neverlib 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (207) hide show
  1. neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
  2. neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
  3. neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
  4. neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
  5. neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
  6. neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
  7. neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
  8. neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
  9. neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
  10. neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
  11. neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
  12. neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
  13. neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
  14. neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
  15. neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
  16. neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
  17. neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
  18. neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
  19. neverlib/.history/filter/__init___20250820103351.py +70 -0
  20. neverlib/.history/filter/__init___20250821102348.py +70 -0
  21. neverlib/.history/filter/__init___20250821102405.py +14 -0
  22. neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
  23. neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
  24. neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
  25. neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
  26. neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
  27. neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
  28. neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
  29. neverlib/{filter/AudoEQ/auto_eq_de.py → .history/filter/auto_eq/de_eq_20250820103848.py} +1 -1
  30. neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
  31. neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
  32. neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
  33. neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
  34. neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
  35. neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
  36. neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
  37. neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
  38. neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
  39. neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
  40. neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
  41. neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
  42. neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
  43. neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
  44. neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
  45. neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
  46. neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
  47. neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
  48. neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
  49. neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py} +1 -1
  50. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
  51. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
  52. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
  53. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
  54. neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
  55. neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
  56. neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
  57. neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
  58. neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
  59. neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
  60. neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
  61. neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
  62. neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
  63. neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
  64. neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
  65. neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
  66. neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
  67. neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
  68. neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
  69. neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
  70. neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
  71. neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
  72. neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
  73. neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
  74. neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
  75. neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
  76. neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
  77. neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
  78. neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
  79. neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
  80. neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
  81. neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
  82. neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
  83. neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
  84. neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
  85. neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
  86. neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
  87. neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
  88. neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
