHR0idtZsY9S2a9Psl4P27dv71Lvjh07it3Wa/0zcJsks2bNmhK3+d3vfmfat2/vMjZixAgTHx9fgZV5TlmuccuWLUaSuXDhQqXU5Glnzpwxksy2bduK3eb+++83gwcPdhnr2rWr+dWvflXR5d20slzf0qVLTXBwcOUV5WF16tQxS5YsKXKdlXv3YyVdo1X7d/HiRdOyZUuTlJRkevXqZR577LFit7ViH925Pqv18KmnnjIdO3Ys8/be6h93bipISkqK+vXr5zIWHx+vlJQUL1VUcW677TY1bNhQ/fv3186dO71dTpllZWVJkurWrVvsNlbuY1muT5JycnIUERGh8PDwUu8SVBV5eXlauXKlLl26pJiYmCK3sXLvpLJdo2TN/iUkJGjw4MGF+lMUK/bRneuTrNfDb7/9Vo0aNVKzZs00atQoHT9+vNhtvdW/n9wXZ1aW9PR0hYaGuoyFhoYqOztbV65cUUBAgJcq85yGDRtq8eLFuv3225Wbm6slS5aod+/e+sc//qHOnTt7u7wS5efna+rUqerevbs6dOhQ7HbF9bGqzisqUNbra926td5++21FR0crKytLL774omJjY3Xw4MEK/4LZ8jhw4IBiYmL0/fffq3bt2lqzZo3atWtX5LZW7Z0712i1/knSypUrlZqaqt27d5dpe6v10d3rs1oPu3btqmXLlql169Y6ffq0nn76afXs2VNffvmlAgMDC23vrf4RblBurVu3VuvWrZ0/x8bG6vDhw3r55Ze1fPlyL1ZWuoSEBH355ZclPiu2srJeX0xMjMtdgdjYWLVt21ZvvPGG5syZU9Fluq1169bav3+/srKy9MEHH2js2LHatm1bsS/+VuTONVqtfydOnNBjjz2mpKSkKj1ptrzKc31W6+HAgQOdf46OjlbXrl0VERGh999/X+PHj/diZa4INxUkLCxMGRkZLmMZGRkKCgqyxV2b4tx5551VPjBMnjxZH3/8sbZv317q/4yK62NYWFhFlnhT3Lm+G/n6+qpTp05KS0uroOpujp+fn1q0aCFJ6tKli3bv3q0FCxbojTfeKLStFXsnuXeNN6rq/du7d6/OnDnjcmc3Ly9P27dv18KFC5WbmysfHx+XfazUx/Jc342qeg9vFBISolatWhVbr7f6x5ybChITE6Pk5GSXsaSkpBKfndvB/v371bBhQ2+XUSRjjCZPnqw1a9Zo8+bNioqKKnUfK/WxPNd3o7y8PB04cKDK9vBG+fn5ys3NLXKdlXpXkpKu8UZVvX99+/bVgQMHtH//fudy++23a9SoUdq/f3+RL/xW6mN5ru9GVb2HN8rJydHhw4eLrddr/avQ6co2cvHiRbNv3z6zb98+I8m89NJLZt++febYsWPGGGNmzJhhRo8e7dz+3//+t6lZs6aZPn26+frrr81rr71mfHx8zIYNG7x1CaVy9xpffvlls3btWvPtt9+aAwcOmMcee8xUq1bNfPrpp966hBI98sgjJjg42GzdutWcPn3auVy+fNm5zejRo82MGTOcP+/cudNUr17dvPjii+brr782Tz31lPH19TUHDhzwxiWUqDzX9/TTT5uNGzeaw4cPm71795oHHnjA1KhRwxw8eNAbl1CiGTNmmG3btpkjR46YL774wsyYMcM4HA6zadMmY4y1e1fA3Wu0Uv+Kc+O7iezQxx8r7fqs1sPHH3/cbN261Rw5csTs3LnT9OvXz9xyyy3mzJkzxpiq0z/CTRkVvO35xmXs2LHGGGPGjh1revXqVWif2267zfj5+ZlmzZqZpUuXVnrd7nD3GufPn2+aN29uatSoYerWrWt69+5tNm/e7J3iy6Coa5Pk0pdevXo5r7fA+++/b1q1amX8/PxM+/btzbp16yq38DIqz/VNnTrVNG3a1Pj5+ZnQ0FAzaNAgk5qaWvnFl8Evf/lLExERYfz8/Ez9+vVN3759nS/6xli7dwXcvUYr9a84N77426GPP1ba9VmthyNGjDANGzY0fn5+pnHjxmbEiBEmLS3Nub6q9M9hjDEVe28IAACg8jDnBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBkCFM8Zo0qRJqlu3rhwOh/bv31/uYx09etTlGFu3bpXD4VBmZqZHagVgfYQbAKUaN26chg8fXu79N2zYoGXLlunjjz/W6dOn1aFDBzkcDq1du/ama4uNjdXp06cVHBxc6rYEIeCngW8FB1DhCr5YLzY21uPH9vPzq5LfEA3Ae7hzA+Cmffnllxo4cKBq166t0NBQjR49WufOnZN0/a7Po48+quPHj8vhcCgyMlKRkZGSpHvuucc5VpzPP/9cnTp1Uo0aNXT77bdr3759LutvvBtz7NgxDR06VHXq1FGtWrXUvn17ffLJJzp69Kj69OkjSapTp44cDofGjRsn6fqdpR49eigkJET16tXTkCFDdPjwYec5Ch6Fffjhh+rTp49q1qypjh07KiUlxaWWnTt3qnfv3qpZs6bq1Kmj+Ph4XbhwQdL1b/dOTExUVFSUAgIC1LFjR33wwQfl/ZUDKAHhBsBNyczM1F133aVOnTppz5492rBhgzIyMnT//fdLkhYsWKBnnnlGTZo00enTp7V7927t3r1bkrR06VLnWFFycnI0ZMgQtWvXTnv37tXs2bM1bdq0EutJSEhQbm6utm/frgMHDmj+/PmqXbu2wsPDtXr1aknSoUOHdPr0aS1YsECSdOnSJf32t7/Vnj17lJycrGrVqumee+5Rfn6+y7F///vfa9q0adq/f79atWqlkSNH6ocffpAk7d+/X3379lW7du2UkpKiHTt2aOjQocrLy5MkJSYm6t1339XixYt18OBB/eY3v9GDDz6obdu2lfM3D6BYFf7VnAAsb+zYsWbYsGFFrpszZ4752c9+5jJ24sQJI8kcOnTIGGPMyy+/bCIiIly2kWTWrFlT4nnfeOMNU69ePXPlyhXn2KJFi4wks2/fPmPMf7/N/sKFC8YYY2699VYze/bsIo9347bFOXv2rJFkDhw4YIwx5siRI0aSWbJkiXObgwcPGknm66+/NsYYM3LkSNO9e/cij/f999+bmjVrml27drmMjx8/3owcObLEWgC4jzs3AG7KP//5T23ZskW1a9d2Lm3atJEkl0c75fH1118rOjpaNWrUcI7FxMSUuM+UKVP07LPPqnv37nrqqaf0xRdflHqeb7/9ViNHjlSzZs0UFBTkfEx2/Phxl+2io6Odf27YsKEk6cyZM5L+e+emKGlpabp8+bL69+/v8nt69913b/p3BKAwJhQDuCk5OTkaOnSo5s+fX2hdQQCoTBMmTFB8fLzWrVunTZs2KTExUX/84x/16KOPFrvP0KFDFRERobfeekuNGjVSfn6+OnTooKtXr7ps5+vr6/yzw+GQJOejq4CAgGKPn5OTI0lat26dGjdu7LLO39/fvQsEUCru3AC4KZ07d9bBgwcVGRmpFi1auCy1atUqdj9fX1/nfJTitG3bVl988YW+//5759hnn31Wak3h4eF6+OGH9eGHH+rxxx/XW2+9Jen6O6skuZz3/PnzOnTokJ588kn17dtXbdu2dU4Cdkd0dLSSk5OLXNeuXTv5+/vr+PHjhX5H4eHhbp8LQMkINwDKJCsrS/v373dZTpw4oYSEBH333XcaOXKkdu/ercOHD2vjxo166KGHSgwvkZGRSk5OVnp6erFh4he/+IUcDocmTpyor776Sp988olefPHFEuucOnWqNm7cqCNHjig1NVVbtmxR27ZtJUkRERFyOBz6+OOPdfbsWeXk5KhOnTqqV6+e3nzzTaWlpWnz5s367W9/6/bvZ+bMmdq9e7d+/etf64svvtC//vUvLVq0SOfOnVNgYKCmTZum3/zmN3rnnXd0+PBhpaam6tVXX9U777zj9rkAlMLbk34AVH1jx441kgot48ePN8YY880335h77rnHhISEmICAANOmTRszdepUk5+fb4wpekLxX//6V9OiRQtTvXr1Qut+LCUlxXTs2NH4+fmZ2267zaxevbrECcWTJ082zZs3N/7+/qZ+/fpm9OjR5ty5c87jPfPMMyYsLMw4HA4zduxYY4wxSUlJpm3btsbf399ER0ebrVu3ukx4LphQXHBOY4y5cOGCkWS2bNniHNu6dauJjY01/v7+JiQkxMTHxzvrys/PN6+88opp3bq18fX1NfXr1zfx8fFm27ZtbvUCQOkcxhjjrWAFAADgaTyWAgAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtkK4AQAAtvL/AZziJS2yOFVJAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASAxJREFUeJzt3XlYVeXe//HPRmRIBIcUVFAI5wFnDTTR0oNmpleTmSe10c6jmT1latmTwyk0NbVTmU3S5KNpqT2ZGmlIKnVMpRzKKadUME1BTUnh/v3Rz33aMrg3Apu1fL+ua12nfe977fVdfOHsj2vY22GMMQIAALAJH28XAAAAUJIINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYINwAAwFYIN7jqde3aVV27di32us2bNy/Zgopp/Pjxcjgc3i4DfxEZGakhQ4YUe91bbrmlZAsqQ3b5u4I1EW5gO0lJSXI4HM7F19dXderU0ZAhQ3To0CGv1HT48GGNHz9e6enpbs2/dB8CAgJUu3ZtJSQk6OWXX9apU6e8UtfV7mKAvLhUrFhRkZGRGjFihE6ePOmVmrZv367x48dr3759l5374osvyuFwaPPmzS7jxhhVrVpVDodDe/fudXnu3Llz8vf31z333FOSZZcIfn9RGF9vFwCUlokTJyoqKkrnzp3TN998o6SkJK1du1Zbt25VQECAc94XX3xR6rUcPnxYEyZMUGRkpFq1auX2ehf34fz588rIyFBKSopGjhypl156SZ9++qliYmKcc8eNG6cxY8aUSV1Xu9mzZysoKEhnzpzRqlWr9K9//UubNm3S2rVrXebt2LFDPj6l+2/I7du3a8KECeratasiIyOLnNu5c2dJ0tq1a9W6dWvn+LZt23Ty5En5+vpq3bp1ioqKcj63YcMG/fHHH8513VWe/65gf4Qb2FavXr3Url07SdKDDz6oa6+9VlOmTNGnn36qu+66yznPz8/PWyVe1l/3QZLGjh2r1atX65ZbbtGtt96qH3/8UYGBgZIkX19f+fryJ10W7rjjDl177bWSpKFDh+ruu+/WggUL9O9//1sdOnRwzvP39/dWiQVq166dAgICtHbtWj366KPO8XXr1ql69epq166d1q5dq7///e/O5y4GNk/DTXn+u4L9cVoKV40bbrhBkrRnzx6X8YKuDdi/f79uvfVWVapUSTVr1tTjjz+ulStXyuFwKCUlJd9rb9++Xd26ddM111yjOnXq6MUXX3Q+l5KSovbt20uS7rvvPucpjaSkpGLtx4033qhnn31W+/fv1wcffOAcL+iam+TkZHXu3FlVqlRRUFCQGjVqpKefftqtur7++mvdeeedqlu3rvz9/RUREaHHH39cZ8+eddnGkCFDFBQUpEOHDqlfv34KCgpSjRo19OSTTyo3N9dlbl5enmbNmqUWLVooICBANWrUUM+ePfXdd9+5zPvggw/Utm1bBQYGqlq1arr77rt18ODBIn8uixYtksPh0Jo1a/I9N2fOHDkcDm3dulWSlJGRofvuu0/h4eHy9/dXrVq11LdvX7dO7RSksN+tgq65+eGHHxQfH6/AwECFh4frn//8p+bOnSuHw1Hg9teuXasOHTooICBA1113nd577z3nc0lJSbrzzjslSd26dXP2sKDfUenPwNG+fXutW7fOZXzdunWKjY1Vp06dCnyuSpUqzmtg8vLyNHPmTDVr1kwBAQEKDQ3V0KFDdeLECZf1rPZ3BXsh3OCqcfGNo2rVqkXOO3PmjG688UZ9+eWXGjFihJ555hmtX79eo0ePLnD+iRMn1LNnT7Vs2VLTp09X48aNNXr0aC1fvlyS1KRJE02cOFGS9PDDD+v999/X+++/ry5duhR7X+69915JRR/637Ztm2655Rbl5ORo4sSJmj59um699Vbnm9fl6lq4cKF+//13/eMf/9C//vUvJSQk6F//+pcGDRqUb1u5ublKSEhQ9erVNW3aNMXHx2v69Ol64403XOY98MADGjlypCIiIjRlyhSNGTNGAQEB+uabb5xznn/+eQ0aNEgNGjTQSy+9pJEjR2rVqlXq0qVLkde19O7dW0FBQfroo4/yPbdgwQI1a9bM+QZ9++23a/Hixbrvvvv02muvacSIETp16pQOHDhQ6OsXxd3frUOHDqlbt27atm2bxo4dq8cff1wffvihZs2aVeD83bt364477lCPHj00ffp0Va1aVUOGDNG2bdskSV26dNGIESMkSU8//bSzh02aNCm0hs6dO+vQoUMuQWrdunWKi4tTXFyc8xSV9Oe1OOvXr1dsbKzz9NrQoUM1atQoderUSbNmzdJ9992nDz/8UAkJCTp//nyh27XC3xVsxAA2M3fuXCPJfPnll+bXX381Bw8eNIsWLTI1atQw/v7+5uDBgy7z4+PjTXx8vPPx9OnTjSSzZMkS59jZs2dN48aNjSTz1Vdfuawrybz33nvOsZycHBMWFmZuv/1259iGDRuMJDN37lyP9mHDhg2FzgkJCTGtW7d2Pn7uuefMX/+kZ8yYYSSZX3/9tdDXKKqu33//Pd9YYmKicTgcZv/+/c6xwYMHG0lm4sSJLnNbt25t2rZt63y8evVqI8mMGDEi3+vm5eUZY4zZt2+fqVChgnn++eddnt+yZYvx9fXNN36pAQMGmJo1a5oLFy44x44cOWJ8fHyc9Z04ccJIMlOnTi3ytQpy8We8Y8cO8+uvv5p9+/aZd955xwQGBpoaNWqYM2fOuMyvV6+eGTx4sPPxo48+ahwOh9m8ebNz7Pjx46ZatWpGktm7d6/LupJMamqqc+zo0aPG39/fPPHEE86xhQsX5vu9LMqyZcuMJPP+++8bY/78+Ugya9asMadOnTIVKlQwy5YtM8YYs3XrViPJ+XP/+uuvjSTz4YcfurzmihUr8o2Xx78rXD04cgPb6t69u2rUqKGIiAjdcccdqlSpkj799FOFh4cXud6KFStUp04d3Xrrrc6xgIAAPfTQQwXODwoKcrlGwc/PTx06dNDPP/9cMjtSiKCgoCLvmqpSpYokaenSpcrLy/P49S9eyyP9+a/uY8eOKS4uTsaYfHfbSNIjjzzi8viGG25w+Rl8/PHHcjgceu655/Kte/F02ieffKK8vDzdddddOnbsmHMJCwtTgwYN9NVXXxVZc//+/XX06FGXUxyLFi1SXl6e+vfv79wvPz8/paSk5DuV4q5GjRqpRo0aioyM1P3336/69etr+fLluuaaa4pcb8WKFYqNjXW5+LVatWoaOHBggfObNm3qPOUlSTVq1FCjRo2u6HcrLi5OPj4+zmtp1q1bp4oVK6p9+/YKCgpSTEyM8+jexf+9eL3NwoULFRISoh49erj0p23btgoKCiqyP1b5u4I9EG5gW6+++qqSk5O1aNEi3XzzzTp27JhbF3ju379f0dHR+a5fqV+/foHzw8PD882tWrVqsd843XX69GlVrly50Of79++vTp066cEHH1RoaKjuvvtuffTRR24HnQMHDmjIkCGqVq2a8zqa+Ph4SVJWVpbL3IvXz/zVpT+DPXv2qHbt2qpWrVqh29y1a5eMMWrQoIFq1Kjhsvz44486evRokTX37NlTISEhWrBggXNswYIFatWqlRo2bCjpz4t8p0yZouXLlys0NFRdunTRiy++qIyMDLd+LtKfQS05OVnz5s3T9ddfr6NHj7qEwcLs37+/wN+jwn636tatm2/sSn+3qlSpombNmrkEmNatWzvrj4uLc3nuYqiQ/uxPVlaWatasma8/p0+fLrI/Vvm7gj1wawVsq0OHDs47jfr166fOnTvrnnvu0Y4dOxQUFFRi26lQoUKB48aYEtvGpX755RdlZWUV+sYg/XmEIjU1VV999ZWWLVumFStWaMGCBbrxxhv1xRdfFFq39Oc1ND169NBvv/2m0aNHq3HjxqpUqZIOHTqkIUOG5AtIRb2WJ/Ly8uRwOLR8+fICX/NyffP391e/fv20ePFivfbaa8rMzNS6dev0wgsvuMwbOXKk+vTpoyVLlmjlypV69tlnlZiYqNWrV7vcIl2YLl26OO+W6tOnj1q0aKGBAwdq48aNJXrrd2n9bnXu3Fmvv/66Tp486bze5qK4uDi98847On/+vNauXau2bds6PzohLy9PNWvW1Icffljg614acK+EN/6uYB8cucFVoUKFCkpMTNThw4f1yiuvFDm3Xr162rNnT77/E929e3ext1/Snxz8/vvvS5ISEhKKnOfj46ObbrpJL730krZv367nn39eq1evdp4+KKyuLVu2aOfOnZo+fbpGjx6tvn37qnv37qpdu3axa46Ojtbhw4f122+/FTnHGKOoqCh1794933L99ddfdjv9+/fXsWPHtGrVKi1cuFDGGOcpqUu39cQTT+iLL77Q1q1b9ccff2j69Oke71dQUJCee+45paenF3gx81/Vq1evwN+jsv7d6ty5s4wx+vLLL7V582Z16tTJ+VxcXJzOnj2rZcuW6eeff3a5BTw6OlrHjx9Xp06dCuxPy5YtC92mFf6uYB+EG1w1unbtqg4dOmjmzJk6d+5cofMSEhJ06NAhffrpp86xc+fO6c033yz2titVqiRJJfIptqtXr9akSZMUFRVV6LUakgoMERev9cjJySmyrov/av7rG5ExptC7etxx++23yxijCRMm5Hvu4nZuu+02VahQQRMmTMj3JmiM0fHjxy+7ne7du6tatWpasGCBFixYoA4dOrh8KN3vv/+er//R0dGqXLmy8+fiqYEDByo8PFxTpkwpcl5CQoLS0tJcPlH3t99+K/RIiDuK87t1MbC89NJLOn/+vMuRm8jISNWqVct52/Vfw81dd92l3NxcTZo0Kd9rXrhwocgayvvfFeyF01K4qowaNUp33nmnkpKS8l0Ae9HQoUP1yiuvaMCAAXrsscdUq1Ytffjhh85D88X512J0dLSqVKmi119/XZUrV1alSpXUsWNHlzfdgixfvlw//fSTLly4oMzMTK1evVrJycmqV6+ePv30U5dPWr7UxIkTlZqaqt69e6tevXo6evSoXnvtNYWHhzvfsAqrq3HjxoqOjtaTTz6pQ4cOKTg4WB9//PEVXe/QrVs33XvvvXr55Ze1a9cu9ezZU3l5efr666/VrVs3DR8+XNHR0frnP/+psWPHat++ferXr58qV66svXv3avHixXr44Yf15JNPFrmdihUr6rbbbtP8+fN15swZTZs2zeX5nTt36qabbtJdd92lpk2bytfXV4sXL1ZmZqbuvvvuYu1bxYoV9dhjj2nUqFFasWKFevbsWeC8p556Sh988IF69OihRx99VJUqVdJbb72lunXr6rfffivW71arVq1UoUIFTZkyRVlZWfL399eNN96omjVrFrpO3bp1FRERobS0NEVGRuY7IhcXF+e8APyvR3Xi4+M1dOhQJSYmKj09XX/7299UsWJF7dq1SwsXLtSsWbN0xx13FLjN8vR3hatA2d+gBZSuom6jzs3NNdHR0SY6Otp5u/Clt6waY8zPP/9sevfu7bzF94knnjAff/yxkWS++eYb57z4+HjTrFmzfNsZPHiwqVevnsvY0qVLTdOmTY2vr+9lb1+9uA8XFz8/PxMWFmZ69OhhZs2aZbKzs/Otc+mt4KtWrTJ9+/Y1tWvXNn5+fqZ27dpmwIABZufOnW7VtX37dtO9e3cTFBRkrr32WvPQQw+Z77//Pl/tgwcPNpUqVbpsPcYYc+HCBTN16lTTuHFj4+fnZ2rUqGF69eplNm7c6DLv448/Np07dzaVKlUylSpVMo0bNzbDhg0zO3bsKPRn9lfJyclGknE4HPlu/T927JgZNmyYady4salUqZIJCQkxHTt2NB999NFlX/fiPhV0e31WVpYJCQlx+V269FZwY4zZvHmzueGGG4y/v78JDw83iYmJ5uWXXzaSTEZGhsu6vXv3zredgn5f33zzTXPdddeZChUquH1b+IABA4wkc8899+R77qWXXjKSTJMmTQpc94033jBt27Y1gYGBpnLlyqZFixbmqaeeMocPHy6yTm//XeHq4TCGq7MAd8ycOVOPP/64fvnlF9WpU8fb5cBGRo4cqTlz5uj06dMldnG2VfB3hdJAuAEKcPbsWZdbe8+dO6fWrVsrNzdXO3fu9GJlsLpLf7eOHz+uhg0bqk2bNkpOTvZiZaWPvyuUFa65AQpw2223qW7dumrVqpWysrL0wQcf6KeffrqiCz8BSYqNjVXXrl3VpEkTZWZm6u2331Z2draeffZZb5dW6vi7Qlkh3AAFSEhI0FtvvaUPP/xQubm5atq0qebPn1/gLcWAJ26++WYtWrRIb7zxhhwOh9q0aaO33377qvhOJP6uUFY4LQUAAGyFz7kBAAC2QrgBAAC2ctVdc5OXl6fDhw+rcuXKfHQ3AAAWYYzRqVOnVLt27ct+h9tVF24OHz6siIgIb5cBAACK4eDBgwoPDy9yzlUXbipXrizpzx9OcHCwl6sBAADuyM7OVkREhPN9vChXXbi5eCoqODiYcAMAgMW4c0kJFxQDAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABbIdwAAABb8Wq4GT9+vBwOh8vSuHHjItdZuHChGjdurICAALVo0UKff/55GVV7eZFjlilyzDJFjVnm7VJQTPTQ2uif9dFD6ysPPXQYY4y3Nj5+/HgtWrRIX375pXPM19dX1157bYHz169fry5duigxMVG33HKL5s2bpylTpmjTpk1q3ry5W9vMzs5WSEiIsrKySuy7pbpM/lIHTubkG4+uHqhVo24skW2gdNFDa6N/1kcPra+0e+jJ+7fXT0v5+voqLCzMuRQWbCRp1qxZ6tmzp0aNGqUmTZpo0qRJatOmjV555ZUyrDi/gpopSXuOny3jSlBc9NDa6J/10UPrK0899Hq42bVrl2rXrq3rrrtOAwcO1IEDBwqdm5aWpu7du7uMJSQkKC0trdB1cnJylJ2d7bKUpMjLHHbj0Gr5Rw+tjf5ZHz20vvLWQ6+Gm44dOyopKUkrVqzQ7NmztXfvXt1www06depUgfMzMjIUGhrqMhYaGqqMjIxCt5GYmKiQkBDnEhERUaL7cDleO+eHEkMPrY3+WR89tL6y7qFXw02vXr105513KiYmRgkJCfr888918uRJffTRRyW2jbFjxyorK8u5HDx4sMRe2x2OMt0aSgM9tDb6Z3300PrKuodePy31V1WqVFHDhg21e/fuAp8PCwtTZmamy1hmZqbCwsIKfU1/f38FBwe7LCVp3+TeRT6/9zLPw/voobXRP+ujh9ZX3npYrsLN6dOntWfPHtWqVavA52NjY7Vq1SqXseTkZMXGxpZFeYWKrh7o0TjKH3pobfTP+uih9ZWnHnr1VvAnn3xSffr0Ub169XT48GE999xzSk9P1/bt21WjRg0NGjRIderUUWJioqQ/bwWPj4/X5MmT1bt3b82fP18vvPCC128FvyhqzDIZ/Xn4jX9pWBM9tDb6Z3300PpKq4eevH97NdzcfffdSk1N1fHjx1WjRg117txZzz//vKKjoyVJXbt2VWRkpJKSkpzrLFy4UOPGjdO+ffvUoEEDvfjii7r55pvd3mZphhsAAFA6LBNuvIFwAwCA9VjqQ/wAAABKEuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYCuEGAADYSrkJN5MnT5bD4dDIkSMLnZOUlCSHw+GyBAQElF2RAACg3PP1dgGStGHDBs2ZM0cxMTGXnRscHKwdO3Y4HzscjtIsDQAAWIzXj9ycPn1aAwcO1JtvvqmqVatedr7D4VBYWJhzCQ0NLYMqAQCAVXg93AwbNky9e/dW9+7d3Zp/+vRp1atXTxEREerbt6+2bdtW5PycnBxlZ2e7LAAAwL68Gm7mz5+vTZs2KTEx0a35jRo10jvvvKOlS5fqgw8+UF5enuLi4vTLL78Uuk5iYqJCQkKcS0REREmVDwAAyiGHMcZ4Y8MHDx5Uu3btlJyc7LzWpmvXrmrVqpVmzpzp1mucP39eTZo00YABAzRp0qQC5+Tk5CgnJ8f5ODs7WxEREcrKylJwcPAV7wcAACh92dnZCgkJcev922sXFG/cuFFHjx5VmzZtnGO5ublKTU3VK6+8opycHFWoUKHI16hYsaJat26t3bt3FzrH399f/v7+JVY3AAAo37wWbm666SZt2bLFZey+++5T48aNNXr06MsGG+nPMLRlyxbdfPPNpVUmAACwGK+Fm8qVK6t58+YuY5UqVVL16tWd44MGDVKdOnWc1+RMnDhR119/verXr6+TJ09q6tSp2r9/vx588MEyrx8AAJRP5eJzbgpz4MAB+fj855rnEydO6KGHHlJGRoaqVq2qtm3bav369WratKkXqwQAAOWJ1y4o9hZPLkgCAADlgyfv317/nBsAAICSRLgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2Um7CzeTJk+VwODRy5Mgi5y1cuFCNGzdWQECAWrRooc8//7xsCnRD5JhlihyzTFFjlnm7FBQTPbQ2+md99ND6ykMPHcYY47Wt/38bNmzQXXfdpeDgYHXr1k0zZ84scN769evVpUsXJSYm6pZbbtG8efM0ZcoUbdq0Sc2bN3drW9nZ2QoJCVFWVpaCg4NLpP4uk7/UgZM5+cajqwdq1agbS2QbKF300Nron/XRQ+sr7R568v7t9SM3p0+f1sCBA/Xmm2+qatWqRc6dNWuWevbsqVGjRqlJkyaaNGmS2rRpo1deeaWMqi1YQc2UpD3Hz5ZxJSguemht9M/66KH1laceej3cDBs2TL1791b37t0vOzctLS3fvISEBKWlpRW6Tk5OjrKzs12WkhR5mcNuHFot/+ihtdE/66OH1lfeeuhbplu7xPz587Vp0yZt2LDBrfkZGRkKDQ11GQsNDVVGRkah6yQmJmrChAlXVOeV8Po5P1wxemht9M/66KH1lXUPvXbk5uDBg3rsscf04YcfKiAgoNS2M3bsWGVlZTmXgwcPltq2CuIo062hNNBDa6N/1kcPra+se+i1cLNx40YdPXpUbdq0ka+vr3x9fbVmzRq9/PLL8vX1VW5ubr51wsLClJmZ6TKWmZmpsLCwQrfj7++v4OBgl6Uk7Zvcu8jn917meXgfPbQ2+md99ND6ylsPvRZubrrpJm3ZskXp6enOpV27dho4cKDS09NVoUKFfOvExsZq1apVLmPJycmKjY0tq7ILFF090KNxlD/00Nron/XRQ+srTz0sF7eCX9S1a1e1atXKeSv4oEGDVKdOHSUmJkr681bw+Ph4TZ48Wb1799b8+fP1wgsveP1W8IuixiyT0Z+H3/iXhjXRQ2ujf9ZHD62vtHroyfu3Vy8ovpwDBw7Ix+c/B5fi4uI0b948jRs3Tk8//bQaNGigJUuWuB1sSht/iNZHD62N/lkfPbS+8tDDcnXkpiyU5pEbAABQOiz1IX4AAAAliXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABshXADAABsxavhZvbs2YqJiVFwcLCCg4MVGxur5cuXFzo/KSlJDofDZQkICCjDigEAQHnn682Nh4eHa/LkyWrQoIGMMXr33XfVt29fbd68Wc2aNStwneDgYO3YscP52OFwlFW5AADAArwabvr06ePy+Pnnn9fs2bP1zTffFBpuHA6HwsLCyqI8AABgQR6flpo4caJ+//33fONnz57VxIkTi11Ibm6u5s+frzNnzig2NrbQeadPn1a9evUUERGhvn37atu2bUW+bk5OjrKzs10WAABgXw5jjPFkhQoVKujIkSOqWbOmy/jx48dVs2ZN5ebmelTAli1bFBsbq3PnzikoKEjz5s3TzTffXODctLQ07dq1SzExMcrKytK0adOUmpqqbdu2KTw8vMB1xo8frwkTJuQbz8rKUnBwsEe1AgAA78jOzlZISIhb798ehxsfHx9lZmaqRo0aLuOrV69W//799euvv3pU7B9//KEDBw4oKytLixYt0ltvvaU1a9aoadOml133/PnzatKkiQYMGKBJkyYVOCcnJ0c5OTnOx9nZ2YqIiCDcAABgIZ6EG7evualatarzDqWGDRu6XMibm5ur06dP65FHHvG4WD8/P9WvX1+S1LZtW23YsEGzZs3SnDlzLrtuxYoV1bp1a+3evbvQOf7+/vL39/e4LgAAYE1uh5uZM2fKGKP7779fEyZMUEhIiPM5Pz8/RUZGFnmtjLvy8vJcjrQUJTc3V1u2bCn0NBYAALj6uB1uBg8eLEmKiopSXFycKlaseMUbHzt2rHr16qW6devq1KlTmjdvnlJSUrRy5UpJ0qBBg1SnTh0lJiZK+vNi5uuvv17169fXyZMnNXXqVO3fv18PPvjgFdcCAADsweNbwePj45WXl6edO3fq6NGjysvLc3m+S5cubr/W0aNHNWjQIB05ckQhISGKiYnRypUr1aNHD0nSgQMH5OPznxu6Tpw4oYceekgZGRmqWrWq2rZtq/Xr17t1fQ4AALg6eHxB8TfffKN77rlH+/fv16WrOhwOj++WKmueXJAEAADKh1K5oPiiRx55RO3atdOyZctUq1YtPiEYAACUKx6Hm127dmnRokXOO5wAAADKE48/obhjx45F3noNAADgTW4dufnhhx+c//3oo4/qiSeeUEZGhlq0aJHvrqmYmJiSrRAAAMADbl1Q7OPjI4fDke8CYueL/P/nuKAYAACUhhK/oHjv3r0lUhgAAEBpcyvc1KtXr7TrAAAAKBEe3y316aefFjjucDgUEBCg+vXrKyoq6ooLAwAAKA6Pw02/fv0KvP7mr9fddO7cWUuWLFHVqlVLrFAAAAB3eHwreHJystq3b6/k5GRlZWUpKytLycnJ6tixoz777DOlpqbq+PHjevLJJ0ujXgAAgCJ5fOTmscce0xtvvKG4uDjn2E033aSAgAA9/PDD2rZtm2bOnKn777+/RAsFAABwh8dHbvbs2VPgLVjBwcH6+eefJUkNGjTQsWPHrrw6AAAAD3kcbtq2batRo0bp119/dY79+uuveuqpp9S+fXtJf35FQ0RERMlVCQAA4CaPT0u9/fbb6tu3r8LDw50B5uDBg7ruuuu0dOlSSdLp06c1bty4kq0UAADADW59QvGl8vLy9MUXX2jnzp2SpEaNGqlHjx7y8fH4QFCZ4xOKAQCwHk/ev4sVbqyMcAMAgPWU+NcvvPzyy3r44YcVEBCgl19+uci5I0aMcL9SAACAEubWkZuoqCh99913ql69epGfPuxwOJx3TJVXHLkBAMB6SvWLM/kSTQAAUJ4V+wrgP/74Qzt27NCFCxdKsh4AAIAr4nG4+f333/XAAw/ommuuUbNmzXTgwAFJ0qOPPqrJkyeXeIEAAACe8DjcjB07Vt9//71SUlIUEBDgHO/evbsWLFhQosUBAAB4yuMP8VuyZIkWLFig66+/Xg6HwznerFkz7dmzp0SLAwAA8JTHR25+/fVX1axZM9/4mTNnXMIOAACAN3gcbtq1a6dly5Y5H18MNG+99ZZiY2NLrjIAAIBi8Pi01AsvvKBevXpp+/btunDhgmbNmqXt27dr/fr1WrNmTWnUCAAA4DaPj9x07txZ6enpunDhglq0aKEvvvhCNWvWVFpamtq2bVsaNQIAALiN75YCAADlnifv3x4fuRk0aJDmzp1b7r9mAQAAXJ08Djd+fn5KTExU/fr1FRERob///e966623tGvXrtKoDwAAwCPFPi116NAhpaamas2aNVqzZo127typWrVq6ZdffinpGksUp6UAALCeUj0tdVHVqlVVvXp1Va1aVVWqVJGvr69q1Kjh0WvMnj1bMTExCg4OVnBwsGJjY7V8+fIi11m4cKEaN26sgIAAtWjRQp9//nlxd6HERY5ZpsgxyxQ1ZtnlJ6NcoofWRv+sjx5aX3noocdHbp5++mmlpKRo8+bNatKkieLj49W1a1d16dJFVatW9Wjj//d//6cKFSqoQYMGMsbo3Xff1dSpU7V582Y1a9Ys3/z169erS5cuSkxM1C233KJ58+ZpypQp2rRpk5o3b+7WNkvjyE2XyV/qwMmcfOPR1QO1atSNJbINlC56aG30z/roofWVdg89ef/2+HNuJk+erBo1aui5557TbbfdpoYNGxa70D59+rg8fv755zV79mx98803BYabWbNmqWfPnho1apQkadKkSUpOTtYrr7yi119/vdh1XKmCmilJe46fLeNKUFz00Nron/XRQ+srTz30+LTU5s2b9cwzz+jf//63OnXqpDp16uiee+7RG2+8oZ07dxa7kNzcXM2fP19nzpwp9JOO09LS1L17d5exhIQEpaWlFfq6OTk5ys7OdllKUuRlDrtxaLX8o4fWRv+sjx5aX3nrocdHblq2bKmWLVtqxIgRkqTvv/9eM2bM0LBhw5SXl6fc3FyPXm/Lli2KjY3VuXPnFBQUpMWLF6tp06YFzs3IyFBoaKjLWGhoqDIyMgp9/cTERE2YMMGjmkrSVfUhQjZFD62N/lkfPbS+su6hx+HGGKPNmzcrJSVFKSkpWrt2rbKzsxUTE6P4+HiPC2jUqJHS09OVlZWlRYsWafDgwVqzZk2hAcdTY8eO1X//9387H2dnZysiIqJEXtsdfJWo9dFDa6N/1kcPra+se+jxaalq1aqpY8eOmjdvnho0aKB3331Xx44d06ZNmzRjxgyPC/Dz81P9+vXVtm1bJSYmqmXLlpo1a1aBc8PCwpSZmekylpmZqbCwsEJf39/f33k31sWlJO2b3LvI5/de5nl4Hz20NvpnffTQ+spbDz0ONx988IGOHz+u7777TtOnT1efPn1UpUqVEisoLy9POTkFX5QUGxurVatWuYwlJyd7/dvIo6sHejSO8oceWhv9sz56aH3lqYde/W6psWPHqlevXqpbt65OnTrlvLV75cqV6tGjhwYNGqQ6deooMTFR0p+3gsfHx2vy5Mnq3bu35s+frxdeeMHrt4JfFDVmmYz+PPzGvzSsiR5aG/2zPnpofaXVQ0/ev70abh544AGtWrVKR44cUUhIiGJiYjR69Gj16NFDktS1a1dFRkYqKSnJuc7ChQs1btw47du3Tw0aNNCLL76om2++2e1t8gnFAABYj2XCjTcQbgAAsJ4y+foFAACA8sjjcJOamqoLFy7kG79w4YJSU1NLpCgAAIDi8jjcdOvWTb/99lu+8aysLHXr1q1EigIAACguj8ONMUYOR/6P4zl+/LgqVapUIkUBAAAUl9ufUHzbbbdJkhwOh4YMGSJ/f3/nc7m5ufrhhx8UFxdX8hUCAAB4wO1wExISIunPIzeVK1dWYOB/PpTHz89P119/vR566KGSrxAAAMADboebuXPnSpIiIyP15JNPcgoKAACUS3zODQAAKPdK9XNuMjMzde+996p27dry9fVVhQoVXBYAAABvcvu01EVDhgzRgQMH9Oyzz6pWrVoF3jkFAADgLR6Hm7Vr1+rrr79Wq1atSqEcAACAK+PxaamIiAhdZZfpAAAAC/E43MycOVNjxozRvn37SqEcAACAK+PWaamqVau6XFtz5swZRUdH65prrlHFihVd5hb01QwAAABlxa1wM3PmzFIuAwAAoGS4FW4GDx5c2nUAAACUCI/vlsrOzi5w3OFwyN/fX35+fldcFAAAQHF5HG6qVKlS5GfbhIeHa8iQIXruuefk4+Px9coAAABXxONwk5SUpGeeeUZDhgxRhw4dJEn//ve/9e6772rcuHH69ddfNW3aNPn7++vpp58u8YIBAACK4nG4effddzV9+nTdddddzrE+ffqoRYsWmjNnjlatWqW6devq+eefJ9wAAIAy5/F5o/Xr16t169b5xlu3bq20tDRJUufOnXXgwIErrw4AAMBDxfqE4rfffjvf+Ntvv62IiAhJ0vHjx1W1atUrrw4AAMBDHp+WmjZtmu68804tX75c7du3lyR99913+umnn7Ro0SJJ0oYNG9S/f/+SrRQAAMANDlOML4rau3ev3njjDe3YsUOS1KhRIw0dOlSRkZElXV+Jy87OVkhIiLKyshQcHOztcgAAgBs8ef8uVrixMsINAADW48n7t1unpX744Qc1b95cPj4++uGHH4qcGxMT436lAAAAJcytcNOqVStlZGSoZs2aatWqlRwOhwo64ONwOJSbm1viRQIAALjLrXCzd+9e1ahRw/nfAAAA5ZVb4aZevXoF/velzp49e+UVAQAAXIES+fKnnJwcTZ8+XVFRUSXxcgAAAMXmdrjJycnR2LFj1a5dO8XFxWnJkiWSpLlz5yoqKkozZ87U448/Xlp1AgAAuMXtcPM///M/mj17tiIjI7Vv3z7deeedevjhhzVjxgy99NJL2rdvn0aPHu3RxhMTE9W+fXtVrlxZNWvWVL9+/ZyfnVOYpKQkORwOlyUgIMCj7QIAAPty+xOKFy5cqPfee0+33nqrtm7dqpiYGF24cEHff/+9HA5HsTa+Zs0aDRs2TO3bt9eFCxf09NNP629/+5u2b9+uSpUqFbpecHCwSwgq7vYBAID9uB1ufvnlF7Vt21aS1Lx5c/n7++vxxx+/omCxYsUKl8dJSUmqWbOmNm7cqC5duhS6nsPhUFhYWLG3CwAA7Mvt01K5ubny8/NzPvb19VVQUFCJFpOVlSVJqlatWpHzTp8+rXr16ikiIkJ9+/bVtm3bCp2bk5Oj7OxslwUAANiX20dujDEaMmSI/P39JUnnzp3TI488ku/00SeffFKsQvLy8jRy5Eh16tRJzZs3L3Reo0aN9M477ygmJkZZWVmaNm2a4uLitG3bNoWHh+ebn5iYqAkTJhSrJgAAYD1uf7fUfffd59YLzp07t1iF/OMf/9Dy5cu1du3aAkNKYc6fP68mTZpowIABmjRpUr7nc3JylJOT43ycnZ2tiIgIvlsKAAALKfHvlpKKH1rcMXz4cH322WdKTU31KNhIUsWKFdW6dWvt3r27wOf9/f2dR5sAAID9lciH+BWXMUbDhw/X4sWLtXr16mJ9CGBubq62bNmiWrVqlUKFAADAatw+clMahg0bpnnz5mnp0qWqXLmyMjIyJEkhISEKDAyUJA0aNEh16tRRYmKiJGnixIm6/vrrVb9+fZ08eVJTp07V/v379eCDD3ptPwAAQPnh1XAze/ZsSVLXrl1dxufOnashQ4ZIkg4cOCAfn/8cYDpx4oQeeughZWRkqGrVqmrbtq3Wr1+vpk2bllXZAACgHHP7gmK78OSCJAAAUD548v7t1WtuAAAAShrhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2ArhBgAA2IqvNzeemJioTz75RD/99JMCAwMVFxenKVOmqFGjRkWut3DhQj377LPat2+fGjRooClTpujmm28uo6oLFzlmmSTJIWnv5N7eLQbFQg+tjf5ZHz20vvLQQ4cxxnhly5J69uypu+++W+3bt9eFCxf09NNPa+vWrdq+fbsqVapU4Drr169Xly5dlJiYqFtuuUXz5s3TlClTtGnTJjVv3vyy28zOzlZISIiysrIUHBxcIvvRZfKXOnAyJ994dPVArRp1Y4lsA6WLHlob/bM+emh9pd1DT96/vXrkZsWKFS6Pk5KSVLNmTW3cuFFdunQpcJ1Zs2apZ8+eGjVqlCRp0qRJSk5O1iuvvKLXX3+91GsuSEHNlKQ9x8+WcSUoLnpobfTP+uih9ZWnHpara26ysrIkSdWqVSt0Tlpamrp37+4ylpCQoLS0tALn5+TkKDs722UpSRcPvxUm6jLPw/voobXRP+ujh9ZX3npYbsJNXl6eRo4cqU6dOhV5eikjI0OhoaEuY6GhocrIyChwfmJiokJCQpxLREREidZ9OV4754cSQw+tjf5ZHz20vrLuYbkJN8OGDdPWrVs1f/78En3dsWPHKisry7kcPHiwRF//chxlujWUBnpobfTP+uih9ZV1D8tFuBk+fLg+++wzffXVVwoPDy9yblhYmDIzM13GMjMzFRYWVuB8f39/BQcHuywlad9lrgTnav/yjx5aG/2zPnpofeWth14NN8YYDR8+XIsXL9bq1asVFRV12XViY2O1atUql7Hk5GTFxsaWVpmXFV090KNxlD/00Nron/XRQ+srTz306q3g//Vf/6V58+Zp6dKlLp9tExISosDAP38YgwYNUp06dZSYmCjpz1vB4+PjNXnyZPXu3Vvz58/XCy+84NVbwS+KGrNMRnw+g5XRQ2ujf9ZHD62vtHroyfu3V8ONw1HwWbi5c+dqyJAhkqSuXbsqMjJSSUlJzucXLlyocePGOT/E78UXX3T7Q/xKM9wAAIDSYZlw4w2EGwAArMeT9+9ycUExAABASSHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAWyHcAAAAW/FquElNTVWfPn1Uu3ZtORwOLVmypMj5KSkpcjgc+ZaMjIyyKRgAAJR7Xg03Z86cUcuWLfXqq696tN6OHTt05MgR51KzZs1SqhAAAFiNrzc33qtXL/Xq1cvj9WrWrKkqVaqUfEEAAMDyLHnNTatWrVSrVi316NFD69atK3JuTk6OsrOzXRYAAGBflgo3tWrV0uuvv66PP/5YH3/8sSIiItS1a1dt2rSp0HUSExMVEhLiXCIiIsqwYgAAUNYcxhjj7SIkyeFwaPHixerXr59H68XHx6tu3bp6//33C3w+JydHOTk5zsfZ2dmKiIhQVlaWgoODr6RkAABQRrKzsxUSEuLW+7dXr7kpCR06dNDatWsLfd7f31/+/v5lWBEAAPAmS52WKkh6erpq1arl7TIAAEA54dUjN6dPn9bu3budj/fu3av09HRVq1ZNdevW1dixY3Xo0CG99957kqSZM2cqKipKzZo107lz5/TWW29p9erV+uKLL7y1CwAAoJzxarj57rvv1K1bN+fj//7v/5YkDR48WElJSTpy5IgOHDjgfP6PP/7QE088oUOHDumaa65RTEyMvvzyS5fXAAAAV7dyc0FxWfHkgiQAAFA+ePL+bflrbgAAAP6KcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGyFcAMAAGzFq+EmNTVVffr0Ue3ateVwOLRkyZLLrpOSkqI2bdrI399f9evXV1JSUqnX6a7IMcsUOWaZosYs83YpKCZ6aG30z/roofWVhx46jDHGWxtfvny51q1bp7Zt2+q2227T4sWL1a9fv0Ln7927V82bN9cjjzyiBx98UKtWrdLIkSO1bNkyJSQkuLXN7OxshYSEKCsrS8HBwSWyH10mf6kDJ3PyjUdXD9SqUTeWyDZQuuihtdE/66OH1lfaPfTk/dv3ird2BXr16qVevXq5Pf/1119XVFSUpk+fLklq0qSJ1q5dqxkzZrgdbkpDQc2UpD3Hz5ZxJSguemht9M/66KH1laceWuqam7S0NHXv3t1lLCEhQWlpaYWuk5OTo+zsbJelJEVe5rAbh1bLP3pobfTP+uih9ZW3Hloq3GRkZCg0NNRlLDQ0VNnZ2Tp7tuBkmJiYqJCQEOcSERFRFqU6ee2cH0oMPbQ2+md99ND6yrqHlgo3xTF27FhlZWU5l4MHD5bp9h1lujWUBnpobfTP+uih9ZV1Dy0VbsLCwpSZmekylpmZqeDgYAUGBha4jr+/v4KDg12WkrRvcu8in997mefhffTQ2uif9dFD6ytvPbRUuImNjdWqVatcxpKTkxUbG+uliv4UXb3gYFXYOMofemht9M/66KH1laceevVW8NOnT2v37t2SpNatW+ull15St27dVK1aNdWtW1djx47VoUOH9N5770n6z63gw4YN0/3336/Vq1drxIgRXr8V/KKoMctk9OfhN/6lYU300Nron/XRQ+srrR568v7t1XCTkpKibt265RsfPHiwkpKSNGTIEO3bt08pKSku6zz++OPavn27wsPD9eyzz2rIkCFub7M0ww0AACgdlgk33kC4AQDAejx5/7bUNTcAAACXQ7gBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC2QrgBAAC24uvtAsraxQ9kzs7O9nIlAADAXRfft935YoWrLtycOnVKkhQREeHlSgAAgKdOnTqlkJCQIudcdd8tlZeXp8OHD6ty5cpyOBwl+trZ2dmKiIjQwYMHbfm9VXbfP8n++8j+WZ/d95H9s77S2kdjjE6dOqXatWvLx6foq2quuiM3Pj4+Cg8PL9VtBAcH2/aXVrL//kn230f2z/rsvo/sn/WVxj5e7ojNRVxQDAAAbIVwAwAAbIVwU4L8/f313HPPyd/f39ullAq7759k/31k/6zP7vvI/llfedjHq+6CYgAAYG8cuQEAALZCuAEAALZCuAEAALZCuAEAALZCuHFTamqq+vTpo9q1a8vhcGjJkiWXXSclJUVt2rSRv7+/6tevr6SkpFKv80p4uo8pKSlyOBz5loyMjLIp2EOJiYlq3769KleurJo1a6pfv37asWPHZddbuHChGjdurICAALVo0UKff/55GVTrueLsX1JSUr7+BQQElFHFnpk9e7ZiYmKcHwwWGxur5cuXF7mOVXp3kaf7aKX+FWTy5MlyOBwaOXJkkfOs1seL3Nk/q/Vw/Pjx+ept3Lhxket4o3+EGzedOXNGLVu21KuvvurW/L1796p3797q1q2b0tPTNXLkSD344INauXJlKVdafJ7u40U7duzQkSNHnEvNmjVLqcIrs2bNGg0bNkzffPONkpOTdf78ef3tb3/TmTNnCl1n/fr1GjBggB544AFt3rxZ/fr1U79+/bR169YyrNw9xdk/6c9PEf1r//bv319GFXsmPDxckydP1saNG/Xdd9/pxhtvVN++fbVt27YC51updxd5uo+Sdfp3qQ0bNmjOnDmKiYkpcp4V+yi5v3+S9XrYrFkzl3rXrl1b6Fyv9c/AY5LM4sWLi5zz1FNPmWbNmrmM9e/f3yQkJJRiZSXHnX386quvjCRz4sSJMqmppB09etRIMmvWrCl0zl133WV69+7tMtaxY0czdOjQ0i7virmzf3PnzjUhISFlV1QJq1q1qnnrrbcKfM7KvfurovbRqv07deqUadCggUlOTjbx8fHmscceK3SuFfvoyf5ZrYfPPfecadmypdvzvdU/jtyUkrS0NHXv3t1lLCEhQWlpaV6qqPS0atVKtWrVUo8ePbRu3Tpvl+O2rKwsSVK1atUKnWPlPrqzf5J0+vRp1atXTxEREZc9SlBe5Obmav78+Tpz5oxiY2MLnGPl3knu7aNkzf4NGzZMvXv3ztefglixj57sn2S9Hu7atUu1a9fWddddp4EDB+rAgQOFzvVW/666L84sKxkZGQoNDXUZCw0NVXZ2ts6ePavAwEAvVVZyatWqpddff13t2rVTTk6O3nrrLXXt2lXffvut2rRp4+3yipSXl6eRI0eqU6dOat68eaHzCutjeb2u6CJ3969Ro0Z65513FBMTo6ysLE2bNk1xcXHatm1bqX/BbHFs2bJFsbGxOnfunIKCgrR48WI1bdq0wLlW7Z0n+2i1/knS/PnztWnTJm3YsMGt+Vbro6f7Z7UeduzYUUlJSWrUqJGOHDmiCRMm6IYbbtDWrVtVuXLlfPO91T/CDYqtUaNGatSokfNxXFyc9uzZoxkzZuj999/3YmWXN2zYMG3durXIc8VW5u7+xcbGuhwViIuLU5MmTTRnzhxNmjSptMv0WKNGjZSenq6srCwtWrRIgwcP1po1awp987ciT/bRav07ePCgHnvsMSUnJ5fri2aLqzj7Z7Ue9urVy/nfMTEx6tixo+rVq6ePPvpIDzzwgBcrc0W4KSVhYWHKzMx0GcvMzFRwcLAtjtoUpkOHDuU+MAwfPlyfffaZUlNTL/svo8L6GBYWVpolXhFP9u9SFStWVOvWrbV79+5Squ7K+Pn5qX79+pKktm3basOGDZo1a5bmzJmTb64Veyd5to+XKu/927hxo44ePepyZDc3N1epqal65ZVXlJOTowoVKrisY6U+Fmf/LlXee3ipKlWqqGHDhoXW663+cc1NKYmNjdWqVatcxpKTk4s8d24H6enpqlWrlrfLKJAxRsOHD9fixYu1evVqRUVFXXYdK/WxOPt3qdzcXG3ZsqXc9vBSeXl5ysnJKfA5K/WuKEXt46XKe/9uuukmbdmyRenp6c6lXbt2GjhwoNLT0wt847dSH4uzf5cq7z281OnTp7Vnz55C6/Va/0r1cmUbOXXqlNm8ebPZvHmzkWReeukls3nzZrN//35jjDFjxowx9957r3P+zz//bK655hozatQo8+OPP5pXX33VVKhQwaxYscJbu3BZnu7jjBkzzJIlS8yuXbvMli1bzGOPPWZ8fHzMl19+6a1dKNI//vEPExISYlJSUsyRI0ecy++//+6cc++995oxY8Y4H69bt874+vqaadOmmR9//NE899xzpmLFimbLli3e2IUiFWf/JkyYYFauXGn27NljNm7caO6++24TEBBgtm3b5o1dKNKYMWPMmjVrzN69e80PP/xgxowZYxwOh/niiy+MMdbu3UWe7qOV+leYS+8mskMf/+py+2e1Hj7xxBMmJSXF7N2716xbt850797dXHvttebo0aPGmPLTP8KNmy7e9nzpMnjwYGOMMYMHDzbx8fH51mnVqpXx8/Mz1113nZk7d26Z1+0JT/dxypQpJjo62gQEBJhq1aqZrl27mtWrV3uneDcUtG+SXPoSHx/v3N+LPvroI9OwYUPj5+dnmjVrZpYtW1a2hbupOPs3cuRIU7duXePn52dCQ0PNzTffbDZt2lT2xbvh/vvvN/Xq1TN+fn6mRo0a5qabbnK+6Rtj7d5d5Ok+Wql/hbn0zd8Offyry+2f1XrYv39/U6tWLePn52fq1Klj+vfvb3bv3u18vrz0z2GMMaV7bAgAAKDscM0NAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAACwFcINAI/s27dPDodD6enpbq+TlJSkKlWqlFpNXbt21ciRI52PIyMjNXPmzFLbHoDyjXADwGnIkCFyOBxyOByqWLGioqKi9NRTT+ncuXPOORERETpy5IiaN29e4tvu169fibzWhg0b9PDDD7s1lyAE2A/fCg7ARc+ePTV37lydP39eGzdu1ODBg+VwODRlyhRJUoUKFcrlNzL/VY0aNbxdAgAv4sgNABf+/v4KCwtTRESE+vXrp+7duys5Odn5fEGnpT799FM1aNBAAQEB6tatm9599105HA6dPHnS5bVXrlypJk2aKCgoSD179tSRI0ckSePHj9e7776rpUuXOo8cpaSkFFjfmTNnNGjQIAUFBalWrVqaPn16vjl/PRpjjNH48eNVt25d+fv7q3bt2hoxYoSkP09n7d+/X48//rhzu5J0/PhxDRgwQHXq1NE111yjFi1a6H//939dttG1a1eNGDFCTz31lKpVq6awsDCNHz/eZc7Jkyc1dOhQhYaGKiAgQM2bN9dnn33mfH7t2rW64YYbFBgYqIiICI0YMUJnzpwptDcA3EO4AVCorVu3av369fLz8yt0zt69e3XHHXeoX79++v777zV06FA988wz+eb9/vvvmjZtmt5//32lpqbqwIEDevLJJyVJTz75pO666y5n4Dly5Iji4uIK3N6oUaO0Zs0aLV26VF988YVSUlK0adOmQuv7+OOPNWPGDM2ZM0e7du3SkiVL1KJFC0nSJ598ovDwcE2cONG5XUk6d+6c2rZtq2XLlmnr1q16+OGHde+99+rf//63y2u/++67qlSpkr799lu9+OKLmjhxojMI5uXlqVevXlq3bp0++OADbd++XZMnT1aFChUkSXv27FHPnj11++2364cfftCCBQu0du1aDR8+vNB9AeCmUv9qTgCWMXjwYFOhQgVTqVIl4+/vbyQZHx8fs2jRIuecvXv3Gklm8+bNxhhjRo8ebZo3b+7yOs8884yRZE6cOGGMMWbu3LlGksu3B7/66qsmNDTUZdt9+/Ytsr5Tp04ZPz8/89FHHznHjh8/bgIDA12+eblevXpmxowZxhhjpk+fbho2bGj++OOPAl/zr3OL0rt3b/PEE084H8fHx5vOnTu7zGnfvr0ZPXq0McaYlStXGh8fH7Njx44CX++BBx4wDz/8sMvY119/bXx8fMzZs2cvWw+AwnHkBoCLbt26KT09Xd9++60GDx6s++67T7fffnuh83fs2KH27du7jHXo0CHfvGuuuUbR0dHOx7Vq1dLRo0c9qm3Pnj36448/1LFjR+dYtWrV1KhRo0LXufPOO3X27Fldd911euihh7R48WJduHChyO3k5uZq0qRJatGihapVq6agoCCtXLlSBw4ccJkXExPj8viv+5Senq7w8HA1bNiwwG18//33SkpKUlBQkHNJSEhQXl6e9u7dW2R9AIpGuAHgolKlSqpfv75atmypd955R99++63efvvtK37dihUrujx2OBwyxlzx615ORESEduzYoddee02BgYH6r//6L3Xp0kXnz58vdJ2pU6dq1qxZGj16tL766iulp6crISFBf/zxh8u8gvYpLy9PkhQYGFhkXadPn9bQoUOVnp7uXL7//nvt2rXLJQQC8BzhBkChfHx89PTTT2vcuHE6e/ZsgXMaNWqk7777zmVsw4YNHm/Lz89Pubm5Rc6Jjo5WxYoV9e233zrHTpw4oZ07dxa5XmBgoPr06aOXX35ZKSkpSktL05YtWwrd7rp169S3b1/9/e9/V8uWLXXddddddhuXiomJ0S+//FLoem3atNH27dtVv379fEtR1zgBuDzCDYAi3XnnnapQoYJeffXVAp8fOnSofvrpJ40ePVo7d+7URx99pKSkJEly3n3kjsjISP3www/asWOHjh07VuCRlaCgID3wwAMaNWqUVq9era1bt2rIkCHy8Sn8/8qSkpL09ttva+vWrfr555/1wQcfKDAwUPXq1XNuNzU1VYcOHdKxY8ckSQ0aNFBycrLWr1+vH3/8UUOHDlVmZqbb+yJJ8fHx6tKli26//XYlJydr7969Wr58uVasWCFJGj16tNavX6/hw4crPT1du3bt0tKlS7mgGCgBhBsARfL19dXw4cP14osvFnibclRUlBYtWqRPPvlEMTExmj17tvNuKX9/f7e389BDD6lRo0Zq166datSooXXr1hU4b+rUqbrhhhvUp08fde/eXZ07d1bbtm0Lfd0qVarozTffVKdOnRQTE6Mvv/xS//d//6fq1atLkiZOnKh9+/YpOjra+fk448aNU5s2bZSQkKCuXbsqLCysWB8w+PHHH6t9+/YaMGCAmjZtqqeeesp5lCgmJkZr1qzRzp07dcMNN6h169b6n//5H9WuXdvj7QBw5TBlcdIbwFXl+eef1+uvv66DBw96uxQAVyE+oRjAFXvttdfUvn17Va9eXevWrdPUqVM5vQLAawg3AK7Yrl279M9//lO//fab6tatqyeeeEJjx471dlkArlKclgIAALbCBcUAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBWCDcAAMBW/h/V6GePi0krawAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# ***EX_2***"],"metadata":{"id":"bPzLKZE-LiaD"}},{"cell_type":"code","source":["from sklearn.preprocessing import StandardScaler\n","from sklearn.neighbors import KNeighborsClassifier\n","from sklearn.model_selection import train_test_split\n","from sklearn.metrics import accuracy_score,classification_report"],"metadata":{"id":"5u__zu32MzGm","executionInfo":{"status":"ok","timestamp":1740468475383,"user_tz":-330,"elapsed":55,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":12,"outputs":[]},{"cell_type":"code","source":["data2=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/Lab 2/dataset2.csv',names=['Class name','Left weight','Left distance','Right weight','Right distance'])\n","display(data2.head())\n","\n","x=data2.loc[:,['Left weight','Left distance','Right weight','Right distance']] #input features.\n","y=data2.loc[:,'Class name'] #output feature.\n","\n","Standardized_x=StandardScaler().fit_transform(x)#statndardize the dataset.\n","display(Standardized_x)\n","\n","X_train,X_test,y_train,y_test=train_test_split(Standardized_x,y,test_size=0.4,random_state=4)#split data for training and prediction.\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"jy-YB3-ALmJF","executionInfo":{"status":"ok","timestamp":1740468475633,"user_tz":-330,"elapsed":245,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"e3fc1690-9f77-45ea-a353-418c80486d80"},"execution_count":13,"outputs":[{"output_type":"display_data","data":{"text/plain":[" Class name Left weight Left distance Right weight Right distance\n","0 B 1 1 1 1\n","1 R 1 1 1 2\n","2 R 1 1 1 3\n","3 R 1 1 1 4\n","4 R 1 1 1 5"],"text/html":["\n"," <div id=\"df-b33ecb33-d6a3-41fa-ac77-d3a6cefa366d\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Class name</th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>B</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>2</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>3</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>4</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>5</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b33ecb33-d6a3-41fa-ac77-d3a6cefa366d')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-b33ecb33-d6a3-41fa-ac77-d3a6cefa366d button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-b33ecb33-d6a3-41fa-ac77-d3a6cefa366d');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-809d5c9c-f241-4b99-a895-9283bf2f91f6\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-809d5c9c-f241-4b99-a895-9283bf2f91f6')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-809d5c9c-f241-4b99-a895-9283bf2f91f6 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"X_train,X_test,y_train,y_test=train_test_split(Standardized_x,y,test_size=0\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Class name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"R\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["array([[-1.41421356, -1.41421356, -1.41421356, -1.41421356],\n"," [-1.41421356, -1.41421356, -1.41421356, -0.70710678],\n"," [-1.41421356, -1.41421356, -1.41421356, 0. ],\n"," ...,\n"," [ 1.41421356, 1.41421356, 1.41421356, 0. ],\n"," [ 1.41421356, 1.41421356, 1.41421356, 0.70710678],\n"," [ 1.41421356, 1.41421356, 1.41421356, 1.41421356]])"]},"metadata":{}}]},{"cell_type":"code","source":["# shape of each terms.\n","\n","print(\"Shape of X_train : \",X_train.shape)\n","print(\"Shape of y_train : \",y_train.shape)\n","print(\"Shape of X_test : \",X_test.shape)\n","print(\"Shape of y_test : \",y_test.shape)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"V5VpyTR-Pd7A","executionInfo":{"status":"ok","timestamp":1740468475676,"user_tz":-330,"elapsed":45,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"8210a205-5751-4f4b-ac4d-bb7d40814c83"},"execution_count":14,"outputs":[{"output_type":"stream","name":"stdout","text":["Shape of X_train : (375, 4)\n","Shape of y_train : (375,)\n","Shape of X_test : (250, 4)\n","Shape of y_test : (250,)\n"]}]},{"cell_type":"code","source":["knn=KNeighborsClassifier(n_neighbors=15) #n_neighbors indicates no of clusters to be formed.\n","knn.fit(X_train,y_train) #training the knn model with training data.\n","\n","y_pred=knn.predict(X_test) #prediction using test data.\n","print(f\"Accuracy Score : {accuracy_score(y_test,y_pred)}\") #comparing original output with predicted output.\n","print(\"\\n\\nClassification Report : \\n\",classification_report(y_test,y_pred,zero_division=0)) #classification report."],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"XA5XXD2DOvMp","executionInfo":{"status":"ok","timestamp":1740468475678,"user_tz":-330,"elapsed":2,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"6d160a50-7406-451a-b995-7e23a54d8f95"},"execution_count":15,"outputs":[{"output_type":"stream","name":"stdout","text":["Accuracy Score : 0.904\n","\n","\n","Classification Report : \n"," precision recall f1-score support\n","\n"," B 0.00 0.00 0.00 19\n"," L 0.91 0.97 0.94 113\n"," R 0.90 0.98 0.94 118\n","\n"," accuracy 0.90 250\n"," macro avg 0.60 0.65 0.63 250\n","weighted avg 0.84 0.90 0.87 250\n","\n"]}]},{"cell_type":"markdown","source":[],"metadata":{"id":"Uo1BT3gtS5RU"}},{"cell_type":"markdown","source":["# ***EX_3***"],"metadata":{"id":"j7PRLOVbS7j3"}},{"cell_type":"code","source":["from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA"],"metadata":{"id":"TF50_wNrUbMI","executionInfo":{"status":"ok","timestamp":1740468475679,"user_tz":-330,"elapsed":1,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":16,"outputs":[]},{"cell_type":"code","source":["data3=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/Lab 3/dataset.csv',names=['Class name','Left weight','Left distance','Right weight','Right distance'])\n","display(data3.head())"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":0},"id":"yYSph6NaS-ZI","executionInfo":{"status":"ok","timestamp":1740468475994,"user_tz":-330,"elapsed":314,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"607a4ffd-10b3-4761-8473-dacd02822da6"},"execution_count":17,"outputs":[{"output_type":"display_data","data":{"text/plain":[" Class name Left weight Left distance Right weight Right distance\n","0 B 1 1 1 1\n","1 R 1 1 1 2\n","2 R 1 1 1 3\n","3 R 1 1 1 4\n","4 R 1 1 1 5"],"text/html":["\n"," <div id=\"df-0e1e3e89-e54f-4186-9270-e083b480ddde\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>Class name</th>\n"," <th>Left weight</th>\n"," <th>Left distance</th>\n"," <th>Right weight</th>\n"," <th>Right distance</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>B</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>2</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>3</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>4</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>R</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>1</td>\n"," <td>5</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-0e1e3e89-e54f-4186-9270-e083b480ddde')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-0e1e3e89-e54f-4186-9270-e083b480ddde button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-0e1e3e89-e54f-4186-9270-e083b480ddde');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-7a2325b5-eb53-48bd-8c31-10fcf3f5dee9\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-7a2325b5-eb53-48bd-8c31-10fcf3f5dee9')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-7a2325b5-eb53-48bd-8c31-10fcf3f5dee9 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(data3\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"Class name\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 2,\n \"samples\": [\n \"R\",\n \"B\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Left distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right weight\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 1,\n \"num_unique_values\": 1,\n \"samples\": [\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Right distance\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 1,\n \"max\": 5,\n \"num_unique_values\": 5,\n \"samples\": [\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}}]},{"cell_type":"code","source":["x=data3.loc[:,['Left weight','Left distance','Right weight','Right distance']]\n","y=data3.loc[:,'Class name']\n","lda=LDA(n_components=2)\n","lda_x=lda.fit(x,y).transform(x)\n","\n","print(type(lda))\n","print(lda_x)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"ZWFfMyNlUnOX","executionInfo":{"status":"ok","timestamp":1740468476032,"user_tz":-330,"elapsed":37,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"0fd8779c-2da3-4a78-b2a3-af2f2ce270df"},"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["<class 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis'>\n","[[ 1.33226763e-15 -2.82253092e+00]\n"," [ 6.20281290e-01 -2.46971455e+00]\n"," [ 1.24056258e+00 -2.11689819e+00]\n"," ...\n"," [-1.24056258e+00 2.11689819e+00]\n"," [-6.20281290e-01 2.46971455e+00]\n"," [-1.33226763e-15 2.82253092e+00]]\n"]}]},{"cell_type":"code","source":["plt.scatter(lda_x[y=='L',0],lda_x[y=='L',1],color='yellow',s=50,label='L')\n","plt.scatter(lda_x[y=='B',0],lda_x[y=='B',1],color='blue',s=50,label=\"B\")\n","plt.scatter(lda_x[y=='R',0],lda_x[y=='R',1],color='red',s=50,label=\"R\")\n","plt.legend()\n","plt.title(\"LDA Plot\")\n","plt.show()"],"metadata":{"id":"nV9wDxf9W0o8","colab":{"base_uri":"https://localhost:8080/","height":0},"executionInfo":{"status":"ok","timestamp":1740468476213,"user_tz":-330,"elapsed":180,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"cdd89cf5-9ce5-4b12-dc6a-6b4c4443ceae"},"execution_count":19,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAiIAAAGzCAYAAAASZnxRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASntJREFUeJzt3X90FPW9//HnbgIk4adQEAIbQKD+uBYVUGuRFoRb7C9FNEJsq3A83qtEb22wVHttqffYQ6sW6LUNcttaxPKrIIj49dR6aUFAq6ByKG3pNa38MEHFRghCDCS73z8+m5iQ7GYGdnbmM3k9ztkzZuYt+57M7sw7n89nPhNJJBIJRERERHwQ9TsBERER6bhUiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiVxo8fz/jx4/1OQ0TOkAoRkQ5oyZIlRCIRduzYkTJm7969RCKRplenTp34xCc+wWc+8xm+853vsH///rTvMWfOHCKRCNOmTXOV25AhQ1q8b79+/Rg3bhzr1q1z9e+kcvz4cb7//e+zadOmjPx7InJmcv1OQESCraSkhC9+8YvE43E++OADtm/fzsKFC/nJT37CL3/5S6ZPn97q/0kkEqxYsYIhQ4awYcMGjh49Svfu3R2/58UXX8zs2bMBqKqqYvHixUydOpVFixZx++23n9H+HD9+nAceeABALSoiAaBCRETSGjVqFF/72tdarNu3bx+f//znueWWWzj//PO56KKLWmzftGkTb7/9Nr///e+ZPHkya9eu5ZZbbnH8ngMHDmzxnjfffDPDhw9nwYIFZ1yIiEiwqGtGRFwbPHgwS5Ys4cSJEzz00EOtti9btowLLriACRMmMGnSJJYtW3ZG79e/f3/OP/983nrrrbRx7733Hrfeeitnn302eXl5XHTRRTzxxBNN2/fu3Uvfvn0BeOCBB5q6f77//e+fUX4icvpUiIjIabniiisYNmwYL7zwQov1dXV1PPXUU5SUlACma+f3v/8977zzzmm/18mTJzlw4AB9+vRJGVNbW8v48eN58skn+epXv8rDDz9Mz549mTFjBj/5yU8A6Nu3L4sWLQLguuuu48knn+TJJ59k6tSpp52biJwZFSIictouvPBCDh06RE1NTdO6Z599lsOHDzeNHZkyZQqdOnVi5cqVjv/dkydP8v777/P++++za9cubr75Zt59912Ki4tT/j//8z//w1//+ld+9atfMX/+fO666y42btzIFVdcwf3338/Ro0fp2rUrN9xwAwAjR47ka1/7Gl/72tcYOXLkaf4GRORMqRARkdPWrVs3AI4ePdq0btmyZYwZM4bhw4cD0L17d770pS+56p753e9+R9++fenbty8XXXQRq1ev5utf/zo/+tGPUv4/zz33HP37929qiQHo1KkT//Ef/8GHH37I5s2b3e6eiGSBBquKyGn78MMPAZruiDl8+DDPPfccd955JxUVFU1xY8eO5amnnuL//u//+OQnP9nuv3v55Zfz4IMPEolEKCgo4Pzzz6dXr15p/599+/YxYsQIotGWf1+df/75TdtFJHhUiIjIadu9ezf9+vWjR48eAKxevZq6ujp+/OMf8+Mf/7hV/LJly5punU3nE5/4BJMmTcp4viISPCpEROS0vPzyy/z9739vcZvtsmXLuPDCC5k7d26r+MWLF7N8+XJHhcjpGDx4MLt27SIej7doFdmzZ0/TdoBIJOLJ+4vI6VEhIiKu7du3jxkzZtC5c2e+9a1vAXDgwAFefPFFHnjggaYBoc2dOHGCr371q7zyyitcfvnlGc/pi1/8Ir/73e9YtWpV0ziR+vp6Hn30Ubp168bnPvc5AAoKCgDTjSQi/lMhItKBPf744/z2t79ttf4b3/hG03+//vrr/PrXvyYej3P48GG2b9/OU089RSQS4cknn2y642T58uUkEgmuueaaNt/ri1/8Irm5uSxbtsyTQuTf/u3fWLx4MTNmzOC1115jyJAhrFmzhm3btrFw4cKmcSz5+flccMEFrFq1ik9+8pP07t2bCy+8kAsvvDDjOYlI+yKJRCLhdxIikl1Llixh5syZKbcfOHCA+vp6hg4d2rQuNzeXHj16MGLECK666ipuv/12ioqKmraPHDmSI0eOpB0UOmHCBP7yl79QWVlJbm7bfwcNGTKECy+8kGeffTbtPjROz978mTHvvfce9957Lxs2bKCmpoZzzz2XsrIyZsyY0eL/ffnll7nrrrv405/+xIkTJ5g7d64mNRPxiQoRERER8Y3mERERERHfqBARERER36gQEREREd+oEBERERHfqBARERER36gQEREREd8EekKzeDxOVVUV3bt317TMIiIilkgkEhw9epTCwsJWD6I8VaALkaqqKmKxmN9piIiIyGk4cOAAgwYNShsT6EKkcUrmAwcOND3dU0RERIKtpqaGWCzWdB1Px9NCZNGiRSxatIi9e/cC8C//8i9873vf4wtf+IKj/7+xO6ZHjx4qRERERCzjZFiFp4NVBw0axA9/+ENee+01duzYwVVXXcW1117Ln//8Zy/fVkRERCyR9WfN9O7dm4cffphbb7213diamhp69uzJkSNH1CIiIiJiCTfX76yNEWloaGD16tUcO3aMK664os2Yuro66urqmn6uqanJVnoiIiLiA88LkT/96U9cccUVfPTRR3Tr1o1169ZxwQUXtBk7b948HnjgAa9TEhER8VRDQwMnT570Ow1PderUiZycnDP+dzzvmjlx4gT79+/nyJEjrFmzhl/84hds3ry5zWKkrRaRWCymrhkREbHGhx9+yNtvv02WRz5kXSQSYdCgQXTr1q3VNjddM1kfIzJp0iSGDRvG4sWL243VGBEREbFJQ0MDb775JgUFBfTt2ze0k3EmEgkOHTrE8ePHGTFiRKuWkUCOEWkUj8dbtHqIiIiExcmTJ0kkEvTt25f8/Hy/0/FU37592bt3LydPnjyjLhpPC5H77ruPL3zhCxQVFXH06FGWL1/Opk2beP755718WxGxQG0t1NRAjx4Q8vO1dEBhbQlpLlP76Ok8Iu+99x4333wz5557LhMnTmT79u08//zz/Ou//quXbysiAbZ1K0ydCt26Qf/+Zjl1Kmzb5ndmIuIHT1tEfvnLX3r5z4uIZRYtgtJSyMmBeNysi8dhwwZ4+mkoL4fbb/c1RRHJMk9bREREGm3daoqQRALq61tuq68362fNUsuISEejQkREsmL+fNMSkk5ODixYkJ18RIKvFng3ufTWjBkzmDJliufv0xYVIiLiudpaWL++dUvIqerrYd06Ey/ScW0FpgLdgP7J5VQgnM2FKkRExHM1NR+PCWlPPG7iRTqmRcBngQ1A45cmnvx5HPCYT3l5R4WIiHiuRw+IOjzbRKMmXqTj2QqUAgng1ObD+uT6WYStZUSFiIh4Lj8frr0Wctu5Ty83F667TvOKSEc1H2hvYrAcIFwDqVSIiEhWlJVBQ0P6mIYG+OY3s5OPSLDUAutp3RJyqnpgHdkYwJotKkREJCuuvNLMExKJtG4Zyc0168vLYexYf/IT8VcNH48JaU88GR8OKkREJGtuvx22bDHdNI1jRqJR8/OWLZrMTDqyHji/JEeT8eGQ9YfeiUjHNnaseelZMyLN5QPXYu6OSdc9k5uMy/yX5siRI+zcubPFuj59+hCLxTL+Xs2pEBERX+TnqwARaakMeLqdmAbAm4FUmzZt4pJLLmmx7tZbb+UXv/iFJ+/XSF0zIiIigXAlUA5EaN1OkJtcXw5kfiDVkiVLSCQSrV5eFyGgQkRERCRAbge2YLpfGi/R0eTPW5Lbw0VdMyIiIoEyNvmqxdwd0wMvxoQEhQoRERGRQMonzAVII3XNiIiIiG9UiIiIiIhvVIiIiIiIb1SIiEhSNbA7uQyh6mrYvdssRSQwVIiIdHjlQCHQB/hUclkILPIzqcwpL4fCQujTBz71KbMsLIRFIdk/EcupEBHp0EqAUuDgKesPArOAm7KeUUaVlEBpKRw8Zf8OHoRZs+Amy/dPJARUiIh0WOXAynZiVmBty0h5OaxsZ/9WrFDLiARWbS28+65ZhpkKEZEO68EMxwXMgw7zdhonkiVbt8LUqdCtG/Tvb5ZTp8K2bd6954wZM4hEIk2vPn36cPXVV7Nr1y7v3jRJhYhIh1RN6+6YVKqwbgBrdXXr7phUqqo0gFUCY9Ei+OxnYcMGiMfNunjc/DxuHDz2mHfvffXVV3Pw4EEOHjzIxo0byc3N5ctf/rJ3b5ikQkSkQ6ryON5nVS7zdRsv4oGtW82QpkQC6utbbquvN+tnzfKuZaRLly7079+f/v37c/HFF3Pvvfdy4MABDh065M0bJqkQEemQCj2O91mhy3zdxot4YP58yMlJH5OTAwsWeJ/Lhx9+yK9//WuGDx9Onz59PH0vPWtGpEPqDQzAWfdMYTLeIr17w4ABzrpnCgtNvIiPamth/fqPu2NSqa+HdetMfH6GH0Pz7LPP0q1bNwCOHTvGgAEDePbZZ4lGvW2zUIuISId1f4bjAuZ+h3k7jRPxUE1N+0VIo3jcxGfahAkT2LlzJzt37uTVV19l8uTJfOELX2Dfvn2Zf7NmVIiIdFizMPOIpFMC3JGFXDwwa5aZRySdkhK4w9L9k1Dp0QOcNjxEoyY+07p27crw4cMZPnw4l156Kb/4xS84duwYP//5zzP/Zs2oEBHp0Jbz8cyqzRUm1y/PekYZtXz5xzOrNldYaNYvt3z/JDTy8+HaayG3nQETublw3XWZ75ZpSyQSIRqNUuvxRCYaIyLS4d2RfFVj7o6xcExIOnfcYV7V1ebuGI0JkYAqK4Onn04f09AA3/ymN+9fV1fHO++8A8AHH3zAT3/6Uz788EO+8pWvePOGSSpERCSpN6EqQE7Vu7cKEAm0K680DXWzZpm7Y5rfwpuba4qQ8nIYO9ab9//tb3/LgAEDAOjevTvnnXceq1evZvz48d68YZK6ZkRERALi9tthyxbTTdM4ZiQaNT9v2WK2e2HJkiUkEommV01NDa+++irXX3+9N2/YjFpEREREAmTsWPOqrTV3x/TokZ0xIX5RISIiIhJA+fnhLkAaqWtGREREfKNCRERERHyjQkRERER8o0JEREREfKNCRCSwKoFNyWX4VFTA2rVmGVqVlbBpk1mKSJtUiIgEThmQBwwCJiSXecA9fiaVMdOmmXkRRoyA6683y2i0/cfCWKWsDPLyYNAgmDDBLPPy4J5wHEORTNLtuyKBMgZ4rY31dcCPgc3A9qxmlEmDB8P+/a3XJxKwciW89BJ4/KBP740ZA6+1cQzr6uDHP4bNm2G7vcdQJNPUIiISGGW0XYQ0twNbW0amTWu7CGlu/37LW0bKytouQprbsUMtI+JMbS28+65ZhpgKEZHAKHcY9zNPs/DK6tXO4n7zG2/z8FS5w2P4MzuPoWTJ1q0wdSp06wb9+5vl1KmwbZtnbzljxgwikQiRSIROnToxdOhQ5syZw0cffeTZezZSISISCJWY7hcnPsK2AawVFab7xYl43NIBrJWVpvvFiY8+0gBWaduiRfDZz8KGDebLAGa5YQOMGwePPebZW1999dUcPHiQf/zjHyxYsIDFixczd+5cz96vkQoRkUB40+N4f+3a5W18ILzp8pi4jZfw27oVSktN1d780btgfk4kzKN5PWoZ6dKlC/379ycWizFlyhQmTZrECy+84Ml7NadCRCQQRngc76+RI72ND4QRLo+J23gJv/nzIScnfUxODixY4Hkqu3fv5qWXXqJz586ev5fumhEJhIFAF5x1z+Ql4+0xfDhEIs66Z6JRE2+dgQOhSxdn3TN5eSZepFFtLaxf/3F3TCr19bBunYnP8BPxnn32Wbp160Z9fT11dXVEo1F++tOfZvQ92qIWEZHAmOUwrtTTLLxSXOws7sYbvc3DU7McHsNSO4+heKimpv0ipFE8buIzbMKECezcuZNXXnmFW265hZkzZ3L99ddn/H1O5WkhMm/ePC699FK6d+9Ov379mDJlCn/729+8fEsRi83HzCOSzhjgkSzkknmrVkFRUfqYoiJYsSI7+Xhi/nwzj0g6Y8bAI3YeQ/FQjx6mOdCJaNTEZ1jXrl0ZPnw4F110EY8//jivvPIKv/zlLzP+PqfytBDZvHkzpaWl/PGPf+SFF17g5MmTfP7zn+fYsWNevq2IxbYDszHdL83lJdfbPRHWvn0wfXrr8200atZbP5kZmMnKZs823S/N5eWZ9ZrMTNqSnw/XXgu57YyYyM2F667LeLfMqaLRKN/5zne4//77qfV4HpNIIuH0prozd+jQIfr168fmzZv57Gc/22p7XV0ddc36V2tqaojFYhw5coQeHlR/IsFWibk7ZgS2jQlxoqLC3B0zcqSlY0KcqKw0d8eMGKExIR3ERx99xFtvvcXQoUPJO7UYbc/WrebW3XSX5UgEtmyBsWPPLNFTzJgxg8OHD/P00083rauvr2fIkCHcfffd3NPGJHzp9rWmpoaePXs6un5ndYzIkSNHAOjdu3eb2+fNm0fPnj2bXrFYLJvpiQTMQGA8YSxCwBQfU6eGuAgBU3yMH68iRJy58kozKV4k0rplJDfXrC8vz3gRkkpubi533nknDz30kKc9GVlrEYnH41xzzTUcPnyYrVu3thmjFhEREbHZGbWINNq2zdyiu26dGZgajZrumG9+M2tFiBOZahHJ2u27paWl7N69O2URAmYylS5dumQrJRERkeAZO9a8amvN3TE9eng+JsRPWSlE7rzzTp599llefPFFBg0alI23FBERsVt+fqgLkEaeFiKJRIK77rqLdevWsWnTJoYOHerl24mIiIhlPC1ESktLWb58OevXr6d79+688847APTs2ZP8DlDliYiISHqe3jWzaNEijhw5wvjx4xkwYEDTa9WqVV6+rYiIiK+yODOGbzK1j553zYiIiHQUOcmH1p04cSL0Lf8nTpwAPt7n06WH3ok4VgHsAkYCYZz8YgewBRhH+1PNW2jHDjMR1Lhx7U/DbqsOMUtcsOXm5lJQUMChQ4fo1KkTUafTtlsmHo9z6NAhCgoKyG1vNth2qBARadc0YDXQvIUvklxv84NRGo0C3mhj/WhMcWK5UaPgjTb2b/RoU5yEwbRpsHp1yxk5IxGz3uqH99gnEokwYMAA3nrrLfaF4pkFqUWjUYqKiohEImf072R1ine33EyIIuKNwcD+NNuLAJtPNl2B42m2FwAWPxuqa1c4nmb/CgrA9mdfDR4M+9N8RouKQvIQH7vE4/Gmrouw6ty5c8oWn0BOaCZin2mkL0JIbi/BzpaRUaQvQkhuH4OVLSOjRqUvQsBsHzPG3paRadPSFyFgtpeUqGUky6LR6OnPrNrBqEVEJKUoLbtj0sU1eJyLF9w0pwb2NJGam+bi4J4G04tGneUejUKDjZ9RsVVgH3onYo8KnF9848l4m7htAbCsxcBtC4eNLSIVFc4LqHjcxIsEkAoRkTbt8jjeb1s8jvfZFpf5uo0Pgl0uP3Nu40WyRIWISJtGehzvt3Eex/tsnMt83cYHwUiXnzm38SJZojEiIilpjMjHAnuaSE1jRFrGaYyIZJHGiIhkRLHDuBs9zcI7lziMG+1pFp65xOH+jbZ0/wCKHX5Gb7T1MyodgVpERNLSPCKaRyTgNI+IBJBaREQyZh8wndZflWhyve0n+GOkbvEYjdVFCJgiI1WLx+jR9hchYIqM6dNN90tz0ahZryJEAk4tIiKO6VkzVtOzZkSyxs31W4WIiIiIZJS6ZkRERMQKKkRERETENypERERExDcqRERERMQ3KkRERETENypERERExDcqRERERMQ3KkTEUruBx5PLsNoIzEkuw+cvWytY+1+/4y9bK/xOxTsbN8KcOWYZRrt3w+OPm6XIadKEZmKZq4A/tLF+IvC/Wc7FKzHg7RTr0z33xg4LP/kgxW+WU8hBIpjn+lYxgNXnlnL3nv/0O73MiMXg7TaOYSyW/rkwtrjqKvhDG9/DiRPhf8PyPZQzoZlVJaR6Ax+k2X4WUJ2lXLySA8TTbI8C9j7OfU3nG7j+5FMARJqtbzwJrel0A8UnVmc9r4zKyYF4mmMYjUKDvceQ3r3hgzTfw7POgmrbv4dypjSzqoTQVaQvQkhun5SFXLwSI30RQnJ7URZyybyFn3yQ608+RYSWRQjJnyPADSfXsPC8H2Q/uUyJxdIXIWC2F9l5DLnqqvRFCJjtk2z+Hkq2qUVELHHqpSudwH6k2xHufayMFDZ1x6SSACopZFCiMltpZVbExTEM7qk3tbDvn2SMWkQkZNwOhLNx4JzbwYx2DX78y9aKdosQMKXYQKrsHMDqdkCqbQNY3Q5I1QBWcUiFiFjgVY/jg+B5j+P9tef3/3Dc3hNJxlvneZfHxG283151+b1yGy8dlgoRscBlHscHwWSP4/113lXnOO5MSiTjrTPZ5TFxG++3y1x+r9zGS4elMSJiiXCPnzDCvY8aI3KK4J56Uwv7/knGaIyIhNAEh3ETPc3CW4McxsU8zcIrq0fMchS35lxncYE0yOExjNl5DJng8Hs40ebvoWSbWkTEIppHxPZ5RFZ3LuaGk2sAzSNiLc0jIg6oRURCqprULR4Tsb8IAVNkpPprOYbNRQhA8YnV/OTcB6mksKn4aOyO+cm5D9pfhIApMlK1eMRidhchYIqMVC0eEyeqCBHX1CIiltqNuTvmMuBCn3PxykbM3TGTsbvLqW1/2VrBnt//g/OuOocLrhzudzre2LjR3B0zeXI4uyt27zZ3x1x2GVwY1u+hnA5N8S4iIiK+UdeMiIiIWEGFiIiIiPhGhYiIiIj4RoWIiIiI+EaFiIiIiPhGhYiIiIj4RoWIiIiI+EaFiGRIBbA2uQyrdcDM5DKMlgJTkssQWroUpkwxy7Batw5mzjTLMKqogLVrzVJCQxOayRmaBqym5dNgI8n1K3zJKPPOAg63sb4X6Z99Y4sCoLaN9fnA8Szn4oGCAqhtY//y8+F4CPYPzPNdDh9uvb5Xr/TPhbHFtGmwenXLJ/pGImb9irCcZ8JFM6tKlgwG9qfZXgTsy1IuXnHy2PPAfoUcCPn+OXlsfXBPgc6EfR8HD4b9ac4zRUWwz/bzTPhoZlXJgmmkL0JIbi/JQi5eOSvDcUFTkOG4gClwmLfTuCA6y+Fnz2lc0Eyblr4IAbO9xObzjKhFRE5TFGd/Kdv82HonrQWNAvs1SiPk++ekpaBRcE+D6YV9H6NRZ3lHo/Y/1Thk1CIiHqvA+YUpjp0DWN0O9rNtcKDbAZuWDfB0OyDVxgGsbgek2jaAtaLCefEUj2sAq8U8LURefPFFvvKVr1BYWEgkEuHpp5/28u0ka3Z5HB8Ez3gc77e1Hsf7bK3LfN3GB8EzLj9zbuP9tsvlecNtvASGp4XIsWPHuOiii/jZz37m5dtI1o30OD4IrvE43m9TPY732VSX+bqND4JrXH7m3Mb7baTL84bbeAmMrI0RiUQirFu3jilTpjj+fzRGJMg0RqQlC/vfw75/YR8/AeHfR40RsZa1Y0Tq6uqoqalp8ZKgKnYYd6OnWXirV4bjgiY/w3EBk+8wb6dxQdSrV2bjgqbY4XnmRpvPMxKoQmTevHn07Nmz6RWLxfxOSVJahZknJJ0i7J7UzOlEULZOGOV0Mi9LJ/1yOlmZzZOaOZ2szNZJzVatMvOEpFNUpEnNLBeoQuS+++7jyJEjTa8DBw74nZKktQ+YTuuPUTS5PgyTDCVI3eLRCyu7LFpIkLrFIx/r9y+RSN3ikZ9vZ3fFqRKJ1C0evXrZv4/79sH06ab7pblo1KzXZGbWC1Qh0qVLF3r06NHiJUG3AjMG5E3gqeSyAbtbQk71AeaCvBaYkVwmsLcl5FTHMfvzBHBtcpnA2paQUx0/bi7GTzwB115rlomE3S0hp/rgA7NPa9fCjBlmmUjY2xJyqhUrzBiQN9+Ep54yy4YGtYSEhAarioiISEa5uX7nepnIhx9+SEWzSWbeeustdu7cSe/evSlqr99PREREQs/TQmTHjh1MmDCh6eeysjIAbrnlFpYsWeLlW4uIiIgFPC1Exo8fT4AfZSMiIiI+C9RgVREREelYVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiEViWwKbkMo43AnOQyrBYCY5PL8Nm2dAtLpvw325Zu8TsV7yxcCGPHmmUYbdwIc+aYZRhVVsKmTWYpnsnahGanQxOanY4yoByoa7auC3An8IgvGWVWDHg7xfr9Wc7FK7m0/cTiHKA+y7lk3vqCKXy59hmiJIhg5nCNE2FD/jVMOf60z9llSG5u20+DzcmBevuPIbEYvN3G9zAWg/0h+B6WlUF5OdQ1O4926QJ33gmPhOE86j03128VIqEyBnitne3bs5SLF3KAeJrtUdq+gNvEyWPdA/uVbde+SBFFmGdINd/Txj3aRxFDEpY/OyTi4BgG97TbvpwciKf5HkajbRdhthgzBl5Lcx4dMwa223wezQ431291zYRGGemLEIAdwD1ZyMULMdIXISS32zxjr9NpfTyd/scz6wumUMQBIrQutxrXDWY/TxdMyXpuGZPr8Ng4jQuaWCx9EQJmu60zZ5eVpS9CAHbsgHtsPY8Gk1pEQiOPlt0x6eJqPc7FC05aChoF9iPdjnDvY0Mk2tQdk0oCaCBKbsLSv6idtIY0Cu6pN7Ww719eXsvumHRxtTaeR7NHLSIdTiXOihCAj7BvAKvbgXA2Dpxb6HG8v7Yt3dJuEQKmFMshbucAVrcDUm0bwOp2QKptA1grK50VIQAffaQBrBmkQiQU3vQ43m/PexwfBKs9jvfXm2vfcNzeE0nGW2e1y2PiNt5vz7v8XrmN99ubLs+LbuMlJRUioTDC43i/TfY4PgiKPY7314iplzjuTEok461T7PKYuI3322SX3yu38X4b4fK86DZeUtIYkdDQGJGPBfYj3Y5w76PGiJwiuKfe1MK+fxojkjEaI9IhzXIYV+ppFt4Z5DAu5mkW3srJcFywPJt/jcO4r3iciYdyHB4bp3FBM8jh9zBm6fdwlsPzaKmt59FgUotIqFyKuUU3Fc0jEnzhnkdkb2Qwg5MTz2keEUuFfR6RSy81t+imonlEHFGLSIe1HZiN6X5pLi+53vYvTwOpWzxi2F+EgLkkp/prOQebixCAIYl9rM+/lgaiTXvS2B2zPv9a+4sQMEVGqhaPnBy7ixAwRUaqFo9YzO4iBEyRMXu26X5pLi/PrFcRknFqEQmtSszdMSOAgT7n4oWNmLtjJgMTfc7FKwsxd8cUA3f7mokXti3dwptr32DE1EsYe/M4v9PxxsKF5u6Y4mK4+26/s8m8jRvN3TGTJ8PEEH4PKyvN3TEjRsDAMJ5HvaMp3kVERMQ36poRERERK6gQEREREd+oEBERERHfqBARERER36gQEREREd+oEBERERHfqBARERER36gQyZpqYHdyGUY7gAWkn2LedkuBKcllGM0BhiWXITRnDgwbZpZhtXQpTJlilmG0YwcsWJB+CnabVVfD7t1m2YFoQjPPlQMPAgebrRsAfBe4w5eMMmsU8EYb60cTnqKkgLafWJwPHM9yLl5o73m4lkv37Jfgnv7cKSho+2mw+flwPASf0VGj4I02zjOjR4ejKCkvhwcfhIPNrhMDBsB3vwt32Hmd0MyqgVECrGxn+/Is5eKFrqS/EBcAx7KUi1fC/RC60O9f2B9AB+Hfx65d0xdTBQVwzOLzTEkJrExznSgpgeX2XSc0s2oglJO+CAFYASzKQi5eGEX7rQHHMU/8tVVBhuOCxkkR4iYuYJxcoN3EBVGBw8+e07igGTWq/Rad48fNE3FtVF6evggBWLECFtl6nXBGLSKeKaRld0y6uEqPc/GCm5N3YD9i7Qj7PoZ8/9wUGME9DaYX9n0M+/4VFrbsjkkXV2nXdUItIr6rxlkRAlCFfQNY3fbJ2tiH63awn22DA90O2LRsgKfbAak2DmB1OyDVtgGsbsd+2DZWpLraWRECUFUV6gGsKkQ8UeVxvN+2eBwfBGs9jvfbUx7H++wpl/m6jQ+CtS4/c27j/bbF5XnDbbzfqlye993GW0SFiCcKPY732ziP44Ngqsfxfrve43ifXe8yX7fxQTDV5WfObbzfxrk8b7iN91uhy/O+23iLaIyIZzRG5GOB/Yi1I+z7GPL9C/v4Agj/PoZ9/zRGBFCLiIfuz3Bc0FziMG60p1l4Kz/DcSIZlu/ws+c0LmgucXieGW3peeZ+h+d/p3GWUouIp27C3KKbiuYRCb6Qz7MR9v0L+xwbEP59DPs8IjfdZG7RTUXziMiZWY6ZT+TUvr3C5Hr7PlwtHSN1i8do7C9CwFyEU/01mY/VF2mg/fwt37/2LsA2X6AbJRKpWzzy8+3fx2PHUrd4jB5tdxECpsgoL289BqSw0Ky3sAhxSy0iWVONuTumEOjtcy5e2IG5O2Ycdk9ils5SzN0xU4Gbfc7FC3Mwd8dcDzzkcy4emDPH3B1z/fXwUAj3D8wtumvXmoGpN4fwM7pjh7k7Ztw4eycxS6e62twdU1gIve2+TmiKdxEREfGNumZERETECipERERExDcqRERERMQ3KkRERETENypERERExDcqRERERMQ3KkRERETENx24EKkF3k0uw6gCM/lWhd+JeOQ5oDS5DKuHgEsJ5eRiwEs/KOe3F9/ESz8o9zsV7zz0EFx6aXgnUHvuOSgtNcswqqgwE8RVhPU8CtTWwrvvmqVPOuCEZluB+cB6II6pxa4FZgNjM/QefpoGrKbl1NyR5Pp0z72xRT/gUIr172Y5F6/kYD6bp4oCDVnOJfMORAcyKFEFmE9m4yf1QKSQorhdTxhNKScH4m0cw2gUGuw/hvTrB4fa+B7262cuarabNg1Wr245PX4kYtaney6MTbZuhfnzYf1681mNRuHaa2H2bBh75tdCzaya0iLMX9E5QH2z9bmYE3w5cHsG3scvg4H9abYXAfuylIsXoqR/9kmEti/gNgn3Q+hORnLITR6j5nvauEf1ROmUsPxCHfaH0EWj6fOPRNouwmwxeDDsT3MeLSqCfTafR4FFi0xLVk4O1De7FubmmkK5vBxuP7NrYeBmVv3Zz37GkCFDyMvL4/LLL+fVV1/NxtueYiumCEnQsggh+XMCmAVsy3JemTKN9EUIye0lWcjFC/1w9oC2s7OQi1dyMhwXLAeiA8klToTW5Vbjulzi7I8OzH5ymZLj8Ng4jQuafv2cPUjwbEu/h9OmpS9CwGwvsfU8imkJKS01x6n+lGthfb1ZP2sWbMvetdDzQmTVqlWUlZUxd+5cXn/9dS666CImT57Me++95/Vbn2I+7Z/Ac4AFWcjFC6sdxv3G0yy801Z3TFuy/bnKJKd/Rdr512Zjd0x7Yg7jAslpS4CtLQZtdce0Jevn9wxZ7fA8+htbz6OY7pj2CuGcHFiQvWuh54XI/Pnzue2225g5cyYXXHABjz32GAUFBTz++OOtYuvq6qipqWnxyoxazJiQU1tCTlUPrMO+AawVOG+uj2PfAFa3A+FsHDjndjCjXYMfGwekttdp0bjdygGsbgek2jaA1e2AVNsGsFZUOO8yi8ftHMBaW2vGhJzaEnKq+npYty5rA1g9LUROnDjBa6+9xqRJkz5+w2iUSZMm8fLLL7eKnzdvHj179mx6xWKxDGVSg7u/NjNVAGXLLo/j/fb/PI4PAqctWqcb76+a1VsdjX4BU4zUrN7qZTrecPrX9OnG++3/ufxeuY332y6X50W38UFQU+Ou1S5jjQHpeVqIvP/++zQ0NHD2Kf2FZ599Nu+8806r+Pvuu48jR440vQ4cOJChTHrgfFejyXibjPQ43m9f8jg+CIo9jvdXj+IrHbfZJZLx1il2eUzcxvvtSy6/V27j/TbS5XnRbXwQ9OhhBhs7EY2a+Czw9K6ZqqoqBg4cyEsvvcQVV1zRtH7OnDls3ryZV155Je3/n9m7ZqYCG0jfPZOLuZV3zRm+lx/au6OkeZyNdyU4/Xsa7L2rJNz7mEjeTZJuLxv3KmLrXSVO7phpZOM+hn3/2rsjqHmcrbdhT50KGzak757JzTW38q45/WthYO6a+cQnPkFOTg7vnnJf+bvvvkv//v29fOs2lNH+BbgB+GYWcvGC07+ubvQ0C+/0dRjXz9MsvOWm1c4+b0cKHcUdcBgXSG7+2rRRX4ffw36Wfg+dtlLdaOt5FCgra7+IamiAb2bvWujpt6Fz586MHj2ajRs3Nq2Lx+Ns3LixRQtJdlyJmSfE3CTYUm5yfTn2Tmq2CjNPSDpF2Dup2Xs4G+po82RKTv/CsvMvsVi8knqiJGjdntO4rp6o3ZOaOf0r2da/pt97r/1WkUjE3knNVq0y84SkU1Rk96RmV15p5gmJREzLR3O5uWZ9eXlGJjVzyvOyvKysjJ///Oc88cQT/PWvf+WOO+7g2LFjzJw50+u3bsPtwBZM90vjrjfOrLoFuyczAzNZ2XRaH9Zocr3lk/AQJ3WLRz9sva21pQSpv5ZOu9+Cq1OioanFo3FPms+sav1kZmCa9lO1eDht+g+yeDx1i0e/fvbemtxo3z6YPr31MYxGzXrbJzMDM1nZli2m+6VxPxtnVt2y5YwnM3MrKzOr/vSnP+Xhhx/mnXfe4eKLL+a///u/ufzyy9v9/7yZ4r1RLebumB5Afob/7SCowNwdMxIY7nMuXngOc3fMl4Av+pyLVx7C3B1TDMzxOZfMe+kH5dSs3kqP4iv5zH/O8jsdbzz0kLk7prgY5oTvGPLcc+bumC99Cb4Ywu9hRYW5O2bkSBgexvMo5hbdmhozMDU/c9dCTfEuIiIivgnMYFURERGRdFSIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIZE01sDu5DKMdwILkMqyWAlOSyxCqmANrh5llGD00By4dZpZhtXQpTJlilmG0YwcsWGCWYVRdDbt3m2UHognNPFcOPAgcbLZuAPBd4A5fMsqsUcAbbawfTXiKkgLMTLynygeOZzkXD0yLmAlcm58JIsA0YEVgTw/O5UTanv0/CjSEYP8ACgrMDJmnys+H4yH4jI4aBW+0cZ4ZPTocRUl5OTz4IBxsdp0YMAC++124w87rhGZWDYwSYGU725dnKRcvdCX9hbgAOJalXLzi5LHngf0KtW9wBPan2V4E7LN4/5w8tj64p0Bnwr6PXbumL6YKCuCYxeeZkhJYmeY6UVICy+27Tmhm1UAoJ30RAuZJuIuykIsXRtF+a8BxYEwWcvFKQYbjAmZaO0UImO0lToqxAMpxmLfTuCAqcPjZcxoXNKNGtd+ic/w4jLH0PFNenr4IAfOk30W2XiecUYuIZwpp2R2TLs7Gx567OXkH9iPWjpDvYzTiLG1buzCctBQ0Cu5pML2w72PY96+wsGV3TLq4SruuE2oR8V01zooQgCrsG8Dqtk/Wxj5ct4P9LBscWDHHee0Ux74BrG4HpNo4gNXtgFTbBrC6Hfth21iR6mpnRQhAVVWoB7CqEPFElcfxftvicXwQrPU43me7nvI23m+rXebrNj4I1rr8zLmN99sWl+cNt/F+q3J53ncbbxEVIp4o9Djeb+M8jg+CqR7H+2zk9d7G+63YZb5u44NgqsvPnNt4v41zed5wG++3QpfnfbfxFtEYEc9ojMjHAvsRa0fI91FjRD4W3NNgemHfx7Dvn8aIAGoR8dD9GY4Lmkscxo32NAtv5Wc4LmCKHcbd6GkW3nF6drP5LJjv8LPnNC5oLnF4nhlt6Xnmfofnf6dxllKLiKduwtyim4rmEQk+zSOieUQCLuz7GPZ5RG66ydyim4rmEZEzsxwzn8ipfXuFyfX2fbhaOkbqFo/R2F+EgCkyUv01mY/VRQiYImM6rc8EUcx6m4sQMBfgVGe5KHZfoBslEqlbPPLz7d/HY8dSt3iMHm13EQKmyCgvbz0GpLDQrLewCHFLLSJZU425O6YQ6O1zLl7Ygbk7Zhx2T2KWzlLM3TFTgZt9zsUDFXPM3TEjr4fhD/mdTeY9NMfcHVN8PcwJ4f6BuUV37VozMPXmEH5Gd+wwd8eMG2fvJGbpVFebu2MKC6G33dcJTfEuIiIivlHXjIiIiFhBhYiIiIj4RoWIiIiI+EaFiIiIiPhGhYiIiIj4RoWIiIiI+EaFiIiIiPhGhUhoVQKbsPOBek5sBOYkl2G1EBibXIbPtqVbWDLlv9m21LLHt7uxcCGMHWuWYbRxI8yZY5ZhVFkJmzZZ98A522hCs9Apw0wfX9dsXRfgTuARXzLKrBjwdor16R6aYpNcoKGN9TlAfZZzybz1BVP4cu0zREkQwUySHyfChvxrmHL8aZ+zy5DcXGho4xjm5EC9/ceQWAzebuN7GIvB/hB8D8vKzPTqdc3Oo126wJ13wiNhOI96TzOrdlhjgNfa2b49S7l4IQeIp9kepe0LuE3C/ZC9fZEiijgAtNzTxj3aRxFDEvuynldGhf0hdDk5EE/zPYxG2y7CbDFmDLyW5jw6Zgxst/k8mh2aWbVDKiN9EQLmeTD3ZCEXL8RIX4SQ3F6UhVy8kpvhuGBZXzCFIg4QoXW51bhuMPt5umBK1nPLmFyHx8ZpXNDEYumLEDDbiyz9HpaVpS9CwDzv5h5bz6PBpBaR0MijZXdMurhaj3PxgpOWgkaB/Ui3I9z72BCJNnXHpJIAGoiSm7D0L2onrSGNgnvqTS3s+5eX17I7Jl1crY3n0exRi0iHU4mzIgTgI+wbwOp2IJyNA+cWehzvr21Lt7RbhIApxXKI2zmA1e2AVNsGsLodkGrbANbKSmdFCMBHH2kAawapEAmFNz2O99vzHscHwWqP4/315to3HLf3RJLx1lnt8pi4jffb8y6/V27j/famy/Oi23hJSYVIKIzwON5vkz2OD4Jij+P9NWLqJY47kxLJeOsUuzwmbuP9Ntnl98ptvN9GuDwvuo2XlDRGJDQ0RuRjgf1ItyPc+6gxIqcI7qk3tbDvn8aIZIzGiHRIsxzGlXqahXcGOYyLeZqFt3IyHBcsz+Zf4zDuKx5n4qEch8fGaVzQDHL4PYxZ+j2c5fA8WmrreTSY1CISKpdibtFNRfOIBF+45xHZGxnM4OTEc5pHxFJhn0fk0kvNLbqpaB4RR9Qi0mFtB2Zjul+ay0uut/3L00DqFo8Y9hchYC7Jqf5azsHmIgRgSGIf6/OvpYFo0540dsesz7/W/iIETJGRqsUjJ8fuIgRMkZGqxSMWs7sIAVNkzJ5tul+ay8sz61WEZJxaREKrEnN3zAhgoM+5eGEj5u6YycBEn3PxykLM3THFwN2+ZuKFbUu38ObaNxgx9RLG3jzO73S8sXChuTumuBjuvtvvbDJv40Zzd8zkyTAxhN/Dykpzd8yIETAwjOdR72iKdxEREfGNumZERETECipERERExDcqRERERMQ3KkRERETENypERERExDcqRERERMQ3nhUiP/jBD/jMZz5DQUEBvXr18uptRERExGKeFSInTpyguLiYO+64w6u3kECpANYml2G1DpiZXIZPdfUGdu++n+rqDX6n4onqpes4NGUm1UvDefwAWLcOZs40yzCqqIC1a81SQsPzCc2WLFnC3XffzeHDh13/v5rQzAbTMLN/Nv8YRZLrV/iSUeadBRxuY30v4IOsZuKF8vJ7ePDBb3LwYCHm2CUYMKCK7373x9xxx3y/0ztjtQVnkVd7GGjcu+T6/F4UHLf/+AFw1lnQ1jm2Vy/4IAT7OG2amaG2+eUqEjHrV4TlPBMubq7fuVnKyZG6ujrqmj2CuaamxsdspH2DIfkAs5YSwErgJcD2Z4eke4DZYVpe2uxTUrKClSsfTv4UaVoePFjIrFk/ZsuWZSxf/lW/0jtj8Uik6clLkWbLBJBfe5h4JEI0uJNLO5PuIXuHD5vtNu/j4MGwv43zTCIBK1fCSy/BPtvPMx1boAarzps3j549eza9YrY+SrpDmEbbRUhz+4GSLOTilbMyHBcs5eX3sHLldMyl+dSLmVm3YsVNLFpUlv3kMqC24KymPWt778zreIGdxw8wLSGZjAuaadPaLkKa278fSmw+z4irrpl7772XH/3oR2lj/vrXv3Leeec1/eyma6atFpFYLKaumUCK4qwlIIq9T8V18Dj3Jvb9xVlYWNmsOyaVBIWFlVRWDspWWhmTSLYUpN87I2Jri0G61pBT2biP0aizvKNR+5/6GzKedc3Mnj2bGTNmpI0555xz3PyTLXTp0oUuXbqc9v8v2VKB8wtvPBk/3Lt0POF2sN864DovEvFEdfUGDh78Mu0XWxGqqgZSXb2B3r2/ko3UMqJ66TrOwsnemU9y9dJ19L7ZnuMHuB+Qum4dXGfRPlZUOC+e4nETP9y284yAy0Kkb9++9O3b16tcxBq7TiPethPEM6cRb89JvqrqFcBpYRGhquoVqwqRhrXPOG7PiiTjsa0QecblZ/SZZ+wqRHa5PM/s2qVCxFKejRHZv38/O3fuZP/+/TQ0NLBz50527tzJhx9+6NVbStaM9Dg+CK7xON5fhYWX47xVK5GMt0fO1Gtc7J2Jt841LnN2G++3kS7PG27jJTA8u313xowZPPHEE63W/+EPf2D8+PGO/g3dvhtkGiPSkn397xojojEigacxItZyc/32rEVkyZIlJBKJVi+nRYgEXbHDuBs9zcJbvTIcFyz337/AYZydc4l8lN/LUVytw7hAcjprta2zWxc7PM/caPN5Rjyf0OxMqEUk6FLNI9KoiHDPI9IosF+hdt100zJWrLgp+VPzfTX7VFKy3Pp5RJrPH9Io0WwZ6nlEGtm8j6nmEWlUVKR5RAIoEC0i0hHsA6bT+mMUTa4Pw8khQeoWj17YXIQALF/+VcrLZ1NYWEnzy3NhYSXl5bOtLkLAFBmNLR7Niw8wLSHWFyFgioxULR69etldhIApMqZPN90vzUWjZr2KEOupRUQypAJzd8xI7LtDxql1mLtjrsGmO2Scqq7eQFXVKxQWXm7VHTJOVS9dR8PaZ8iZeo19t+o6tW6duTvmmmvsukPGqYoKc3fMyJG6Qybg3Fy/VYiIiIhIRqlrRkRERKygQkRERER8o0JEREREfKNCRERERHyjQkRERER8o0JEREREfKNCRERERHyjQkQstRt4PLkMq43AnOQyfP6ytYK1//U7/rK1wu9UvLNxI8yZY5ZhtHs3PP64WYqcJk1oJpa5CvhDG+snAv+b5Vy8EgPeTrE+3bN97LDwkw9S/GY5hRwkgplyvYoBrD63lLv3/Kff6WVGLAZvt3EMY7H0z02xxVVXwR/a+B5OnAj/G5bvoZwJzawqIdUb+CDN9rOA6izl4pUcIJ5mexSw93HnazrfwPUnnwLafgjdmk43UHxiddbzyqicHIinOYa2P7K+d2/4IM338KyzoNr276GcKc2sKiF0FemLEJLbJ2UhF6/ESF+EkNxelIVcMm/hJx/k+pNPEaH1M40b191wcg0Lz/tB9pPLlFgsfRECZnuRnceQq65KX4SA2T7J5u+hZJtaRMQSDh513iSwH+l2hHsfKyOFTd0xqSSASgoZlKjMVlqZFXFxDIN76k0t7PsnGaMWEQkZtwPhbBw453Ywo12DH/+ytaLdIgRMKTaQKjsHsLodkGrbAFa3A1I1gFUcUiEiFnjV4/ggeN7jeH/t+f0/HLf3RJLx1nne5TFxG++3V11+r9zGS4elQkQscJnH8UEw2eN4f5131TmOO5MSyXjrTHZ5TNzG++0yl98rt/HSYWmMiFgi3OMnjHDvo8aInCK4p97Uwr5/kjEaIyIhNMFh3ERPs/DWIIdxMU+z8MrqEbMcxa0511lcIA1yeAxjdh5DJjj8Hk60+Xso2aYWEbGI5hGxfR6R1Z2LueHkGkDziFhL84iIA2oRkZCqJnWLx0TsL0LAFBmp/lqOYXMRAlB8YjU/OfdBKilsKj4au2N+cu6D9hchYIqMVC0esZjdRQiYIiNVi8fEiSpCxDW1iIildmPujrkMuNDnXLyyEXN3zGTs7nJq21+2VrDn9//gvKvO4YIrh/udjjc2bjR3x0yeHM7uit27zd0xl10GF4b1eyinQ1O8i4iIiG/UNSMiIiJWUCEiIiIivlEhIiIiIr5RISIiIiK+USEiIiIivlEhIiIiIr5RISIiIiK+USEi4lgFsDa5DKMdwILkMoR27IAFC8wyrCoqYO1asxSxRK7fCYgE3zRgNS2feBtJrl/hS0aZNQp4o431owlFUTJqFLzRxv6NHh2eomTaNFi9uuUTbyMRs35FGD6jEmaaWVUkrcHA/jTbi4B9WcrFC12B42m2FwDHspSLB7p2heNp9q+gAI5ZvH8AgwfD/jSf0aIi2GfzZ1RspJlVRTJiGumLEJLbS7KQixdGkb4IIbl9TBZy8cCoUemLEDDbx1i6f2BaPNIVIWC2l9j6GZWOQC0iIilFadkdky7OxieqRlzEBvY0kVrExf4F9zSYXjTqLPdo1P6n/opV1CIicsYqcH7xjWPfAFa3YyMsG0vhduyHjWNFKiqcF1DxuAawSmCpEBFp0y6P4/22xeN4n21xma/b+CDY5fIz5zZeJEtUiIi0aaTH8X4b53G8z8a5zNdtfBCMdPmZcxsvkiUaIyKSksaIfCywp4nUNEakZZzGiEgWaYyISEYUO4y70dMsvHOJw7jRnmbhmUsc7t9oS/cPoNjhZ/RGWz+j0hGoRUQkLc0jonlEAk7ziEgAqUVEJGP2AdNp/VWJJtfbfoI/RuoWj9FYXYSAKTJStXiMHm1/EQKmyJg+3XS/NBeNmvUqQiTg1CIi4lgF5u6YkcBwn3Pxwg7M3THjsHYSs3R27DB3x4wbZ/ckZulUVJi7Y0aOhOFh/IyKLdxcv1WIiIiISEapa0ZERESsoEJEREREfKNCRERERHzjWSGyd+9ebr31VoYOHUp+fj7Dhg1j7ty5nDhxwqu3FBEREcvkevUP79mzh3g8zuLFixk+fDi7d+/mtttu49ixYzzyyCNeva2IiIhYJKt3zTz88MMsWrSIf/zjH47iddeMiIiIfdxcvz1rEWnLkSNH6N27d8rtdXV11NXVNf1cU1OTjbRERETEJ1kbrFpRUcGjjz7Kv//7v6eMmTdvHj179mx6xWKxbKUnEkCVwKbkMnwqKmDtWrMMrcpK2LTJLEWkTa4LkXvvvZdIJJL2tWfPnhb/T2VlJVdffTXFxcXcdtttKf/t++67jyNHjjS9Dhw44H6PRKxXBuQBg4AJyWUecI+fSWXMtGlm9vERI+D6680yGoWSEr8zy6CyMsjLg0GDYMIEs8zLg3vCcQxFMsn1GJFDhw7xz3/+M23MOeecQ+fOnQGoqqpi/PjxfPrTn2bJkiVET30eQhoaIyIdzxjgtXa2b89SLpnXIZ7PNmYMvJbmGI4ZA9vtPYYiTng6RqRv37707dvXUWxlZSUTJkxg9OjR/OpXv3JVhIh0PGWkL0LAPA/mHsC+O8+mTUtfhIDZXlICK1ZkJ6eMKytLX4SAeebNPfeA7h4UATy8a6ayspLx48czePBgnnjiCXJycpq29e/f39G/oRYR6VjygLp2o0xcrce5ZF40Ck7ONtEoNDR4n48n8vKgzsExzMuDWvuOoYhTgbhr5oUXXqCiooKKigoGDRrUYluAn7Mn4pNKnBUhAB8l4wd6l06GVVQ4K0IA4nETb93DYysrnRUhAB99ZOIH2nMMRbziWV/JjBkzSCQSbb5E5FRvehzvr127vI0PhDddHhO38SIhpUEbIoEwwuN4f40c6W18IIxweUzcxouElAoRkUAYCHRxGJuHTd0yYLpZIhFnsdGohd0yYLpZujg8hnl56pYRSVIhIhIYsxzGlXqahVeKi53F3Xijt3l4apbDY1hq5zEU8UJWnzXjlu6akY7nUswtuqloHpHAu/RSc4tuKppHRDoAN9dvtYiIBMp2YDam+6W5vOR6uy9g+/bB9Omm+6W5aNSst74IAVNkzJ5tul+ay8sz61WEiLSgFhGRwKrE3B0zAtvGhDhRUWHujhk50tIxIU5UVpq7Y0aM0JgQ6VACMY+IiJypgYSxAGk0fHiIC5BGAweqABFph7pmRERExDcqRERERMQ3KkRERETENypERERExDcqRERERMQ3KkRERETENypERERExDcqREQkqRrYnVyGUHU17N5tliISGCpERDq8cqAQ6AN8KrksBBb5mVTmlJdDYSH06QOf+pRZFhbCopDsn4jlVIiIdGglmKf5Hjxl/UHM04BvynpGGVVSYp50e/CU/Tt40Dwp9ybL908kBFSIiHRY5cDKdmJWYG3LSHk5rGxn/1asUMuIiM/00DuRDquQ1i0hqeIqPc7FA4WFrVtCUsVVWrh/IgHm5vqtFhGRDqkaZ0UIQBXWDWCtrnZWhABUVWkAq4iPVIiIdEhVHsf7rMplvm7jRSRjVIiIdEiFHsf7rNBlvm7jRSRjVIiIdEi9gQEOYwuT8Rbp3RsGONy/wkITLyK+UCEi0mHdn+G4gLnfYd5O40TEEypERDqsWZh5RNIpAe7IQi4emDXLzCOSTkkJ3GHp/omEhAoRkQ5tOR/PrNpcYXL98qxnlFHLl388s2pzhYVm/XLL908kBDSPiIgkVWPujrFwTIgT1dXm7hiNCRHxnJvrd26WchKRwOtNKAuQRr17qwARCSB1zYiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiC9qa+Hdd81SRDouFSIiklVbt8LUqdCtG/Tvb5ZTp8K2bX5nJiJ+UCEiIlmzaBF89rOwYQPE42ZdPG5+HjcOHnvM3/xEJPtUiIhIVmzdCqWlkEhAfX3LbfX1Zv2sWWoZEeloVIiISFbMnw85OeljcnJgwYLs5CMiwaBCREQ8V1sL69e3bgk5VX09rFunAawiHYkKERHxXE3Nx2NC2hOPm3gR6RhUiIiI53r0gKjDs000auJFpGNQISIinsvPh2uvhdzc9HG5uXDddSZeRDoGFSIikhVlZdDQkD6moQG++c3s5CMiwaBCRESy4sorobwcIpHWLSO5uWZ9eTmMHetPfiLiDxUiIpI1t98OW7aYbprGMSPRqPl5yxazXUQ6lnZ6bEVEMmvsWPOqrTV3x/TooTEhIh2Zpy0i11xzDUVFReTl5TFgwAC+/vWvU1VV5eVbiogl8vPh7LNVhIh0dJ4WIhMmTOA3v/kNf/vb33jqqaf4+9//zg033ODlW4qIiIhFIolEIpGtN3vmmWeYMmUKdXV1dOrUqd34mpoaevbsyZEjR+ihiQVERESs4Ob6nbUxItXV1SxbtozPfOYzKYuQuro66urqmn6u0fSKIiIioeb5XTPf/va36dq1K3369GH//v2sX78+Zey8efPo2bNn0ysWi3mdnoiIiPjIdSFy7733EolE0r727NnTFP+tb32LN954g9/97nfk5ORw8803k6o36L777uPIkSNNrwMHDpz+nomIiEjguR4jcujQIf75z3+mjTnnnHPo3Llzq/Vvv/02sViMl156iSuuuKLd99IYEREREft4Okakb9++9O3b97QSiycfv9l8HIiIiIh0XJ4NVn3llVfYvn07V155JWeddRZ///vf+e53v8uwYcMctYaIiIhI+HlWiBQUFLB27Vrmzp3LsWPHGDBgAFdffTX3338/Xbp0cfRvNPYa6e4ZERERezRet52M/sjqPCJuNY4pEREREfscOHCAQYMGpY0JdCESj8epqqqie/fuRCIRv9PxTU1NDbFYjAMHDmjQrsf0u84e/a6zR7/r7NHv2kgkEhw9epTCwkKi0fQ36Ab6oXfRaLTdSqoj6dGjR4f+YGeTftfZo9919uh3nT36XUPPnj0dxXk+oZmIiIhIKipERERExDcqRCzQpUsX5s6d6/huIzl9+l1nj37X2aPfdfbod+1eoAerioiISLipRURERER8o0JEREREfKNCRERERHyjQkRERER8o0JEREREfKNCxGJ1dXVcfPHFRCIRdu7c6Xc6obN3715uvfVWhg4dSn5+PsOGDWPu3LmcOHHC79RC4Wc/+xlDhgwhLy+Pyy+/nFdffdXvlEJn3rx5XHrppXTv3p1+/foxZcoU/va3v/mdVuj98Ic/JBKJcPfdd/udihVUiFhszpw5FBYW+p1GaO3Zs4d4PM7ixYv585//zIIFC3jsscf4zne+43dq1lu1ahVlZWXMnTuX119/nYsuuojJkyfz3nvv+Z1aqGzevJnS0lL++Mc/8sILL3Dy5Ek+//nPc+zYMb9TC63t27ezePFiRo4c6Xcq9kiIlZ577rnEeeedl/jzn/+cABJvvPGG3yl1CA899FBi6NChfqdhvcsuuyxRWlra9HNDQ0OisLAwMW/ePB+zCr/33nsvASQ2b97sdyqhdPTo0cSIESMSL7zwQuJzn/tc4hvf+IbfKVlBLSIWevfdd7ntttt48sknKSgo8DudDuXIkSP07t3b7zSsduLECV577TUmTZrUtC4ajTJp0iRefvllHzMLvyNHjgDoM+yR0tJSvvSlL7X4bEv7Av30XWktkUgwY8YMbr/9dsaMGcPevXv9TqnDqKio4NFHH+WRRx7xOxWrvf/++zQ0NHD22We3WH/22WezZ88en7IKv3g8zt13383YsWO58MIL/U4ndFauXMnrr7/O9u3b/U7FOmoRCYh7772XSCSS9rVnzx4effRRjh49yn333ed3ytZy+rturrKykquvvpri4mJuu+02nzIXOX2lpaXs3r2blStX+p1K6Bw4cIBvfOMbLFu2jLy8PL/TsY6eNRMQhw4d4p///GfamHPOOYcbb7yRDRs2EIlEmtY3NDSQk5PDV7/6VZ544gmvU7We0991586dAaiqqmL8+PF8+tOfZsmSJUSjqt/PxIkTJygoKGDNmjVMmTKlaf0tt9zC4cOHWb9+vX/JhdSdd97J+vXrefHFFxk6dKjf6YTO008/zXXXXUdOTk7TuoaGBiKRCNFolLq6uhbbpCUVIpbZv38/NTU1TT9XVVUxefJk1qxZw+WXX86gQYN8zC58KisrmTBhAqNHj+bXv/61TiYZcvnll3PZZZfx6KOPAqbboKioiDvvvJN7773X5+zCI5FIcNddd7Fu3To2bdrEiBEj/E4plI4ePcq+fftarJs5cybnnXce3/72t9UV1g6NEbFMUVFRi5+7desGwLBhw1SEZFhlZSXjx49n8ODBPPLIIxw6dKhpW//+/X3MzH5lZWXccsstjBkzhssuu4yFCxdy7NgxZs6c6XdqoVJaWsry5ctZv3493bt355133gGgZ8+e5Ofn+5xdeHTv3r1VsdG1a1f69OmjIsQBFSIiKbzwwgtUVFRQUVHRqshTQ+KZmTZtGocOHeJ73/se77zzDhdffDG//e1vWw1glTOzaNEiAMaPH99i/a9+9StmzJiR/YRE2qCuGREREfGNRt2JiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG9UiIiIiIhvVIiIiIiIb1SIiIiIiG/+P2IeLqxhZgxiAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# ***EX_4***"],"metadata":{"id":"4UdTwZZ4TpGS"}},{"cell_type":"code","source":["from sklearn.model_selection import train_test_split\n","from sklearn.linear_model import LinearRegression\n","from sklearn.metrics import r2_score,accuracy_score,classification_report"],"metadata":{"id":"daHPuiOYYt7P","executionInfo":{"status":"ok","timestamp":1740468476217,"user_tz":-330,"elapsed":3,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":20,"outputs":[]},{"cell_type":"code","source":["data4=pd.read_csv('/content/drive/MyDrive/sem 6/Lab/ML Lab/Lab 4/dataset4.csv')\n","display(data4.head())"],"metadata":{"id":"0nTCyY0RTrPl","colab":{"base_uri":"https://localhost:8080/","height":0},"executionInfo":{"status":"ok","timestamp":1740468476571,"user_tz":-330,"elapsed":353,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"42ec6583-bb3c-4c6f-a718-422079df813e"},"execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":[" adviser 32/60 125 256 6000 256.1 16 128 198 199\n","0 amdahl 470v/7 29 8000 32000 32 8 32 269 253\n","1 amdahl 470v/7a 29 8000 32000 