noshot 0.3.8__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. noshot/data/ML TS XAI/CIA-1-Delhi Boy.ipynb +535 -0
  2. noshot/data/ML TS XAI/Football Player/4.ipynb +395 -0
  3. noshot/data/ML TS XAI/ML Additional/Bank.ipynb +74 -0
  4. noshot/data/ML TS XAI/ML Additional/LR.ipynb +69 -0
  5. noshot/data/ML TS XAI/ML Additional/ObesityDataSet_raw_and_data_sinthetic.csv +2112 -0
  6. noshot/data/ML TS XAI/ML Additional/Q4 LR.csv +206 -0
  7. noshot/data/ML TS XAI/ML Additional/Q7 BANK DETAILS.csv +41189 -0
  8. noshot/data/ML TS XAI/ML Additional/airfoil.ipynb +69 -0
  9. noshot/data/ML TS XAI/ML Additional/obesity.ipynb +78 -0
  10. noshot/data/ML TS XAI/ML Additional/voronoicode.ipynb +81 -0
  11. noshot/data/ML TS XAI/ML Lab CIA - Healthy Class/1/airfoil_self_noise.dat +1503 -0
  12. noshot/data/ML TS XAI/ML Lab CIA - Our Class/AllinOne.ipynb +1 -0
  13. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Heart-Disease-UCI-0.ipynb +886 -0
  14. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Housing-0.ipynb +292 -0
  15. noshot/data/ML TS XAI/ML Lab CIA - Our Class/Lab Code Ex 1-4.ipynb +1 -0
  16. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/Housing.csv +546 -0
  17. noshot/data/ML TS XAI/ML Lab CIA - Our Class/data/heart_disease_uci.csv +921 -0
  18. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/METADATA +1 -1
  19. noshot-0.4.0.dist-info/RECORD +48 -0
  20. noshot/data/ML TS XAI/TS/1. EDA - Handling Time Series Data.ipynb +0 -247
  21. noshot/data/ML TS XAI/TS/2. Feature Engineering.ipynb +0 -183
  22. noshot/data/ML TS XAI/TS/3. Temporal Relationships.ipynb +0 -172
  23. noshot/data/ML TS XAI/TS/4. Up-Down-Sampling and Interpolation.ipynb +0 -146
  24. noshot/data/ML TS XAI/TS/5. Stationarity - Trend - Seasonality.ipynb +0 -173
  25. noshot/data/ML TS XAI/TS/6. Autocorrelation - Partial Autocorrelation.ipynb +0 -77
  26. noshot/data/ML TS XAI/TS/AllinOne.ipynb +0 -1416
  27. noshot/data/ML TS XAI/TS/data/daily-min-temperatures.csv +0 -3651
  28. noshot/data/ML TS XAI/TS/data/daily-total-female-births.csv +0 -366
  29. noshot/data/ML TS XAI/TS/data/raw_sales.csv +0 -29581
  30. noshot/data/ML TS XAI/TS/data/shampoo_sales.csv +0 -37
  31. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/1 - AirPassengers.ipynb +0 -198
  32. noshot/data/ML TS XAI/TS Lab CIA/1 - AirPassengers/AirPassengers.csv +0 -145
  33. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/2 - daily-total-female-births.ipynb +0 -209
  34. noshot/data/ML TS XAI/TS Lab CIA/2 - Daily-total-female-births/daily-total-female-births.csv +0 -366
  35. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/3 - Bill Charge.ipynb +0 -169
  36. noshot/data/ML TS XAI/TS Lab CIA/3 - Bill Charge/bill charge.csv +0 -21
  37. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/4 - daily-min-temperatures.ipynb +0 -181
  38. noshot/data/ML TS XAI/TS Lab CIA/4 - Daily min temperatures/daily-min-temperatures.csv +0 -3651
  39. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/5 - Shampoo sales.ipynb +0 -213
  40. noshot/data/ML TS XAI/TS Lab CIA/5 - shampoo sales/shampoo_sales.csv +0 -37