  89. neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
  90. neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
  91. neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
  92. neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
  93. neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
  94. neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
  95. neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
  96. neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
  97. neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
  98. neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
  99. neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
  100. neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
  101. neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
  102. neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
  103. neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
  104. neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
  105. neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
  106. neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
  107. neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
  108. neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
  109. neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
  110. neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
  111. neverlib/.history/metrics/snr_20250806010538.py +177 -0
  112. neverlib/.history/metrics/snr_20250806211634.py +184 -0
  113. neverlib/.history/metrics/spec_20250805234209.py +45 -0
  114. neverlib/.history/metrics/spec_20250816135530.py +11 -0
  115. neverlib/.history/metrics/spec_20250816135654.py +16 -0
  116. neverlib/.history/metrics/spec_20250816135736.py +68 -0
  117. neverlib/.history/metrics/spec_20250816135904.py +75 -0
  118. neverlib/.history/metrics/spec_20250816135921.py +82 -0
  119. neverlib/.history/metrics/spec_20250816140111.py +82 -0
  120. neverlib/.history/metrics/spec_20250816140543.py +136 -0
  121. neverlib/.history/metrics/spec_20250816140559.py +172 -0
  122. neverlib/.history/metrics/spec_20250816140602.py +172 -0
  123. neverlib/.history/metrics/spec_20250816140608.py +172 -0
  124. neverlib/.history/metrics/spec_20250816140654.py +148 -0
  125. neverlib/.history/metrics/spec_20250816140705.py +144 -0
  126. neverlib/.history/metrics/spec_20250816140755.py +138 -0
  127. neverlib/.history/metrics/spec_20250816140823.py +170 -0
  128. neverlib/.history/metrics/spec_20250816140832.py +170 -0
  129. neverlib/.history/metrics/spec_20250816140833.py +170 -0
  130. neverlib/.history/metrics/spec_20250816140922.py +147 -0
  131. neverlib/.history/metrics/spec_20250816141148.py +107 -0
  132. neverlib/.history/metrics/spec_20250816141219.py +123 -0
  133. neverlib/.history/metrics/spec_20250816141732.py +178 -0
  134. neverlib/.history/metrics/spec_20250816141740.py +178 -0
  135. neverlib/.history/metrics/spec_20250816142030.py +178 -0
  136. neverlib/.history/metrics/spec_20250816142107.py +135 -0
  137. neverlib/.history/metrics/spec_20250816142126.py +135 -0
  138. neverlib/.history/metrics/spec_20250816142410.py +135 -0
  139. neverlib/.history/metrics/spec_20250816142415.py +136 -0
  140. neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
  141. neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
  142. neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
  143. neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
  144. neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
  145. neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
  146. neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
  147. neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
  148. neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
  149. neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
  150. neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
  151. neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
  152. neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
  153. neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
  154. neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
  155. neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
  156. neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
  157. neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
  158. neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
  159. neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
  160. neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
  161. neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
  162. neverlib/.specstory/.what-is-this.md +69 -0
  163. neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
  164. neverlib/Docs/audio_aug/test_snr.py +55 -0
  165. neverlib/audio_aug/HarmonicDistortion.py +79 -0
  166. neverlib/audio_aug/TFDrop.py +41 -0
  167. neverlib/audio_aug/TFMask.py +56 -0
  168. neverlib/audio_aug/audio_aug.py +16 -1
  169. neverlib/audio_aug/clip_aug.py +41 -0
  170. neverlib/audio_aug/coder_aug.py +209 -0
  171. neverlib/audio_aug/coder_aug2.py +118 -0
  172. neverlib/audio_aug/loss_packet_aug.py +103 -0
  173. neverlib/audio_aug/quant_aug.py +78 -0
  174. neverlib/data_analyze/__init__.py +14 -0
  175. neverlib/filter/auto_eq/__init__.py +36 -0
  176. neverlib/filter/auto_eq/de_eq.py +360 -0
  177. neverlib/filter/auto_eq/freq_eq.py +76 -0
  178. neverlib/filter/{AudoEQ/auto_eq_ga_advanced.py → auto_eq/ga_eq_advanced.py} +1 -1
  179. neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