32 8 32 220 253\n","2 amdahl 470v/7b 29 8000 32000 32 8 32 172 253\n","3 amdahl 470v/7c 29 8000 16000 32 8 16 132 132\n","4 amdahl 470v/b 26 8000 32000 64 8 32 318 290"],"text/html":["\n"," <div id=\"df-89f8cba9-d02d-459b-a040-ba295dfed5c0\" class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>adviser</th>\n"," <th>32/60</th>\n"," <th>125</th>\n"," <th>256</th>\n"," <th>6000</th>\n"," <th>256.1</th>\n"," <th>16</th>\n"," <th>128</th>\n"," <th>198</th>\n"," <th>199</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>amdahl</td>\n"," <td>470v/7</td>\n"," <td>29</td>\n"," <td>8000</td>\n"," <td>32000</td>\n"," <td>32</td>\n"," <td>8</td>\n"," <td>32</td>\n"," <td>269</td>\n"," <td>253</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>amdahl</td>\n"," <td>470v/7a</td>\n"," <td>29</td>\n"," <td>8000</td>\n"," <td>32000</td>\n"," <td>32</td>\n"," <td>8</td>\n"," <td>32</td>\n"," <td>220</td>\n"," <td>253</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>amdahl</td>\n"," <td>470v/7b</td>\n"," <td>29</td>\n"," <td>8000</td>\n"," <td>32000</td>\n"," <td>32</td>\n"," <td>8</td>\n"," <td>32</td>\n"," <td>172</td>\n"," <td>253</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>amdahl</td>\n"," <td>470v/7c</td>\n"," <td>29</td>\n"," <td>8000</td>\n"," <td>16000</td>\n"," <td>32</td>\n"," <td>8</td>\n"," <td>16</td>\n"," <td>132</td>\n"," <td>132</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>amdahl</td>\n"," <td>470v/b</td>\n"," <td>26</td>\n"," <td>8000</td>\n"," <td>32000</td>\n"," <td>64</td>\n"," <td>8</td>\n"," <td>32</td>\n"," <td>318</td>\n"," <td>290</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <div class=\"colab-df-buttons\">\n","\n"," <div class=\"colab-df-container\">\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-89f8cba9-d02d-459b-a040-ba295dfed5c0')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n","\n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n"," <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n"," </svg>\n"," </button>\n","\n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," .colab-df-buttons div {\n"," margin-bottom: 4px;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-89f8cba9-d02d-459b-a040-ba295dfed5c0 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-89f8cba9-d02d-459b-a040-ba295dfed5c0');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n","\n","\n","<div id=\"df-2ccdf2be-cba3-4f3e-b334-b16b1f97a2e9\">\n"," <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-2ccdf2be-cba3-4f3e-b334-b16b1f97a2e9')\"\n"," title=\"Suggest charts\"\n"," style=\"display:none;\">\n","\n","<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <g>\n"," <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n"," </g>\n","</svg>\n"," </button>\n","\n","<style>\n"," .colab-df-quickchart {\n"," --bg-color: #E8F0FE;\n"," --fill-color: #1967D2;\n"," --hover-bg-color: #E2EBFA;\n"," --hover-fill-color: #174EA6;\n"," --disabled-fill-color: #AAA;\n"," --disabled-bg-color: #DDD;\n"," }\n","\n"," [theme=dark] .colab-df-quickchart {\n"," --bg-color: #3B4455;\n"," --fill-color: #D2E3FC;\n"," --hover-bg-color: #434B5C;\n"," --hover-fill-color: #FFFFFF;\n"," --disabled-bg-color: #3B4455;\n"," --disabled-fill-color: #666;\n"," }\n","\n"," .colab-df-quickchart {\n"," background-color: var(--bg-color);\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: var(--fill-color);\n"," height: 32px;\n"," padding: 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-quickchart:hover {\n"," background-color: var(--hover-bg-color);\n"," box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: var(--button-hover-fill-color);\n"," }\n","\n"," .colab-df-quickchart-complete:disabled,\n"," .colab-df-quickchart-complete:disabled:hover {\n"," background-color: var(--disabled-bg-color);\n"," fill: var(--disabled-fill-color);\n"," box-shadow: none;\n"," }\n","\n"," .colab-df-spinner {\n"," border: 2px solid var(--fill-color);\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," animation:\n"," spin 1s steps(1) infinite;\n"," }\n","\n"," @keyframes spin {\n"," 0% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," border-left-color: var(--fill-color);\n"," }\n"," 20% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 30% {\n"," border-color: transparent;\n"," border-left-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," border-right-color: var(--fill-color);\n"," }\n"," 40% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-top-color: var(--fill-color);\n"," }\n"," 60% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," }\n"," 80% {\n"," border-color: transparent;\n"," border-right-color: var(--fill-color);\n"," border-bottom-color: var(--fill-color);\n"," }\n"," 90% {\n"," border-color: transparent;\n"," border-bottom-color: var(--fill-color);\n"," }\n"," }\n","</style>\n","\n"," <script>\n"," async function quickchart(key) {\n"," const quickchartButtonEl =\n"," document.querySelector('#' + key + ' button');\n"," quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n"," quickchartButtonEl.classList.add('colab-df-spinner');\n"," try {\n"," const charts = await google.colab.kernel.invokeFunction(\n"," 'suggestCharts', [key], {});\n"," } catch (error) {\n"," console.error('Error during call to suggestCharts:', error);\n"," }\n"," quickchartButtonEl.classList.remove('colab-df-spinner');\n"," quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n"," }\n"," (() => {\n"," let quickchartButtonEl =\n"," document.querySelector('#df-2ccdf2be-cba3-4f3e-b334-b16b1f97a2e9 button');\n"," quickchartButtonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n"," })();\n"," </script>\n","</div>\n","\n"," </div>\n"," </div>\n"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"dataframe","summary":"{\n \"name\": \"display(data4\",\n \"rows\": 5,\n \"fields\": [\n {\n \"column\": \"adviser\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 1,\n \"samples\": [\n \"amdahl\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"32/60\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"470v/7a\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"125\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 26,\n \"max\": 29,\n \"num_unique_values\": 2,\n \"samples\": [\n 26\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"256\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 8000,\n \"max\": 8000,\n \"num_unique_values\": 1,\n \"samples\": [\n 8000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"6000\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7155,\n \"min\": 16000,\n \"max\": 32000,\n \"num_unique_values\": 2,\n \"samples\": [\n 16000\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"256.1\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14,\n \"min\": 32,\n \"max\": 64,\n \"num_unique_values\": 2,\n \"samples\": [\n 64\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"16\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 8,\n \"max\": 8,\n \"num_unique_values\": 1,\n \"samples\": [\n 8\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"128\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7,\n \"min\": 16,\n \"max\": 32,\n \"num_unique_values\": 2,\n \"samples\": [\n 16\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"198\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 74,\n \"min\": 132,\n \"max\": 318,\n \"num_unique_values\": 5,\n \"samples\": [\n 220\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"199\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 60,\n \"min\": 132,\n \"max\": 290,\n \"num_unique_values\": 3,\n \"samples\": [\n 253\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"}},"metadata":{}}]},{"cell_type":"code","source":["x=data4.iloc[:,3:4].values\n","y=data4.iloc[:,[8]].values\n","print(x.shape)\n","print(y.shape)"],"metadata":{"id":"wrvwtaeDaRLO","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1740468476574,"user_tz":-330,"elapsed":4,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"cfb4f30d-489f-47c4-e8c8-546ec1d40b64"},"execution_count":22,"outputs":[{"output_type":"stream","name":"stdout","text":["(208, 1)\n","(208, 1)\n"]}]},{"cell_type":"code","source":["X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)\n","print(X_train.shape)\n","print(y_train.shape)\n","print(X_test.shape)\n","print(y_test.shape)"],"metadata":{"id":"9kT9HKt1a29Q","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1740468476577,"user_tz":-330,"elapsed":2,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"ee0ae949-6f4a-4f3e-ce6b-74cc9327a117"},"execution_count":23,"outputs":[{"output_type":"stream","name":"stdout","text":["(166, 1)\n","(166, 1)\n","(42, 1)\n","(42, 1)\n"]}]},{"cell_type":"code","source":["lin_reg=LinearRegression()\n","lin_reg.fit(X_train,y_train)\n","\n","y_pred=lin_reg.predict(X_test)\n","print(f\"Model Score : \",lin_reg.score(X_test,y_test))\n","print(f\"R2 Score : {r2_score(y_test,y_pred)}\")"],"metadata":{"id":"Lin57Nj9a5SR","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1740468476579,"user_tz":-330,"elapsed":2,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"e3b284b1-1d88-4b1a-c1e8-3bf1aa0e9be5"},"execution_count":24,"outputs":[{"output_type":"stream","name":"stdout","text":["Model Score : 0.5173550372587894\n","R2 Score : 0.5173550372587894\n"]}]},{"cell_type":"code","source":["plt.scatter(X_train,y_train,color='red',label=\"Actual Training Data\")\n","plt.plot(X_train,lin_reg.predict(X_train),color='blue',label=\"Predicted Regressor Line\")\n","plt.title(\"Training Data\")\n","plt.legend()\n","plt.show()"],"metadata":{"id":"K0KveP9acNEM","colab":{"base_uri":"https://localhost:8080/","height":0},"executionInfo":{"status":"ok","timestamp":1740468476734,"user_tz":-330,"elapsed":154,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"ac2a045e-a619-4f61-ee3e-ef659aecae9e"},"execution_count":25,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZiBJREFUeJzt3XlYVNX/B/D3sI3suLElIrnlXmoalluSuGQq9s0FC9OftmhuaWrlki2YVpqW2mJalksquaaFC2pGSiruERqKC0gpq8o2nN8fVy5cGGCAgTszvF/PMw/Ouefe+cwRmA/nnkUjhBAgIiIiMiNWagdAREREVF5MYIiIiMjsMIEhIiIis8MEhoiIiMwOExgiIiIyO0xgiIiIyOwwgSEiIiKzwwSGiIiIzA4TGCIiIjI7TGCIqNJGjRqFRo0aVejcefPmQaPRGDcgIrJ4TGCILJhGozHoERERoXaoqhg1apSiHZycnPDggw/i2WefxZYtW5CXl1fha69btw5LliwxXrBEpKDhXkhEluv7779XPP/uu+8QHh6OtWvXKsqfeuopeHh4VPh1cnJykJeXB61WW+5zc3NzkZubi1q1alX49Stq1KhR2LBhA77++msAwL1793DlyhXs2LEDp0+fRo8ePbBt2za4uLiU+9pPP/00zp49i8uXLxs5aiICABu1AyCiqjNy5EjF8z/++APh4eHFyou6e/cuHBwcDH4dW1vbCsUHADY2NrCxUe9XkY2NTbH2eO+997BgwQLMmjULY8eOxcaNG1WKjohKwltIRDVcjx490Lp1axw/fhzdunWDg4MD3nzzTQDAtm3b0L9/f3h7e0Or1aJx48Z49913odPpFNcoOgbm8uXL0Gg0+Oijj/Dll1+icePG0Gq1ePTRRxEVFaU4V98YGI1GgwkTJmDr1q1o3bo1tFotWrVqhT179hSLPyIiAh07dkStWrXQuHFjfPHFF0YZVzNz5kz07t0bmzZtwt9//y2XG9ImPXr0wK5du3DlyhX59lR++2RnZ2POnDno0KEDXF1d4ejoiK5du+LAgQOVipeopmEPDBHh1q1b6Nu3L4YNG4aRI0fKt5PWrFkDJycnTJ06FU5OTti/fz/mzJmDtLQ0LFq0qMzrrlu3Dunp6XjppZeg0WiwcOFCBAUF4Z9//imz1+a3335DWFgYXn31VTg7O2Pp0qUYMmQI4uPjUbduXQDAyZMn0adPH3h5eeGdd96BTqfD/PnzUb9+/co3CoDnn38ev/76K8LDw9GsWTMAhrXJW2+9hdTUVFy7dg2LFy8GADg5OQEA0tLS8PXXX2P48OEYO3Ys0tPTsWrVKgQGBuLYsWN4+OGHjRI7kcUTRFRjjB8/XhT9se/evbsAIFauXFms/t27d4uVvfTSS8LBwUFkZmbKZSEhIcLX11d+HhcXJwCIunXritu3b8vl27ZtEwDEjh075LK5c+cWiwmAsLOzExcvXpTLTp06JQCIZcuWyWUDBgwQDg4O4vr163JZbGyssLGxKXZNfUJCQoSjo2OJx0+ePCkAiClTpshlhrZJ//79FW2SLzc3V2RlZSnKkpOThYeHhxg9enSZMRORhLeQiAharRYvvvhisXJ7e3v53+np6fjvv//QtWtX3L17F3/99VeZ1x06dChq164tP+/atSsA4J9//inz3ICAADRu3Fh+3rZtW7i4uMjn6nQ67N27F4MGDYK3t7dcr0mTJujbt2+Z1zdEfq9Jenq6XFbZNrG2toadnR0AIC8vD7dv30Zubi46duyIEydOGCVuopqAt5CICA888ID8oVrYuXPn8Pbbb2P//v1IS0tTHEtNTS3zug0bNlQ8z09mkpOTy31u/vn55yYlJeHevXto0qRJsXr6yioiIyMDAODs7CyXVbZNAODbb7/Fxx9/jL/++gs5OTlyuZ+fnxGiJqoZmMAQkaJXIV9KSgq6d+8OFxcXzJ8/H40bN0atWrVw4sQJzJgxw6A1UqytrfWWCwNWb6jMucZy9uxZAAUJkTHa5Pvvv8eoUaMwaNAgTJ8+He7u7rC2tkZoaCguXbpUpe+HyJIwgSEivSIiInDr1i2EhYWhW7ducnlcXJyKURVwd3dHrVq1cPHixWLH9JVVxNq1a6HRaPDUU08BKF+blDQLavPmzXjwwQcRFhamqDN37lyjxExUU3AMDBHpld8DUrjHIzs7G8uXL1crJAVra2sEBARg69atuHHjhlx+8eJF7N69u9LXX7BgAX799VcMHToUTZs2lV8TMKxNHB0d9d5S0neNo0ePIjIystIxE9Uk7IEhIr26dOmC2rVrIyQkBBMnToRGo8HatWur9RZOWebNm4dff/0Vjz/+OF555RXodDp89tlnaN26NaKjow26Rm5urrxicWZmJq5cuYLt27fj9OnT6NmzJ7788ku5bnnapEOHDti4cSOmTp2KRx99FE5OThgwYACefvpphIWFYfDgwejfvz/i4uKwcuVKtGzZUh5zQ0RlYwJDRHrVrVsXO3fuxOuvv463334btWvXxsiRI9GrVy8EBgaqHR4AKUnYvXs3pk2bhtmzZ8PHxwfz58/HhQsXDJoRBABZWVl4/vnnAQAODg5wd3dHhw4dMGfOHAwePBhWVgUd1eVpk1dffRXR0dFYvXo1Fi9eDF9fXwwYMACjRo1CYmIivvjiC/zyyy9o2bIlvv/+e2zatKnG7klFVBHcC4mILM6gQYNw7tw5xMbGqh0KEVURjoEhIrN27949xfPY2Fj8/PPP6NGjhzoBEVG1YA8MEZk1Ly8vjBo1Cg8++CCuXLmCFStWICsrCydPnpQH3xKR5eEYGCIya3369MH69euRmJgIrVYLf39/fPDBB0xeiCwce2CIiIjI7HAMDBEREZmdcicwhw4dwoABA+Dt7Q2NRoOtW7fKx3JycjBjxgy0adMGjo6O8Pb2xgsvvKBYZAoAbt++jeDgYLi4uMDNzQ1jxowptv7B6dOn0bVrV9SqVQs+Pj5YuHBhxd4hERERWZxyj4G5c+cO2rVrh9GjRyMoKEhx7O7duzhx4gRmz56Ndu3aITk5GZMmTcIzzzyDP//8U64XHByMhIQEhIeHIycnBy+++CLGjRuHdevWAQDS0tLQu3dvBAQEYOXKlThz5gxGjx4NNzc3jBs3zqA48/LycOPGDTg7O5e4pDcRERGZFiEE0tPT4e3trViHSV/FCgMgfvrpp1LrHDt2TAAQV65cEUIIcf78eQFAREVFyXV2794tNBqNuH79uhBCiOXLl4vatWuLrKwsuc6MGTNE8+bNDY7t6tWrAgAffPDBBx988GGGj6tXr5b6OV/ls5BSU1Oh0Wjg5uYGAIiMjISbmxs6duwo1wkICICVlRWOHj2KwYMHIzIyEt26dYOdnZ1cJzAwEB9++CGSk5NRu3btYq+TlZWFrKws+bm4Pzb56tWrcHFxqaJ3R0RERMaUlpYGHx8fODs7l1qvShOYzMxMzJgxA8OHD5eTiMTERLi7uyuDsLFBnTp1kJiYKNfx8/NT1PHw8JCP6UtgQkND8c477xQrd3FxYQJDRERkZsoa/lFls5BycnLw3HPPQQiBFStWVNXLyGbNmoXU1FT5cfXq1Sp/TSIiIlJHlfTA5CcvV65cwf79+xU9IJ6enkhKSlLUz83Nxe3bt+Hp6SnXuXnzpqJO/vP8OkVptVpotVpjvg0iIiIyUUbvgclPXmJjY7F3717UrVtXcdzf3x8pKSk4fvy4XLZ//37k5eWhc+fOcp1Dhw4hJydHrhMeHo7mzZvrvX1ERERENUu5E5iMjAxER0cjOjoaABAXF4fo6GjEx8cjJycHzz77LP7880/88MMP0Ol0SExMRGJiIrKzswEALVq0QJ8+fTB27FgcO3YMR44cwYQJEzBs2DB4e3sDAEaMGAE7OzuMGTMG586dw8aNG/Hpp59i6tSpxnvnREREZLbKvZVAREQEevbsWaw8JCQE8+bNKzb4Nt+BAwfk3WFv376NCRMmYMeOHbCyssKQIUOwdOlSODk5yfVPnz6N8ePHIyoqCvXq1cNrr72GGTNmGBxnWloaXF1dkZqaykG8REREZsLQz2+L3QuJCQwREZH5MfTzm3shERERkdlhAkNERERmp8pX4iUyGTodcPgwkJAAeHkBXbsC1tZqR0VERBXABIZqhrAwYNIk4Nq1grIGDYBPPwWKbEpKRESmj7eQyPKFhQHPPqtMXgDg+nWpPCxMnbiIiMyRTgdERADr10tfdTpVwmACQ5ZNp5N6XvRNtssvmzxZtR9AIiKzEhYGNGoE9OwJjBghfW3USJU/BJnAkGU7fLh4z0thQgBXr0r1iIioZCbWm80EhixbQoJx6xER1UQm2JvNBIYsm5eXcesREdVEJtibzQSGLFvXrtJsI41G/3GNBvDxkeoREZF+JtibzQSGLJu1tTRVGiiexOQ/X7KE68EQEZXGBHuzmcCQ5QsKAjZvBh54QFneoIFUznVgiIhKZ4K92VzIjmqGoCBg4ECuxEtEVBH5vdnPPislK4UH86rUm80EhmoOa2ugRw+1oyAiMk/5vdn6VjVfsqTae7OZwBAREZFhTKg3mwkMERERGc5EerM5iJeIiIjMDhMYIiIiMjtMYIiIiMjsMIEhIiIis8MEhoiIiMwOExgiIiIyO0xgiIiIyOwwgSEiIiKzwwSGiIiIzA4TGCIiIjI7TGCIiIjI7DCBISIiIrPDBIaIiIjMDhMYIiIiKpfsbODaNXVjYAJDREREBlu8GNBqAR8f4Phx9eKwUe+liYiIyFzcuQM4OSnLfHzUiQVgDwwRERGV4ccfiycvcXGAu7s68QBMYIiIiKgEublSL8vQoQVlQ4cCQgCNGqkWFgDeQiIiIiI9Dh8GunVTlh0/DrRvr048RbEHhoiIiGRCAE8+qUxeOnYEdDrTSV4A9sAQERHRfefPA61aKcv27AECA9WJpzTsgSEiIiKMG6dMXlxcgKws00xeACYwRERENdqNG4BGA3z1VUHZ6tVAaipgZ6deXGVhAkNERFRDhYYCDzygLEtJAUaNUiOa8mECQ0REVMOkpUm9Lm++WVA2f740gNfVVb24yoODeImIiGqQtWuBF15Qll29CjRooE48FcUeGCIiohogOxuoW1eZvIweLfW6mFvyArAHhoiIyOLt3Qs89ZSy7MwZoHVrdeIxBvbAEBERWSghgM6dlclLt25AXp55Jy8Ae2CIiIgs0qlTwMMPK8sOHAB69FAjGuNjDwwREZGFGTlSmbx4eQE5OZaTvADsgSEiIrIY8fGAr6+ybP16YNgwdeKpSuXugTl06BAGDBgAb29vaDQabN26VXFcCIE5c+bAy8sL9vb2CAgIQGxsrKLO7du3ERwcDBcXF7i5uWHMmDHIyMhQ1Dl9+jS6du2KWrVqwcfHBwsXLiz/uyMiIqohZs8unrykp1tm8gJUIIG5c+cO2rVrh88//1zv8YULF2Lp0qVYuXIljh49CkdHRwQGBiIzM1OuExwcjHPnziE8PBw7d+7EoUOHMG7cOPl4WloaevfuDV9fXxw/fhyLFi3CvHnz8OWXX1bgLRIREVmu5GRpUbr33isoW7hQGsDr5KReXFVOVAIA8dNPP8nP8/LyhKenp1i0aJFclpKSIrRarVi/fr0QQojz588LACIqKkqus3v3bqHRaMT169eFEEIsX75c1K5dW2RlZcl1ZsyYIZo3b25wbKmpqQKASE1NrejbIyIiMmlffSWElKoUPBIS1I6qcgz9/DbqIN64uDgkJiYiICBALnN1dUXnzp0RGRkJAIiMjISbmxs6duwo1wkICICVlRWOHj0q1+nWrRvsCu0iFRgYiJiYGCQnJ+t97aysLKSlpSkeREREligzE6hVCxg7tqBs/HgphfH0VC+u6mTUBCYxMREA4OHhoSj38PCQjyUmJsLd3V1x3MbGBnXq1FHU0XeNwq9RVGhoKFxdXeWHj49P5d8QERGRidm1C7C3B7KyCsr++gv47DP1YlKDxUyjnjVrFlJTU+XH1atX1Q6JiIjIaPLygDZtgKefLijr00cqb95cvbjUYtRp1J73+61u3rwJLy8vufzmzZt4+P6EdE9PTyQlJSnOy83Nxe3bt+XzPT09cfPmTUWd/OeeJfSNabVaaLVao7wPIiIiUxIVBXTqpCw7cgTo0kWdeEyBUXtg/Pz84OnpiX379sllaWlpOHr0KPz9/QEA/v7+SElJwfHjx+U6+/fvR15eHjp37izXOXToEHJycuQ64eHhaN68OWrXrm3MkImIiExaUJAyeWncGMjNrdnJC1CBBCYjIwPR0dGIjo4GIA3cjY6ORnx8PDQaDSZPnoz33nsP27dvx5kzZ/DCCy/A29sbgwYNAgC0aNECffr0wdixY3Hs2DEcOXIEEyZMwLBhw+Dt7Q0AGDFiBOzs7DBmzBicO3cOGzduxKeffoqpU6ca7Y0TERGZskuXpOnRP/1UUBYWBly8CFhbqxeXySjv9KYDBw4IAMUeISEhQghpKvXs2bOFh4eH0Gq1olevXiImJkZxjVu3bonhw4cLJycn4eLiIl588UWRnp6uqHPq1CnxxBNPCK1WKx544AGxYMGCcsXJadRERGSuXn+9+PToO3fUjqp6GPr5rRFCCBXzpyqTlpYGV1dXpKamwsXFRe1wiIiIyvTff0D9+sqyZcuACRPUiUcNhn5+W8wsJCIiInO2bFnx5OXff2tW8lIe3MyRiIhIRXfvAo6OyrJp04BFi9SJx1wwgSEiIlJJWBgwZIiy7NIl4MEH1YnHnPAWEhERUTXT6aQkpXDyEhQkDddl8mIY9sAQERFVoyNHgCeeUJZFRQGFtggkA7AHhoiIqBoIAQQGKpOXtm2l3hgmL+XHHhgiIqIqFhMDPPSQsmzXLqBfP3XisQTsgSEiIqpC48crkxd7eyAzk8lLZTGBISIiqgKJidJWAMuXF5R9/bU0bZp7D1ceExgiIiIjW7QI8PJSlt2+DYwZo048logJDBERkZFkZEi9Lm+8UVA2e7Y0gLd2bfXiskQcxEtERGQE69cDI0Yoy+LjAR8fdeKxdOyBISIiqoScHMDDQ5m8jBwp9boweak67IEhIiKqoAMHgCefVJZFRwPt2qkSTo3CHhgiIqJyEgLo2lWZvDz2GJCXx+SlurAHhoiIqBzOngXatFGWhYcDAQHqxFNTsQeGiIjIQKNHK5OXevWA7GwmL2pgDwwREVEZrl0rPiB37VppsC6pgz0wREREpZg/v3jykprK5EVt7IEhIiLSIyWl+OJzoaHAzJmqhENFMIEhIiIqYvVqabxLYdevA97e6sRDxTGBISIiui8rSxqYm5FRUDZuHPDFF+rFRPoxgSEiIgLwyy9Anz7KsvPngRYt1ImHSsdBvEREVKPl5QEdOiiTl169pHImL6aLPTBERFRjnTghJS+FHTokrbJLpo09MEREVCMNHapMXho2lDZmZPJiHtgDQ0RENcrly4Cfn7Lsxx+B//1PlXCogtgDQ0RENcasWcWTl4wMJi/miD0wRERk8W7dkqZHF7Z4MTB5sirhkBEwgSEiIou2YgXw6qvKsps3AXd3deIh42ACQ0REFunePcDJSZoOnW/yZKnnhcwfExgiIrI427cDAwcqy/7+G2jaVJ14yPg4iJeIiCyGTgc0b65MXp55BhCCyYulYQ8MERFZhD/+APz9i5d17qxOPFS12ANDRERmTQhgwABl8tKiBZCby+TFkrEHhoiIzFZsLNCsmbJs+3YpoSHLxh4YIiIyS5MmKZMXGxtp5hGTl5qBCQwREZmVpCRAowGWLi0oW7FC2seoVi314qLqxQSGiIjMxuLFgIeHsuzWLeDll9WJh9TDBIaIiEzenTtSr8vUqQVls2ZJA3jr1FEvLlIPB/ESEZFJ+/FHYOhQZVlcHNCokSrhkIlgDwwREZmk3FzAx0eZvAwdKvW6MHkh9sAQEZHJOXQI6N5dWXb8ONC+vTrxkOlhDwwREZkMIYCePZXJS8eO0hYBTF6oMPbAEBGRSTh/HmjVSln2yy9A797qxEOmjT0wRESkunHjlMmLiwuQlcXkhUrGBIaIiFRz44Y0PfqrrwrKVq8GUlMBOzv14iLTxwSGiIhU8cEHwAMPKMtSUoBRo9SIhsyN0RMYnU6H2bNnw8/PD/b29mjcuDHeffddCCHkOkIIzJkzB15eXrC3t0dAQABiY2MV17l9+zaCg4Ph4uICNzc3jBkzBhkZGcYOl4iIqllamtTr8tZbBWXz50sDeF1d1YuLzIvRE5gPP/wQK1aswGeffYYLFy7gww8/xMKFC7Fs2TK5zsKFC7F06VKsXLkSR48ehaOjIwIDA5GZmSnXCQ4Oxrlz5xAeHo6dO3fi0KFDGDdunLHDJSKiarR2bfEk5do1YPZsdeIh86URhbtGjODpp5+Gh4cHVq1aJZcNGTIE9vb2+P777yGEgLe3N15//XVMmzYNAJCamgoPDw+sWbMGw4YNw4ULF9CyZUtERUWhY8eOAIA9e/agX79+uHbtGry9vYu9blZWFrKysuTnaWlp8PHxQWpqKlxcXIz5FomIqJyyswFPTyA5uaBs9Gig0EcFEQDp89vV1bXMz2+j98B06dIF+/btw99//w0AOHXqFH777Tf07dsXABAXF4fExEQEBATI57i6uqJz586IjIwEAERGRsLNzU1OXgAgICAAVlZWOHr0qN7XDQ0Nhaurq/zw8fEx9lsjIqIK2LsX0GqVycuZM0xeqHKMvg7MzJkzkZaWhoceegjW1tbQ6XR4//33ERwcDABITEwEAHgU2U7Uw8NDPpaYmAh3d3dloDY2qFOnjlynqFmzZmFqoV2+8ntgiIhIHUIAjz0GHDtWUNatGxARIY2BIaoMoycwP/74I3744QesW7cOrVq1QnR0NCZPngxvb2+EhIQY++VkWq0WWq22yq5PRESGO3UKePhhZdmBA0CPHmpEQ5bI6AnM9OnTMXPmTAwbNgwA0KZNG1y5cgWhoaEICQmBp6cnAODmzZvw8vKSz7t58yYevv/d7unpiaSkJMV1c3Nzcfv2bfl8IiIyTSNHAj/8UPDcywuIjwdsuPY7GZHRx8DcvXsXVlbKy1pbWyMvLw8A4OfnB09PT+zbt08+npaWhqNHj8Lf3x8A4O/vj5SUFBw/flyus3//fuTl5aFz587GDpmIiIwgPl66NVQ4eVm/XlqsjskLGZvRv6UGDBiA999/Hw0bNkSrVq1w8uRJfPLJJxg9ejQAQKPRYPLkyXjvvffQtGlT+Pn5Yfbs2fD29sagQYMAAC1atECfPn0wduxYrFy5Ejk5OZgwYQKGDRumdwYSERGpa/Zs4L33lGXp6YCTkzrxkOUzegKzbNkyzJ49G6+++iqSkpLg7e2Nl156CXPmzJHrvPHGG7hz5w7GjRuHlJQUPPHEE9izZw9q1aol1/nhhx8wYcIE9OrVC1ZWVhgyZAiWLl1q7HCJiKgSkpOBOnWUZYsWAfdXySCqMkZfB8ZUGDqPnIiIKuarr6RNGAtLSJDWeyGqKEM/v3lXkoiIyiUzU1pNNzu7oGz8eOCzz9SLiWoeJjBERGSwXbuAp59Wlv31F9C8uTrxUM3F3aiJiKhMeXlA69bK5KVPH6mcyQupgT0wRERUqqgooFMnZdmRI0CXLurEQwSwB4aIiEoxeLAyeWnSBMjNZfJC6mMPDBERFXPpkpSsFBYWJiU0RKaAPTBERKQwbVrx5OXOHSYvZFqYwBAREQDgv/+krQA+/rigbNkyaVdpBwf14iLShwkMERFh2TKgfn1l2b//AhMmqBMPUVk4BoaIqAa7exdwdFSWTZ8OLFyoTjxEhmICQ0RUQ4WFAUOGKMsuXQIefFCdeIjKg7eQiIhqGJ0O8PNTJi9DhkhjXZi8kLlgDwwRUQ1y5AjwxBPKsqgooGNHdeIhqij2wBAR1QBCAIGByuSlbVupN4bJC5kj9sAQEVm4mBjgoYeUZbt2Af36qRMPkTGwB4aIyIKNH69MXuztgcxMJi9k/pjAEBFZoMREaVG65csLyr7+Wpo2rdWqFxeRsTCBISKyMIsWAV5eyrLkZGDMGHXiIaoKTGCIiCxEerrU6/LGGwVls2dLA3jd3FQLi6hKcBAvEZEFWL8eGDFCWRYfD/j4qBMPUVVjDwwRkRnLyQE8PJTJy/PPS70uTF7IkrEHhojITB04ADz5pLIsOhpo106VcIiqFXtgiIjMjBDSgnSFkxd/fyAvj8kL1RzsgSEiMiNnzkgr6Ba2dy/Qq5c68RCphT0wRERm4sUXlclLvXpAdjaTF6qZ2ANDRGTirl0rPiB37Vpg5Eh14iEyBeyBISIyYfPnF09eUlOZvBCxB4aIyASlpAC1ayvLQkOBmTNVCYfI5DCBISIyMatXA6NHK8tu3Ci+PQBRTcYEhojIRGRlAXXrAnfuFJSNGwd88YV6MRGZKiYwREQmYM8eoG9fZdn580CLFurEQ2TqOIiXiEhFeXlA+/bK5CUgQCpn8kJUMvbAEBGp5MQJoEMHZdmhQ0DXrurEQ2RO2ANDRKSCoUOVyUvDhtLGjExeiAzDHhgiomp0+TLg56cs27QJePZZVcIhMlvsgSEiqiazZhVPXjIymLwQVQR7YIjIfOh0wOHDQEKCtChK166AtbXaUZXp1i1p36LCFi8GJk9WJRwii8AEhojMQ1gYMGmStDFQvgYNgE8/BYKC1IurDCtWAK++qiy7eRNwd1cnHiJLwVtIRGT6wsKk+yyFkxcAuH5dKg8LUyeuUty7B1hZKZOXKVMAIZi8EBkDExgiMm06ndTzIkTxY/llkydL9UzE9u2Ag4My5NhY4JNP1IuJyNIwgSEi03b4cPGel8KEAK5eleqpTKcDmjcHBg4sKHvmGSnEJk3Ui4vIEnEMDBGZtoQE49arIn/8Afj7K8uOHgU6dVInHiJLxx4YIjJthm7BrNJWzUIATz+tTF5atpR6Y5i8EFUdJjBEZNq6dpVmG2k0+o9rNICPjypL2MbGSgN1d+0qKNu+HTh3TionoqrDHzEiMm3W1tJUaaB4EpP/fMmSal8PZtIkoFmzguc2NtLMowEDqjUMohqLCQwRmb6gIGDzZuCBB5TlDRpI5dW4DkxSkpQ3LV1aULZihbSPUa1a1RYGUY3HQbxEZB6CgqTpPSquxLt4MTB1qrLs1i2gTp1qC4GI7quSHpjr169j5MiRqFu3Luzt7dGmTRv8+eef8nEhBObMmQMvLy/Y29sjICAAsbGximvcvn0bwcHBcHFxgZubG8aMGYOMjIyqCJeIzIW1NdCjBzB8uPS1mpKXO3ekXpfCycubb0oDeJm8EKnD6AlMcnIyHn/8cdja2mL37t04f/48Pv74Y9SuXVuus3DhQixduhQrV67E0aNH4ejoiMDAQGRmZsp1goODce7cOYSHh2Pnzp04dOgQxo0bZ+xwiYhK9eOPgJOTsiwuDnj/fXXiISKJRgh9y1tW3MyZM3HkyBEcLmFRKSEEvL298frrr2PatGkAgNTUVHh4eGDNmjUYNmwYLly4gJYtWyIqKgodO3YEAOzZswf9+vXDtWvX4O3tXWYcaWlpcHV1RWpqKlxcXIz3BomoRsjNBRo1knYryDdsGLB+vWohEdUIhn5+G70HZvv27ejYsSP+97//wd3dHY888gi++uor+XhcXBwSExMREBAgl7m6uqJz