  41. noshot/data/ML TS XAI/TS Lab CIA/Questions TMS 27 Feb 25.pdf +0 -0
  42. noshot-0.3.8.dist-info/RECORD +0 -53
  43. /noshot/data/ML TS XAI/{ML Lab CIA/1 → ML Additional}/airfoil_self_noise.dat +0 -0
  44. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/1.ipynb +0 -0
  45. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/1/Question.txt +0 -0
  46. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/2.ipynb +0 -0
  47. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/Question.txt +0 -0
  48. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/2/pop_failures.dat +0 -0
  49. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/3.ipynb +0 -0
  50. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/Qu.txt +0 -0
  51. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/3/go_track_tracks.csv +0 -0
  52. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/4.ipynb +0 -0
  53. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/Wilt.csv +0 -0
  54. /noshot/data/ML TS XAI/{ML Lab CIA → ML Lab CIA - Healthy Class}/4/qu.txt +0 -0
  55. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/LICENSE.txt +0 -0
  56. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/WHEEL +0 -0
  57. {noshot-0.3.8.dist-info → noshot-0.4.0.dist-info}/top_level.txt +0 -0
@@ -1,181 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "2c567c90-c151-45bc-ad51-a03c9f6c5a0c",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import pandas as pd\n",
11
- "import numpy as np\n",
12
- "import matplotlib.pyplot as plt\n",
13
- "import seaborn as sns\n",
14
- "from statsmodels.tsa.stattools import adfuller, kpss\n",
15
- "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf"
16
- ]
17
- },
18
- {
19
- "cell_type": "code",
20
- "execution_count": null,
21
- "id": "4a535f5e-3527-499c-b532-9bed43f58ef3",
22
- "metadata": {},
23
- "outputs": [],
24
- "source": [
25
- "import warnings\n",
26
- "warnings.filterwarnings('ignore')"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "id": "8f787d89-dc3e-437f-ad0e-8cbae432cd18",
33
- "metadata": {},
34
- "outputs": [],
35
- "source": [
36
- "file_path = \"daily-min-temperatures.csv\"\n",
37
- "temp_data = pd.read_csv(file_path)\n",
38
- "\n",
39
- "temp_data['Date'] = pd.to_datetime(temp_data['Date'])\n",
40
- "temp_data.set_index('Date', inplace=True)\n",
41
- "temp_data.head()"
42
- ]
43
- },
44
- {
45
- "cell_type": "code",
46
- "execution_count": null,
47
- "id": "eaf1a6f5-c399-41c5-9a35-66893c12ae5d",
48
- "metadata": {},
49
- "outputs": [],
50
- "source": [
51
- "print(temp_data.info())\n",
52
- "print(temp_data.describe())\n",
53
- "\n",
54
- "temp_data['Year'] = temp_data.index.year\n",
55
- "temp_data['Month'] = temp_data.index.month\n",
56
- "temp_data['Day'] = temp_data.index.dayofyear\n",
57
- "\n",
58
- "temp_data['Temp_Lag_1'] = temp_data['Temp'].shift(1)\n",
59
- "temp_data['Temp_Lag_7'] = temp_data['Temp'].shift(7)\n",
60
- "temp_data.head()"
61
- ]
62
- },
63
- {
64
- "cell_type": "code",
65
- "execution_count": null,
66
- "id": "666c1147-bc0a-435e-b35c-325b16292a00",
67
- "metadata": {},
68
- "outputs": [],
69
- "source": [
70
- "plt.figure(figsize=(8, 5))\n",
