neverlib 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
- neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
- neverlib/.history/filter/__init___20250820103351.py +70 -0
- neverlib/.history/filter/__init___20250821102348.py +70 -0
- neverlib/.history/filter/__init___20250821102405.py +14 -0
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
- neverlib/{filter/AudoEQ/auto_eq_de.py → .history/filter/auto_eq/de_eq_20250820103848.py} +1 -1
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
- neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py} +1 -1
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
- neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
- neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
- neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
- neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
- neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
- neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
- neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
- neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
- neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
- neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
- neverlib/.history/metrics/snr_20250806010538.py +177 -0
- neverlib/.history/metrics/snr_20250806211634.py +184 -0
- neverlib/.history/metrics/spec_20250805234209.py +45 -0
- neverlib/.history/metrics/spec_20250816135530.py +11 -0
- neverlib/.history/metrics/spec_20250816135654.py +16 -0
- neverlib/.history/metrics/spec_20250816135736.py +68 -0
- neverlib/.history/metrics/spec_20250816135904.py +75 -0
- neverlib/.history/metrics/spec_20250816135921.py +82 -0
- neverlib/.history/metrics/spec_20250816140111.py +82 -0
- neverlib/.history/metrics/spec_20250816140543.py +136 -0
- neverlib/.history/metrics/spec_20250816140559.py +172 -0
- neverlib/.history/metrics/spec_20250816140602.py +172 -0
- neverlib/.history/metrics/spec_20250816140608.py +172 -0
- neverlib/.history/metrics/spec_20250816140654.py +148 -0
- neverlib/.history/metrics/spec_20250816140705.py +144 -0
- neverlib/.history/metrics/spec_20250816140755.py +138 -0
- neverlib/.history/metrics/spec_20250816140823.py +170 -0
- neverlib/.history/metrics/spec_20250816140832.py +170 -0
- neverlib/.history/metrics/spec_20250816140833.py +170 -0
- neverlib/.history/metrics/spec_20250816140922.py +147 -0
- neverlib/.history/metrics/spec_20250816141148.py +107 -0
- neverlib/.history/metrics/spec_20250816141219.py +123 -0
- neverlib/.history/metrics/spec_20250816141732.py +178 -0
- neverlib/.history/metrics/spec_20250816141740.py +178 -0
- neverlib/.history/metrics/spec_20250816142030.py +178 -0
- neverlib/.history/metrics/spec_20250816142107.py +135 -0
- neverlib/.history/metrics/spec_20250816142126.py +135 -0
- neverlib/.history/metrics/spec_20250816142410.py +135 -0
- neverlib/.history/metrics/spec_20250816142415.py +136 -0
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
- neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
- neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
- neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
- neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
- neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
- neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
- neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
- neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
- neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
- neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
- neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
- neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
- neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
- neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
- neverlib/.specstory/.what-is-this.md +69 -0
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
- neverlib/Docs/audio_aug/test_snr.py +55 -0
- neverlib/audio_aug/HarmonicDistortion.py +79 -0
- neverlib/audio_aug/TFDrop.py +41 -0
- neverlib/audio_aug/TFMask.py +56 -0
- neverlib/audio_aug/audio_aug.py +16 -1
- neverlib/audio_aug/clip_aug.py +41 -0
- neverlib/audio_aug/coder_aug.py +209 -0
- neverlib/audio_aug/coder_aug2.py +118 -0
- neverlib/audio_aug/loss_packet_aug.py +103 -0
- neverlib/audio_aug/quant_aug.py +78 -0
- neverlib/data_analyze/__init__.py +14 -0
- neverlib/filter/auto_eq/__init__.py +36 -0
- neverlib/filter/auto_eq/de_eq.py +360 -0
- neverlib/filter/auto_eq/freq_eq.py +76 -0
- neverlib/filter/{AudoEQ/auto_eq_ga_advanced.py → auto_eq/ga_eq_advanced.py} +1 -1
- neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
- neverlib/metrics/dnsmos.py +58 -101
- neverlib/metrics/lpc_lsp.py +118 -0
- neverlib/metrics/snr.py +11 -4
- neverlib/metrics/spec.py +136 -45
- neverlib/utils/utils.py +17 -14
- neverlib/vad/PreProcess.py +5 -2
- neverlib/vad/VAD_Silero.py +1 -1
- neverlib/vad/VAD_WebRTC.py +1 -1
- neverlib/vad/VAD_funasr.py +1 -1
- neverlib/vad/VAD_vadlib.py +1 -1
- neverlib/vad/VAD_whisper.py +1 -1
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/METADATA +1 -1
- neverlib-0.2.4.dist-info/RECORD +229 -0
- neverlib-0.2.3.dist-info/RECORD +0 -53
- /neverlib/{dataAnalyze/__init__.py → .history/dataAnalyze/__init___20250805234204.py} +0 -0
- /neverlib/{filter/AudoEQ/auto_eq_spectral_direct.py → .history/filter/auto_eq/freq_eq_20250805234206.py} +0 -0
- /neverlib/{dataAnalyze → data_analyze}/README.md +0 -0