586IjIwEAERGRsLNzU1OXgAgICAAVlZWOHr0qN7XzcrKQlpamuJBRFQRhw4BtrbK5OXECSYvRKbE6AnMP//8gxUrVqBp06b45Zdf8Morr2DixIn49ttvAQCJiYkAAA8PD8V5Hh4e8rHExES4F9ntzMbGBnXq1JHrFBUaGgpXV1f54ePjY+y3RkQWTgigZ0+ge/eCso4dpUXpHnlEvbiIqDijJzB5eXlo3749PvjgAzzyyCMYN24cxo4di5UrVxr7pRRmzZqF1NRU+XH16tUqfT0isiznz0uLz0VEFJT98gsQFcVF6YhMkdF/LL28vNCyZUtFWYsWLRAfHw8A8PT0BADcvHlTUefmzZvyMU9PTyQlJSmO5+bm4vbt23KdorRaLVxcXBQPIiJDjBsHtGpV8NzVFcjKAnr3Vi8mIiqd0ROYxx9/HDExMYqyv//+G76+vgAAPz8/eHp6Yt++ffLxtLQ0HD16FP73NxPx9/dHSkoKjh8/LtfZv38/8vLy0LlzZ2OHTEQ11I0b0vToQsP0sGYNkJIC2NmpFRURGcLoC9lNmTIFXbp0wQcffIDnnnsOx44dw5dffokvv/wSAKDRaDB58mS89957aNq0Kfz8/DB79mx4e3tj0KBBAKQemz59+si3nnJycjBhwgQMGzbMoBlIRERl+eAD4K23lGUpKVLvCxGZPqNPowaAnTt3YtasWYiNjYWfnx+mTp2KsWPHyseFEJg7dy6+/PJLpKSk4IknnsDy5cvRrNDGIrdv38aECROwY8cOWFlZYciQIVi6dCmcii7IUAJOoyYifdLSiicp8+cDs2erEw8RKRn6+V0lCYwpYAJDREWtXQu88IKy7Nq14lssEZF6VFsHhojI1GRnS0v+F05eRo+Wpk0zeSEyT9zMkYgsWnh48dlEZ84ArVurEw8RGQd7YIjIIgkBdO6sTF66dwfy8pi8EFkC9sAQkcWJji6+cm5EhHKFXSIyb+yBISKLMnKkMnnx9gZycpi8EFka9sAQkUWIjwfur5cpW79e2kGaiCwPe2CIyOzNnl08eUlPZ/JCZMnYA0NEZis5WZoeXdhHHwGvv65OPERUfZjAEJFZ+uoraRPGwhITAQ8PdeIhourFBIaIzEpmprQVQHZ2Qdn48cBnn6kXExFVPyYwRGQ2du0Cnn5aWfbXX0Dz5urEQ0Tq4SBeIjJ5+YvPFU5e+vWTypm8ENVM7IEhIpMWFQV06qQsO3IE6NJFnXiIyDSwB4aITNbgwcrkpUkTIDeXyQsRsQeGiEzQpUtSslJYWJiU0BARAUxgiMjETJsGfPyxsuzOHcDBAYBOBxw+DCQkAF5eQNeugLW1KnESkbqYwBCRSfjvP6B+fWXZZ59JU6QBSF0wkyYB164VVGjQAPj0UyAoqNriJCLTwDEwRKS6ZcuKJy///lskeXn2WWXyAgDXr0vlYWHVEicRmQ4mMESkmrt3AY0GmDixoOyNNwAhgHr17hfodFLPixDFL5BfNnmyVI+IagwmMESkirAwwNFRWfbPP8CHHxapePhw8Z6XwoQArl6V6hFRjcEEhoiqlU4H+PkBQ4YUlA0ZIuUhfn56TkhIMOzChtYjIovAQbxEVG2OHAGeeEJZFhUFdOxYykleXoZd3NB6RGQR2ANDRFVOCKB3b2Xy0q6d1BtTavICSFOlGzQovY6Pj1SPiGoMJjBEVKX++guwsgLCwwvKfv4ZiI6WystkbQ0MH156nWHDuB4MUQ3DBIaIqsz48UCLFgXPHRyAzEygb99yXESnA9avL73Ohg2chURUwzCBISKjS0yUpkcvX15Q9vXX0oq6Wm05L1bWLCSAs5CIaiAmMERkVIsWFR9Pm5wMjBlTwQtyFhIR6cEEhoiMIj1d6nV5442CsrlzpQG8bm6VuDBnIRGRHkxgiKjS1q8HXFyUZfHxwLx5Rrh4/iwkjUb/cY2Gs5CIaiAmMERUYTk5gIcHMGJEQdnzz0u9Lj4+RnoRa2tpw0Z9WwkAUvmSJZyFRFTDcCE7IqqQAweAJ59Ulp06BbRtq048RFSzsAeGiMpFCGlBusLJi78/kJdXRclL/maOJdFouJkjUQ3EBIaIDHbmjLT43JEjBWV79wK//17yEJVK42aORKQHExgiMsiLLyp7WOrVA7KzgV69qviFOY2aiPTgGBgiKtW1a8UH5H7/PRAcXE0BcBo1EenBHhgiKtH8+cWTl7S0akxeAE6jJiK9mMAQUTEpKVJeMHduQVloqDTcxNm5moPJn0YNFE9i8p9zGjVRjcMEhogUVq8GatdWlt24AcycqU48AICgIGDzZuCBB5TlDRpI5UFB6sRFRKrhGBgiAgBkZQF160obLuZ7+WVgxQr1YlIICgIGDpRmGyUkSGNeunZlzwtRDcUEhoiwZw/Qt6+y7Px5oEULdeIpkbU10KOH2lEQkQngLSSiGiwvD2jfXpm8BARI5SaXvBARFcIeGKIa6sQJoEMHZdnhw9Iqu0REpo49MEQ10NChyuTF11famJHJCxGZC/bAENUgly8Dfn7Ksk2bgGefVSUcIqIKYw8MUQ0xa1bx5CUjg8kLEZkn9sAQWbhbt6R9iwpbvFjawJmIyFwxgaGaQ6ercWuIrFgBvPqqsiwpCahfX514iIiMhQkM1QxhYcCkSdLOhPkaNJCWqLfAVVzv3QMcHaWl//NNmQJ88ol6MRERGVOVj4FZsGABNBoNJhfqr87MzMT48eNRt25dODk5YciQIbh586bivPj4ePTv3x8ODg5wd3fH9OnTkZubW9Xh1mw6HRARAaxfL33V6dSOyDjCwqSBHoWTFwC4fl0qDwtTJ64qsn074OCgTF5iY5m8EJFlqdIEJioqCl988QXatm2rKJ8yZQp27NiBTZs24eDBg7hx4waCCv0VrNPp0L9/f2RnZ+P333/Ht99+izVr1mDOnDlVGW7NFhYGNGoE9OwJjBghfW3UyPw/3HU6qeel8Kd5vvyyyZMtIlnT6YDmzaXV9vM984z0Nps0US8uIqIqIapIenq6aNq0qQgPDxfdu3cXkyZNEkIIkZKSImxtbcWmTZvkuhcuXBAARGRkpBBCiJ9//llYWVmJxMREuc6KFSuEi4uLyMrKMuj1U1NTBQCRmppqvDdlqbZsEUKjEUL6rCt4aDTSY8sWtSOsuAMHir8vfY8DB9SOtFIiI4u/paNH1Y6KiKj8DP38rrIemPHjx6N///4ICAhQlB8/fhw5OTmK8oceeggNGzZEZGQkACAyMhJt2rSBh4eHXCcwMBBpaWk4d+6c3tfLyspCWlqa4kEGsPQeioQE49YzMUIATz8N+PsXlLVsKf13deqkXlxERFWtShKYDRs24MSJEwgNDS12LDExEXZ2dnBzc1OUe3h4IDExUa5TOHnJP55/TJ/Q0FC4urrKDx8fHyO8kxrg8OHiY0MKEwK4elWqZ468vIxbz4TExgJWVsCuXQVl27cD585J5URElszov+auXr2KSZMm4YcffkCtWrWMffkSzZo1C6mpqfLj6tWr1fbaZs3CeyjQtas020ij0X9cowF8fKR6ZmTSJKBZs4LntrbSzKMBA9SLiYioOhk9gTl+/DiSkpLQvn172NjYwMbGBgcPHsTSpUthY2MDDw8PZGdnIyUlRXHezZs34enpCQDw9PQsNisp/3l+naK0Wi1cXFwUDzKABfdQAJDWefn0U+nfRZOY/OdLlpjNejBJSVLYS5cWlK1cCWRnA9X49wIRkeqMnsD06tULZ86cQXR0tPzo2LEjgoOD5X/b2tpi37598jkxMTGIj4+H//0b+f7+/jhz5gySkpLkOuHh4XBxcUHLli2NHXLNZqE9FApBQcDmzcADDyjLGzSQys1kHZhPPgGK3FnFrVvASy+pEw8RkZqMvpCds7MzWrdurShzdHRE3bp15fIxY8Zg6tSpqFOnDlxcXPDaa6/B398fjz32GACgd+/eaNmyJZ5//nksXLgQiYmJePvttzF+/HhotVpjh1yz5fdQPPuslKwUHsxrhj0UJQoKkka7Ll8OXLoENG4sLVFrZ6d2ZGW6cwdwclKWvfkm8P776sRDRGQKVFmJd/HixbCyssKQIUOQlZWFwMBALF++XD5ubW2NnTt34pVXXoG/vz8cHR0REhKC+fPnqxGu5cvvodC3Uu2SJWbTQ1EqfSvxfvyxya/E++OPwNChyrLLlwFfX1XCUV8N3A6CiPTTCKFv/qz5S0tLg6urK1JTUzkexlCW+uGQvxJv0W/1/B4mE7yNlJsrrSN4/XpB2bBh0iLJNVYN2w6CqKYy9PObCQxZNp1OygRKmiqu0UgfgnFxJpOsHToEdO+uLDtxAnjkEXXiMQlmmIQSUcUY+vnN1SLIspnROjdCSDs4FE5eOnYE8vJqePJi6YstElGFMIEhy2Ym69ycPy8tPhcRUVD2yy9AVFTJE8RqDDNKQomo+jCBIctmBuvcjBsHtGpV8NzNDcjKAnr3Vi0k02ImSSgRVS8mMGTZTHidmxs3pJf/6quCsjVrgORks5jdXX3MIAklourHBIYsm4muxPvBB8XX1UtJAUJCqjUM82DCSSgRqYcJDFk+E1qJNy1N+rx9662CsnfflYZxuLpWWxjmxUSTUCJSF6dRU82h8jo3331XvIfl2rXieRWVQN86MD4+lrPYIhEB4DowTGDIZGRnA56e0tiWfKNHA6tWqReT2bLUxRaJSGbo57cqWwkQ1RTh4cVnE509q5x1ROVgbQ306KF2FERkAjgGhqgKCAF06qRMXrp3lxalY/JCRFR57IEhMrLo6OIr50ZEFN8egIiIKo4JDNUc1TB+IjgYWLeu4Lm3N3DlCmDDnzQiIqPir1WqGap4J+P4eMDXV1m2fr20gzQRERkfx8CQ5cvfybjofjrXr0vlYWGVuvzs2cWTl/R0Ji9ERFWJCQxZtircyTg5WVpH7b33Cso++ki6rJNTxcIlIiLDMIExZTqdNPpz/XrpawU+ZGu8KtrJ+KuvgDp1lGWJicDrr1cgRiIiKjeOgTFVVTxmo8Yw8k7GmZnSkv/Z2QVlEyYAy5ZVIDYiIqow9sCYoioes1GjGHEn4127AHt7ZfLy119MXoiI1MAExtRU4ZiNGskIOxnn5QGtWwNPP11Q1q+fVN68uZHjJSIigzCBMTVVNGajxqrkTsZRUdKhc+cKyn7/XeqNKSknIiKiqscExtQYecwGQRoztHlz8W2fGzSQyksYUzR4sLQdQL4mTYDcXMDfvwpjJSIig3AQr6kx4pgNKiQoCBg40KCVeC9dkpKVwn76CRg0qHpCJSKisjGBMTX5YzauX9c/DkajkY6XMmaDSmDATsbTpgEff6wsu3tXGrxLRESmg7eQTE0lx2xQKUpZV+e//6TmLZy8fPaZlEMyeSEiMj1MYNRQ1gJ1FRyzQaUICwMaNQJ69gRGjJC+NmoEhIVh2TKgfn1l9X//BcaPVyNQIiIyhEYIffcpzF9aWhpcXV2RmpoKFxcXtcMpUJ4F6qph9+QaIX9dnSLf6nfhAEfcUZS98Qbw4YfVGRwRERVm6Oc3E5jqVMIHqXxriL0rxqfTST0tRaamh2EwhkC5IOA//wB+ftUYGxERFWPo5zdvIVUXLlCnjiLr6uhgBT/8o0hehmAzxIEIJi9ERGaECUx14QJ16ii0Xs4RdIENdLiMgkwlCh2xGf/jujpERGaG06irS0UWqOMYmMpzd4cAEIhfEI7ecvHDOInj6AArCLkeERGZDyYw1aW8C9RxN2qj+CveAS2gvG33M/qiL/aoFBERERkDbyFVl/JsKsjdqI1i/HigxeiCdf8dcAeZ0OpPXpKSqjEyIiKqLCYw1cXQBeoADvatpMREqUmXLy8o+xpjcAdO0CJb/0ncmoGIyKwwgalOhixQx8G+lbJwYfFcJNm7FcZoVus/oXDPFxERmQ2OgaluZW0qyN2oKyQ9HSi6XMDcucC8eQDC3pVuvWk0yp4tbs1ARGS2mMCoobRNBdXcjdpMZz2tXy/tDlBYfLzUsQKgoOdL36DoJUs4KJqIyAxxJV5Tk79ybFm7UcfFGTe5MMNZTzk5UoiFx98+/zzw3XclnGCmCRoRUU1i6Oc3e2BMTf5g3+q85VHSFgf5s55McIuDAweAJ59Ulp06BbRtW8pJpfV8ERGRWeEgXlNUnbtRm9kWB0IATzyhTF66dAHy8spIXoiIyKKwB8ZUlTXY11jKM+tJ5d6LM2eKJyl79wK9eqkTDxERqYcJjCmrjlseZjLradQo4NtvC57Xry/d4bK1LcdFOAaGiMhiMIGp6dSc9WSAa9cKzSa67/vvgeDgcl7IDAcpExFRyTgGpqYrzxYH1Wz+/OLJS1paBZMXfVszXLvGrRmIiMwUE5iaLn/WU0mz6YWo9oXeUlKkvGnu3IKyBQukUJydy3mx0gYpA1K5CQ1SJiIiwzCBMWU6HRARIa3UFhFRdR+yf/xRueOFVTLmb74BatdWlt24AcyYUa7LFChrkDLArRmIiMwQExhTFRYmLWjXs6e0zGzPntJzY9/uyM4GPvmk9DqffCLVK0slYs7KApycgDFjCspeflnqIKnU8Jvr141bj4iITAITGFNU0piN/IXljJnELF9edi+JTqfc2lmfSsS8Zw9QqxZw505B2fnzwIoVZcRuiH//NW49IiIyCUZPYEJDQ/Hoo4/C2dkZ7u7uGDRoEGJiYhR1MjMzMX78eNStWxdOTk4YMmQIbt68qagTHx+P/v37w8HBAe7u7pg+fTpyc3ONHa7pqe6F5S5dqny9Csaclwc88gjQt29BWUCAVN6ihWFhlal+fePWIyIik2D0BObgwYMYP348/vjjD4SHhyMnJwe9e/fGnUJ/Xk+ZMgU7duzApk2bcPDgQdy4cQNBhaay6nQ69O/fH9nZ2fj999/x7bffYs2aNZgzZ46xwzU95VlYzhgaN658vQrEfPy4NC44Olp5mfDwkidEVUjR1YwrW4+IiEyDqGJJSUkCgDh48KAQQoiUlBRha2srNm3aJNe5cOGCACAiIyOFEEL8/PPPwsrKSiQmJsp1VqxYIVxcXERWVpZBr5uamioAiNTUVCO+m2qwbp0Q0kd+6Y9164zzellZQlhbl/5a1tZSPSPF/L//KYsbNRIiJ8c4b6eY3FwhGjQoPS4fH6keERGpztDP7yofA5OamgoAqFOnDgDg+PHjyMnJQUBAgFznoYceQsOGDREZGQkAiIyMRJs2beDh4SHXCQwMRFpaGs6dO6f3dbKyspCWlqZ4mKXqXljOzg6YOrX0OlOnSvUqGctljR80GmDTpoKyTZukjbVtqmpJxfxp4qWtc1PN08SJiKjyqjSBycvLw+TJk/H444+jdevWAIDExETY2dnBzc1NUdfDwwOJiYlyncLJS/7x/GP6hIaGwtXVVX74FF0BzVx07QrUrVt6nbp1jbuw3MKFwPTpxT/Era2l8oULSz/fgMXwZjl/Br/hjymKMzKk8b1VLigIeOYZ/ceeeYYr8RIRmaEqTWDGjx+Ps2fPYsOGDVX5MgCAWbNmITU1VX5cvXq1yl/ToixcCNy9CyxeDEyYIH29e7fs5AUo6OUAiiUxt1AXGpGHBenj5bIlS6R7N46ORoy/NG+8AWzbpv/Ytm3ScSIiMitVlsBMmDABO3fuxIEDB9CgQQO53NPTE9nZ2UhJSVHUv3nzJjw9PeU6RWcl5T/Pr1OUVquFi4uL4mGWDh8Gbt0qvc6tW1Wz8JqdnTRbaNky6Wtpt42KCgoCNm9WDIZdgZdRD/8pqiUlSROWqo0x17khIiKTYfQERgiBCRMm4KeffsL+/fvh5+enON6hQwfY2tpi3759cllMTAzi4+Ph7+8PAPD398eZM2eQlJQk1wkPD4eLiwtatmxp7JBNi5nsDq1XUBBw+TLu7TkIK00eXkXBQi5Tpki9LtU+W9lY69wQEZFJMfrQyfHjx2PdunXYtm0bnJ2d5TErrq6usLe3h6urK8aMGYOpU6eiTp06cHFxwWuvvQZ/f3889pg0RqJ3795o2bIlnn/+eSxcuBCJiYl4++23MX78eGi1WmOHbFpMfHfosmzbaY1Bg7opymJjgSZNVArIGOvcEBGRyTF6ArPi/vKpPXr0UJSvXr0ao0aNAgAsXrwYVlZWGDJkCLKyshAYGIjlhf4Ctra2xs6dO/HKK6/A398fjo6OCAkJwfz5840drunJHxB7/br+heE0Gum4CrtDl0ankxafi40tKBs4ENi6VbWQJMZY54aIiEyORoiStuk1b2lpaXB1dUVqaqr5jYfJX5YfUCYx+QNkN282qZkzf/wB3L/7Jzt6FOjUSZ14FDIyDNvCOj1d2oyJiIhUZejnN/dCMkV6BsQCkHpeTCh5EQLo31+ZvLRsKfXGmETyAgBff23cekREZBKqavkwqqygIOkezOHD0oBdLy/ptpGJLLgWGws0a6Ys27EDePppdeIpEcfAEBFZJCYwpszaGigylsgUTJoELF1a8NzWFkhLk3aUNjkcA0NEZJE4BoYMlpQEFFkgGStXAi+9pE48BsnOBhwcSp9KbW0tLdpXnnVviIioSnAMjCXIzpaWrX3tNemrioutffJJ8eTl1i0TT14A4+z1REREJoe3kEzVG28AH38M5OUVlL3+uvQwZHl/I7lzp/jknDffBN5/v9pCqLz89vrkE2VPjLW1lLxUY3sSEZFx8BZSddDpyjcY9403gEWLSj5uyAaLRojzx8RuGDpc2Ul3+TLg62v8l64W2dnSiruXLkljXl59lT0vREQmxtDPbyYwVS0sTBr1eu1aQVmDBtLmh/qmQ2dnA/b2yp6XoqysgHv3jPvhWyjOXFijES7jOgr2sBo+HFi3zngvp4ryJpJERFTtOAbGFOQvSFc4eQGkVXaffVY6XtSyZaUnL4B0fNmyKonzELrCFrmK5OXEon3mn7yEhQGNGgE9ewIjRkhfGzXS/39AREQmjwlMVdHppB4NfR1c+WWTJxefHfPbb4Zd39B6ZbkfpxACPbEf3XFIPvQojiEPGjyy9MWyN0Q0ZWFhwJAhxRPJa9ekciYxRERmhwlMVTl8uPgHZmFCAFevSvUKc3Aw7PqG1ivL4cM4f80ZVhCIQE+5+Fc8hWPoDA2gP05zodMB48aVXmfcOPNO0IiIaiAmMFUlIaFi9R5+2LDzDK1XhrHvNEArnJefuyEZWbDDU9irrHj9ulFer9pFREjzvUtz65ZUj4iIzAanUVcVL6+K1fP2Nuw8Q+uV4MaN/K2WmshlaxCCEHyn/4R//63U66nG0MQkIgLo1asqIyEzoNPpkJOTo3YYRBbN1tYW1kaYQMEEpqp07SrNNrp+Xf84GI1GOt61q7K86AaOJTG0nh4ffAC89ZayLAWucEVaySfVr1/h1yMydUIIJCYmIiUlRe1QiGoENzc3eHp6QqPRVPgaTGCqirW1NFX62WelZKVwEpP/H7ZkSfFpvPmJT2njZ3x8iic+BkhLA1xdlWXvjfkHb60yYB+gSiRMqurRA3jvPcPqUY2Vn7y4u7vDwcGhUr9UiahkQgjcvXsXSUlJAAAvQ+9W6MEEpioFBQGbN+tfB2bJEv3rwFhbS4uulLaQ3bBh5V6/5LvvgJAQZdm1a8ADnr7A1rqljxOpW7dCCZNJ6NFDir+s98cEpsbS6XRy8lK3bl21wyGyePb29gCApKQkuLu7V/h2EgfxVrWgIGn52gMHpJXgDhwA4uL0Jy+ANBtm/frSr7lhg8GzZrKzgdq1lcnL6NFSh5DcqXLnTukXKet4YTqdNJ5k/Xrpq9qze6ytgS+/LL3Ol19yQbsaLH/Mi4OxZvYRUZnyf94qM+aMCUx1sLaW/sIfPlz6WtqHZVnTrwGDpzWHhwNaLVD4tv7Zs8CqVYUq7dsHZGaWfqHMTKleWUx1sbigIGDLluK3wRo0kMpLSiapRuFtI6LqY4yfNyYwpsbQ6cql1BMC6NQJ6N27oKxHD2kB31atilReu9aw1yurXkVWHa5OQUHAlSvKnrDLl5m8EBGZKSYwpsbQ6col1IuOlrZKiooqKIuIkD6v9Sa8GRmGvV5p9Sq66nB1K09PGBFVikajwdatW6v1NRs1aoQlS5YYXD8iIgIajYazz8wUExhTY+h0ZT31goOBRx4peO7tDeTkAN27l3KdLl0Me73S6lV01WEiqrTIyEhYW1ujf//+5T63vB/4xqLRaEp9zJs3r0LXjYqKwriyVt4upEuXLkhISIBr0emZRpafKGk0GlhZWcHV1RWPPPII3njjDSQYuuhpIWokh6aIs5BMTQXWgYmPB3x9lYc3bACGDjXgOu3aGfZ6pdWr6KrDRJZEpd3OV61ahddeew2rVq3CjRs34F3JRS6rQ+EP7Y0bN2LOnDmIiYmRy5ycnOR/CyGg0+lgY1P2x1X9cq5XZWdnB09Pz3KdUxkxMTFwcXFBWloaTpw4gYULF2LVqlWIiIhAmzZtqi0OS8EemKpQmZk4XbtK03pLU2ha8+zZxZOX9HQDkxeg0resAFR81WEiS6HSAPaMjAxs3LgRr7zyCvr37481a9YUq7Njxw48+uijqFWrFurVq4fBgwcDAHr06IErV65gypQpcu8AAMybNw8PF9mqZMmSJWjUqJH8PCoqCk899RTq1asHV1dXdO/eHSdOnDA4bk9PT/nh6uoKjUYjP//rr7/g7OyM3bt3o0OHDtBqtfjtt99w6dIlDBw4EB4eHnBycsKjjz6KvXuVW54U7VHSaDT4+uuvMXjwYDg4OKBp06bYvn27fLzoLaQ1a9bAzc0Nv/zyC1q0aAEnJyf06dNHkXDl5uZi4sSJcHNzQ926dTFjxgyEhIRg0KBBZb5vd3d3eHp6olmzZhg2bBiOHDmC+vXr45VXXjG4bfP/HwYPHgyNRiM/N6R9LA0TGGOrpl9kycnSmJbCa7R99JF0t6bQHy9lM0YCk7/4XkmjyjWaCi++R2TyVBzA/uOPP+Khhx5C8+bNMXLkSHzzzTcQhcai7dq1C4MHD0a/fv1w8uRJ7Nu3D506dbofdhgaNGiA+fPnIyEhoVy3MtLT0xESEoLffvsNf/zxB5o2bYp+/fohPT3daO9t5syZWLBgAS5cuIC2bdsiIyMD/fr1w759+3Dy5En06dMHAwYMQHx8fKnXeeedd/Dcc8/h9OnT6NevH4KDg3H79u0S69+9excfffQR1q5di0OHDiE+Ph7Tpk2Tj3/44Yf44YcfsHr1ahw5cgRpaWkVvp1jb2+Pl19+GUeOHJEXdiurbaPuD3BcvXo1EhIS5OcVbR+zJixUamqqACBSU1Or5wVzc4V45x0hpBxC+dBopMeWLWVf58AB/dco9PgS/1esODFRTzwHDgixbp30NTdX/+t9/32ZrycAqV5ptmwpeJ8Vfe9EKrh37544f/68uHfvXvlPzs0VokGDkn9uNBohfHxK/vmrpC5duoglS5YIIYTIyckR9erVEwcOHJCP+/v7i+Dg4BLP9/X1FYsXL1aUzZ07V7Rr105RtnjxYuHr61vidXQ6nXB2dhY7duyQywCIn376qcz3sHr1auHq6io/P3DggAAgtm7dWua5rVq1EsuWLZOfF30/AMTbb78tP8/IyBAAxO7duxWvlZycLMcCQFy8eFE+5/PPPxceHh7ycw8PD7Fo0SL5eW5urmjYsKEYOHBgiXEWfZ3Cdu/eLQCIo0eP6j23Mm1btH1MSWk/d4Z+frMHxhjye13mztV/vDwzcUr5KygTWmiRiXH4Si577TXp8h4eeuIxpBfI0Pu/ZdXLX3VY31ormzdzujJZJhUHsMfExODYsWMYPnw4AMDGxgZDhw7FqkILPUVHR6NXFWxSevPmTYwdOxZNmzaFq6srXFxckJGRYdS/9jt27Kh4npGRgWnTpqFFixZwc3ODk5MTLly4UOZrtm3bVv63o6MjXFxc5N4OfRwcHNC4ccH2Kl5eXnL91NRU3Lx5U+7FAgBra2t06NChXO+tMHH/8yH/Fl5F27ai7WPOOIi3svK7j/VNIS4s/xfZs89K65DcX0q5GHd3vcW70A9PY5eiLCYGaNbMwHjyu7OrMpkICgIGDlRlICORKlQcwL5q1Srk5uYqBu0KIaDVavHZZ5/B1dVVXrK9PKysrBS3oYDiq6WGhITg1q1b+PTTT+Hr6wutVgt/f39kZ2dX7M3o4ejoqHg+bdo0hIeH46OPPkKTJk1gb2+PZ599tszXtLW1VTzXaDTIy8srV/2i7WFMFy5cAFAwtqWibVvR9jFn7IGpjNLWPynJ1q2AgwNQ0oCvIj00OlihFc4qkpd+2IW8Pb8WT14qsh5LKX+JKBhaj2utUE2i0gD23NxcfPfdd/j4448RHR0tP06dOgVvb2+sv78dSdu2bbGvlFW07ezsoCvyO6d+/fpITExUfGhHR0cr6hw5cgQTJ05Ev3790KpVK2i1Wvz333/Ge4N6HDlyBKNGjcLgwYPRpk0beHp64vLly1X6mkW5urrCw8NDHncCSHtplWcAc2H37t3Dl19+iW7duskzqAxpW1tb22L/b6bQPtWNCUxlGLLsf0m2bdOfxBw8WFAFz8AGOpxHwfK5v8Mfu/A0NIcOFp/tFBFR/u7sEnp8ijG0HlFNotIA9p07dyI5ORljxoxB69atFY8hQ4bIt5Hmzp2L9evXY+7cubhw4QLOnDmDDz/8UL5Oo0aNcOjQIVy/fl3+kOzRowf+/fdfLFy4EJcuXcLnn3+O3bt3K16/adOmWLt2LS5cuICjR48iODi4Qr095dG0aVOEhYXJidqIESNK7UmpKq+99hpCQ0Oxbds2xMTEYNKkSUhOTjZoafykpCQkJiYiNjYWGzZswOOPP47//vsPK1askOsY0raNGjXCvn37kJiYiOTkZPk8U2if6sQEpjIq2y28bRtw756y7NIlAIAGAoOwTS72QTxyYQ1//FFwrq+vcpzLc89VT9xEJLG2Bj79VPp30Q+w/OdLlhi9J3LVqlUICAjQuwDbkCFD8Oeff+L06dPo0aMHNm3ahO3bt+Phhx/Gk08+iWPHjsl158+fj8uXL6Nx48ZyD0CLFi2wfPlyfP7552jXrh2OHTummIWT//rJyclo3749nn/+eUycOBHuVfxHzieffILatWujS5cuGDBgAAIDA9G+ffsqfU19ZsyYgeHDh+OFF16Av78/nJycEBgYiFq1apV5bvPmzeHt7Y0OHTpgwYIFCAgIwNmzZ9GyZUu5jiFt+/HHHyM8PBw+Pj545P7qpabSPtWqCgYXm4RqmYX0yy+GzeAp7TF+vOKSUU2HF6uyAG9U/nUKPwrNUjDaLCQiM1WpWUj5tmwpPhvJx4ez72oAnU4nmjVrppjtRGUzxiwkDuKtjDNnKn+N2Fj5n23bAmdi1ykOp8IFLjDe2gpo0EDZnW2MdWCIajoOYK8xrly5gl9//RXdu3dHVlYWPvvsM8TFxWHEiBFqh1bjMIGpjPDwyl+jcWO9WwGMwmqsxujKX7+osWOVv1QrsfcSERWSP4CdLJqVlRXWrFmDadOmQQiB1q1bY+/evWjRooXaodU4TGAqKiwM+OWXSl9m5F9v44ciyUs8fOCDCg4OLkvTpsrnFdh7iYiopvLx8cGRI0fUDoPAQbwVkz9duRJS4QINBH44ULCGQ/v2gGjcpOqSF6D4dM78WRSl4TYARERkYpjAVERlpk8DeB9vwg2pirLjx6UHiiwYZTQlTee0tpbWbCnNsGG8l09ERCaFt5Aq4vr1Cp2WAxvYoXiColh3Lje3gkGVorTpnDod8M03pZ//zTdAaCiTGCIiMhnsgSmvsDBgypRyn7YBQ4slLzvwNMTMWcqKRZaxLpcGDYDp04vfEqpXD9i4Uf8WAhERwK1bpV/31i2pHhERkYlgD0x5GLrvUSECgBWK18+FNayRB/yZJSUH+VMv3d2BK1cMu7i1tXJbACGAxx4DOnUCXn21YOrzv/8CU6dK9YsmMYYmJhERQBVsCkdERFQRTGAMVYF9j46gC56AcrT6UryG1/BZQcHBg8DevQXPbcrxX1J0Z+sbN4AhQ/TXrY7NHImIiKoJbyEZqpwDdxshrljycgcOyuQFKD5otzJjYEpLrkrazNHQ2UWchURUY40aNQqDCu3d1qNHD0yePLna44iIiIBGo0FKSkq1v3ZNotFosHXrVrXDKBMTGEMZuH9QIjyggcAVNJLLJmAZBDRwwL2ST6wO+jZzNHRgLgfwEpmUUaNGQaPRQKPRwM7ODk2aNMH8+fORWxUTAYoICwvDu+++a1Dd6k46GjVqJLeLg4MD2rRpg6+//rpaXttcFE1Ii0pISEDfvn2rL6AKYgJjqEJL/pdkEabBC4mKsgR4YhkmVlVUFVM4GUtKMuwcQ+sRUbXp06cPEhISEBsbi9dffx3z5s3DokWL9NbNzs422uvWqVMHzs7ORruesc2fPx8JCQk4e/YsRo4cibFjxxbbUdvYjNm+xlLRmDw9PaHVao0cjfExgTGETgd89VWJhzPgCA0E3kDBL465mAcBDTxxszoiLJ/Ci9kVXdjOkHOIyCRotVp4enrC19cXr7zyCgICArB9+3YABX9lv//++/D29kbz5s0BAFevXsVzzz0HNzc31KlTBwMHDsTly5fla+p0OkydOhVubm6oW7cu3njjDYgit6eL3kLKysrCjBkz4OPjA61WiyZNmmDVqlW4fPkyevbsCQCoXbs2NBoNRo0aBQDIy8tDaGgo/Pz8YG9vj3bt2mHz5s2K1/n555/RrFkz2Nvbo2fPnoo4S+Ps7AxPT088+OCDmDFjBurUqYPwQlu/pKSk4P/+7/9Qv359uLi44Mknn8SpU6cU13jvvffg7u4OZ2dn/N///R9mzpyJhx9+WD5e0faNiIhAp06d4OjoCDc3Nzz++OO4cn/ixqlTp9CzZ084OzvDxcUFHTp0wJ9//imfu2XLFrRq1QparRaNGjXCxx9/rIi5UaNGePfdd/HCCy/AxcUF48aNM6i9iip8C+ny5cvQaDQICwtDz5494eDggHbt2iEyMlJxzm+//YauXbvC3t4ePj4+mDhxIu7cuVOh1zcUExhDlDL+ZT2GwRkZirJ4+GAe3qmOyMpH32J2+Svx5q8VY8g5RBZOCODOnep/lGOOgF729vaKv7r37duHmJgYhIeHY+fOncjJyUFgYCCcnZ1x+PBhHDlyBE5OTujTp4983scff4w1a9bgm2++wW+//Ybbt2/jp59+KvV1X3jhBaxfvx5Lly7FhQsX8MUXX8DJyQk+Pj7YsmULACAmJgYJCQn49NNPAQChoaH47rvvsHLlSpw7dw5TpkzByJEjcfDgQQBSIhAUFIQBAwYgOjpaTiLKIy8vD1u2bEFycjLs7Ozk8v/9739ISkrC7t27cfz4cbRv3x69evXC7du3AQA//PAD3n//fXz44Yc4fvw4GjZsiBUrVhS7fnnbNzc3F4MGDUL37t1x+vRpREZGYty4cdDc//0bHByMBg0aICoqCsePH8fMmTNhe39pjePHj+O5557DsGHDcObMGcybNw+zZ8/GmjVrFDF99NFHaNeuHU6ePInZs2eXq71K89Zbb2HatGmIjo5Gs2bNMHz4cPl25aVLl9CnTx8MGTIEp0+fxsaNG/Hbb79hwoQJRnt9vapmo2z1Gbodt0HWrRNC+t0iP7JhIzyQoCh+AWuK1avSh0ZT8nN9xzQaIbZsKf7+tmwpOG7oOUQW4t69e+L8+fPi3r17cllGRvX+KOc/MjIMjzskJEQMHDhQCCFEXl6eCA8PF1qtVkybNk0+7uHhIbKysuRz1q5dK5o3by7y8vLksqysLGFvby9++eUXIYQQXl5eYuHChfLxnJwc0aBBA/m1hBCie/fuYtKkSUIIIWJiYgQAER4erjfOAwcOCAAiOTlZLsvMzBQODg7i999/V9QdM2aMGD58uBBCiFmzZomWLVsqjs+YMaPYtYry9fUVdnZ2wtHRUdjY2AgAok6dOiI2NlYIIcThw4eFi4uLyMzMVJzXuHFj8cUXXwghhOjcubMYP3684vjjjz8u2rVrJz+vSPveunVLABARERF6Y3d2dhZr1qzRe2zEiBHiqaeeUpRNnz5d0Ua+vr5i0KBBJTWNIvbC/59FARA//fSTEEKIuLg4AUB8/fXX8vFz584JAOLChQtCCOn/bdy4cYprHD58WFhZWSl+rgrT93OXz9DPb/bAGKLI+JcD6AE75OAmPOWyU2iLbzGq+mJq27b4BosNGgBbtkgPfcdKmkIdFCQdK885RKS6nTt3wsnJCbVq1ULfvn0xdOhQzJs3Tz7epk0bRc/DqVOncPHiRTg7O8PJyQlOTk6oU6cOMjMzcenSJaSmpiIhIQGdO3eWz7GxsUHHjh1LjCE6OhrW1tbo3r27wXFfvHgRd+/exVNPPSXH4eTkhO+++w6XLl0CAFy4cEERBwD4+/sbdP3p06cjOjoa+/fvR+fOnbF48WI0adJEboOMjAzUrVtX8dpxcXHya8fExKBTp06KaxZ9DpS/fevUqYNRo0YhMDAQAwYMwKeffoqEQmMSp06div/7v/9DQEAAFixYIMeT3x6PP/644vUff/xxxMbGQldoZmlp/1eV0bZtW/nfXveHFCTdHxt56tQprFmzRtGegYGByMvLQ1xcXJXEA3AdmLIVGf/yM/qiP36Wnz+O33AYXVHCDZjyq1MHuN+NWaoFC4DevaXbW/mL4HXtWjBbaODAko/pExRU/nOILJSDA5CRUXa9qnjd8ujZsydWrFgBOzs7eHt7w6bIOlKOjo6K5xkZGejQoQN++OGHYteqX79+ueMFpNtW5ZVxv3F37dqFB4r84WSMwaP16tVDkyZN0KRJE2zatAlt2rRBx44d0bJlS2RkZMDLywsRehbxdHNzK9frVKR9V69ejYkTJ2LPnj3YuHEj3n77bYSHh+Oxxx7DvHnzMGLECOzatQu7d+/G3LlzsWHDBgwePLjCMRmLbaFV4vNveeXl5QGQ3vdLL72EiROLT1hp2LBhlcQDmHgC8/nnn2PRokVITExEu3btsGzZMr1ZcJUqMv7lMArGguzDk3gSByp3/bp1pV6O/KShSxfA1RXIzCz5nFq1pOTF2hro0UN/ndKOlaQi5xBZII0GqKLPAaNydHSUexYM0b59e2zcuBHu7u5wcXHRW8fLywtHjx5Ft27dAAC5ubnyOBF92rRpg7y8PBw8eBABAQHFjuf3UBTuJWjZsiW0Wi3i4+NL7Llp0aKFPCA53x9//FH2myzCx8cHQ4cOxaxZs7Bt2za0b98eiYmJsLGxQaNGjfSe07x5c0RFReGFF16Qy6Kiosp8LUPaFwAeeeQRPPLII5g1axb8/f2xbt06PPbYYwCAZs2aoVmzZpgyZQqGDx+O1atXY/DgwWjRogWOHFGuLXbkyBE0a9YM1ir/odm+fXucP3++XN+LxmCyt5A2btyIqVOnYu7cuThx4gTatWuHwMBAucuq2hRZ/+UdzEUkHkM2bCufvADS0v89ekg7QvfoAdjZAXqyd4UffmDPCBGVW3BwMOrVq4eBAwfi8OHDiIuLQ0REBCZOnIhr9/9QmzRpEhYsWICtW7fir7/+wquvvlrqGi6NGjVCSEgIRo8eja1bt8rX/PHHHwEAvr6+0Gg02LlzJ/79919kZGTA2dkZ06ZNw5QpU/Dtt9/i0qVLOHHiBJYtW4Zvv/0WAPDyyy8jNjYW06dPR0xMDNatW1dswKqhJk2ahB07duDPP/9EQEAA/P39MWjQIPz666+4fPkyfv/9d7z11lvyjJ/XXnsNq1atwrfffovY2Fi89957OH36tNzzUNH2jYuLw6xZsxAZGYkrV67g119/RWxsLFq0aIF79+5hwoQJiIiIwJUrV3DkyBFERUWhRYsWAIDXX38d+/btw7vvvou///4b3377LT777DNMmzatQm2SmpqK6OhoxePq1asVutaMGTPw+++/Y8KECYiOjkZsbCy2bdtWcwfxdurUSTGISqfTCW9vbxEaGmrQ+UYbxHvgQNWO2vvoI/2vu2WLEF5eyrre3hxQS2RkpQ0mNGVlDcQs6XhCQoJ44YUXRL169YRWqxUPPvigGDt2rPy7MicnR0yaNEm4uLgINzc3MXXqVPHCCy+UOIhXCKkNp0yZIry8vISdnZ1o0qSJ+Oabb+Tj8+fPF56enkKj0YiQkBAhhDTweMmSJaJ58+bC1tZW1K9fXwQGBoqDBw/K5+3YsUM0adJEaLVa0bVrV/HNN98YNIh38eLFxcoDAwNF3759hRBCpKWliddee014e3sLW1tb4ePjI4KDg0V8fLwi5nr16gknJycxevRoMXHiRPHYY49Vqn0TExPFoEGD5Hby9fUVc+bMETqdTmRlZYlhw4YJHx8fYWdnJ7y9vcWECRMU35ebN28WLVu2FLa2tqJhw4Zi0aJFBr33okJCQgSkrfoUjzFjxggh9A/iPXnypHx+cnKyACAOHDgglx07dkw89dRTwsnJSTg6Ooq2bduK999/v8QYjDGIV3M/WJOSnZ0NBwcHbN68WbFaYEhICFJSUrBt27Zi52RlZSErK0t+npaWBh8fH6SmppbalVcmnQ5o1EjaS8jYTWVlBdy7J/W6lPTaHJNCVKUyMzMRFxcHPz8/1KpVS+1wyEQ99dRT8PT0xNq1a9UOxSKU9nOXlpYGV1fXMj+/TXIMzH///QedTgcPDw9FuYeHB/766y+954SGhuKdd6pg7RVra+DTT6WNEDUa4yYxr79ecvKS/9ock0JEVK3u3r2LlStXIjAwENbW1li/fj327t2rWAyP1GeyY2DKa9asWUhNTZUfFb2Xp1dJ04wdHYF27YBCqzMqPPII0LNn8UXirK2B6dOBhQuNFyMRERmFRqPBzz//jG7duqFDhw7YsWMHtmzZoneQMqnHJHtg6tWrB2tra9y8qVyG/+bNm/D09NR7jlarrdq9G8qaZpydDSxfDly6BDRuDLz6akHvSmnHiIjIpNjb22Pv3r1qh0FlMMkExs7ODh06dMC+ffvkMTB5eXnYt29f1Y9qLk1pt3Ts7ICStpcv7RgRERGVm0kmMIC0ImFISAg6duyITp06YcmSJbhz5w5efPFFtUMjIiIilZlsAjN06FD8+++/mDNnDhITE/Hwww9jz549xQb2EhEZQ/6qokRU9Yzx82aS06iNwdBpWERUs+Xl5SE2NhbW1taoX78+7OzsylywjIgqRgiB7Oxs/Pvvv9DpdGjatCmsrJTzicx6GjURUXWxsrKCn58fEhIScOPGDbXDIaoRHBwc0LBhw2LJS3kwgSGiGs/Ozg4NGzZEbm6uYs8eIjI+a2tr2NjYVLqnkwkMERGktT9sbW0Vu+4SkemymIXsiIiIqOZgAkNERERmhwkMERERmR2LHQOTPzs8LS1N5UiIiIjIUPmf22Wt8mKxCUx6ejoAwMfHR+VIiIiIqLzS09Ph6upa4nGLXcguLy8PN27cgLOzs9EWpUpLS4OPjw+uXr3KxfGKYNuUjG2jH9ulZGwb/dguJbOkthFCID09Hd7e3qWuE2OxPTBWVlZo0KBBlVzbxcXF7L9BqgrbpmRsG/3YLiVj2+jHdimZpbRNaT0v+TiIl4iIiMwOExgiIiIyO0xgykGr1WLu3LnQarVqh2Jy2DYlY9vox3YpGdtGP7ZLyWpi21jsIF4iIiKyXOyBISIiIrPDBIaIiIjMDhMYIiIiMjtMYIiIiMjsMIEhIiIis8MEphw+//xzNGrUCLVq1ULnzp1x7NgxtUMyqnnz5kGj0SgeDz30kHw8MzMT48ePR926deHk5IQhQ4bg5s2bimvEx8ejf//+cHBwgLu7O6ZPn47c3FxFnYiICLRv3x5arRZNmjTBmjVrquPtGezQoUMYMGAAvL29odFosHXrVsVxIQTmzJkDLy8v2NvbIyAgALGxsYo6t2/fRnBwMFxcXODm5oYxY8YgIyNDUef06dPo2rUratWqBR8fHyxcuLBYLJs2bcJDDz2EWrVqoU2bNvj555+N/n7Lo6y2GTVqVLHvoT59+ijqWGLbhIaG4tFHH4WzszPc3d0xaNAgxMTEKOpU58+PKf2uMqRtevToUez75uWXX1bUsbS2WbFiBdq2bSuvnOvv74/du3fLx2vq90u5CDLIhg0bhJ2dnfjmm2/EuXPnxNixY4Wbm5u4efOm2qEZzdy5c0WrVq1EQkKC/Pj333/l4y+//LLw8fER+/btE3/++ad47LHHRJcuXeTjubm5onXr1iIgIECcPHlS/Pzzz6JevXpi1qxZcp1//vlHODg4iKlTp4rz58+LZcuWCWtra7Fnz55qfa+l+fnnn8Vbb70lwsLCBADx008/KY4vWLBAuLq6iq1bt4pTp06JZ555Rvj5+Yl79+7Jdfr06SPatWsn/vjjD3H48GHRpEkTMXz4cPl4amqq8PDwEMHBweLs2bNi/fr1wt7eXnzxxRdynSNHjghra2uxcOFCcf78efH2228LW1tbcebMmSpvg5KU1TYhISGiT58+iu+h27dvK+pYYtsEBgaK1atXi7Nnz4ro6GjRr18/0bBhQ5GRkSHXqa6fH1P7XWVI23Tv3l2MHTtW8X2TmpoqH7fEttm+fbvYtWuX+Pvvv0VMTIx48803ha2trTh79qwQouZ+v5QHExgDderUSYwfP15+rtPphLe3twgNDVUxKuOaO3euaNeund5jKSkpwtbWVmzatEkuu3DhggAgIiMjhRDSh5uVlZVITEyU66xYsUK4uLiIrKwsIYQQb7zxhmjVqpXi2kOHDhWBgYFGfjfGUfRDOi8vT3h6eopFixbJZSkpKUKr1Yr169cLIYQ4f/68ACCioqLkOrt37xYajUZcv35dCCHE8uXLRe3ateV2EUKIGTNmiObNm8vPn3vuOdG/f39FPJ07dxYvvfSSUd9jRZWUwAwcOLDEc2pK2yQlJQkA4uDBg0KI6v35MfXfVUXbRggpgZk0aVKJ59SUtqldu7b4+uuv+f1iIN5CMkB2djaOHz+OgIAAuczKygoBAQGIjIxUMTLji42Nhbe3Nx588EEEBwcjPj4eAHD8+HHk5OQo2uChhx5Cw4YN5TaIjIxEmzZt4OHhIdcJDAxEWloazp07J9cpfI38OubSjnFxcUhMTFS8B1dXV3Tu3FnRDm5ubujYsaNcJyAgAFZWVjh69Khcp1u3brCzs5PrBAYGIiYmBsnJyXIdc2yriIgIuLu7o3nz5njllVdw69Yt+VhNaZvU1FQAQJ06dQBU38+POfyuKto2+X744QfUq1cPrVu3xqxZs3D37l35mKW3jU6nw4YNG3Dnzh34+/vz+8VAFrsbtTH9999/0Ol0im8UAPDw8MBff/2lUlTG17lzZ6xZswbNmzdHQkIC3nnnHXTt2hVnz55FYmIi7Ozs4ObmpjjHw8MDiYmJAIDExES9bZR/rLQ6aWlpuHfvHuzt7avo3RlH/vvQ9x4Kv0d3d3fFcRsbG9SpU0dRx8/Pr9g18o/Vrl27xLbKv4Yp6tOnD4KCguDn54dLly7hzTffRN++fREZGQlra+sa0TZ5eXmYPHkyHn/8cbRu3RoAqu3nJzk52aR/V+lrGwAYMWIEfH194e3tjdOnT2PGjBmIiYlBWFgYAMttmzNnzsDf3x+ZmZlwcnLCTz/9hJYtWyI6OprfLwZgAkOyvn37yv9u27YtOnfuDF9fX/z4448mn1iQaRg2bJj87zZt2qBt27Zo3LgxIiIi0KtXLxUjqz7jx4/H2bNn8dtvv6kdiskpqW3GjRsn/7tNmzbw8vJCr169cOnSJTRu3Li6w6w2zZs3R3R0NFJTU7F582aEhITg4MGDaodlNngLyQD16tWDtbV1sRHgN2/ehKenp0pRVT03Nzc0a9YMFy9ehKenJ7Kzs5GSkqKoU7gNPD099bZR/rHS6ri4uJhFkpT/Pkr7XvD09ERSUpLieG5uLm7fvm2UtjKn77kHH3wQ9erVw8WLFwFYfttMmDABO3fuxIEDB9CgQQO5vLp+fkz5d1VJbaNP586dAUDxfWOJbWNnZ4cmTZqgQ4cOCA0NRbt27fDpp5/y+8VATGAMYGdnhw4dOmDfvn1yWV5eHvbt2wd/f38VI6taGRkZuHTpEry8vNChQwfY2toq2iAmJgbx8fFyG/j7++PMmTOKD6jw8HC4uLigZcuWcp3C18ivYy7t6OfnB09PT8V7SEtLw9GjRxXtkJKSguPHj8t19u/fj7y8PPkXs7+/Pw4dOoScnBy5Tnh4OJo3b47atWvLdcy5rQDg2rVruHXrFry8vABYbtsIITBhwgT89NNP2L9/f7FbYNX182OKv6vKaht9oqOjAUDxfWOJbVNUXl4esrKyavT3S7moPYrYXGzYsEFotVqxZs0acf78eTFu3Djh5uamGAFu7l5//XUREREh4uLixJEjR0RAQICoV6+eSEpKEkJI0/oaNmwo9u/fL/7880/h7+8v/P395fPzp/X17t1bREdHiz179oj69evrndY3ffp0ceHCBfH555+b3DTq9PR0cfLkSXHy5EkBQHzyySfi5MmT4sqVK0IIaRq1m5ub2LZtmzh9+rQYOHCg3mnUjzzyiDh69Kj47bffRNOmTRVThVNSUoSHh4d4/vnnxdmzZ8WGDRuEg4NDsanCNjY24qOPPhIXLlwQc+fOVX0adWltk56eLqZNmyYiIyNFXFyc2Lt3r2jfvr1o2rSpyMzMlK9hiW3zyiuvCFdXVxEREaGYCnz37l25TnX9/Jja76qy2ubixYti/vz54s8//xRxcXFi27Zt4sEHHxTdunWTr2GJbTNz5kxx8OBBERcXJ06fPi1mzpwpNBqN+PXXX4UQNff7pTyYwJTDsmXLRMOGDYWdnZ3o1KmT+OOPP9QOyaiGDh0qvLy8hJ2dnXjggQfE0KFDxcWLF+Xj9+7dE6+++qqoXbu2cHBwEIMHDxYJCQmKa1y+fFn07dtX2Nvbi3r16onXX39d5OTkKOocOHBAPPzww8LOzk48+OCDYvXq1dXx9gx24MABAaDYIyQkRAghTaWePXu28PDwEFqtVvTq1UvExMQornHr1i0xfPhw4eTkJFxcXMSLL74o0tPTFXVOnTolnnjiCaHVasUDDzwgFixYUCyWH3/8UTRr1kzY2dmJVq1aiV27dlXZ+zZEaW1z9+5d0bt3b1G/fn1ha2srfH19xdixY4v9IrTEttHXJgAU39vV+fNjSr+rymqb+Ph40a1bN1GnTh2h1WpFkyZNxPTp0xXrwAhheW0zevRo4evrK+zs7ET9+vVFr1695ORFiJr7/VIeGiGEqL7+HiIiIqLK4xgYIiIiMjtMYIiIiMjsMIEhIiIis8MEhoiIiMwOExgiIiIyO0xgiIiIyOwwgSEiIiKzwwSGiIiIzA4TGCIiIjI7TGCIiIjI7DCBISIiIrPz/zzQe/WfoFKPAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["plt.scatter(X_test,y_test,color='r',label=\"Actual