71
- "sns.histplot(temp_data['Temp'], bins=20, kde=True, edgecolor='black')\n",
72
- "plt.title(\"Histogram of Daily Minimum Temperatures\")\n",
73
- "plt.show()"
74
- ]
75
- },
76
- {
77
- "cell_type": "code",
78
- "execution_count": null,
79
- "id": "b1ab5241-0a0a-4d56-9366-9bae7b537b21",
80
- "metadata": {},
81
- "outputs": [],
82
- "source": [
83
- "sns.kdeplot(temp_data['Temp'], fill=True)\n",
84
- "plt.title(\"Density Plot of Daily Minimum Temperatures\")\n",
85
- "plt.show()"
86
- ]
87
- },
88
- {
89
- "cell_type": "code",
90
- "execution_count": null,
91
- "id": "103a7d8d-0576-4923-a842-6e3f2a59cf24",
92
- "metadata": {},
93
- "outputs": [],
94
- "source": [
95
- "sns.pairplot(temp_data[['Temp', 'Temp_Lag_1', 'Temp_Lag_7']])\n",
96
- "plt.show()"
97
- ]
98
- },
99
- {
100
- "cell_type": "code",
101
- "execution_count": null,
102
- "id": "d3befd1c-6221-4664-9ee3-123f765e9180",
103
- "metadata": {},
104
- "outputs": [],
105
- "source": [
106
- "plot_acf(temp_data['Temp'].dropna())\n",
107
- "plt.show()"
108
- ]
109
- },
110
- {
111
- "cell_type": "code",
112
- "execution_count": null,
113
- "id": "82cd23c3-6bac-470e-8c84-78faa2db4eec",
114
- "metadata": {},
115
- "outputs": [],
116
- "source": [
117
- "plot_pacf(temp_data['Temp'].dropna())\n",
118
- "plt.show()"
119
- ]
120
- },
121
- {
122
- "cell_type": "code",
123
- "execution_count": null,
124
- "id": "09a30d1c-79b4-4b24-8fbe-785ea2bbd2c4",
125
- "metadata": {},
126
- "outputs": [],
127
- "source": [
128
- "temp_data['Rolling_Mean_7'] = temp_data['Temp'].rolling(window=7).mean()\n",
129
- "temp_data['Expanding_Mean'] = temp_data['Temp'].expanding().mean()\n",
130
- "temp_data.head()"
131
- ]
132
- },
133
- {
134
- "cell_type": "code",
135
- "execution_count": null,
136
- "id": "4400f982-a7b1-4cd6-8601-17737c701bb9",
137
- "metadata": {},
138
- "outputs": [],
139
- "source": [
140
- "def adf_test(series):\n",
141
- " result = adfuller(series.dropna())\n",
142
- " print(\"ADF Statistic:\", result[0])\n",
143
- " print(\"p-value:\", result[1])\n",
144
- " print(\"Stationary\" if result[1] < 0.05 else \"Non-Stationary\")\n",
145
- "\n",
146
- "print(\"\\nADF Test Results:\")\n",
147
- "adf_test(temp_data['Temp'])\n",
148
- "\n",
149
- "def kpss_test(series):\n",
150
- " result = kpss(series.dropna(), regression='c')\n",
151
- " print(\"KPSS Statistic:\", result[0])\n",
152
- " print(\"p-value:\", result[1])\n",
153
- " print(\"Stationary\" if result[1] > 0.05 else \"Non-Stationary\")\n",
154
- "\n",
155
- "print(\"\\nKPSS Test Results:\")\n",
156
- "kpss_test(temp_data['Temp'])"
157
- ]
158
- }
159
- ],
160
- "metadata": {
161
- "kernelspec": {
162
- "display_name": "Python 3 (ipykernel)",
163
- "language": "python",
164
- "name": "python3"
165
- },
166
- "language_info": {
167
- "codemirror_mode": {
168
- "name": "ipython",
169
- "version": 3
170
- },
171
- "file_extension": ".py",
172
- "mimetype": "text/x-python",
173
- "name": "python",
174
- "nbconvert_exporter": "python",
175
- "pygments_lexer": "ipython3",
176
- "version": "3.12.4"
177
- }
178
- },
179
- "nbformat": 4,
180
- "nbformat_minor": 5
181
- }