- /neverlib/{dataAnalyze → data_analyze}/dataset_analyzer.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/quality_metrics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/rms_distrubution.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/spectral_analysis.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/statistics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/temporal_features.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/visualization.py +0 -0
- /neverlib/filter/{AudoEQ → auto_eq}/README.md +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/WHEEL +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import os
|
|
7
|
+
import numpy as np
|
|
8
|
+
import librosa
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
import pandas
|
|
11
|
+
import matplotlib.pyplot as plt
|
|
12
|
+
|
|
13
|
+
np.set_printoptions(precision=8)
|
|
14
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
+
|
|
20
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
+
|
|
27
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
+
|
|
30
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
+
|
|
33
|
+
if plot_results:
|
|
34
|
+
plt.figure(figsize=(10, 5))
|
|
35
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
+
plt.xlabel('Frequency (Hz)')
|
|
40
|
+
plt.ylabel('Amplitude (dB)')
|
|
41
|
+
plt.title('Frequency Response Compensation')
|
|
42
|
+
plt.grid(True)
|
|
43
|
+
plt.legend()
|
|
44
|
+
plt.xscale('log')
|
|
45
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
+
plt.tight_layout()
|
|
47
|
+
# plt.show()
|
|
48
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
+
|
|
50
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
+
|
|
57
|
+
return eq_curve, compensated_audio
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
if __name__ == "__main__":
|
|
61
|
+
SAMPLE_RATE = 16000
|
|
62
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
+
# reference_audio_path = "../../data/white.wav"
|
|
64
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
65
|
+
# print(os.path.exists(reference_audio_path))
|
|
66
|
+
|
|
67
|
+
# 读取音频文件
|
|
68
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
69
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
70
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
71
|
+
reference_audio = wav_3956[:, 1]
|
|
72
|
+
target_audio = wav_3956[:, 0]
|
|
73
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
74
|
+
reference_audio, target_audio,
|
|
75
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
76
|
+
plot_results=True
|
|
77
|
+
)
|
|
78
|
+
sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import os
|
|
7
|
+
import numpy as np
|
|
8
|
+
import librosa
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
import pandas
|
|
11
|
+
import matplotlib.pyplot as plt
|
|
12
|
+
|
|
13
|
+
np.set_printoptions(precision=8)
|
|
14
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
+
|
|
20
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
+
|
|
27
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
+
|
|
30
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
+
|
|
33
|
+
if plot_results:
|
|
34
|
+
plt.figure(figsize=(10, 5))
|
|
35
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
+
plt.xlabel('Frequency (Hz)')
|
|
40
|
+
plt.ylabel('Amplitude (dB)')
|
|
41
|
+
plt.title('Frequency Response Compensation')
|
|
42
|
+
plt.grid(True)
|
|
43
|
+
plt.legend()
|
|
44
|
+
plt.xscale('log')
|
|
45
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
+
plt.tight_layout()
|
|
47
|
+
# plt.show()
|
|
48
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
+
|
|
50
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
+
|
|
57
|
+
return eq_curve, compensated_audio
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
if __name__ == "__main__":
|
|
61
|
+
SAMPLE_RATE = 16000
|
|
62
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
+
# reference_audio_path = "../../data/white.wav"
|
|
64
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
65
|
+
# print(os.path.exists(reference_audio_path))
|
|
66
|
+
|
|
67
|
+
# 读取音频文件
|
|
68
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
69
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
70
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
71
|
+
reference_audio = wav_3956[:, 1]
|
|
72
|
+
target_audio = wav_3956[:, 0]
|
|
73
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
74
|
+
reference_audio, target_audio,
|
|
75
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
76
|
+
plot_results=True
|
|
77
|
+
)
|
|
78
|
+
sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import os
|
|
7
|
+
import numpy as np
|
|
8
|
+
import librosa
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
import pandas
|
|
11
|
+
import matplotlib.pyplot as plt
|
|
12
|
+
|
|
13
|
+
np.set_printoptions(precision=8)
|
|
14
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
18
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
19
|
+
|
|
20
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
21
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
22
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
23
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
24
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
25
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
26
|
+
|
|
27
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
28
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
29
|
+
|
|
30
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
31
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
32
|
+
|
|
33
|
+
if plot_results:
|
|
34
|
+
plt.figure(figsize=(10, 5))
|
|
35
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
36
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
37
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
38
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