Test Data\")\n","plt.plot(X_test,lin_reg.predict(X_test),color='b',label=\"Predicted Regressor line\")\n","plt.title(\"Test Data\")\n","plt.legend()\n","plt.show()"],"metadata":{"id":"d_wyNsqUcu6I","colab":{"base_uri":"https://localhost:8080/","height":0},"executionInfo":{"status":"ok","timestamp":1740468476881,"user_tz":-330,"elapsed":146,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"868a96a7-5e8a-4c69-84fd-1995f0bbadac"},"execution_count":26,"outputs":[{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAigAAAGzCAYAAAAFROyYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVAJJREFUeJzt3XlcVFXjBvBnGGDYB1FWQSHFrXAvJXNLEtPeV0UzTU3NtFxStEx9X9fMLMtCKzX7mZqvSy7YYi4RriluuOQWmqGispgKSMo2c35/3GZkZFgGh5k78Hw/n/kY95y5c86kMw/n3HOuQgghQERERCQjdtZuABEREdHDGFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIqimFQlGux549ex75te7du4dZs2aV+1x79uwxaINKpYKvry86deqE999/Hzdv3qxwW86dO4dZs2bh8uXLFT4HEVU+e2s3gIisY/Xq1QY/f/PNN4iLiyt2vHHjxo/8Wvfu3cPs2bMBAJ06dSr388aNG4cnn3wSGo0GN2/exMGDBzFz5kx88skn2LBhA5599lmT23Lu3DnMnj0bnTp1QnBwsMnPJyLLYEAhqqYGDRpk8POhQ4cQFxdX7Lg1tW/fHn379jU4durUKXTt2hV9+vTBuXPn4O/vb6XWEVFl4hQPEZVIq9UiJiYGjz/+OJycnODr64vXX38dd+7cMah37NgxREZGolatWnB2dkZISAheffVVAMDly5fh7e0NAJg9e7Z+2mbWrFkValOzZs0QExODzMxMfP755/rjV65cwejRo9GwYUM4OzujZs2aePHFFw2mclauXIkXX3wRANC5c+di01jff/89evTogYCAAKhUKtSrVw9z5syBRqOpUFuJqOI4gkJEJXr99dexcuVKDBs2DOPGjUNycjI+//xznDhxAgcOHICDgwMyMjLQtWtXeHt7Y8qUKfD09MTly5cRGxsLAPD29saSJUswatQo9O7dG1FRUQCApk2bVrhdffv2xfDhw/Hzzz9j7ty5AICjR4/i4MGD6N+/PwIDA3H58mUsWbIEnTp1wrlz5+Di4oIOHTpg3LhxWLRoEf7zn//op690f65cuRJubm6YOHEi3NzcsGvXLsyYMQPZ2dn46KOPHuWtJCJTCSIiIcSYMWNE0Y+E/fv3CwBizZo1BvV27NhhcHzLli0CgDh69GiJ575586YAIGbOnFmutuzevVsAEBs3biyxTrNmzUSNGjX0P9+7d69YnYSEBAFAfPPNN/pjGzduFADE7t27i9U3do7XX39duLi4iNzc3HK1nYjMg1M8RGTUxo0boVar8dxzz+Gvv/7SP1q1agU3Nzfs3r0bAODp6QkA2Lp1KwoKCizWPjc3N9y9e1f/s7Ozs/6/CwoKcOvWLdSvXx+enp44fvx4uc5Z9Bx3797FX3/9hfbt2+PevXv4/fffzdd4IioTAwoRGXXx4kVkZWXBx8cH3t7eBo+cnBxkZGQAADp27Ig+ffpg9uzZqFWrFnr27IkVK1YgLy+vUtuXk5MDd3d3/c/379/HjBkzEBQUBJVKhVq1asHb2xuZmZnIysoq1znPnj2L3r17Q61Ww8PDA97e3vqLhst7DiIyD16DQkRGabVa+Pj4YM2aNUbLdRe+KhQKbNq0CYcOHcKPP/6InTt34tVXX8WCBQtw6NAhuLm5mb1tBQUFuHDhAp544gn9sTfffBMrVqxAdHQ0wsPDoVaroVAo0L9/f2i12jLPmZmZiY4dO8LDwwPvvvsu6tWrBycnJxw/fhyTJ08u1zmIyHwYUIjIqHr16uGXX35Bu3btDKY+StK2bVu0bdsWc+fOxdq1azFw4ECsX78er732GhQKhVnbtmnTJty/fx+RkZEGx4YMGYIFCxboj+Xm5iIzM9PguSW1Zc+ePbh16xZiY2PRoUMH/fHk5GSztp2IyodTPERkVL9+/aDRaDBnzpxiZYWFhfov/jt37kAIYVDevHlzANBP87i4uABAsbBQEadOnUJ0dDRq1KiBMWPG6I8rlcpi7fjss8+KLRF2dXU12halUgkABufIz8/H4sWLH7nNRGQ6jqAQkVEdO3bE66+/jnnz5uHkyZPo2rUrHBwccPHiRWzcuBELFy5E3759sWrVKixevBi9e/dGvXr1cPfuXXz11Vfw8PBA9+7dAUgXnzZp0gTffvstGjRoAC8vLzzxxBMGUzTG7N+/H7m5udBoNLh16xYOHDiAH374AWq1Glu2bIGfn5++7gsvvIDVq1dDrVajSZMmSEhIwC+//IKaNWsanLN58+ZQKpX48MMPkZWVBZVKhWeffRZPP/00atSogSFDhmDcuHFQKBRYvXp1sdBDRBZi3UVERCQXDy8z1lm2bJlo1aqVcHZ2Fu7u7iIsLEy888474saNG0IIIY4fPy4GDBgg6tSpI1QqlfDx8REvvPCCOHbsmMF5Dh48KFq1aiUcHR3LXHKsW2asezg4OAhvb2/RoUMHMXfuXJGRkVHsOXfu3BHDhg0TtWrVEm5ubiIyMlL8/vvvom7dumLIkCEGdb/66ivx2GOPCaVSabDk+MCBA6Jt27bC2dlZBAQEiHfeeUfs3LmzxGXJRFR5FELw1wMiIiKSF16DQkRERLLDgEJERESyw4BCREREssOAQkRERLLDgEJERESyw4BCREREsmOTG7VptVrcuHED7u7uZt9Cm4iIiCqHEAJ3795FQEAA7OxKHyOxyYBy48YNBAUFWbsZREREVAEpKSkIDAwstY5NBhTdLdZTUlLg4eFh5dYQERFReWRnZyMoKEj/PV4amwwoumkdDw8PBhQiIiIbU57LM3iRLBEREckOAwoRERHJDgMKERERyY5NXoNCRPQohBAoLCyERqOxdlOIqhSlUgl7e3uzbAHCgEJE1Up+fj5SU1Nx7949azeFqEpycXGBv78/HB0dH+k8DChEVG1otVokJydDqVQiICAAjo6O3OyRyEyEEMjPz8fNmzeRnJyM0NDQMjdjKw0DChFVG/n5+dBqtQgKCoKLi4u1m0NU5Tg7O8PBwQFXrlxBfn4+nJycKnwuXiRLRNXOo/xWR0SlM9e/L46gEJE8aDTA/v1Aairg7w+0bw8oldZuFRFZCQMKEVlfbCwwfjxw7dqDY4GBwMKFQFSU9dpFRFbDcU4isq7YWKBvX8NwAgDXr0vHY2Ot0y4yiUKhwHfffWftZlAVwoBCRNaj0UgjJ0IUL9Mdi46W6hEAICEhAUqlEj169DD5ucHBwYiJiTF/o8qgUChKfcyaNeuRzl2eYFT09VxdXREaGoqhQ4ciMTHR5Nfs1KkToqOjTW8smYQBhYisZ//+4iMnRQkBpKRI9eRGowH27AHWrZP+tFCIWr58Od58803s27cPN27csMhrPqrU1FT9IyYmBh4eHgbH3n77bYu0Y8WKFUhNTcXZs2fxxRdfICcnB23atME333xjkdcn0zCgEJH1pKaat56lxMYCwcFA587Ayy9LfwYHV/p0VE5ODr799luMGjUKPXr0wMqVK4vV+fHHH/Hkk0/CyckJtWrVQu/evQFIv/VfuXIFEyZM0I8kAMCsWbPQvHlzg3PExMQgODhY//PRo0fx3HPPoVatWlCr1ejYsSOOHz9e7nb7+fnpH2q1GgqFwuDY+vXr0bhxYzg5OaFRo0ZYvHix/rn5+fkYO3Ys/P394eTkhLp162LevHkAoG9j7969oVAoDNpsjKenJ/z8/BAcHIyuXbti06ZNGDhwIMaOHYs7d+4AAG7duoUBAwagdu3acHFxQVhYGNatW6c/x9ChQ7F3714sXLhQ/z5evnwZGo0Gw4cPR0hICJydndGwYUMsXLiw3O8RFceAQkTW4+9v3nqWYMVrZjZs2IBGjRqhYcOGGDRoEL7++muIItNjP/30E3r37o3u3bvjxIkTiI+Px1NPPfVPs2MRGBiId999Vz9yUV53797FkCFD8Ouvv+LQoUMIDQ1F9+7dcffu3Ufu05o1azBjxgzMnTsX58+fx/vvv4/p06dj1apVAIBFixbhhx9+wIYNG5CUlIQ1a9bog8jRo0cBPBgZ0f1sigkTJuDu3buIi4sDAOTm5qJVq1b46aefcObMGYwcORKDBw/GkSNHAAALFy5EeHg4RowYoX8fg4KCoNVqERgYiI0bN+LcuXOYMWMG/vOf/2DDhg2P/B5VV1zFQ0TW0769tFrn+nXj16EoFFJ5+/aWb5sxZV0zo1BI18z07FkpS6SXL1+OQYMGAQC6deuGrKws7N27F506dQIAzJ07F/3798fs2bP1z2nWrBkAwMvLC0qlEu7u7vDz8zPpdZ999lmDn5ctWwZPT0/s3bsXL7zwwiP0CJg5cyYWLFiAqH9Wa4WEhODcuXP48ssvMWTIEFy9ehWhoaF45plnoFAoULduXf1zvb29ATwYGamIRo0aAQAuX74MAKhdu7bBlNObb76JnTt3YsOGDXjqqaegVqvh6OgIFxcXg9dUKpUG73tISAgSEhKwYcMG9OvXr0Jtq+44gkJE1qNUSkuJAenLvSjdzzEx8tkPxYrXzCQlJeHIkSMYMGAAAMDe3h4vvfQSli9frq9z8uRJdOnSxeyvnZ6ejhEjRiA0NBRqtRoeHh7IycnB1atXH+m8f//9Ny5duoThw4fDzc1N/3jvvfdw6dIlANKUysmTJ9GwYUOMGzcOP//8szm6pKcbgdJNeWk0GsyZMwdhYWHw8vKCm5sbdu7cWa6+fvHFF2jVqhW8vb3h5uaGZcuWPfJ7VJ1xBIWIrCsqCti0yfg+KDEx8toHxYrXzCxfvhyFhYUICAjQHxNCQKVS4fPPP4darYazs7PJ57WzszOYJgKAgoICg5+HDBmCW7duYeHChahbty5UKhXCw8ORn59fsc78IycnBwDw1VdfoU2bNgZlyn9CacuWLZGcnIzt27fjl19+Qb9+/RAREYFNmzY90mvrnD9/HoA04gEAH330ERYuXIiYmBiEhYXB1dUV0dHRZfZ1/fr1ePvtt7FgwQKEh4fD3d0dH330EQ4fPmyWdlZHDChEZH1RUdK0iNx3krXSNTOFhYX45ptvsGDBAnTt2tWgrFevXli3bh3eeOMNNG3aFPHx8Rg2bJjR8zg6OkLz0Gojb29vpKWlQQihH0U4efKkQZ0DBw5g8eLF6N69OwAgJSUFf/311yP3y9fXFwEBAfjzzz8xcODAEut5eHjgpZdewksvvYS+ffuiW7duuH37Nry8vODg4FCsT6bQrSqKiIgAIPW1Z8+e+qk0rVaLCxcuoEmTJvrnGHsfDxw4gKeffhqjR4/WH9ONAlHFMKAQkTwolcA/11LIlpWumdm6dSvu3LmD4cOHQ61WG5T16dMHy5cvxxtvvIGZM2eiS5cuqFevHvr374/CwkJs27YNkydPBiCtetm3bx/69+8PlUqFWrVqoVOnTrh58ybmz5+Pvn37YseOHdi+fTs8PDz0rxEaGorVq1ejdevWyM7OxqRJkyo0WmPM7NmzMW7cOKjVanTr1g15eXk4duwY7ty5g4kTJ+KTTz6Bv78/WrRoATs7O2zcuBF+fn7w9PTU9yk+Ph7t2rWDSqVCjRo1SnytzMxMpKWlIS8vDxcuXMCXX36J7777Dt98843+fKGhodi0aRMOHjyIGjVq4JNPPkF6erpBQAkODsbhw4dx+fJluLm5wcvLC6Ghofjmm2+wc+dOhISEYPXq1Th69Kh+ZIYqQNigrKwsAUBkZWVZuylEZEPu378vzp07J+7fv1/xk2zeLIRCIT2kmCI9dMc2bzZfg//xwgsviO7duxstO3z4sAAgTp069U/zNovmzZsLR0dHUatWLREVFaWvm5CQIJo2bSpUKpUo+vG/ZMkSERQUJFxdXcUrr7wi5s6dK+rWrasvP378uGjdurVwcnISoaGhYuPGjaJu3bri008/1dcBILZs2VJmX1asWCHUarXBsTVr1ujbXKNGDdGhQwcRGxsrhBBi2bJlonnz5sLV1VV4eHiILl26iOPHj+uf+8MPP4j69esLe3t7gzY/DID+4eTkJOrVqyeGDBkiEhMTDerdunVL9OzZU7i5uQkfHx8xbdo08corr4iePXvq6yQlJYm2bdsKZ2dnAUAkJyeL3NxcMXToUKFWq4Wnp6cYNWqUmDJlimjWrFmZ70lVU9q/M1O+vxVCGPs1QN6ys7OhVquRlZVlkPKJiEqTm5uL5ORkhISEPNJt4I3eOygoSH7XzBBZQWn/zkz5/uYUDxGRqWzlmhkiG8aAQkRUEbZwzQyRDeM+KERERCQ7DChEREQkOwwoREREJDsMKERERCQ7DChEREQkOwwoREREJDsMKERERCQ7DChERGRg6NCh6NWrl/7nTp06ITo62uLt2LNnDxQKBTIzMy3+2lXJw///goODERMTY7X2lBcDChGRDRg6dCgUCgUUCgUcHR1Rv359vPvuuygsLKz0146NjcWcOXPKVdfSoSI4OFj/vri4uCAsLAz/93//Z5HXtlVHjx7FyJEjrd2MMjGgEBHZiG7duiE1NRUXL17EW2+9hVmzZuGjjz4yWjc/P99sr+vl5QV3d3eznc/c3n33XaSmpuLMmTMYNGgQRowYge3bt1fqa5rz/TWX8rbJ29sbLi4uldyaR8eAQkTVmhDA339b/lGR27SqVCr4+fmhbt26GDVqFCIiIvDDDz8AeDAtM3fuXAQEBKBhw4YAgJSUFPTr1w+enp7w8vJCz549cfnyZf05NRoNJk6cCE9PT9SsWRPvvPMOHr6H7MNTBHl5eZg8eTKCgoKgUqlQv359LF++HJcvX0bnzp0BADVq1IBCocDQoUMBAFqtFvPmzUNISAicnZ3RrFkzbNq0yeB1tm3bhgYNGsDZ2RmdO3c2aGdp3N3d4efnh8ceewyTJ0+Gl5cX4uLi9OWZmZl47bXX4O3tDQ8PDzz77LM4deqUwTnee+89+Pj4wN3dHa+99hqmTJmC5s2b68sr+v7u2bMHTz31FFxdXeHp6Yl27drhypUrAIBTp06hc+fOcHd3h4eHB1q1aoVjx47pn7t582Y8/vjjUKlUCA4OxoIFCwzaHBwcjDlz5uCVV16Bh4dHuUdFHp7iUSgU+L//+z/07t0bLi4uCA0N1f+90jlz5gyef/55uLm5wdfXF4MHD8Zff/1VrterKAYUIqrW7t0D3Nws/7h379Hb7uzsbPBbc3x8PJKSkhAXF4etW7eioKAAkZGRcHd3x/79+3HgwAG4ubmhW7du+uctWLAAK1euxNdff41ff/0Vt2/fxpYtW0p93VdeeQXr1q3DokWLcP78eXz55Zdwc3NDUFAQNm/eDABISkpCamoqFi5cCACYN28evvnmGyxduhRnz57FhAkTMGjQIOzduxeA9EUfFRWFf/3rXzh58qQ+JJhCq9Vi8+bNuHPnDhwdHfXHX3zxRWRkZGD79u1ITExEy5Yt0aVLF9y+fRsAsGbNGsydOxcffvghEhMTUadOHSxZsqTY+U19fwsLC9GrVy907NgRv/32GxISEjBy5EgoFAoAwMCBAxEYGIijR48iMTERU6ZMgYODAwAgMTER/fr1Q//+/XH69GnMmjUL06dPx8qVKw3a9PHHH6NZs2Y4ceIEpk+fbtL7VdTs2bPRr18//Pbbb+jevTsGDhyof38yMzPx7LPPokWLFjh27Bh27NiB9PR09OvXr8KvVy7CBmVlZQkAIisry9pNISIbcv/+fXHu3Dlx//59/bGcHCGk8QzLPnJyTGv7kCFDRM+ePYUQQmi1WhEXFydUKpV4++239eW+vr4iLy9P/5zVq1eLhg0bCq1Wqz+Wl5cnnJ2dxc6dO4UQQvj7+4v58+frywsKCkRgYKD+tYQQomPHjmL8+PFCCCGSkpIEABEXF2e0nbt37xYAxJ07d/THcnNzhYuLizh48KBB3eHDh4sBAwYIIYSYOnWqaNKkiUH55MmTi53rYXXr1hWOjo7C1dVV2NvbCwDCy8tLXLx4UQghxP79+4WHh4fIzc01eF69evXEl19+KYQQok2bNmLMmDEG5e3atRPNmjXT/1yR9/fWrVsCgNizZ4/Rtru7u4uVK1caLXv55ZfFc889Z3Bs0qRJBu9R3bp1Ra9evUp6a/SK/v/TPe/TTz/V/wxATJs2Tf9zTk6OACC2b98uhBBizpw5omvXrgbnTElJEQBEUlJSsdcz9u9Mx5Tvb97NmIiqNRcXICfHOq9rqq1bt8LNzQ0FBQXQarV4+eWXMWvWLH15WFiYwcjBqVOn8McffxS7fiQ3NxeXLl1CVlYWUlNT0aZNG32Zvb09WrduXWyaR+fkyZNQKpXo2LFjudv9xx9/4N69e3juuecMjufn56NFixYAgPPnzxu0AwDCw8PLdf5JkyZh6NChSE1NxaRJkzB69GjUr18fgPQe5OTkoGbNmgbPuX//Pi5dugRAGu0ZPXq0QflTTz2FXbt2GRwz9f3t2rUrhg4disjISDz33HOIiIhAv3794O/vDwCYOHEiXnvtNaxevRoRERF48cUXUa9ePf370bNnT4PztmvXDjExMdBoNFAqlQCA1q1bl+s9KkvTpk31/+3q6goPDw9kZGTo+7l79264ubkVe96lS5fQoEEDs7ThYQwoRFStKRSAq6u1W1E+nTt3xpIlS+Do6IiAgADY2xt+hLs+1JGcnBy0atUKa9asKXYub2/vCrXB2dnZ5Ofk/JMAf/rpJ9SuXdugTKVSVagdRdWqVQv169dH/fr1sXHjRoSFhaF169Zo0qQJcnJy4O/vjz179hR7nqenp0mvU5H3d8WKFRg3bhx27NiBb7/9FtOmTUNcXBzatm2LWbNm4eWXX8ZPP/2E7du3Y+bMmVi/fj169+5d4TZVlG5qSUehUECr1QKQ+vmvf/0LH374YbHn6cJWZWBAISKyEa6urvqRgfJo2bIlvv32W/j4+MDDw8NoHX9/fxw+fBgdOnQAABQWFuqv0zAmLCwMWq0We/fuRURERLFy3QiDRqPRH2vSpAlUKhWuXr1a4shL48aNi12YeejQobI7+ZCgoCC89NJLmDp1Kr7//nu0bNkSaWlpsLe3R3BwsNHnNGzYEEePHsUrr7yiP3b06NEyX6s87y8AtGjRAi1atMDUqVMRHh6OtWvXom3btgCABg0aoEGDBpgwYQIGDBiAFStWoHfv3mjcuDEOHDhgcJ4DBw6gQYMG+tETS2nZsiU2b96M4ODgYqG4MvEiWSKiKmrgwIGoVasWevbsif379yM5ORl79uzBuHHjcO3aNQDA+PHj8cEHH+C7777D77//jtGjR5e6h0lwcDCGDBmCV199Fd99953+nBs2bAAA1K1bFwqFAlu3bsXNmzeRk5MDd3d3vP3225gwYQJWrVqFS5cu4fjx4/jss8+watUqAMAbb7yBixcvYtKkSUhKSsLatWuLXRBaXuPHj8ePP/6IY8eOISIiAuHh4ejVqxd+/vlnXL58GQcPHsR///tf/YqZN998E8uXL8eqVatw8eJFvPfee/jtt9/0F7NW9P1NTk7G1KlTkZCQgCtXruDnn3/GxYsX0bhxY9y/fx9jx47Fnj17cOXKFRw4cABHjx5F48aNAQBvvfUW4uPjMWfOHFy4cAGrVq3C559/jrfffrtC78mjGDNmDG7fvo0BAwbg6NGjuHTpEnbu3Ilhw4YZBFFzY0AhIqqiXFxcsG/fPtSpUwdRUVFo3Lgxhg8fjtzcXP1v/G+99RYGDx6MIUOGIDw8HO7u7mVOMSxZsgR9+/bF6NGj0ahRI4wYMQJ///03AKB27dqYPXs2pkyZAl9fX4wdOxYAMGfOHEyfPh3z5s1D48aN0a1bN/z0008ICQkBANSpUwebN2/Gd999h2bNmmHp0qV4//33K9TvJk2aoGvXrpgxYwYUCgW2bduGDh06YNiwYWjQoAH69++PK1euwNfXF4AUNKZOnYq3334bLVu2RHJyMoYOHQonJ6dHen9dXFzw+++/o0+fPmjQoAFGjhyJMWPG4PXXX4dSqcStW7fwyiuvoEGDBujXrx+ef/55zJ49G4A0arFhwwasX78eTzzxBGbMmIF3331Xv2zbkgICAnDgwAFoNBp07doVYWFhiI6OhqenJ+zsKi9GKERJV0LJWHZ2NtRqNbKyskodViMiKio3NxfJyckICQkp88uHqrfnnnsOfn5+WL16tbWbYnNK+3dmyvc3r0EhIqJq7d69e1i6dCkiIyOhVCqxbt06/PLLLwabvZHlMaAQEVG1ppsGmjt3LnJzc9GwYUNs3rzZ6EXAZDkMKEREVK05Ozvjl19+sXYz6CG8SJaIiIhkhwGFiKodG1wbQGQzzPXviwGFiKoN3W6Z98xxpz4iMkr37+vh3WlNxWtQiKjaUCqV8PT01N9jxMXFpczNuIiofIQQuHfvHjIyMuDp6fnIO94yoBBRteLn5wcA+pBCRObl6emp/3f2KBhQiKhaUSgU8Pf3h4+PDwoKCqzdHKIqxcHBwWz3CjIpoGg0GsyaNQv/+9//kJaWhoCAAAwdOhTTpk3TD5MKITBz5kx89dVXyMzMRLt27bBkyRKEhobqz3P79m28+eab+PHHH2FnZ4c+ffpg4cKFRm/lTERUGZRKpcVvukZE5WfSRbIffvghlixZgs8//xznz5/Hhx9+iPnz5+Ozzz7T15k/fz4WLVqEpUuX4vDhw3B1dUVkZCRyc3P1dQYOHIizZ88iLi4OW7duxb59+zBy5Ejz9YqIiIhsmkn34nnhhRfg6+uL5cuX64/16dMHzs7O+N///gchBAICAvDWW2/p77iYlZUFX19frFy5Ev3798f58+fRpEkTHD16FK1btwYA7NixA927d8e1a9cQEBBQZjt4Lx4iIiLbY8r3t0kjKE8//TTi4+Nx4cIFAMCpU6fw66+/4vnnnwcAJCcnIy0tzWB7YLVajTZt2iAhIQEAkJCQAE9PT304AYCIiAjY2dnh8OHDRl83Ly8P2dnZBg8iIiKquky6BmXKlCnIzs5Go0aNoFQqodFoMHfuXAwcOBAAkJaWBgD6W1jr+Pr66svS0tLg4+Nj2Ah7e3h5eenrPGzevHn6W1ATERFR1WfSCMqGDRuwZs0arF27FsePH8eqVavw8ccfY9WqVZXVPgDA1KlTkZWVpX+kpKRU6usRERGRdZk0gjJp0iRMmTIF/fv3BwCEhYXhypUrmDdvHoYMGaJf95yeng5/f3/989LT09G8eXMA0h4ED+8/UFhYiNu3b5e4blqlUkGlUpnSVCIiIrJhJo2g3Lt3D3Z2hk9RKpXQarUAgJCQEPj5+SE+Pl5fnp2djcOHDyM8PBwAEB4ejszMTCQmJurr7Nq1C1qtFm3atKlwR4iIiKjqMGkE5V//+hfmzp2LOnXq4PHHH8eJEyfwySef4NVXXwUgbYAUHR2N9957D6GhoQgJCcH06dMREBCAXr16AQAaN26Mbt26YcSIEVi6dCkKCgowduxY9O/fv1wreIiIiKjqMymgfPbZZ5g+fTpGjx6NjIwMBAQE4PXXX8eMGTP0dd555x38/fffGDlyJDIzM/HMM89gx44dcHJy0tdZs2YNxo4diy5duug3alu0aJH5ekVEREQ2zaR9UOSC+6AQERHZnkrbB4WIiIjIEhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2GFCIiIhIdhhQiIiISHYYUIiIiEh2TA4o169fx6BBg1CzZk04OzsjLCwMx44d05cLITBjxgz4+/vD2dkZERERuHjxosE5bt++jYEDB8LDwwOenp4YPnw4cnJyHr03REREVCWYFFDu3LmDdu3awcHBAdu3b8e5c+ewYMEC1KhRQ19n/vz5WLRoEZYuXYrDhw/D1dUVkZGRyM3N1dcZOHAgzp49i7i4OGzduhX79u3DyJEjzdcrIiIismkKIYQob+UpU6bgwIED2L9/v9FyIQQCAgLw1ltv4e233wYAZGVlwdfXFytXrkT//v1x/vx5NGnSBEePHkXr1q0BADt27ED37t1x7do1BAQElNmO7OxsqNVqZGVlwcPDo7zNJyIiIisy5fvbpBGUH374Aa1bt8aLL74IHx8ftGjRAl999ZW+PDk5GWlpaYiIiNAfU6vVaNOmDRISEgAACQkJ8PT01IcTAIiIiICdnR0OHz5s9HXz8vKQnZ1t8CAiIqKqy6SA8ueff2LJkiUIDQ3Fzp07MWrUKIwbNw6rVq0CAKSlpQEAfH19DZ7n6+urL0tLS4OPj49Bub29Pby8vPR1HjZv3jyo1Wr9IygoyJRmExERkY0xKaBotVq0bNkS77//Plq0aIGRI0dixIgRWLp0aWW1DwAwdepUZGVl6R8pKSmV+npERERkXSYFFH9/fzRp0sTgWOPGjXH16lUAgJ+fHwAgPT3doE56erq+zM/PDxkZGQblhYWFuH37tr7Ow1QqFTw8PAweREREVHWZFFDatWuHpKQkg2MXLlxA3bp1AQAhISHw8/NDfHy8vjw7OxuHDx9GeHg4ACA8PByZmZlITEzU19m1axe0Wi3atGlT4Y4QERFR1WFvSuUJEybg6aefxvvvv49+/frhyJEjWLZsGZYtWwYAUCgUiI6OxnvvvYfQ0FCEhIRg+vTpCAgIQK9evQBIIy7dunXTTw0VFBRg7Nix6N+/f7lW8BAREVHVZ9IyYwDYunUrpk6diosXLyIkJAQTJ07EiBEj9OVCCMycORPLli1DZmYmnnnmGSxevBgNGjTQ17l9+zbGjh2LH3/8EXZ2dujTpw8WLVoENze3crWBy4yJiIhsjynf3yYHFDlgQCEiIrI9lbYPChEREZElMKAQERGR7DCgEBERkewwoBAREZHsMKAQERGR7DCgEBERkewwoBAREZHsMKAQERGR7DCgEBERkewwoBAREZHsMKAQERGR7DCgEBERkewwoBAREZHsMKAQERGR7DCgEBEREfLzAYXC8GFNDChERETV2IkTUhhRqQyPOztbpz06DChERETV0JQpUjBp2bJ42aRJwL17lm9TUfbWfXkiIiKyFI0GsC/lmz8x0XhgsQYGFCIioiruwgWgYcOSy/PyAEdHy7WnPDjFQ0REVEV9/LE0jWMsnAwbBgghPeQWTgCOoBAREVUpQgA1awJ37hgv370b6NTJok2qEAYUIiKiKuDaNSAoqOTynBzA1bUcJ9JogP37gdRUwN8faN8eUCrN1s7y4hQPERGRDVu+XJrGMRZOnn/+wTROucJJbCwQHAx07gy8/LL0Z3CwdNzCGFCIiIhs0OOPS8HktdeKl33/vRRKtm0z4YSxsUDfvtJQTFHXr0vHLRxSFEIIYdFXNIPs7Gyo1WpkZWXBw8PD2s0hIiKyiL/+Ary9Sy6/fRuoUaMCJ9ZopJGSh8OJjkIBBAYCycmPNN1jyvc3R1CIiIhkbvNmKSMYCyctWz6YxqlQOAGka05KCieAdPKUFKmehTCgEBERyVSXLlIw6du3eNmqVVJuSEw0wwulppq3nhlwFQ8REZGM3L0LlDb7ceOGtLjGrMp7QrO/cMk4gkJERCQD8fHSaImxcOLvD2i10ohJpWSE9u2la0xKuoWxbplQ+/aV8OLGMaAQERFZ0csvS9//ERHFy2JipFBy40bJ2cEslEpg4ULpvx9+Id3PMTEW3Q+FUzxEREQWlpsLODuXXH7pEvDYY5ZrDwAgKgrYtAkYP97wgtnAQCmcREVZtDkMKERERBZy+DDQtm3J5RoNYGfNuY2oKKBnT+4kS0REVB2MHy/NlBgLJzNmPFgmbNVwoqNUSjfrGTBA+tMK4QTgCAoREVGlKCwEHBxKLj91Cmja1HLtsTUMKERERGZ07py0DX1J8vNLDy4kkcNgEhERkc177z1pGsdYOHnjjQfTOAwn5cMRFCIiogoSAlCpgIIC4+UHDgBPP23ZNlUVDChEREQmunwZCAkpufzevdKXEVPZOMVDRERUTosXS9M4xsJJnz4PpnFsOpxoNMCePcC6ddKfGo1VmsERFCIiolIIIQWSK1eMl2/fDnTrZtk2VZrYWOMbtS1cyI3aiIiI5CA9HfDzK7k8MxNQqy3WnMoXGyvdNlkIw+PXr0vHN22yaEjhFA8REVER69ZJ0zjGwkm7dg+mcapUONFopJGTh8MJ8OBYdLRFp3sYUIiIiACEh0vB5OWXi5etXy99T//6q+XbZRH79xtO6zxMCCAlRapnIZziISKiaisrC/D0LLk8PR3w8bFYc6wnNdW89cyAIyhERFTtbNsmjZYYCyf16j2YxqkW4QSQbgpoznpmwIBCRETVRq9eUjDp0aN42dKlUij54w+LN8v62reXVusoFMbLFQogKEiqZyGc4iEioirt3j3A1bXk8suXgbp1LdYceVIqpaXEfftKYaToxbK60BITY9E7G3MEhYiIqqQDB6TvVmPhxNUV0Gql7+FqH050oqKkpcS1axseDwy0+BJjgAGFiIiqmNdfl4LJM88UL5s7VwolOTklz2ZUa1FR0pDS7t3A2rXSn8nJFg8nAKd4iIioCigoABwdSy4/dw5o3Nhy7bFpSiXQqZO1W8ERFCIisl2nTkkjISWFk8JCacSE4cT2MKAQEZHN+e9/pWDSvHnxsokTHywTtuA1nWRmnOIhIiKboNWWHjiOHgVat7Zce6hyMaAQEZGs/fEHEBpacnluLqBSWa49ZBmc4iEiIllasECaxjEWTgYPfjCNw3BSNXEEhYiIZEMIwNsbuHXLeHl8PPDss5ZtE1kHAwoREVndjRvF9wcr6u5dwM3Ncu0h6+MUDxERWc3KldI0jrFw8txzD6ZxGE6qH46gEBGRxTVtCpw+bbxsyxbppn5UvTGgEBGRRdy6BdSqVXq5l5fl2kPyxikeIiKqVFu2SNM4xsJJ06YPpnEYTqgoBhQiIqoU3bpJwcTYfea+/loKJadOWb5dZBs4xUNERGaTkwO4u5dcfu1a6at1iHQeaQTlgw8+gEKhQHR0tP5Ybm4uxowZg5o1a8LNzQ19+vRBenq6wfOuXr2KHj16wMXFBT4+Ppg0aRIKCwsfpSlERGRFu3dLoyXGwom3t7RNvRAMJ1R+FQ4oR48exZdffommTZsaHJ8wYQJ+/PFHbNy4EXv37sWNGzcQVWR8T6PRoEePHsjPz8fBgwexatUqrFy5EjNmzKh4L4iIyCpeeUUKJsY2T1uwQAolGRlSHSJTKIQQwtQn5eTkoGXLlli8eDHee+89NG/eHDExMcjKyoK3tzfWrl2Lvn37AgB+//13NG7cGAkJCWjbti22b9+OF154ATdu3ICvry8AYOnSpZg8eTJu3rwJx5LumV1EdnY21Go1srKy4OHhYWrziYjoEeTlAU5OJZdfvAjUr2+59pDtMOX7u0IjKGPGjEGPHj0QERFhcDwxMREFBQUGxxs1aoQ6deogISEBAJCQkICwsDB9OAGAyMhIZGdn4+zZs0ZfLy8vD9nZ2QYPIiKyrGPHpJGQksKJRiONmDCckDmYHFDWr1+P48ePY968ecXK0tLS4OjoCE9PT4Pjvr6+SEtL09cpGk505boyY+bNmwe1Wq1/BAUFmdpsIiKqoIkTpWDy5JPFy/7znwfLhO24LpTMyKRVPCkpKRg/fjzi4uLgVNr4nplNnToVEydO1P+cnZ3NkEJEVIk0GsC+lG+IEyeA5s0t1hyqhkzKu4mJicjIyEDLli1hb28Pe3t77N27F4sWLYK9vT18fX2Rn5+PzMxMg+elp6fDz88PAODn51dsVY/uZ12dh6lUKnh4eBg8iIjI/H7/XRotKSmc5OdLoyUMJ1TZTAooXbp0wenTp3Hy5En9o3Xr1hg4cKD+vx0cHBAfH69/TlJSEq5evYrw8HAAQHh4OE6fPo2MjAx9nbi4OHh4eKBJkyZm6hYREZni/felYNK4cfGyESMeTOM4OFi+bVQ9mTTF4+7ujieeeMLgmKurK2rWrKk/Pnz4cEycOBFeXl7w8PDAm2++ifDwcLRt2xYA0LVrVzRp0gSDBw/G/PnzkZaWhmnTpmHMmDFQqVRm6hYREZVFCMDVFbh/33j5/v3AM89Ytk1EOmbfSfbTTz+FnZ0d+vTpg7y8PERGRmLx4sX6cqVSia1bt2LUqFEIDw+Hq6srhgwZgnfffdfcTSEiIiOuXAGCg0su//tvwMXFYs0hMqpC+6BYG/dBISIy3dKlwKhRxst69ZJu6kdUmUz5/ua9eORIo5HGVlNTAX9/oH17QKm0dquIyEaFhgJ//GG87KefgO7dLdseovJgQJGb2Fhg/Hjpjlo6gYHAwoXGbwlKRGRERgbw0JZTBu7cAR7asopIVritjpzExgJ9+xqGEwC4fl06HhtrnXYRkc3YsEFajWMsnLRp82A1DsMJyR0DilxoNNLIibFLgnTHoqOlekRED2nfXgomL71UvGzNGulj5NAhy7eLqKI4xSMX+/cXHzkpSgggJUWq16mTxZpFRPKVnQ2o1SWXp6WVPs1DJGccQZGL1FTz1iOiKmvnTmm0xFg4CQl5MI3DcEK2jAFFLvz9zVuPiKqcPn2kYNKtW/GyL76QQsmff1q+XUSVgVM8ctG+vbRa5/p149ehKBRSefv2lm8bEVnN/fulb5qWnFz6pmtEtoojKHKhVEpLiQEpjBSl+zkmhvuhEFUTCQnSP31j4USlArRa6XcZhhOqqhhQ5CQqCti0Cahd2/B4YKB0nPugEFV5o0dLweTpp4uXvfuuFEpyc4v/HkNU1XCKR26iooCePbmTLFE1UlhY+l2Cz54FeLN3qm4YUORIqeRSYqJq4PRpoGnTkssLCgB7fkpTNcUpHiIiC5sxQ5qiMRZOdPs1CsFwQtUb//oTEVmAVlv6TO3hw8BTT1muPURyx4BCRFSJLl0C6tcvuTw3V1qVQ0SGOMVDRPKg0QB79gDr1kl/2vh9pxYtkqZxjIWT/v0fTOMwnBAZxxEUIrK+2Fjp4oui96MKDJT2BrKh5fVCSAvv0tONl8fFARERlm0Tka3iCAoRWVdsLNC3b/GbZV6/Lh2PjbVOu0yQmiqNltjZGQ8n2dlSeGE4ISo/BhQish6N5sGylYfpjkVHy3a6Z/VqKZgEBBQve/bZB9M47u6WbxuRrWNAISLr2b+/+MhJUUIAKSlSPRlp2VIKJq+8Urxs82ap2fHxlm8XUVXCa1CIyHpSU81brxLduQN4eZVc/tdfQM2almsPUVXHERQish5/f/PWqwQ//CCNlhgLJ02aPJjGYTghMi8GFCKynvbtpdU6Jd35TqEAgoKkehbWo4f08j17Fi9bvlwKJWfPWrxZRNUGp3iIyHqUSmkpcd++UhooerGsLrTExFjsZpl//w24uZVcnpIi5SkiqnwcQSEi64qKAjZtAmrXNjweGCgdt8A+KHv3SnnIWDipUUPapl4IhhMiS2JAISLri4oCLl8Gdu8G1q6V/kxOrvRwMmyYFEyM3Tx8/nwplNy+XfIMFBFVHk7xEJE8KJXGk4KZ5eeXvr18UhLQoEGlN4OIysARFCKqFhITpZGQksKJRiONmDCcEMkDAwoRVWmTJ0vBpHVr42W6ZcJ2/DQkkhVO8RBRlaPRAPalfLolJkq7wRKRfDGgEFGVkZQENGpUcnleHuDoaLn2EFHFcVCTiGze/PnSNI6xcPLqqw+mcRhOiGwHR1CIyCYJAajVwN27xsv37gU6dLBsm4jIfBhQiEgeNBrprsWpqdK9d9q3N7qDbEoKUKdOyaf5+2/AxaUS20lEFsEpHiKyvthYIDgY6NwZePll6c/gYOn4P776SprGMRZOXnjhwTQOwwlR1cARFCKyrthY6V48Re/DAwDXrwN9+6JxQCZ+v+5h9Klbt0o39SOiqocBhYisR6MBxo8vFk7+Qk14i7+kH64Xf9rt29I9coio6uIUDxFZz/79wLVr+h83oQ8UEPDGX8WqPvnkg2kchhOiqo8jKERkPampAAAFRIlVVmMQBq3tAQwYYKlWEZEMcASFiKzizBlA8fKAEsNJKvwgoMAgrJFW9RBRtcIRFCKyqFq1gFu3Si7XQgGF7geFAggMlJYcE1G1woBCRBahUJReLhR2hhfL6p4QE2N0PxQiqto4xUNElebGDSlnlBROFiz458LXzbFA7dqGhYGBwKZNQFRU5TeUiGSHIyhEZHZdugC7dpVcXlDw0N2Go6KAnj3LtZMsEVUPDChEZDZlTuOUvFiHiMgAp3iI6JHk5JQ+jTNq1IP9S0pUjq3uiah6YUAhogp5800plLi7Gy/PzpZCyeLFZZxIt9V9kQ3bAOi3umdIIaqeFELY3qBrdnY21Go1srKy4OFh/B4dRFQ5zDqNo9FIIyUPh5OiLxYYCCQn83oUoirAlO9vjqAQUZkKC0ufxunQoRzTOMY8tNV9MUIAKSlSPSKqVhhQiKhECxdKocTBwXj5tWtShti7t4Iv8M9W92arR0RVBlfxEFExFluNU94t7LnVPVG1wxEUIgIghY7SpnE8PCo4jVOa9u2la0xKelGFAggK4lb3RNUQAwpRNbdli5QD7Er4NDh1SgolWVmV8OJKpTSPBBQPKdzqnqhaY0AhqqZ0oyUl7SSvGy1p2rSSGxIVJW1pz63uiagIXoNCVM3IcrdXbnVPRA9hQCGqBo4cAdq0Kbl8xw4gMtJy7TFKqQQ6dbJyI4hILhhQiKowWY6WEBGVAwMKURXEYEJEto4XyRJVEcnJpS8T/uqrSlgmTERUSTiCQmTjmjYFTp8uuVyjKXkJMRGRXDGgENkoTuMQUVXG36uIbMidO6VP40yZwmkcIqoaOIJCZAMGDgTWri25/N49wNnZcu0hIqpsJo2gzJs3D08++STc3d3h4+ODXr16ISkpyaBObm4uxowZg5o1a8LNzQ19+vRBenq6QZ2rV6+iR48