39
|
+
plt.xlabel('Frequency (Hz)')
|
|
40
|
+
plt.ylabel('Amplitude (dB)')
|
|
41
|
+
plt.title('Frequency Response Compensation')
|
|
42
|
+
plt.grid(True)
|
|
43
|
+
plt.legend()
|
|
44
|
+
plt.xscale('log')
|
|
45
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
46
|
+
plt.tight_layout()
|
|
47
|
+
# plt.show()
|
|
48
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
49
|
+
|
|
50
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
51
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
52
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
53
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
54
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
55
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
56
|
+
|
|
57
|
+
return eq_curve, compensated_audio
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
if __name__ == "__main__":
|
|
61
|
+
SAMPLE_RATE = 16000
|
|
62
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
63
|
+
# reference_audio_path = "../../data/white.wav"
|
|
64
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
65
|
+
# print(os.path.exists(reference_audio_path))
|
|
66
|
+
|
|
67
|
+
# 读取音频文件
|
|
68
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
69
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
70
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
71
|
+
reference_audio = wav_3956[:, 1]
|
|
72
|
+
target_audio = wav_3956[:, 0]
|
|
73
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
74
|
+
reference_audio, target_audio,
|
|
75
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
76
|
+
plot_results=True
|
|
77
|
+
)
|
|
78
|
+
sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import numpy as np
|
|
7
|
+
import librosa
|
|
8
|
+
import soundfile as sf
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
|
|
11
|
+
np.set_printoptions(precision=8)
|
|
12
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
16
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
17
|
+
|
|
18
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
19
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
20
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
21
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
22
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
23
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
24
|
+
|
|
25
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
26
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
27
|
+
|
|
28
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
29
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
30
|
+
|
|
31
|
+
if plot_results:
|
|
32
|
+
plt.figure(figsize=(10, 5))
|
|
33
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
34
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
35
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
36
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
37
|
+
plt.xlabel('Frequency (Hz)')
|
|
38
|
+
plt.ylabel('Amplitude (dB)')
|
|
39
|
+
plt.title('Frequency Response Compensation')
|
|
40
|
+
plt.grid(True)
|
|
41
|
+
plt.legend()
|
|
42
|
+
plt.xscale('log')
|
|
43
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
44
|
+
plt.tight_layout()
|
|
45
|
+
# plt.show()
|
|
46
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
47
|
+
|
|
48
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
49
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
50
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
51
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
52
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
53
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
54
|
+
|
|
55
|
+
return eq_curve, compensated_audio
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
if __name__ == "__main__":
|
|
59
|
+
SAMPLE_RATE = 16000
|
|
60
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
61
|
+
# reference_audio_path = "../../data/white.wav"
|
|
62
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
63
|
+
# print(os.path.exists(reference_audio_path))
|
|
64
|
+
|
|
65
|
+
# 读取音频文件
|
|
66
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
67
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
68
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
69
|
+
reference_audio = wav_3956[:, 1]
|
|
70
|
+
target_audio = wav_3956[:, 0]
|
|
71
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
72
|
+
reference_audio, target_audio,
|
|
73
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
74
|
+
plot_results=True
|
|
75
|
+
)
|
|
76
|
+
sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import numpy as np
|
|
7
|
+
import librosa
|
|
8
|
+
import soundfile as sf
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
|
|
11
|
+
np.set_printoptions(precision=8)
|
|
12
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def get_freq_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
16
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
17
|
+
|
|
18
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
19
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
20
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
21
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
22
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
23
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
24
|
+
|
|
25
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
26
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
27
|
+
|
|
28
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
29
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
30
|
+
|
|
31
|
+
if plot_results:
|
|
32
|
+
plt.figure(figsize=(10, 5))
|
|
33
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
34
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
35
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
36
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
37
|
+
plt.xlabel('Frequency (Hz)')
|
|
38
|
+
plt.ylabel('Amplitude (dB)')
|
|
39
|
+
plt.title('Frequency Response Compensation')
|
|
40
|
+
plt.grid(True)
|
|
41
|
+
plt.legend()
|
|
42
|
+
plt.xscale('log')
|
|
43
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
44
|
+
plt.tight_layout()
|
|
45
|
+
# plt.show()
|
|
46
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
47
|
+
|
|
48
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
49
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
50
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
51
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
52
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
53
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
54
|
+
|
|
55
|
+
return eq_curve, compensated_audio
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
if __name__ == "__main__":
|
|
59
|
+
SAMPLE_RATE = 16000
|
|
60
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
61
|
+
# reference_audio_path = "../../data/white.wav"
|
|
62
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
63
|
+
# print(os.path.exists(reference_audio_path))
|
|
64
|
+
|
|
65
|
+
# 读取音频文件
|
|
66
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
67
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
68
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
69
|
+
reference_audio = wav_3956[:, 1]
|
|
70
|
+
target_audio = wav_3956[:, 0]
|
|
71
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
72
|
+
reference_audio, target_audio,
|
|
73
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
74
|
+
plot_results=True
|
|
75
|
+
)
|
|
76
|
+
sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-04 21:49:05
|
|
4
|
+
Description: 自动EQ补偿
|
|
5
|
+
'''
|
|
6
|
+
import numpy as np
|
|
7
|
+
import librosa
|
|
8
|
+
import soundfile as sf
|
|
9
|
+
import matplotlib.pyplot as plt
|
|
10
|
+
|
|
11
|
+
np.set_printoptions(precision=8)
|
|
12
|
+
np.set_printoptions(suppress=True) # 打印不使用科学计数法
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def get_freq_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
|
|
16
|
+
freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
|
|
17
|
+
|
|
18
|
+
stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
19
|
+
stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
|
|
20
|
+
magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
|
|
21
|
+
# 求时间平均, 频响曲线 Frequency_Response_curve
|
|
22
|
+
reference_response = np.mean(magnitude_reference, axis=1)
|
|
23
|
+
target_response = np.mean(magnitude_target, axis=1)
|
|
24
|
+
|
|
25
|
+
reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
|
|
26
|
+
target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
|
|
27
|
+
|
|
28
|
+
eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
|
|
29
|
+
# print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
|
|
30
|
+
|
|
31
|
+
if plot_results:
|
|
32
|
+
plt.figure(figsize=(10, 5))
|
|
33
|
+
# plt.plot(freq_bins, target_response_db, label="Target Response")
|
|
34
|
+
plt.plot(freq_bins, eq_curve, label="EQ Curve")
|
|
35
|
+
# compensated_response = reference_response_db + eq_curve # 补偿后的曲线
|
|
36
|
+
# plt.plot(freq_bins, compensated_response, label="Compensated Response")
|
|
37
|
+
plt.xlabel('Frequency (Hz)')
|
|
38
|
+
plt.ylabel('Amplitude (dB)')
|
|
39
|
+
plt.title('Frequency Response Compensation')
|
|
40
|
+
plt.grid(True)
|
|
41
|
+
plt.legend()
|
|
42
|
+
plt.xscale('log')
|
|
43
|
+
plt.grid(True, ls="--", alpha=0.4)
|
|
44
|
+
plt.tight_layout()
|
|
45
|
+
# plt.show()
|
|
46
|
+
plt.savefig(f"./frequency_eq_fft{window_size}.png")
|
|
47
|
+
|
|
48
|
+
# 拿到EQ之后我们对音频进行EQ补偿
|
|
49
|
+
reference_phase = np.angle(stft_reference) # (F,T)
|
|
50
|
+
for freq_idx in range(magnitude_reference.shape[0]):
|
|
51
|
+
magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
|
|
52
|
+
compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
|
|
53
|
+
compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
|
|
54
|
+
|
|
55
|
+
return eq_curve, compensated_audio
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
if __name__ == "__main__":
|
|
59
|
+
SAMPLE_RATE = 16000
|
|
60
|
+
WINDOW_SIZE = FFT_SIZE = 512
|
|
61
|
+
# reference_audio_path = "../../data/white.wav"
|
|
62
|
+
# target_audio_path = "../../data/white_EQ.wav"
|
|
63
|
+
# print(os.path.exists(reference_audio_path))
|
|
64
|
+
|
|
65
|
+
# 读取音频文件
|
|
66
|
+
# reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
|
|
67
|
+
# target_audio, _ = sf.read(target_audio_path, dtype='float32')
|
|
68
|
+
wav_3956, sr = sf.read("../../data/3956_speech.wav")
|
|
69
|
+
reference_audio = wav_3956[:, 1]
|
|
70
|
+
target_audio = wav_3956[:, 0]
|
|
71
|
+
eq_curve, compensated_audio = compute_frequency_eq(
|
|
72
|
+
reference_audio, target_audio,
|
|
73
|
+
SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
|
|
74
|
+
plot_results=True
|
|
75
|
+
)
|
|
76
|
+
sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
|
neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py}
RENAMED
|
@@ -7,7 +7,7 @@ import scipy.signal as signal
|
|
|
7
7
|
from scipy.signal import lfilter, freqz
|
|
8
8
|
import matplotlib.pyplot as plt
|
|
9
9
|
from deap import base, creator, tools, algorithms
|
|
10
|
-
from filter import EQFilter
|
|
10
|
+
from neverlib.filter import EQFilter
|
|
11
11
|
|
|
12
12
|
# --- Configuration Parameters ---
|
|
13
13
|
SOURCE_AUDIO_PATH = "../data/white.wav"
|