ecHFxgY+PDyZNmoTCwsJH7w1RFaMbLSkpnOhGSxhOiKiqMSmg7N27F2PGjMGhQ4cQFxeHgoICdO3aFX///be+zoQJE/Djjz9i48aN2Lt3L27cuIGoIltVazQa9OjRA/n5+Th48CBWrVqFlStXYsaMGebrFZENy8srfRqnVy9O4xBR1acQouIfczdv3oSPjw/27t2LDh06ICsrC97e3li7di369u0LAPj999/RuHFjJCQkoG3btti+fTteeOEF3LhxA76+vgCApUuXYvLkybh58yYcHR3LfN3s7Gyo1WpkZWXBw8Ojos0nkpXZs4FZs0ouz8gAvL0t1hwiIrMz5fv7kS6Szfrn9qZeXl4AgMTERBQUFCAiIkJfp1GjRqhTpw4SEhIAAAkJCQgLC9OHEwCIjIxEdnY2zp49a/R18vLykJ2dbfAgqip0oyUlhRPdaAnDCRFVJxUOKFqtFtHR0WjXrh2eeOIJAEBaWhocHR3h6elpUNfX1xdpaWn6OkXDia5cV2bMvHnzoFar9Y+goKCKNptIFoQofRonJITTOERUvVU4oIwZMwZnzpzB+vXrzdkeo6ZOnYqsrCz9IyUlpdJfk6gyrF4thZKSNk5LSpJCyZ9/WrZdRERyU6FlxmPHjsXWrVuxb98+BAYG6o/7+fkhPz8fmZmZBqMo6enp8PPz09c5cuSIwfl0q3x0dR6mUqmgUqkq0lQiWeCmakREpjFpBEUIgbFjx2LLli3YtWsXQkJCDMpbtWoFBwcHxMfH648lJSXh6tWrCA8PBwCEh4fj9OnTyMjI0NeJi4uDh4cHmjRp8ih9IZKd0qZxAE7jEBGVxKSAMmbMGPzvf//D2rVr4e7ujrS0NKSlpeH+/fsAALVajeHDh2PixInYvXs3EhMTMWzYMISHh6Nt27YAgK5du6JJkyYYPHgwTp06hZ07d2LatGkYM2YMR0moSti9u/Rgsm8fgwkRUVlMWmasKOETd8WKFRg6dCgAaaO2t956C+vWrUNeXh4iIyOxePFig+mbK1euYNSoUdizZw9cXV0xZMgQfPDBB7C3L9+ME5cZkxxxGoeIqHSmfH8/0j4o1sKAQnLCYEJEVD4W2weFqLo6ebL0aZx16ziNQ0T0KHizQCITlDVaotWWXYeIiMrGgEJUDpzGISKyLE7xEJXg+vXSp3EmTeI0DhFRZeEICtFDmjYFTp8uuTwvDyjHPS2JiOgRMKAQ/YPTOERE8sEpHqrWcnJKn8Z5/nlO4xARWQMDClVLgwdLocTd3Xj57dtSKNm2zbLtIiIiCad4qFrhNA4RkW1gQCHbp9EA+/cDqamAvz/Qvj2gVBoUl3YXBX9/4MYNC7STiIjKjQGFbFtsLDB+PHDt2oNjgYHAwoWYez4K06aV/NQ//gDq1av8JlI5lRE0iah6YUAh2xUbC/TtW2xeRnEtBehT8tM4jSNDpQRNREVZr11EZDW8SJZsk0YjfaEVSRsKCChQcvrgahyZ0gXNouEEkHbK69tXKieiaocBhWzT/v3AtWtYjUGlBpMDnx1nMJEzI0FTT3csOlqqR0TVCqd4yCYpOncCShstwT/LdWquBdCy8htEFfNP0CyREEBKilSvUyeLNYuIrI8BhWxKmcuE8VAFf//Kaww9utRU89YjoiqDUzwke3v3lr7b6zcY/M8kz0MV7OyAp5+u/AZSxZU3QDJoElU7HEEh2TJ5tORhWq00NdCli/kapcMlsebRvr20Wuf6dePXoSgUUnn79pZvGxFZFUdQSHZKGy0B/lmNM216+U62Z49Z2mQgNhYIDgY6dwZefln6MziYq00qQqmUlhIDxf+n636OiWH4I6qGGFBIFi5cKD2YTJsmk2XCXBJrflFRwKZNQO3ahscDA6Xj3AeFqFpSCGH1j3yTZWdnQ61WIysrCx4eHtZuDj0CZ2cgN7fk8oKCErapj48HIiLKfoFffjHfFI9GI42UlLTqRDcdkZzM3/grgtNmRFWeKd/fvAaFrOKRb9rXqRNQsyZw61bJdWrWNO/SVC6JrVxKJd83ItLjFA9ZzK1bpU/jREWZMI2jVALLlpVeZ9ky8/4GziWxREQWw4BSHWg00sWi69ZJf1p4V85nnpFCSa1axsuzs6VQsnmziSeOipKeZOzahc2bzX/tApfEEhFZDK9BqeqseBO2R57GKS9LXbuguwalrCWxvAaFiMgoXoNCkhLu9qtfcVIJKyTy8gAnp5LL69YFLl8260ta7toF3ZLYvn2lMFL0feWS2EfHi2SJqAhO8VRVFr4J29ix0nd0SeHk6lXpZc0eTiyNS2IrB/eWIaKHcIqnqtqzR/qQL8vu3Y80+mCxaRy54W/75lPSSJ/uLxeDH1GVwSkeqtQVJ0JIt7kpq06VxiWx5lHWSJ9CIY309ezJAEhUzXCKp6qqhBUnn30mfV+UFE4SE2Wy2yvZDlP2liGiaoUjKFWVGW/CVm2ncajycW8ZIioBR1CqKjPchK1cN+1jOKFHwb1liKgEDChVWQVWnGzbVnow2bKFwYTMSDfSV9JfOIUCCAoq10gfEVUtnOKp6qKipAsMy1hxwmkcsgruLUNEJWBAqQ5KWXHCYEJWpxvpM7bjcUwMlxgTVVOc4qmGTp0qfRrnk084jUMWFhUl7eK3ezewdq30Z3IywwlRNcYRlGqkrNESrbbsOkSVhnvLEFERDCjVAKdxiIjI1nCKp4pKSip9Gue11ziNQ0RE8sURlCqmrNGS+3CCU+1awPOLAHB+n4iI5IkjKJam0Ug38lu3TvrTTHcTLnNTNSggoIAT8qTdZfv04Z1iiYhIthhQLMnMt5TPzCx/MDFq5EizBSQiIiJzYkCxFN0t5R++Mdr169JxE0KKi4sUSmrUMF5++TIgfokvOZjo3LoljeIQERHJDAOKJZR1S3lAuqV8GaMZutGS+/eNl+sueq1bF+UPHlUhoFTStBkREVkPA4olPMIt5QsLedO+Upl52oyIiOSBAaWiyvqtPT9f2qb7zTeBr78u3zmL3FK+WzcplDg4GK+6f38ZwaS8G17Z8sZYZpw2IyIieeEy44qIjTV+35CFC6Wtud95R9ov3tSpBn9/822q9vTT5q0nN2VNmykU0rRZz5680RwRkQ3iCIqpyvqtvVcv4KOPTAsnCoW01qZzpxKrmDyN8+WX5q0nN48wbUZERPLHgGKKsn5rFwL4/vtyn+5DvCMFE6E1Wr527SNcX3LxonnryU2R6TCz1CMiIlnhFE9pNBrpN/DUVMDfX/q5tN/ay0mB0hOHWS54Le9d/2z17oD+/uatR0REssKAUhJj15l4eT3SKS0STHRatTJvPblp31667qe0wBgUJNUjIiKbwykeY0q6zuT2bZNP9RO6/7OXq/H0MQ1zIBR2EEF1zLt/R2KieevJjVIJDBhQep3+/XmBLBGRjeIIysNKu87EBGWNlmiheLDPq8CDCzrNtey3vO231Q1UNBppiXdp1q8H5s1jSCEiskEcQXlYWatDylDaaAnw4N44Rq/8MOcFncHB5q0nN+X5/8RVPERENosB5WEVCAm/o2GpweTf+L70m/bp+PiY/NolquojKFzFQ0RUpXGK52EmhIRofIqFiC6xPP/jRXC4fFHar36pGdpmioMHzVtPbriKh4ioSmNAqYAyV+OsXffPBZzjpAPr1gFLy5FQMjIevXE6f/9t3npyo1vFc/268VEghUIq5yoeIiKbxCmeh5UQEnKhKnUa53GceTCN8/DmZ9b4bb91a/PWkxulUrq1AFB8LxfdzzExvECWiMhGMaA87KEpHt0yYWfkGq1+H04QUOAMwh4cXLbMcMmw7rf9kjZFUyjMv2dHRIR568lRVBSwaRNQu7bh8cBA6XhUlHXaRUREj4wBpSiNBjh5EgCwBx2hgMAL+MloVd1oiRPyihdev264esQav+136gTUrFl6nZo1bftuxoAUQi5fBnbvlu4NsHs3kJzMcEJEZOMYUHRiY4HgYHz4dgYUEOiMPcWqLMS48q3GAYqvHrH0b/tKpTSSU5ply6rGFIhSKQWtAQOkP6tCn4iIqjkGFEC/c+yv1+piCj40KHoDS1AAewgoMA6flf+cxq4nsfRv+1FRwObNUggqKjBQOs5RBiIikimFELa3EUZ2djbUajWysrLg4eHxaCfTaKTNyq5dw2XUxXOIwx8IxUb0RV9srtg5AwKAq1fl85v8wzc9bN9ePm0jIqJqw5Tvb6uOoHzxxRcIDg6Gk5MT2rRpgyNHjli+EUV2JA3GFVxEAwgoKh5OAKBrV3kFAE6BEBGRjbFaQPn2228xceJEzJw5E8ePH0ezZs0QGRmJDHPuBVIepuw06uZm3npERERklNUCyieffIIRI0Zg2LBhaNKkCZYuXQoXFxd8/fXXlm1Iefce+fRTYPbs8tWtV6/i7SEiIiLrBJT8/HwkJiYiosgeHHZ2doiIiEBCQkKx+nl5ecjOzjZ4mE159yh5801g7Niyp0eUSmD0aPO1j4iIqBqySkD566+/oNFo4Ovra3Dc19cXaWlpxerPmzcParVa/wgKCjJfY0zZo8TREZg4sfTzTZwo1SMiIqIKs4llxlOnTkVWVpb+kZKSYt4XMGWPkvnzgUmTio+kKJXS8fnzzds2IiKiasgqNwusVasWlEol0tPTDY6np6fDz8+vWH2VSgWVSlW5jYqKAnr2LN9y3PnzgffeAxYvBi5dkq45GT2aIydERERmYpWA4ujoiFatWiE+Ph69evUCAGi1WsTHx2Ps2LHWaJJEtxy3PBwdgejoymwNERFRtWWVgAIAEydOxJAhQ9C6dWs89dRTiImJwd9//41hw4ZZq0lEREQkE1YLKC+99BJu3ryJGTNmIC0tDc2bN8eOHTuKXThLRERE1Q+3uiciIiKLsJmt7omIiIiMYUAhIiIi2WFAISIiItlhQCEiIiLZYUAhIiIi2WFAISIiItmx2j4oj0K3MtqsdzUmIiKiSqX73i7PDic2GVDu3r0LAOa9qzERERFZxN27d6FWq0utY5MbtWm1Wty4cQPu7u5QKBSPfL7s7GwEBQUhJSWlym78VtX7WNX7B7CPVUFV7x/APlYVldVHIQTu3r2LgIAA2NmVfpWJTY6g2NnZITAw0Ozn9fDwqLJ/2XSqeh+rev8A9rEqqOr9A9jHqqIy+ljWyIkOL5IlIiIi2WFAISIiItlhQAGgUqkwc+ZMqFQqazel0lT1Plb1/gHsY1VQ1fsHsI9VhRz6aJMXyRIREVHVxhEUIiIikh0GFCIiIpIdBhQiIiKSHQYUIiIikh0GFCIiIpKdah9QvvjiCwQHB8PJyQlt2rTBkSNHrN0ko+bNm4cnn3wS7u7u8PHxQa9evZCUlGRQJzc3F2PGjEHNmjXh5uaGPn36ID093aDO1atX0aNHD7i4uMDHxweTJk1CYWGhQZ09e/agZcuWUKlUqF+/PlauXFnZ3TPqgw8+gEKhQHR0tP6Yrffx+vXrGDRoEGrWrAlnZ2eEhYXh2LFj+nIhBGbMmAF/f384OzsjIiICFy9eNDjH7du3MXDgQHh4eMDT0xPDhw9HTk6OQZ3ffvsN7du3h5OTE4KCgjB//nyL9E+j0WD69OkICQmBs7Mz6tWrhzlz5hjcGMzW+rhv3z7861//QkBAABQKBb777juDckv2Z+PGjWjUqBGcnJwQFhaGbdu2VXofCwoKMHnyZISFhcHV1RUBAQF45ZVXcOPGDZvpY1n/D4t64403oFAoEBMTYzP9A8rXx/Pnz+Pf//431Go1XF1d8eSTT+Lq1av6ctl9vopqbP369cLR0VF8/fXX4uzZs2LEiBHC09NTpKenW7tpxURGRooVK1aIM2fOiJMnT4ru3buLOnXqiJycHH2dN954QwQFBYn4+Hhx7Ngx0bZtW/H000/rywsLC8UTTzwhIiIixIkTJ8S2bdtErVq1xNSpU/V1/vzzT+Hi4iImTpwozp07Jz777DOhVCrFjh07LNrfI0eOiODgYNG0aVMxfvx4/XFb7uPt27dF3bp1xdChQ8Xhw4fFn3/+KXbu3Cn++OMPfZ0PPvhAqNVq8d1334lTp06Jf//73yIkJETcv39fX6dbt26iWbNm4tChQ2L//v2ifv36YsCAAfryrKws4evrKwYOHCjOnDkj1q1bJ5ydncWXX35Zqf0TQoi5c+eKmjVriq1bt4rk5GSxceNG4ebmJhYuXGizfdy2bZv473//K2JjYwUAsWXLFoNyS/XnwIEDQqlUivnz54tz586JadOmCQcHB3H69OlK7WNmZqaIiIgQ3377rfj9999FQkKCeOqpp0SrVq0MziHnPpb1/1AnNjZWNGvWTAQEBIhPP/3UZvpXnj7+8ccfwsvLS0yaNEkcP35c/PHHH+L77783+L6T2+drtQ4oTz31lBgzZoz+Z41GIwICAsS8efOs2KryycjIEADE3r17hRDSh4iDg4PYuHGjvs758+cFAJGQkCCEkP4C29nZibS0NH2dJUuWCA8PD5GXlyeEEOKdd94Rjz/+uMFrvfTSSyIyMrKyu6R39+5dERoaKuLi4kTHjh31AcXW+zh58mTxzDPPlFiu1WqFn5+f+Oijj/THMjMzhUqlEuvWrRNCCHHu3DkBQBw9elRfZ/v27UKhUIjr168LIYRYvHixqFGjhr6/utdu2LChubtUTI8ePcSrr75qcCwqKkoMHDhQCGH7fXz4g9+S/enXr5/o0aOHQXvatGkjXn/99UrtozFHjhwRAMSVK1eEELbVx5L6d+3aNVG7dm1x5swZUbduXYOAYkv9E8J4H1966SUxaNCgEp8jx8/XajvFk5+fj8TEREREROiP2dnZISIiAgkJCVZsWflkZWUBALy8vAAAiYmJKCgoMOhPo0aNUKdOHX1/EhISEBYWBl9fX32dyMhIZGdn4+zZs/o6Rc+hq2PJ92TMmDHo0aNHsXbYeh9/+OEHtG7dGi+++CJ8fHzQokULfPXVV/ry5ORkpKWlGbRNrVajTZs2Bv3z9PRE69at9XUiIiJgZ2eHw4cP6+t06NABjo6OBv1LSkrCnTt3KrWPTz/9NOLj43HhwgUAwKlTp/Drr7/i+eefrzJ9LMqS/ZHDv02drKwsKBQKeHp66ttmy33UarUYPHgwJk2ahMcff7xYeVXo308//YQGDRogMjISPj4+aNOmjcE0kBw/X6ttQPnrr7+g0WgM3mgA8PX1RVpampVaVT5arRbR0dFo164dnnjiCQBAWloaHB0d9R8YOkX7k5aWZrS/urLS6mRnZ+P+/fuV0R0D69evx/HjxzFv3rxiZbbexz///BNLlixBaGgodu7ciVGjRmHcuHFYtWqVQftK+zuZlpYGHx8fg3J7e3t4eXmZ9B5UlilTpqB///5o1KgRHBwc0KJFC0RHR2PgwIEGr2/LfSzKkv0pqY6lP69yc3MxefJkDBgwQH+XW1vv44cffgh7e3uMGzfOaLmt9y8jIwM5OTn44IMP0K1bN/z888/o3bs3oqKisHfvXn3b5Pb5am9SbZKFMWPG4MyZM/j111+t3RSzSklJwfjx4xEXFwcnJydrN8fstFotWrdujffffx8A0KJFC5w5cwZLly7FkCFDrNw689iwYQPWrFmDtWvX4vHHH8fJkycRHR2NgICAKtPH6qygoAD9+vWDEAJLliyxdnPMIjExEQsXLsTx48ehUCis3ZxKodVqAQA9e/bEhAkTAADNmzfHwYMHsXTpUnTs2NGazStRtR1BqVWrFpRKZbErlNPT0+Hn52elVpVt7Nix2Lp1K3bv3o3AwED9cT8/P+Tn5yMzM9OgftH++Pn5Ge2vrqy0Oh4eHnB2djZ3dwwkJiYiIyMDLVu2hL29Pezt7bF3714sWrQI9vb28PX1tek++vv7o0mTJgbHGjdurL+KXte+0v5O+vn5ISMjw6C8sLAQt2/fNuk9qCyTJk3Sj6KEhYVh8ODBmDBhgn5ErCr0sShL9qekOpbqry6cXLlyBXFxcfrRE13bbLWP+/fvR0ZGBurUqaP/3Lly5QreeustBAcH69tlq/0DpO87e3v7Mj9/5Pb5Wm0DiqOjI1q1aoX4+Hj9Ma1Wi/j4eISHh1uxZcYJITB27Fhs2bIFu3btQkhIiEF5q1at4ODgYNCfpKQkXL16Vd+f8PBwnD592uAfmu6DRvcXNzw83OAcujqWeE+6dOmC06dP4+TJk/pH69atMXDgQP1/23If27VrV2xp+IULF1C3bl0AQEhICPz8/Azalp2djcOHDxv0LzMzE4mJifo6u3btglarRZs2bfR19u3bh4KCAn2duLg4NGzYEDVq1Ki0/gHAvXv3YGdn+LGiVCr1v8FVhT4WZcn+WPPfpi6cXLx4Eb/88gtq1qxpUG7LfRw8eDB+++03g8+dgIAATJo0CTt37rT5/gHS992TTz5Z6uePLL9DTL6stgpZv369UKlUYuXKleLcuXNi5MiRwtPT0+AKZbkYNWqUUKvVYs+ePSI1NVX/uHfvnr7OG2+8IerUqSN27doljh07JsLDw0V4eLi+XLdErGvXruLkyZNix44dwtvb2+gSsUmTJonz58+LL774wirLjHWKruIRwrb7eOTIEWFvby/mzp0rLl68KNasWSNcXFzE//73P32dDz74QHh6eorvv/9e/Pbbb6Jnz55Gl6y2aNFCHD58WPz6668iNDTUYLljZmam8PX1FYMHDxZnzpwR69evFy4uLhZZZjxkyBBRu3Zt/TLj2NhYUatWLfHOO+/YbB/v3r0rTpw4IU6cOCEAiE8++UScOHFCv4LFUv05cOCAsLe3Fx9//LE4f/68mDlzptmWqJbWx/z8fPHvf/9bBAYGipMnTxp8/hRdsSLnPpb1//BhD6/ikXv/ytPH2NhY4eDgIJYtWyYuXryoX/67f/9+/Tnk9vlarQOKEEJ89tlnok6dOsLR0VE89dRT4tChQ9ZuklEAjD5WrFihr3P//n0xevRoUaNGDeHi4iJ69+4tUlNTDc5z+fJl8fzzzwtnZ2dRq1Yt8dZbb4mCggKDOrt37xbNmzcXjo6O4rHHHjN4DUt7OKDYeh9//PFH8cQTTwiVSiUaNWokli1bZlCu1WrF9OnTha+vr1CpVKJLly4iKSnJoM6tW7fEgAEDhJubm/Dw8BDDhg0Td+/eNahz6tQp8cwzzwiVSiVq164tPvjgg0rvmxBCZGdni/Hjx4s6deoIJycn8dhjj4n//ve/Bl9kttbH3bt3G/23N2TIEIv3Z8OGDaJBgwbC0dFRPP744+Knn36q9D4mJyeX+Pmze/dum+hjWf8PH2YsoMi5f+Xt4/Lly0X9+vWFk5OTaNasmfjuu+8MziG3z1eFEEW2eCQiIiKSgWp7DQoRERHJFwMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyQ4DChEREckOAwoRERHJDgMKERERyc7/A0NFT+xxpVpmAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["future_predictions=[[2],[4],[10]]\n","predicted_values=lin_reg.predict(future_predictions)\n","print(predicted_values)\n","\n","plt.scatter(future_predictions,lin_reg.predict(future_predictions),color='r',label=\"Future Predictions\")\n","plt.plot(X_train,lin_reg.predict(X_train),color='b')\n","plt.title(\"Future Predictions with respect to regressor Line\")\n","plt.legend()\n","plt.show()"],"metadata":{"id":"XU88dhUydVyr","colab":{"base_uri":"https://localhost:8080/","height":0},"executionInfo":{"status":"ok","timestamp":1740468477040,"user_tz":-330,"elapsed":158,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}},"outputId":"754db476-31d6-473c-cd97-ba63baca03be"},"execution_count":27,"outputs":[{"output_type":"stream","name":"stdout","text":["[[10.05263833]\n"," [10.11893137]\n"," [10.31781051]]\n"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 640x480 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjAAAAGzCAYAAAAxPS2EAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXOtJREFUeJzt3XlYVNUbB/Av67DIIrIrKuIuLolKhKApikuWaZppueZuZub6K7fKNG11Tyu1Mk1zqUzNfUfMBVckVBQ3wI0BZIfz+2Pi4mUAQQfuzPD9PM88et975s57D8PMyzl3MRFCCBAREREZEFOlEyAiIiIqLRYwREREZHBYwBAREZHBYQFDREREBocFDBERERkcFjBERERkcFjAEBERkcFhAUNEREQGhwUMERERGRwWMEQA2rZti7Zt20rL165dg4mJCVatWqWz16hZsyYGDhyos+3pAxMTE8ycObPEbceMGVO2CREZkLL4nKlIWMDosVWrVsHExKTQx5QpU0q1rYsXL2LmzJm4du1a2ST7DPbv3y/bNwsLC9SqVQv9+/fH1atXlU6vVI4ePYqZM2ciMTFR6VQUUdH3/2ktWbKkxF9iqampmDlzJvbv31+mOdGzyfv8PnHihNKpGC1zpROgJ/voo4/g7e0ti/n6+pZqGxcvXsSsWbPQtm1b1KxZU4fZ6c7YsWPRsmVLZGVl4dSpU1i+fDn++usvnDt3Dp6enuWaS40aNZCWlgYLC4tSPe/o0aOYNWsWBg4cCEdHR9m6qKgomJoa198MaWlpMDfP/xgpbv+paEuWLIGzs3OJRuhSU1Mxa9YsAJCNGpLhedrPGdJgAWMAOnfujBYtWiidRqEePXoEW1tbnWwrKCgIr732GgBg0KBBqFu3LsaOHYvVq1dj6tSpZf76jzMxMYGVlZVOt6lSqXS6PX2g6z4qjfT0dFhaWhpdUahPyrOPc3NzkZmZqeh7qrSe9fOnLD5nKhL+5hu4oo5BePx4i1WrVqFXr14AgBdffFGaqskbgi7JNvK2Y2JiggMHDmDUqFFwdXVFtWrVpPXbt29HUFAQbG1tYWdnh65du+LChQtPvW/t2rUDAMTExAAAZs6cCRMTE1y8eBF9+/ZF5cqV0bp1a6n9zz//DD8/P1hbW8PJyQl9+vTBjRs3tLa7fPly+Pj4wNraGq1atcKhQ4e02hQ1N33p0iX07t0bLi4usLa2Rr169fDBBx9I+U2cOBEA4O3tLfVz3rRdYcfAXL16Fb169YKTkxNsbGzw/PPP46+//pK1yZtiW79+PWbPno1q1arBysoK7du3x+XLl2Vto6Oj0bNnT7i7u8PKygrVqlVDnz59oFari+znBQsWwMzMTDbt88UXX8DExATjx4+XYjk5ObCzs8PkyZOl2OPvnSftf54tW7bA19cXKpUKjRo1wo4dO4rMrWAfrFu3Dh9++CGqVq0KGxsbJCUlAQDCw8PRqVMnODg4wMbGBm3atMGRI0dk20hOTsa4ceNQs2ZNqFQquLq6okOHDjh16pTUpm3btvD19cXJkyfxwgsvwNraGt7e3li2bJlWThkZGZgxYwZq164NlUoFLy8vTJo0CRkZGVptf/75Z7Rq1Qo2NjaoXLkygoODsXPnTgCa98WFCxdw4MABqc+KGlm5du0aXFxcAACzZs2S2j/++7t3717p99DR0RGvvPIKIiMjy6WP87bTokULWFlZwcfHB99++630u/u4vGOi1qxZg0aNGkGlUknvhVu3bmHw4MFwc3OT3ic//PCD1mstXLgQjRo1kvq1RYsW+OWXX6T1JfmZA8CGDRukzw5nZ2e8+eabuHXrlqzNwIEDUalSJVy5cgVdunSBnZ0d+vXr98R+LU5hnzN5r3Pr1i10794dlSpVgouLCyZMmICcnBzZ83Nzc/H111+jUaNGsLKygpubG4YPH46HDx8+U16GgiMwBkCtVuPevXuymLOzc4mfHxwcjLFjx2LBggX43//+hwYNGgCA9G9pjRo1Ci4uLpg+fToePXoEAPjpp58wYMAAhIaG4rPPPkNqaiqWLl2K1q1b4/Tp0081bXXlyhUAQJUqVWTxXr16oU6dOvj0008hhAAAzJ49G9OmTUPv3r3x9ttv4+7du1i4cCGCg4Nx+vRpaTrj+++/x/Dhw/HCCy9g3LhxuHr1Kl5++WU4OTnBy8ur2HzOnj2LoKAgWFhYYNiwYahZsyauXLmCP//8E7Nnz0aPHj3w77//Yu3atfjqq6+kn1HeF05B8fHxeOGFF5CamoqxY8eiSpUqWL16NV5++WX89ttvePXVV2Xt586dC1NTU0yYMAFqtRrz5s1Dv379EB4eDgDIzMxEaGgoMjIy8M4778Dd3R23bt3C1q1bkZiYCAcHh0LzCAoKQm5uLg4fPoyXXnoJAHDo0CGYmprKirvTp08jJSUFwcHBhW6nJPt/+PBhbNq0CaNGjYKdnR0WLFiAnj17IjY2VuvnXJiPP/4YlpaWmDBhAjIyMmBpaYm9e/eic+fO8PPzw4wZM2BqaoqVK1eiXbt2OHToEFq1agUAGDFiBH777TeMGTMGDRs2xP3793H48GFERkaiefPm0ms8fPgQXbp0Qe/evfHGG29g/fr1GDlyJCwtLTF48GAAmi+Ol19+GYcPH8awYcPQoEEDnDt3Dl999RX+/fdfbNmyRdrerFmzMHPmTLzwwgv46KOPYGlpifDwcOzduxcdO3bE119/jXfeeQeVKlWSimE3N7dC99/FxQVLly7FyJEj8eqrr6JHjx4AgCZNmgAAdu/ejc6dO6NWrVqYOXMm0tLSsHDhQgQGBuLUqVMl+j18lj4+ffo0OnXqBA8PD8yaNQs5OTn46KOPivwd2Lt3L9avX48xY8bA2dkZNWvWRHx8PJ5//nmpwHFxccH27dsxZMgQJCUlYdy4cQCAFStWYOzYsXjttdfw7rvvIj09HWfPnkV4eDj69u1b4p/5qlWrMGjQILRs2RJz5sxBfHw8vvnmGxw5ckT22QEA2dnZCA0NRevWrfH555/Dxsbmif35NHJychAaGgp/f398/vnn2L17N7744gv4+Phg5MiRUrvhw4dL+Y8dOxYxMTFYtGgRTp8+jSNHjhj/1JQgvbVy5UoBoNBHHgBixowZWs+tUaOGGDBggLS8YcMGAUDs27dPq21Jt5GXT+vWrUV2drYUT05OFo6OjmLo0KGy58fFxQkHBweteEH79u0TAMQPP/wg7t69K27fvi3++usvUbNmTWFiYiL++ecfIYQQM2bMEADEG2+8IXv+tWvXhJmZmZg9e7Ysfu7cOWFubi7FMzMzhaurq2jWrJnIyMiQ2i1fvlwAEG3atJFiMTExAoBYuXKlFAsODhZ2dnbi+vXrstfJzc2V/j9//nwBQMTExGjtZ8H+HDdunAAgDh06JMWSk5OFt7e3qFmzpsjJyZH1T4MGDWR5f/PNNwKAOHfunBBCiNOnTwsAYsOGDVqvXZycnBxhb28vJk2aJO1PlSpVRK9evYSZmZlITk4WQgjx5ZdfClNTU/Hw4UPpuQXfO8XtPwBhaWkpLl++LMXOnDkjAIiFCxcWm2NeH9SqVUukpqZK8dzcXFGnTh0RGhoq+zmkpqYKb29v0aFDBynm4OAgRo8eXezrtGnTRgAQX3zxhRTLyMgQzZo1E66uriIzM1MIIcRPP/0kTE1NZT87IYRYtmyZACCOHDkihBAiOjpamJqaildffVX6eT6ee55GjRrJ3n/FuXv3bpG/s3l53r9/X4qdOXNGmJqaiv79+xe7XV30cbdu3YSNjY24deuWFIuOjhbm5uai4NcNAGFqaiouXLggiw8ZMkR4eHiIe/fuyeJ9+vQRDg4OUm6vvPKKaNSoUbH79KSfed5ngq+vr0hLS5PiW7duFQDE9OnTpdiAAQMEADFlypRiXzNP3udl3udXYQr7nMl7nY8++kjW9rnnnhN+fn7S8qFDhwQAsWbNGlm7HTt2FBo3RpxCMgCLFy/Grl27ZA8lDR06FGZmZtLyrl27kJiYiDfeeAP37t2THmZmZvD398e+fftKtN3BgwfDxcUFnp6e6Nq1Kx49eoTVq1drHf8zYsQI2fKmTZuQm5uL3r17y17f3d0dderUkV7/xIkTSEhIwIgRI2BpaSk9f+DAgUWOTuS5e/cuDh48iMGDB6N69eqydQWHxktq27ZtaNWqlWwarFKlShg2bBiuXbuGixcvytoPGjRIlndQUBAASGdq5e3D33//jdTU1BLnYWpqihdeeAEHDx4EAERGRuL+/fuYMmUKhBAICwsDoBmV8fX1faaDc0NCQuDj4yMtN2nSBPb29iU+22zAgAGwtraWliMiIhAdHY2+ffvi/v370s/+0aNHaN++PQ4ePIjc3FwAgKOjI8LDw3H79u1iX8Pc3BzDhw+Xli0tLTF8+HAkJCTg5MmTADRTDg0aNED9+vVl77m8ac+899yWLVuQm5uL6dOnax1H8rTvm6LcuXMHERERGDhwIJycnKR4kyZN0KFDB2zbtq1E23naPs7JycHu3bvRvXt32UH3tWvXRufOnQt9rTZt2qBhw4bSshACGzduRLdu3SCEkPVtaGgo1Gq1NP3j6OiImzdv4p9//ilyX570M8/7TBg1apTsWJSuXbuifv36WtO5AGQjIGWp4OdcUFCQ7Pdkw4YNcHBwQIcOHWT95Ofnh0qVKpX4c9eQcQrJALRq1UqvDuIteEZUdHQ0gPxjVgqyt7cv0XanT5+OoKAgmJmZwdnZGQ0aNJCd4VLc6wshUKdOnUK3mzeMev36dQDQapd32nZx8j44Snv2V3GuX78Of39/rXje1N7169dlr1ewcKpcuTIASPPd3t7eGD9+PL788kusWbMGQUFBePnll/Hmm28+sUALCgqSphwOHToEDw8PNG/eHE2bNsWhQ4fQoUMHHD58GL17936mfS64D3n7UdI5+6LeewMGDCjyOWq1GpUrV8a8efMwYMAAeHl5wc/PD126dEH//v21fvaenp5aB2bWrVsXgOaYheeffx7R0dGIjIwscmokISEBgGYa1NTUVPYlXVby3t/16tXTWtegQQP8/fffJTro9Gn7OD09HWlpaahdu7bW+sJihb3W3bt3kZiYiOXLl2P58uWFPievbydPnozdu3ejVatWqF27Njp27Ii+ffsiMDBQavukn3lxfVa/fn0cPnxYFjM3N5cd91dWrKystN5bBX9PoqOjoVar4erqWug28vrJmLGAMVIFD/bS5TYe/+sMgPQX7k8//QR3d3et9oUVIYVp3LgxQkJCntiusNc3MTHB9u3bZSNDeSpVqlSi19d3he0bAOk4IEBz8O3AgQPx+++/Y+fOnRg7dizmzJmDY8eOFfvB27p1a2RlZSEsLAyHDh2SRneCgoJw6NAhXLp0CXfv3pXiZbkPxSnqvTd//nw0a9as0Ofk/fx79+6NoKAgbN68GTt37sT8+fPx2WefYdOmTUWOEBQlNzcXjRs3xpdfflno+icdT6XPnraP09PTdfZab775ZpEFU97xPg0aNEBUVBS2bt2KHTt2YOPGjViyZAmmT58unWauy585oDmTsDzOyCrq9+Rxubm5cHV1xZo1awpdX1RxbUxYwBi4ypUra100LDMzE3fu3JHFihuuLuk2ipI3JeDq6lqiAkTXfHx8IISAt7e39JdyYWrUqAFA85fL46NFWVlZiImJQdOmTYt8bt5fbOfPny82l9JMC9SoUQNRUVFa8UuXLsnyLa3GjRujcePG+PDDD3H06FEEBgZi2bJl+OSTT4p8TqtWrWBpaYlDhw7h0KFD0tlEwcHBWLFiBfbs2SMtF0fX0yJPkvfes7e3L9F7z8PDA6NGjcKoUaOQkJCA5s2bY/bs2bIvs9u3b2uNVPz7778AIB0E6+PjgzNnzqB9+/bF7rOPjw9yc3Nx8eLFIr/8gdL1W1Ft894vRb2nnJ2dn+qU35L2saurK6ysrLTOjANQaKwwLi4usLOzQ05OTol+nra2tnj99dfx+uuvIzMzEz169MDs2bMxdepUaUqouJ/5431WcAQ5KirqqX8Hy4OPjw92796NwMBArUKwouAxMAbOx8dHOnYhz/Lly7VGT/I+uAq7QmpJt1GU0NBQ2Nvb49NPP0VWVpbW+rt375ZoO0+rR48eMDMzw6xZs7T+khdC4P79+wCAFi1awMXFBcuWLUNmZqbUZtWqVU+8cqyLiwuCg4Pxww8/IDY2Vus18hTXzwV16dIFx48fl44xATTXlVi+fDlq1qxZ6mmHpKQkZGdny2KNGzeGqalpoaf2Ps7KygotW7bE2rVrERsbKxuBSUtLw4IFC+Dj4wMPD49it1Oa/dcFPz8/+Pj44PPPP0dKSorW+rz3Xk5Ojtap5K6urvD09NTqm+zsbHz77bfScmZmJr799lu4uLjAz88PgOYv+1u3bmHFihVar5mWliadnde9e3eYmprio48+kkYX8hR835S0z/LOfCnY3sPDA82aNcPq1atl686fP4+dO3eiS5cuJdp+QSXtYzMzM4SEhGDLli2yY04uX76M7du3l+i1zMzM0LNnT2zcuLHQPxYe/yzJ+73OY2lpiYYNG0IIgaysrBL9zFu0aAFXV1csW7ZM9j7Yvn07IiMj0bVr1xLlrYTevXsjJycHH3/8sda67OzsCnE1bI7AGLi3334bI0aMQM+ePdGhQwecOXMGf//9t9Zp1s2aNYOZmRk+++wzqNVqqFQqtGvXDq6uriXeRlHs7e2xdOlSvPXWW2jevDn69OkDFxcXxMbG4q+//kJgYCAWLVpUFrsPQFOAffLJJ5g6dSquXbuG7t27w87ODjExMdi8eTOGDRuGCRMmwMLCAp988gmGDx+Odu3a4fXXX0dMTAxWrlz5xGNgAM31Ulq3bo3mzZtj2LBh8Pb2xrVr1/DXX38hIiICAKQvuA8++AB9+vSBhYUFunXrVuhfvlOmTMHatWvRuXNnjB07Fk5OTli9ejViYmKwcePGUg9V7927F2PGjEGvXr1Qt25dZGdn46effpK+FJ4kKCgIc+fOhYODAxo3bgxA84Ffr149REVFlegqsaXZf10wNTXFd999h86dO6NRo0YYNGgQqlatilu3bmHfvn2wt7fHn3/+ieTkZFSrVg2vvfYamjZtikqVKmH37t34559/8MUXX8i26enpic8++wzXrl1D3bp18euvvyIiIgLLly+Xjqd66623sH79eowYMQL79u1DYGAgcnJycOnSJaxfvx5///03WrRogdq1a+ODDz7Axx9/jKCgIPTo0QMqlQr//PMPPD09MWfOHKnfli5dik8++QS1a9eGq6trkceUWVtbo2HDhvj1119Rt25dODk5wdfXF76+vpg/fz46d+6MgIAADBkyRDqN2sHBocT3rHraPgY01wLauXMnAgMDMXLkSOTk5GDRokXw9fWVfkeeZO7cudi3bx/8/f0xdOhQNGzYEA8ePMCpU6ewe/duPHjwAADQsWNHuLu7IzAwEG5uboiMjMSiRYvQtWtX2NnZITEx8Yk/cwsLC3z22WcYNGgQ2rRpgzfeeEM6jbpmzZp47733nqrPHvfDDz8Ueq2jd99995m226ZNGwwfPhxz5sxBREQEOnbsCAsLC0RHR2PDhg345ptvpAuDGi1lTn6ikijJaXg5OTli8uTJwtnZWdjY2IjQ0FBx+fJlrVN2hRBixYoVolatWsLMzEx2SnVJt/GkfPbt2ydCQ0OFg4ODsLKyEj4+PmLgwIHixIkTxe5n3umbTzr9N+806rt37xa6fuPGjaJ169bC1tZW2Nraivr164vRo0eLqKgoWbslS5YIb29voVKpRIsWLcTBgwdFmzZtnngatRBCnD9/Xrz66qvC0dFRWFlZiXr16olp06bJ2nz88ceiatWqwtTUVHZKcWE/kytXrojXXntN2l6rVq3E1q1bS9Q/BXO8evWqGDx4sPDx8RFWVlbCyclJvPjii2L37t3F9Gq+v/76SwAQnTt3lsXffvttAUB8//33Ws9BIafzFrX/AAo9pbWwfinoSe+R06dPix49eogqVaoIlUolatSoIXr37i327NkjhNCcCj1x4kTRtGlTYWdnJ2xtbUXTpk3FkiVLZNtp06aNaNSokThx4oQICAgQVlZWokaNGmLRokVar5mZmSk+++wz0ahRI6FSqUTlypWFn5+fmDVrllCr1bK2P/zwg3juueekdm3atBG7du2S1sfFxYmuXbsKOzs7rVP6C3P06FHh5+cnLC0ttX4Gu3fvFoGBgcLa2lrY29uLbt26iYsXLxa7PSGevY/z7NmzRzz33HPC0tJS+Pj4iO+++068//77wsrKStauqPeDEELEx8eL0aNHCy8vL2FhYSHc3d1F+/btxfLly6U23377rQgODpby8fHxERMnTpT6vqQ/cyGE+PXXX6Wfj5OTk+jXr5+4efOmrM2AAQOEra3tE/sxT3GXwQAgbty4UeRp1IW9Tt7nX0HLly8Xfn5+wtraWtjZ2YnGjRuLSZMmidu3b5c4V0NlIkQJj54jIjJybdu2xb179554rBOVTvfu3XHhwgXpjCYiXeAxMEREpDNpaWmy5ejoaGzbto03niSd4zEwRESkM7Vq1cLAgQNRq1YtXL9+HUuXLoWlpSUmTZqkdGpkZFjAEBGRznTq1Alr165FXFwcVCoVAgIC8OmnnxZ5oUmip8VjYIiIiMjg8BgYIiIiMjgsYIiIiMjgGO0xMLm5ubh9+zbs7OzK/fLmRERE9HSEEEhOToanp2exF/Q02gLm9u3bBn1DNSIioorsxo0bxd6E1mgLGDs7OwCaDrC3t1c4GyIiIiqJpKQkeHl5Sd/jRTHaAiZv2sje3p4FDBERkYF50uEfPIiXiIiIDA4LGCIiIjI4LGCIiIjI4BjtMTAlIYRAdnY2cnJylE6F6InMzMxgbm7OywIQEaECFzCZmZm4c+cOUlNTlU6FqMRsbGzg4eEBS0tLpVMhIlJUhSxgcnNzERMTAzMzM3h6esLS0pJ/1ZJeE0IgMzMTd+/eRUxMDOrUqVPsBZ6IiIxdhSxgMjMzkZubCy8vL9jY2CidDlGJWFtbw8LCAtevX0dmZiasrKyUTomISDEV+k84/gVLhobvWSIiDX4aEhERkcFhAUNEREQGhwUMGS0TExNs2bIFAHDt2jWYmJggIiLiqbeni20QEZFusIAxIAMHDoSJiYnW4/LlyyV6ftu2bTFu3LiyTfIJHs/bwcEBgYGB2Lt3b5m/rpeXF+7cuQNfX98StR84cCC6d+/+TNsgIqKywwLmWeTkAPv3A2vXav4thwviderUCXfu3JE9vL29y/x1H5eZmflMz1+5ciXu3LmDI0eOwNnZGS+99BKuXr1aaNusrKxneq08ZmZmcHd3h7n50594p4ttEBEZg2++AWrUANRq5XJgAfO0Nm0CatYEXnwR6NtX82/Nmpp4GVKpVHB3d5c9zMzMCh0xGDduHNq2bQtAM6Jw4MABfPPNN9IIyLVr17Bq1So4OjrKnrdlyxbZdXFmzpyJZs2a4bvvvoO3t7d0+m5iYiLefvttuLi4wN7eHu3atcOZM2eeuA+Ojo5wd3eHr68vli5dirS0NOzatQuAZoRm6dKlePnll2Fra4vZs2cDAH7//Xc0b94cVlZWqFWrFmbNmoXs7Gxpm9HR0QgODoaVlRUaNmwobS9PYdM/Fy5cwEsvvQR7e3vY2dkhKCgIV65cwcyZM7F69Wr8/vvvUl/t37+/0G0cOHAArVq1gkqlgoeHB6ZMmSLLq23bthg7diwmTZoEJycnuLu7Y+bMmdJ6IQRmzpyJ6tWrQ6VSwdPTE2PHjn1iHxIRKSErC7CyAsaNA2JjgYULlcuFf0o+jU2bgNdeA4SQx2/d0sR/+w3o0UOZ3IrwzTff4N9//4Wvry8++ugjAICLi0uJn3/58mVs3LgRmzZtgpmZGQCgV69esLa2xvbt2+Hg4IBvv/0W7du3x7///gsnJ6cSbdfa2hqAfFRn5syZmDt3Lr7++muYm5vj0KFD6N+/PxYsWCAVGcOGDQMAzJgxA7m5uejRowfc3NwQHh4OtVr9xKmyW7duITg4GG3btsXevXthb2+PI0eOIDs7GxMmTEBkZCSSkpKwcuVKAICTkxNu376ttY0uXbpg4MCB+PHHH3Hp0iUMHToUVlZWsiJl9erVGD9+PMLDwxEWFoaBAwciMDAQHTp0wMaNG/HVV19h3bp1aNSoEeLi4kpUBBIRlbezZ4GmTeWxSZOUyQVgAVN6OTnAu+9qFy+AJmZioilNX3kF+O+LXpe2bt2KSpUqScudO3fGhg0bnvg8BwcHWFpawsbGBu7u7qV+3czMTPz4449S0XP48GEcP34cCQkJUKlUAIDPP/8cW7ZswW+//SYVGMVJTU3Fhx9+CDMzM7Rp00aK9+3bF4MGDZKWBw8ejClTpmDAgAEAgFq1auHjjz/GpEmTMGPGDOzevRuXLl3C33//DU9PTwDAp59+is6dOxf52osXL4aDgwPWrVsHCwsLAEDdunWl9dbW1sjIyCi2r5YsWQIvLy8sWrQIJiYmqF+/Pm7fvo3Jkydj+vTp0jVbmjRpghkzZgAA6tSpg0WLFmHPnj3o0KEDYmNj4e7ujpCQEFhYWKB69epo1arVE/uOiKg8ffAB8Omn+ctt2wL79imWDgAWMKV36BBw82bR64UAbtzQtPtv+kaXXnzxRSxdulRatrW11flrFKZGjRqyEZszZ84gJSUFVapUkbVLS0vDlStXit3WG2+8ATMzM6SlpcHFxQXff/89mjRpIq1v0aKFrP2ZM2dw5MgRaToJAHJycpCeno7U1FRERkbCy8tLKl4AICAgoNgcIiIiEBQUJBUvTyMyMhIBAQGy6bbAwECkpKTg5s2bqF69OgDI9g0APDw8kJCQAEAzivX111+jVq1a6NSpE7p06YJu3brxOBsi0guZmcB/f6NKfvsN6NlTmXwex0/J0rpzR7ftSsnW1ha1a9fWipuamkIUGBUqyQGwJX1ewUIpJSUFHh4e2L9/v1bbgsfUFPTVV18hJCQEDg4OhU5jFfZas2bNQo9CpuWe9nL6eVNX5aFgkWRiYoLc3FwAmjOboqKisHv3buzatQujRo3C/PnzceDAgWcqroiIntWJE0DLlvLYvXtAgb9bFcMCprQ8PHTbTkdcXFxw/vx5WSwiIkL2JWhpaYmcAmdKubi4IDk5GY8ePZIKh5Jc56R58+aIi4uDubk5atasWapc3d3dCy3CinutqKioIp/ToEED3LhxA3fu3IHHf/1+7NixYrfZpEkTrF69GllZWYUWCoX1VWGvu3HjRgghpFGYI0eOwM7ODtWqVSvJrgHQFFPdunVDt27dMHr0aNSvXx/nzp1D8+bNS7wNIiJdev994Msv85c7dwa2bVMun8LwLKTSCgoCqlXTHOtSGBMTwMtL064ctWvXDidOnMCPP/6I6OhozJgxQ6ugqVmzJsLDw3Ht2jXcu3cPubm58Pf3h42NDf73v//hypUr+OWXX7Bq1aonvl5ISAgCAgLQvXt37Ny5E9euXcPRo0fxwQcf4MSJEzrdt+nTp+PHH3/ErFmzcOHCBURGRmLdunX48MMPpVzq1q2LAQMG4MyZMzh06BA++OCDYrc5ZswYJCUloU+fPjhx4gSio6Px008/ISoqCoCmr86ePYuoqCjcu3ev0FGpUaNG4caNG3jnnXdw6dIl/P7775gxYwbGjx9f4nsWrVq1Ct9//z3Onz+Pq1ev4ueff4a1tTVq1KhRyl4iInp26emar7HHi5c//9S/4gVgAVN6ZmaaE+AB7SImb/nrr8vkAN7ihIaGYtq0aZg0aRJatmyJ5ORk9O/fX9ZmwoQJMDMzQ8OGDeHi4oLY2Fg4OTnh559/xrZt29C4cWOsXbtWdgZNUUxMTLBt2zYEBwdj0KBBqFu3Lvr06YPr16/Dzc1N5/u2detW7Ny5Ey1btsTzzz+Pr776SvqSNzU1xebNm5GWloZWrVrh7bfflh0vU5gqVapg7969SElJQZs2beDn54cVK1ZIozFDhw5FvXr10KJFC7i4uODIkSNa26hatSq2bduG48ePo2nTphgxYgSGDBkiFVYl4ejoiBUrViAwMBBNmjTB7t278eeff2odW0REVNaOHQMKzq4/eAC89JIy+TyJiSh4AISRSEpKgoODA9RqNezt7WXr0tPTERMTI7umSalt2qQ5G+nxA3q9vDTFi56dQk3GQyfvXSKiAkaNAh47PwSvvQaU4ATXMlHc9/fjeAzM0+rRQ3Oq9KFDmgN2PTw000blPPJCRET0tFJTgYIns/79N9CxozL5lAYLmGdhZlYmp0oTERGVtYMHgccuwQVAc2uAYgY99AqPgSEiIqpgBg2SFy9vvqm5jJmhFC8AR2CIiIgqjJQUwM5OHtu7V3M7P0NToUdgjPT4ZTJifM8S0dPavVu7eElJMcziBaigBUzeqbKpqakKZ0JUOnnvWV6ll4hKo08foEOH/OWhQzVTRuV0N5oyUSGnkMzMzODo6Cjdj8bGxkZ2PxsifSOEQGpqKhISEuDo6CjdEZyIqDhqNVDw7i6HDwOBgYqko1MVsoABIN1lOK+IITIEjo6OT3U3cSKqeLZvB7p0kcdSU7UvVmeoKmwBY2JiAg8PD7i6upbopodESrOwsODICxGVyCuvAH/8kb/87rua66wakwpbwOQxMzPjlwIRERmFBw+07xZ9/Lj2XaWNQakP4j148CC6desGT09PmJiYYMuWLbL1QghMnz4dHh4esLa2RkhICKKjo2VtHjx4gH79+sHe3h6Ojo4YMmQIUlJSZG3Onj2LoKAgWFlZwcvLC/PmzSv93hEREVUQW7ZoFy/p6cZZvABPUcA8evQITZs2xeLFiwtdP2/ePCxYsADLli1DeHg4bG1tERoaivT0dKlNv379cOHCBezatQtbt27FwYMHMWzYMGl9UlISOnbsiBo1auDkyZOYP38+Zs6cieXLlz/FLhIRERm3Dh2AV1/NX548WXOWkUqlXE5lTjwDAGLz5s3Scm5urnB3dxfz58+XYomJiUKlUom1a9cKIYS4ePGiACD++ecfqc327duFiYmJuHXrlhBCiCVLlojKlSuLjIwMqc3kyZNFvXr1SpybWq0WAIRarX7a3SMiItJrCQlCaEqV/MepU0pn9WxK+v2t0+vAxMTEIC4uDiEhIVLMwcEB/v7+CAsLAwCEhYXB0dERLVq0kNqEhITA1NQU4eHhUpvg4GBYWlpKbUJDQxEVFYWHDx8W+toZGRlISkqSPYiIiIzV+vWAq2v+srk5kJkJPPeccjmVJ50WMHFxcQAANzc3WdzNzU1aFxcXB9fHexyAubk5nJycZG0K28bjr1HQnDlz4ODgID28vLyefYeIiIj0jBCa67i8/np+bMYMICsLqEjXuDSaK/FOnToVarVaety4cUPplIiIiHTqzh3A1BQ4ejQ/du4cMHOmYikpRqcFTN4FtuLj42Xx+Ph4aZ27u7vWxeOys7Px4MEDWZvCtvH4axSkUqlgb28vexARERmLn34CPD3zl+3sNKMuvr7K5aQknRYw3t7ecHd3x549e6RYUlISwsPDERAQAAAICAhAYmIiTp48KbXZu3cvcnNz4e/vL7U5ePCg7AJzu3btQr169VC5cmVdpkxERKTXhACaNwf698+PzZkDJCVpjnupqEpdwKSkpCAiIgIREREANAfuRkREIDY2FiYmJhg3bhw++eQT/PHHHzh37hz69+8PT09PdO/eHQDQoEEDdOrUCUOHDsXx48dx5MgRjBkzBn369IHnf6Vl3759YWlpiSFDhuDChQv49ddf8c0332D8+PE623EiIiJ9d/OmZsro9On82KVLwJQpyuWkN0p7etO+ffsEAK3HgAEDhBCaU6mnTZsm3NzchEqlEu3btxdRUVGybdy/f1+88cYbolKlSsLe3l4MGjRIJCcny9qcOXNGtG7dWqhUKlG1alUxd+7cUuXJ06iJiMiQrVghPz3a3V2I7Gylsyp7Jf3+NhFCCAXrpzKTlJQEBwcHqNVqHg9DREQGQwigQQMgKio/9tVXwLhxiqVUrkr6/V2BZ8+IiIj0y7VrgLe3PHb5MuDjo0g6es1oTqMmIiIyZIsXy4uXWrWAnBwWL0XhCAwREZGCcnOBmjWBxy9ftmQJMHKkYikZBBYwRERECrl8GahTRx67dg2oUUORdAwKp5CIiIgU8MUX8uKlUSPNaAyLl5LhCAwREVE5yskB3NyA+/fzY99/DwwerFxOhogFDBERUTmJjAQaNpTHbt4EqlZVJh9DxikkIiKicjB7trx4adVKM2XE4uXpcASGiIioDGVnAw4OQGpqfuznn4F+/ZTLyRiwgCEiIiojZ88CTZvKY3FxmmNg6NlwComIiKgMTJsmL17attXcJoDFi25wBIaIiEiHMjMBlUoe27ABeO01ZfIxVixgiIiIdOTUKcDPTx67exdwdlYmH2PGKSQiIiIdmDhRXrx06qSZMmLxUjY4AkNERPQM0tMBa2t57PffgZdfViafioIFDBER0VM6dgwICJDHHjwAKldWJp+KhFNIRERET2HMGHnx0qOHZsqIxUv54AgMERFRKaSmAra28tiOHUBoqDL5VFQsYIiIiEro0CEgOFgeU6sBe3tl8qnIOIVERERUAkOGyIuXN9/UTBmxeFEGR2CIiIiKkZIC2NnJY3v2AO3aKZMPaXAEhoiIqAh792oXL8nJLF70AQsYIiKiQvTtC7Rvn7/89tuaKaNKlZTLifJxComIiOgxajXg6CiPHToEtG6tSDpUBI7AEBER/WfHDu3iJTWVxYs+YgFDREQEoHt3oHPn/OV33tFMGRW8TQDpB04hERFRhfbwIeDkJI+FhwOtWimTD5UMR2CIiKjC+v137eIlPZ3FiyFgAUNERBVSaKhm2ijPpEmaKSOVSrGUqBQ4hURERBXK3buAq6s8duoU8NxzyuRDT4cjMEREVGFs2CAvXkxNgYwMFi+GiAUMEREZPSE09zHq3Ts/Nm0akJMDWFoqlxc9PU4hERGRUYuLAzw85LFz5wBfX2XyId3gCAwRERmtn3+WFy+VKgFZWSxejAELGCIiMjpCAH5+wFtv5cc+/VRzI0Zzzj0YBf4YiYjIqNy6BVSrJo9FRgL16yuTD5UNjsAQEZHR+P57efHi6gpkZ7N4MUYsYIiIyOAJATRoALz9dn7siy+A+HjAzEy5vKjscAqJiIgM2vXrQM2a8tjly4CPjyLpUDnhCAwRERmsJUvkxUvNmppru7B4MX4cgSEiIoOTmwvUqqUZfcmzeDEwapRyOVH5YgFDREQG5coVoHZteezaNaBGDUXSIYVwComIiAzGl1/Ki5eGDTWjMSxeKh6OwBARkd7LyQE8PYGEhPzYd98BQ4YolxMpiwUMERHptUuXNKdIP+7mTaBqVWXyIf3AKSQiItJbc+bIi5cWLTRTRixeiCMwRESkd7KzAQcHIDU1P/bTT8CbbyqXE+kXFjBERKRXzp0DmjSRx+7cAdzdlcmH9BOnkIiISG/MmCEvXoKDNVNGLF6oII7AEBGR4jIzASsrzT2N8qxfD/TqpVxOpN9YwBARkaJOnwaaN5fH7t4FnJ2VyYcMA6eQiIhIMZMmyYuXjh01ozAsXuhJdF7A5OTkYNq0afD29oa1tTV8fHzw8ccfQzw2LiiEwPTp0+Hh4QFra2uEhIQgOjpatp0HDx6gX79+sLe3h6OjI4YMGYKUlBRdp0tERArIyABMTID58/NjW7YAf/+tWEpkYHRewHz22WdYunQpFi1ahMjISHz22WeYN28eFi5cKLWZN28eFixYgGXLliE8PBy2trYIDQ1Fenq61KZfv364cOECdu3aha1bt+LgwYMYNmyYrtMlIqJyFh6uOd7lcffvA6+8okw+ZJhMxONDIzrw0ksvwc3NDd9//70U69mzJ6ytrfHzzz9DCAFPT0+8//77mDBhAgBArVbDzc0Nq1atQp8+fRAZGYmGDRvin3/+QYsWLQAAO3bsQJcuXXDz5k14eno+MY+kpCQ4ODhArVbD3t5el7tIRERPaexY4LG/Z9G9O7B5s2LpkB4q6fe3zkdgXnjhBezZswf//vsvAODMmTM4fPgwOnfuDACIiYlBXFwcQkJCpOc4ODjA398fYWFhAICwsDA4OjpKxQsAhISEwNTUFOHh4YW+bkZGBpKSkmQPIiLSD2lpmimjx4uX7dtZvNDT0/lZSFOmTEFSUhLq168PMzMz5OTkYPbs2ejXrx8AIC4uDgDg5uYme56bm5u0Li4uDq6urvJEzc3h5OQktSlozpw5mDVrlq53h4iIntHhw0BQkDyWmKi50i7R09L5CMz69euxZs0a/PLLLzh16hRWr16Nzz//HKtXr9b1S8lMnToVarVaety4caNMX4+IiJ5s6FB58dK3r+YsIxYv9Kx0PgIzceJETJkyBX369AEANG7cGNevX8ecOXMwYMAAuP93OcX4+Hh4eHhIz4uPj0ezZs0AAO7u7kh4/J7pALKzs/HgwQPp+QWpVCqoVCpd7w4RET2FlBTAzk4e270baN9emXzI+Oh8BCY1NRWmpvLNmpmZITc3FwDg7e0Nd3d37NmzR1qflJSE8PBwBAQEAAACAgKQmJiIkydPSm327t2L3Nxc+Pv76zplIiLSob17tYuX5GQWL6RbOh+B6datG2bPno3q1aujUaNGOH36NL788ksMHjwYAGBiYoJx48bhk08+QZ06deDt7Y1p06bB09MT3bt3BwA0aNAAnTp1wtChQ7Fs2TJkZWVhzJgx6NOnT4nOQCIiImW8+SawZk3+8pAhwHffKZcPGS+dFzALFy7EtGnTMGrUKCQkJMDT0xPDhw/H9OnTpTaTJk3Co0ePMGzYMCQmJqJ169bYsWMHrB67MMCaNWswZswYtG/fHqampujZsycWLFig63SJiEgHkpK0j2s5eFD74F0iXdH5dWD0Ba8DQ0RUPnbsAP67Uobk0SPAxkaZfMiwKXYdGCIiqjh69pQXL2PGaM4yYvFCZY13oyYiolJ7+BBwcpLHjh0DeJ4FlReOwBARUan8+ad28ZKWxuKFyhcLGCIiKrHOnYGXX85fnjBBM2VU8OaMRGWNU0hERPRE9+4BLi7y2MmTQPPmyuRDxBEYIiIq1m+/aRcvGRksXkhZLGCIiKhQQgBt2gC9euXHPvxQE7e0VC4vIoBTSEREVIj4eKDgrefOngUaN1YmH6KCOAJDREQya9bIixcbGyAri8UL6RcWMEREBEAzNdSypeZ+Rnk++URzVV1zjteTnuFbkoiIcOsWUK2aPBYZCdSvr0w+RE/CERgiogpu5Up58eLsDGRns3gh/cYChoioghIC8PUFBg/Oj33+OXD3LmBmplxeRCXBKSQiogooNhaoUUMei44GatdWJh+i0uIIDBFRBbN0qbx4qV4dyMlh8UKGhQUMEVEFkZsL1KoFjBqVH1u0CLh+HTDltwEZGE4hERFVAFeuaI+wxMQANWsqkg7RM2PNTURk5L7+Wl681K+vGY1h8UKGjCMwRERGKicH8PQEEhLyYytWAG+/rVxORLrCAoaIyAhFRWlfx+XGDe2L1REZKk4hEREZmblz5cVL8+aaKSMWL2RMOAJDRGQksrMBJycgOTk/9uOPwFtvKZcTUVlhAUNEZATOn9e+W/SdO/K7ShMZE04hEREZuJkz5cVL69aaKSMWL2TMOAJDRGSgsrIAGxvN1FGeX38FevdWLiei8sIChojIAEVEAM89J48lJAAuLoqkQ1TuOIVERGRgpkyRFy8dOmjuLM3ihSoSjsAQERmIjAzAykoe27wZ6N5dkXSIFMUChojIABw/Dvj7y2P372tOmyaqiDiFRESk58aNkxcvr7yimTJi8UIVGUdgiIj0VFqa5iyjx23bBnTurEw+RPqEBQwRkR46ckRzPZfHJSYCDg6KpEOkdziFRESkZ4YPlxcvffpopoxYvBDl4wgMEZGeePQIqFRJHtu1CwgJUSYfIn3GAoaISA/s2we0ayePJSdrFzREpMEpJCIihfXvLy9eBg3STBmxeCEqGkdgiIgUkpSkfVzLgQNAcLAy+RAZEo7AEBEpYOdO7eLl0SMWL0QlxQKGiKicvfYaEBqavzxqlGbKqOA1X4ioaJxCIiIqJw8fal89NywMeP55ZfIhMmQcgSEiKgd//qldvKSlsXghelosYIiIyljXrsDLL+cvv/++Zsqo4J2liajkOIVERFRG7t8HnJ3lsRMnAD8/ZfIhMiYcgSEiKgMbN2oXLxkZLF6IdIUFDBGRjr34ouZMozwffKCZMrK0VC4nImPDKSQiIh2Jjwfc3eWxM2eAJk2UyYfImHEEhohIB9aulRcv1tZAZiaLF6KywgKGiOgZCAH4+wN9++bHPv4YSE0FLCyUy4vI2HEKiYjoKd2+DVStKo9dvAg0aKBMPkQVCUdgiIiewqpV8uLFyQnIzmbxQlReWMAQEZWCEEDjxsCgQfmx+fM113wxM1MuL6KKhlNIREQlFBsL1Kghj/37L1CnjjL5EFVkHIEhIiqBb7+VFy9eXkBODosXIqWUSQFz69YtvPnmm6hSpQqsra3RuHFjnDhxQlovhMD06dPh4eEBa2trhISEIDo6WraNBw8eoF+/frC3t4ejoyOGDBmClJSUskiXiKhIubmAjw8wYkR+bOFCzWiMKf8EJFKMzn/9Hj58iMDAQFhYWGD79u24ePEivvjiC1SuXFlqM2/ePCxYsADLli1DeHg4bG1tERoaivT0dKlNv379cOHCBezatQtbt27FwYMHMWzYMF2nS0RUpKtXNce1XL2aH4uJAcaMUS4nItIwEUIIXW5wypQpOHLkCA4dOlToeiEEPD098f7772PChAkAALVaDTc3N6xatQp9+vRBZGQkGjZsiH/++QctWrQAAOzYsQNdunTBzZs34enp+cQ8kpKS4ODgALVaDXt7e93tIBFVCAsWAO++m79crx4QGQmYmCiXE1FFUNLvb52PwPzxxx9o0aIFevXqBVdXVzz33HNYsWKFtD4mJgZxcXEICQmRYg4ODvD390dYWBgAICwsDI6OjlLxAgAhISEwNTVFeHh4oa+bkZGBpKQk2YOIqLRycgBPT3nxsnw5cOkSixcifaLzAubq1atYunQp6tSpg7///hsjR47E2LFjsXr1agBAXFwcAMDNzU32PDc3N2ldXFwcXF1dZevNzc3h5OQktSlozpw5cHBwkB5eXl663jUiMnL//guYmwN37uTHYmOBoUOVy4mICqfzAiY3NxfNmzfHp59+iueeew7Dhg3D0KFDsWzZMl2/lMzUqVOhVqulx40bN8r09YjIuHz2mWaaKE+zZpoDePm3EJF+0nkB4+HhgYYNG8piDRo0QGxsLADA/b+7ncXHx8vaxMfHS+vc3d2RkJAgW5+dnY0HDx5IbQpSqVSwt7eXPYiIniQ7G3B0BKZMyY+tXg2cPs0pIyJ9pvMCJjAwEFFRUbLYv//+ixr/XUDB29sb7u7u2LNnj7Q+KSkJ4eHhCAgIAAAEBAQgMTERJ0+elNrs3bsXubm58Pf313XKRFRBXbigueGiWp0fu30b6N9fuZyIqGR0XsC89957OHbsGD799FNcvnwZv/zyC5YvX47Ro0cDAExMTDBu3Dh88skn+OOPP3Du3Dn0798fnp6e6N69OwDNiE2nTp0wdOhQHD9+HEeOHMGYMWPQp0+fEp2BRET0JB99BPj65i+/8IJmysjDQ7mciKjkdH4aNQBs3boVU6dORXR0NLy9vTF+/HgMfewoOCEEZsyYgeXLlyMxMRGtW7fGkiVLULduXanNgwcPMGbMGPz5558wNTVFz549sWDBAlSqVKlEOfA0aiIqTFYWYGOjmTrKs24d8PrryuVERPlK+v1dJgWMPmABQ0QFRUQAzz0njyUkAC4uiqRDRIVQ7DowRET66H//kxcv7dtr7izN4oXIMPFu1ERk1DIyACsreWzzZuC/Q+6IyECxgCEio3XiBNCypTx2/z7g5KRMPkSkO5xCIiKj9N578uKlWzfNlBGLFyLjwBEYIjIqaWmas4we99dfQJcuyuRDRGWDBQwRGY2jR4HAQHksMRFwcFAkHSIqQ5xCIiKjMGKEvHjp3VszZcTihcg4cQSGiAzao0dAwetb7toFhIQokw8RlQ8WMERksPbvB158UR5LSgLs7BRJh4jKEaeQiMggDRwoL14GDNBMGbF4IaoYOAJDRAYlORkoeHXxAweA4GBl8iEiZXAEhogMxq5d2sXLo0csXogqIhYwRGQQevcGOnbMXx45UjNlVPCaL0RUMXAKiYj0WmIiULmyPHb0KBAQoEg6RKQnOAJDRHrrr7+0i5e0NBYvRMQChoj0VLduwEsv5S+/955myqjgnaWJqGLiFBIR6ZX79wFnZ3nsn3+AFi2UyYeI9BNHYIhIb2zerF28ZGSweCEibSxgiEgvtG8P9OiRv/y//2mmjCwtlcuJiPQXp5CISFEJCYCbmzwWEQE0bapIOkRkIDgCQ0SKWbdOXryoVEBmJosXInoyFjBEVO6E0JwK/cYb+bGPPgLS0wELC+XyIiLDwSkkIipXd+4Anp7y2IULQMOGyuRDRIaJIzBEVG5Wr5YXL05OQHY2ixciKj0WMERU5oTQHNcycGB+bN48zTVfzMwUS4uIDBinkIioTN24AVSvLo9FRQF16yqTDxEZB47AEFGZWb5cXrxUrQrk5LB4IaJnxwKGiHROCKBOHWD48PzYN98AN28CpvzUISId4BQSEelUTAxQq5Y8dvUq4O2tTD5EZJz4txAR6czChfLipU4dzZQRixci0jWOwBDRM8vNBby8gNu382PffgsMG6ZcTkRk3FjAENEziY7WPig3NlZT0BARlRVOIRHRU5s/X168NG2aPxpDRFSWOAJDRKWWkwM4OwOJifmxVauAAQOUyoiIKhoWMERUKhcvAo0ayWO3bmnf34iIqCxxComISuzjj+XFS0CAZsqIxQsRlTeOwBDRE2VlAZUqAZmZ+bG1a4E+fZTLiYgqNhYwRFSsM2eAZs3ksfh4wNVVkXSIiABwComIivHBB/LipV07zW0CWLwQkdI4AkNEWjIzAZVKHtu0CXj1VWXyISIqiAUMEcmcOAG0bCmP3bsHVKmiTD5ERIXhFBIRSd5/X168vPSSZsqIxQsR6RuOwBAR0tMBa2t5bOtWoGtXZfIhInoSFjBEFVxYGPDCC/LYw4eAo6Mi6RARlQinkIgqsFGj5MVLr16aKSMWL0Sk7zgCQ1QBpaYCtrby2M6dQIcOyuRDRFRaLGCIKpiDB4E2beSxpCTAzk6ZfIiIngankIgqkEGD5MXLgAGaKSMWL0RkaDgCQ1QBJCcD9vby2P792iMxRESGgiMwREZu927t4iUlhcULERk2FjBERqxPH/mBuSNGaKaMCh7AS0RkaDiFRGSE1GrtU6GPHNG+3gsRkaEq8xGYuXPnwsTEBOPGjZNi6enpGD16NKpUqYJKlSqhZ8+eiI+Plz0vNjYWXbt2hY2NDVxdXTFx4kRkZ2eXdbpEBm/bNu3iJTWVxQsRGZcyLWD++ecffPvtt2jSpIks/t577+HPP//Ehg0bcODAAdy+fRs9evSQ1ufk5KBr167IzMzE0aNHsXr1aqxatQrTp08vy3SJDN4rr8gv/z9unGbKqOBtAoiIDF2ZFTApKSno168fVqxYgcqVK0txtVqN77//Hl9++SXatWsHPz8/rFy5EkePHsWxY8cAADt37sTFixfx888/o1mzZujcuTM+/vhjLF68GJmZmWWVMpHBevAAMDEB/vgjP3b8OPDVV8rlRERUlsqsgBk9ejS6du2KkJAQWfzkyZPIysqSxevXr4/q1asjLCwMABAWFobGjRvDzc1NahMaGoqkpCRcuHCh0NfLyMhAUlKS7EFUEWzZon236PR0+V2liYiMTZkUMOvWrcOpU6cwZ84crXVxcXGwtLSEY4FJejc3N8TFxUltHi9e8tbnrSvMnDlz4ODgID28vLx0sCdE+q1DB+DVV/OXp0zRTBmpVMrlRERUHnR+FtKNGzfw7rvvYteuXbCystL15os0depUjB8/XlpOSkpiEUNG6+5dwNVVHjt9GmjWTJF0iIjKnc5HYE6ePImEhAQ0b94c5ubmMDc3x4EDB7BgwQKYm5vDzc0NmZmZSExMlD0vPj4e7u7uAAB3d3ets5LylvPaFKRSqWBvby97EBmjX3+VFy+WlkBmJosXIqpYdF7AtG/fHufOnUNERIT0aNGiBfr16yf938LCAnv27JGeExUVhdjYWAQEBAAAAgICcO7cOSQkJEhtdu3aBXt7ezRs2FDXKRMZBCGAwEDNxenyzJoFZGQAFhbK5UVEpASdTyHZ2dnB19dXFrO1tUWVKlWk+JAhQzB+/Hg4OTnB3t4e77zzDgICAvD8888DADp27IiGDRvirbfewrx58xAXF4cPP/wQo0ePhoqT+1QB3bkDeHrKY+fPA40aKZMPEZHSFLkS71dffQVTU1P07NkTGRkZCA0NxZIlS6T1ZmZm2Lp1K0aOHImAgADY2tpiwIAB+Oijj5RIl0hRP/6ouWt0HkdHzTEw5ryONhFVYCZCCKF0EmUhKSkJDg4OUKvVPB6GDJIQQPPmQEREfmzuXGDyZMVSIiIqcyX9/ubfcER66OZNoOBJdFFRQN26yuRDRKRveDdqIj2zYoW8ePHwALKzWbwQET2OBQyRnhACqFcPGDYsP/b118Dt24CZmWJpERHpJU4hEemBa9cAb2957MoVoFYtRdIhItJ7HIEhUtiiRfLipXZtICeHxQsRUXE4AkOkkNxcoEYNzQG7eZYtA4YPVy4nIiJDwQKGSAGXLwN16shj168D1asrkw8RkaHhFBJROfv8c3nx0qSJZjSGxQsRUclxBIaonOTkaG7C+OBBfmzlSmDgQMVSIiIyWCxgiMpBZCRQ8D6kt25p39+IiIhKhlNIRGXsk0/kxYu/v2bKiMULEdHT4wgMURnJygLs7YH09PzYL78Ab7yhXE5ERMaCBQxRGTh7FmjaVB6LiwPc3JTJh4jI2HAKiUjHpk2TFy8vvqi5TQCLFyIi3eEIDJGOZGYCKpU89ttvQM+eyuRDRGTMWMAQ6cDJk0CLFvLYvXtAlSrK5ENEZOw4hUT0jCZMkBcvXbtqpoxYvBARlR2OwBA9pfR0wNpaHvvzT+Cll5TJh4ioImEBQ/QUjh0DAgLksYcPAUdHRdIhIqpwOIVEVEpjxsiLl9de00wZsXghIio/HIEhKqHUVMDWVh77+2+gY0dl8iEiqshYwBCVwKFDQHCwPKZWa660S0RE5Y9TSERPMGSIvHh56y3NlBGLFyIi5XAEhqgIKSmAnZ08tm8f0LatIukQEdFjOAJDVIg9e7SLl5QUFi9ERPqCBQxRAX37AiEh+cvDhmmmjAoewEtERMrhFBLRf9Rq7VOhDx8GAgMVSYeIiIrBERgiANu3axcvqaksXoiI9BULGKrwuncHunTJX373Xc2UUcHbBBARkf7gFBJVWA8eaN9w8fhxoGVLZfIhIqKS4wgMVUi//65dvKSns3ghIjIULGCowunYUTNtlGfyZM2UkUqlWEpERFRKnEKiCuPuXcDVVR47fRpo1kyRdIiI6BlwBIYqhPXr5cWLuTmQmcnihYjIULGAIaMmBBAUBLz+en5s5kwgKwuwsFAsLSIiekacQiKjFRcHeHjIY+fPA40aKZMPERHpDkdgyCj99JO8eLG314y6sHghIjIOLGDIqAgB+PkB/fvnx+bM0dwmwJzjjURERoMf6WQ0bt4EvLzksUuXgHr1lMmHiIjKDkdgyCh8/728eHF3B7KzWbwQERkrFjBk0IQAGjQA3n47P/bVV8CdO4CZmXJ5ERFR2eIUEhms69eBmjXlscuXAR8fRdIhIqJyxBEYMkiLF8uLl1q1gJwcFi9ERBUFR2DIoOTmAt7eQGxsfmzJEmDkSOVyIiKi8scChgzG5ctAnTry2PXrQPXqyuRDRETK4RQSGYQvv5QXL76+mtEYFi9ERBUTR2BIr+XkaE6JvncvP/bDD8CgQcrlREREymMBQ3rr0iXNKdKPu3UL8PRUJh8iItIfnEIivfTpp/LipVUrzZQRixciIgI4AkN6JjsbcHAAUlPzY2vWAH37KpcTERHpHxYwpDfOnQOaNJHH4uIANzdl8iEiIv3FKSTSC9Ony4uXtm01twlg8UJERIXReQEzZ84ctGzZEnZ2dnB1dUX37t0RFRUla5Oeno7Ro0ejSpUqqFSpEnr27In4+HhZm9jYWHTt2hU2NjZwdXXFxIkTkZ2dret0SWGZmYCJCfDxx/mxDRuAffuUy4mIiPSfzguYAwcOYPTo0Th27Bh27dqFrKwsdOzYEY8ePZLavPfee/jzzz+xYcMGHDhwALdv30aPHj2k9Tk5OejatSsyMzNx9OhRrF69GqtWrcL06dN1nS4p6NQpQKWSx+7eBV57TZl8iIjIcJgIIURZvsDdu3fh6uqKAwcOIDg4GGq1Gi4uLvjll1/w2n/fVJcuXUKDBg0QFhaG559/Htu3b8dLL72E27dvw+2/OYRly5Zh8uTJuHv3LiwtLZ/4uklJSXBwcIBarYa9vX1Z7iI9hUmTgPnz85c7dwa2bVMuHyIi0g8l/f4u82Ng1Go1AMDJyQkAcPLkSWRlZSEkJERqU79+fVSvXh1hYWEAgLCwMDRu3FgqXgAgNDQUSUlJuHDhQqGvk5GRgaSkJNmD9E96umbK6PHi5Y8/WLwQEVHplGkBk5ubi3HjxiEwMBC+vr4AgLi4OFhaWsLR0VHW1s3NDXFxcVIbtwJHb+Yt57UpaM6cOXBwcJAeXl5eOt4belbh4YC1tTz24AHQrZsy+RARkeEq0wJm9OjROH/+PNatW1eWLwMAmDp1KtRqtfS4ceNGmb8mldw77wDPP5+/3KOH5iyjypWVy4mIiAxXmV0HZsyYMdi6dSsOHjyIatWqSXF3d3dkZmYiMTFRNgoTHx8Pd3d3qc3x48dl28s7SymvTUEqlQqqgkeEkuJSUwFbW3lsxw4gNFSZfIiIyDjofARGCIExY8Zg8+bN2Lt3L7y9vWXr/fz8YGFhgT179kixqKgoxMbGIiAgAAAQEBCAc+fOISEhQWqza9cu2Nvbo2HDhrpOmcrI4cPaxYtazeKFiIienc4LmNGjR+Pnn3/GL7/8Ajs7O8TFxSEuLg5paWkAAAcHBwwZMgTjx4/Hvn37cPLkSQwaNAgBAQF4/r85ho4dO6Jhw4Z46623cObMGfz999/48MMPMXr0aI6yGIihQ4GgoPzlN9/UTBnxhDAiItIFnZ9GbWJiUmh85cqVGDhwIADNhezef/99rF27FhkZGQgNDcWSJUtk00PXr1/HyJEjsX//ftja2mLAgAGYO3cuzM1LNuvF06iVkZIC2NnJY3v3Ai++qEw+RERkWEr6/V3m14FRCguY8rd3L9C+vTyWkqI9jURERFQUvbkODFUMb74pL16GDtVMGbF4ISKissC7UdMzUauBApf0weHDQGCgIukQEVEFwREYemo7dmgXL6mpLF6IiKjssYChp9Kjh+b+RXnGjtVMGRW80i4REVFZ4BQSlcrDh8B/t7WShIcDrVopkw8REVVMHIGhEvvjD+3iJT2dxQsREZU/FjBUIp07A6+8kr88aZJmyojXFSQiIiVwComKde8e4OIij506BTz3nDL5EBERARyBoWJs2CAvXszMgMxMFi9ERKQ8FjCkRQigTRugd+/82PTpQHY2YGGhXF5ERER5OIVEMvHxwGO3pAIAnDsH+Poqkw8REVFhOAJDkjVr5MVLpUpAVhaLFyIi0j8sYAhCAC1bau5nlOfTT4HkZKCEN/8mIiIqV/x6quBu3QKqVZPHLl0C6tVTJh8iIqKS4AhMBfbDD/Lixc1Nc6AuixciItJ3LGAqICGARo2AIUPyY19+CcTFaU6VJiIi0necQqpgrl8HataUxy5fBnx8FEmHiIjoqXAEpgJZskRevNSsCeTksHghIiLDwxGYCiA3V1OkXLuWH1u8GBg1SrGUiIiIngkLGCN35QpQu7Y8du0aUKOGIukQERHpBKeQjNhXX8mLl4YNNaMxLF6IiMjQcQTGCOXkAJ6eQEJCfuz774HBg5XLiYiISJdYwBiZqCigfn157OZNoGpVZfIhIiIqC5xCMiJz5siLlxYtNFNGLF6IiMjYcATGCGRnA5UrAykp+bGffwb69VMuJyIiorLEAsbAnT8PNG4sj925I7+rNBERkbHhFJIBmzFDXrwEB2umjFi8EBGRseMIjAHKygKsrDTFSp7164FevZTLiYiIqDyxgDEwp08DzZvLY3fvAs7OyuRDRESkBE4hGZDJk+XFS2io5s7SLF6IiKii4QiMAcjI0EwZPe7334GXX1YmHyIiIqVxBEbPbd6sXbw8eMDihYiIKjYWMHqsbl2gR4/85Vdf1UwZVa6sXE5ERET6gAWMHkpKAkxMgOjo/NjChcCmTcrlREREpE94DIyeWbsW6NtXHouPB1xdlcmHiIhIH7GA0SMeHkBcXP6ylRWQlqZcPkRERPqKU0h64OFDzZTR48XLd9+xeCEiIioKR2AUtnIlMHiwPHb/PuDkpEw+REREhoAFjIJsbYHU1PxlV1fN8S5ERERUPE4hKeDuXc2U0ePFy5o1LF6IiIhKigVMOVuyRPuMIrVa+8wjIiIiKhqnkMqRiYl82ccHuHxZmVyIiIgMGUdgysGdO9rFy8aNLF6IiIieFguYMvbFF4CnpzyWkiK/RQARERGVDqeQylDBUZdmzYDTpxVJhYiIyKhwBKYM3LunXbxs3crihYiISFc4AqNjGzcCr70mj6WlaW4LQERERLrBERgdattWXrx8+CEgBIsXIiIiXeMITGlkZgKLFgGHDgF2dsBbbwHt2iH+nhnc3eVNz54FGjdWJk0iIiJjxwKmpCZN0pxSlJubH/vpJ/yiGoR+GT9IIVtbIDERMGfPEhERlRlOIZXEpEnA/Pmy4kUAaIVwWfEye7bmFGkWL0RERGWLX7VPkpmpGXl5zG14oCpuy2KRbm1Rf/IeAGblmBwREVHFxBGYJ1myRD5tBGAYlkv/d0ECsmGG+vEHNMfGEBERUZnT6wJm8eLFqFmzJqysrODv74/jx4+XfxJXrmiFemATzJCNz/E+EuAGM/xX4Ny5U87JERERVUx6W8D8+uuvGD9+PGbMmIFTp06hadOmCA0NRUJCQvkm4uOjFRqMlciGBd7Hl/IVHh7llBQREVHFZiKEEEonURh/f3+0bNkSixYtAgDk5ubCy8sL77zzDqZMmfLE5yclJcHBwQFqtRr29vZPn0hmJmBtrTWNpKVaNeDaNcCMx8AQERE9rZJ+f+vlCExmZiZOnjyJkJAQKWZqaoqQkBCEhYUV+pyMjAwkJSXJHjphaQm8//6T233zDYsXIiKicqKXBcy9e/eQk5MDNzc3WdzNzQ1xcXGFPmfOnDlwcHCQHl5eXrpLaN48YOJEwLSQ7rKz09w/gLeXJiIiKjd6WcA8jalTp0KtVkuPGzdu6PYF5s3T3NToiy+A7t01V+HduRN4+JDFCxERUTnTy+vAODs7w8zMDPHx8bJ4fHw83Ates/8/KpUKKpWqbBOztATGj9c8iIiISDF6OQJjaWkJPz8/7NmzR4rl5uZiz549CAgIUDAzIiIi0gd6OQIDAOPHj8eAAQPQokULtGrVCl9//TUePXqEQYMGKZ0aERERKUxvC5jXX38dd+/exfTp0xEXF4dmzZphx44dWgf2EhERUcWjt9eBeVY6uw4MERERlRuDvg4MERERUXFYwBAREZHBYQFDREREBocFDBERERkcFjBERERkcPT2NOpnlXdylc5u6khERERlLu97+0knSRttAZOcnAwAur2pIxEREZWL5ORkODg4FLneaK8Dk5ubi9u3b8POzg4mJiY6225SUhK8vLxw48YNXl+mAPZN4dgvRWPfFI79UjT2TeGMqV+EEEhOToanpydMTYs+0sVoR2BMTU1RrVq1Mtu+vb29wb9Jygr7pnDsl6KxbwrHfika+6ZwxtIvxY285OFBvERERGRwWMAQERGRwWEBU0oqlQozZsyASqVSOhW9w74pHPulaOybwrFfisa+KVxF7BejPYiXiIiIjBdHYIiIiMjgsIAhIiIig8MChoiIiAwOCxgiIiIyOCxgiIiIyOCwgCmlxYsXo2bNmrCysoK/vz+OHz+udEo6M3PmTJiYmMge9evXl9anp6dj9OjRqFKlCipVqoSePXsiPj5eto3Y2Fh07doVNjY2cHV1xcSJE5GdnS1rs3//fjRv3hwqlQq1a9fGqlWrymP3SuXgwYPo1q0bPD09YWJigi1btsjWCyEwffp0eHh4wNraGiEhIYiOjpa1efDgAfr16wd7e3s4OjpiyJAhSElJkbU5e/YsgoKCYGVlBS8vL8ybN08rlw0bNqB+/fqwsrJC48aNsW3bNp3vb0k9qV8GDhyo9R7q1KmTrI0x9sucOXPQsmVL2NnZwdXVFd27d0dUVJSsTXn+/ujT51RJ+qZt27Za75sRI0bI2hhb3yxduhRNmjSRrpwbEBCA7du3S+sr6vulVASV2Lp164SlpaX44YcfxIULF8TQoUOFo6OjiI+PVzo1nZgxY4Zo1KiRuHPnjvS4e/eutH7EiBHCy8tL7NmzR5w4cUI8//zz4oUXXpDWZ2dnC19fXxESEiJOnz4ttm3bJpydncXUqVOlNlevXhU2NjZi/Pjx4uLFi2LhwoXCzMxM7Nixo1z39Um2bdsmPvjgA7Fp0yYBQGzevFm2fu7cucLBwUFs2bJFnDlzRrz88svC29tbpKWlSW06deokmjZtKo4dOyYOHTokateuLd544w1pvVqtFm5ubqJfv37i/PnzYu3atcLa2lp8++23UpsjR44IMzMzMW/ePHHx4kXx4YcfCgsLC3Hu3Lky74PCPKlfBgwYIDp16iR7Dz148EDWxhj7JTQ0VKxcuVKcP39eREREiC5duojq1auLlJQUqU15/f7o2+dUSfqmTZs2YujQobL3jVqtltYbY9/88ccf4q+//hL//vuviIqKEv/73/+EhYWFOH/+vBCi4r5fSoMFTCm0atVKjB49WlrOyckRnp6eYs6cOQpmpTszZswQTZs2LXRdYmKisLCwEBs2bJBikZGRAoAICwsTQmi+3ExNTUVcXJzUZunSpcLe3l5kZGQIIYSYNGmSaNSokWzbr7/+uggNDdXx3uhOwS/q3Nxc4e7uLubPny/FEhMThUqlEmvXrhVCCHHx4kUBQPzzzz9Sm+3btwsTExNx69YtIYQQS5YsEZUrV5b6RgghJk+eLOrVqyct9+7dW3Tt2lWWj7+/vxg+fLhO9/FpFFXAvPLKK0U+pyL0ixBCJCQkCADiwIEDQojy/f3R98+pgn0jhKaAeffdd4t8TkXpm8qVK4vvvvuO75cS4hRSCWVmZuLkyZMICQmRYqampggJCUFYWJiCmelWdHQ0PD09UatWLfTr1w+xsbEAgJMnTyIrK0u2//Xr10f16tWl/Q8LC0Pjxo3h5uYmtQkNDUVSUhIuXLggtXl8G3ltDKkPY2JiEBcXJ9sPBwcH+Pv7y/rC0dERLVq0kNqEhITA1NQU4eHhUpvg4GBYWlpKbUJDQxEVFYWHDx9KbQytv/bv3w9XV1fUq1cPI0eOxP3796V1FaVf1Go1AMDJyQlA+f3+GMLnVMG+ybNmzRo4OzvD19cXU6dORWpqqrTO2PsmJycH69atw6NHjxAQEMD3SwkZ7d2ode3evXvIycmRvVkAwM3NDZcuXVIoK93y9/fHqlWrUK9ePdy5cwezZs1CUFAQzp8/j7i4OFhaWsLR0VH2HDc3N8TFxQEA4uLiCu2fvHXFtUlKSkJaWhqsra3LaO90J29fCtuPx/fT1dVVtt7c3BxOTk6yNt7e3lrbyFtXuXLlIvsrbxv6plOnTujRowe8vb1x5coV/O9//0Pnzp0RFhYGMzOzCtEvubm5GDduHAIDA+Hr6wsA5fb78/DhQ73+nCqsbwCgb9++qFGjBjw9PXH27FlMnjwZUVFR2LRpEwDj7Ztz584hICAA6enpqFSpEjZv3oyGDRsiIiKC75cSYAFDks6dO0v/b9KkCfz9/VGjRg2sX7/eIAoLUl6fPn2k/zdu3BhNmjSBj48P9u/fj/bt2yuYWfkZPXo0zp8/j8OHDyudit4pqm+GDRsm/b9x48bw8PBA+/btceXKFfj4+JR3muWmXr16iIiIgFqtxm+//YYBAwbgwIEDSqdlMDiFVELOzs4wMzPTOgo8Pj4e7u7uCmVVthwdHVG3bl1cvnwZ7u7uyMzMRGJioqzN4/vv7u5eaP/krSuujb29vcEUSXn7Utx7wd3dHQkJCbL12dnZePDggU76y1Dec7Vq1YKzszMuX74MwPj7ZcyYMdi6dSv27duHatWqSfHy+v3R58+povqmMP7+/gAge98YY99YWlqidu3a8PPzw5w5c9C0aVN88803fL+UEAuYErK0tISfnx/27NkjxXJzc7Fnzx4EBAQomFnZSUlJwZUrV+Dh4QE/Pz9YWFjI9j8qKgqxsbHS/gcEBODcuXOyL6hdu3bB3t4eDRs2lNo8vo28NobUh97e3nB3d5ftR1JSEsLDw2V9kZiYiJMnT0pt9u7di9zcXOnDOSAgAAcPHkRWVpbUZteuXahXrx4qV64stTHk/rp58ybu378PDw8PAMbbL0IIjBkzBps3b8bevXu1psDK6/dHHz+nntQ3hYmIiAAA2fvGGPumoNzcXGRkZFTo90upKH0UsSFZt26dUKlUYtWqVeLixYti2LBhwtHRUXYUuCF7//33xf79+0VMTIw4cuSICAkJEc7OziIhIUEIoTmtr3r16mLv3r3ixIkTIiAgQAQEBEjPzzutr2PHjiIiIkLs2LFDuLi4FHpa38SJE0VkZKRYvHixXp5GnZycLE6fPi1Onz4tAIgvv/xSnD59Wly/fl0IoTmN2tHRUfz+++/i7Nmz4pVXXin0NOrnnntOhIeHi8OHD4s6derIThdOTEwUbm5u4q233hLnz58X69atEzY2NlqnC5ubm4vPP/9cREZGihkzZih6unBx/ZKcnCwmTJggwsLCRExMjNi9e7do3ry5qFOnjkhPT5e2YYz9MnLkSOHg4CD2798vOxU4NTVValNevz/69jn1pL65fPmy+Oijj8SJEydETEyM+P3330WtWrVEcHCwtA1j7JspU6aIAwcOiJiYGHH27FkxZcoUYWJiInbu3CmEqLjvl9JgAVNKCxcuFNWrVxeWlpaiVatW4tixY0qnpDOvv/668PDwEJaWlqJq1ari9ddfF5cvX5bWp6WliVGjRonKlSsLGxsb8eqrr4o7d+7ItnHt2jXRuXNnYW1tLZydncX7778vsrKyZG327dsnmjVrJiwtLUWtWrXEypUry2P3SmXfvn0CgNZjwIABQgjNqdTTpk0Tbm5uQqVSifbt24uoqCjZNu7fvy/eeOMNUalSJWFvby8GDRokkpOTZW3OnDkjWrduLVQqlahataqYO3euVi7r168XdevWFZaWlqJRo0bir7/+KrP9fpLi+iU1NVV07NhRuLi4CAsLC1GjRg0xdOhQrQ9CY+yXwvoEgOy9XZ6/P/r0OfWkvomNjRXBwcHCyclJqFQqUbt2bTFx4kTZdWCEML6+GTx4sKhRo4awtLQULi4uon379lLxIkTFfb+UhokQQpTfeA8RERHRs+MxMERERGRwWMAQERGRwWEBQ0RERAaHBQwREREZHBYwREREZHBYwBAREZHBYQFDREREBocFDBERERkcFjBERERkcFjAEBERkcFhAUNEREQG5//0GeplhlPb7wAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","source":["# ***EX_5***"],"metadata":{"id":"sytQuv9zTrkm"}},{"cell_type":"code","source":["from sklearn import datasets"],"metadata":{"id":"lbg0NYyeTuNX","executionInfo":{"status":"ok","timestamp":1740468452589,"user_tz":-330,"elapsed":1787,"user":{"displayName":"Jaison A","userId":"07006398627763032071"}}},"execution_count":1,"outputs":[]},{"cell_type":"code","source":["data=datasets.load_wine()\n","display(data)"],"metadata":{"id":"kugJ-iLrAOBr"},"execution_count":null,"outputs":[]}]}