  180. neverlib/metrics/dnsmos.py +58 -101
  181. neverlib/metrics/lpc_lsp.py +118 -0
  182. neverlib/metrics/snr.py +11 -4
  183. neverlib/metrics/spec.py +136 -45
  184. neverlib/utils/utils.py +17 -14
  185. neverlib/vad/PreProcess.py +5 -2
  186. neverlib/vad/VAD_Silero.py +1 -1
  187. neverlib/vad/VAD_WebRTC.py +1 -1
  188. neverlib/vad/VAD_funasr.py +1 -1
  189. neverlib/vad/VAD_vadlib.py +1 -1
  190. neverlib/vad/VAD_whisper.py +1 -1
  191. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/METADATA +1 -1
  192. neverlib-0.2.4.dist-info/RECORD +229 -0
  193. neverlib-0.2.3.dist-info/RECORD +0 -53
  194. /neverlib/{dataAnalyze/__init__.py → .history/dataAnalyze/__init___20250805234204.py} +0 -0
  195. /neverlib/{filter/AudoEQ/auto_eq_spectral_direct.py → .history/filter/auto_eq/freq_eq_20250805234206.py} +0 -0
  196. /neverlib/{dataAnalyze → data_analyze}/README.md +0 -0
  197. /neverlib/{dataAnalyze → data_analyze}/dataset_analyzer.py +0 -0
  198. /neverlib/{dataAnalyze → data_analyze}/quality_metrics.py +0 -0
  199. /neverlib/{dataAnalyze → data_analyze}/rms_distrubution.py +0 -0
  200. /neverlib/{dataAnalyze → data_analyze}/spectral_analysis.py +0 -0
  201. /neverlib/{dataAnalyze → data_analyze}/statistics.py +0 -0
  202. /neverlib/{dataAnalyze → data_analyze}/temporal_features.py +0 -0
  203. /neverlib/{dataAnalyze → data_analyze}/visualization.py +0 -0
  204. /neverlib/filter/{AudoEQ → auto_eq}/README.md +0 -0
  205. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/WHEEL +0 -0
  206. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
  207. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,78 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import os
7
+ import numpy as np
8
+ import librosa
9
+ import soundfile as sf
10
+ import pandas
11
+ import matplotlib.pyplot as plt
12
+
13
+ np.set_printoptions(precision=8)
14
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
+
16
+
17
+ def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
+
20
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
+ # 求时间平均, 频响曲线 Frequency_Response_curve
24
+ reference_response = np.mean(magnitude_reference, axis=1)
25
+ target_response = np.mean(magnitude_target, axis=1)
26
+
27
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
+
30
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
+
33
+ if plot_results:
34
+ plt.figure(figsize=(10, 5))
35
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
36
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
+ plt.xlabel('Frequency (Hz)')
40
+ plt.ylabel('Amplitude (dB)')
41
+ plt.title('Frequency Response Compensation')
42
+ plt.grid(True)
43
+ plt.legend()
44
+ plt.xscale('log')
45
+ plt.grid(True, ls="--", alpha=0.4)
46
+ plt.tight_layout()
47
+ # plt.show()
48
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
+
50
+ # 拿到EQ之后我们对音频进行EQ补偿
51
+ reference_phase = np.angle(stft_reference) # (F,T)
52
+ for freq_idx in range(magnitude_reference.shape[0]):
53
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
+
57
+ return eq_curve, compensated_audio
58
+
59
+
60
+ if __name__ == "__main__":
61
+ SAMPLE_RATE = 16000
62
+ WINDOW_SIZE = FFT_SIZE = 512
63
+ # reference_audio_path = "../../data/white.wav"
64
+ # target_audio_path = "../../data/white_EQ.wav"
65
+ # print(os.path.exists(reference_audio_path))
66
+
67
+ # 读取音频文件
68
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
69
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
70
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
71
+ reference_audio = wav_3956[:, 1]
72
+ target_audio = wav_3956[:, 0]
73
+ eq_curve, compensated_audio = compute_frequency_eq(
74
+ reference_audio, target_audio,
75
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
76
+ plot_results=True
77
+ )
78
+ sf.write("../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -0,0 +1,78 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import os
7
+ import numpy as np
8
+ import librosa
9
+ import soundfile as sf
10
+ import pandas
11
+ import matplotlib.pyplot as plt
12
+
13
+ np.set_printoptions(precision=8)
14
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
+
16
+
17
+ def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
+
20
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
+ # 求时间平均, 频响曲线 Frequency_Response_curve
24
+ reference_response = np.mean(magnitude_reference, axis=1)
25
+ target_response = np.mean(magnitude_target, axis=1)
26
+
27
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
+
30
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
+
33
+ if plot_results:
34
+ plt.figure(figsize=(10, 5))
35
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
36
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
+ plt.xlabel('Frequency (Hz)')
40
+ plt.ylabel('Amplitude (dB)')
41
+ plt.title('Frequency Response Compensation')
42
+ plt.grid(True)
43
+ plt.legend()
44
+ plt.xscale('log')
45
+ plt.grid(True, ls="--", alpha=0.4)
46
+ plt.tight_layout()
47
+ # plt.show()
48
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
+
50
+ # 拿到EQ之后我们对音频进行EQ补偿
51
+ reference_phase = np.angle(stft_reference) # (F,T)
52
+ for freq_idx in range(magnitude_reference.shape[0]):
53
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
+
57
+ return eq_curve, compensated_audio
58
+
59
+
60
+ if __name__ == "__main__":
61
+ SAMPLE_RATE = 16000
62
+ WINDOW_SIZE = FFT_SIZE = 512
63
+ # reference_audio_path = "../../data/white.wav"
64
+ # target_audio_path = "../../data/white_EQ.wav"
65
+ # print(os.path.exists(reference_audio_path))
66
+
67
+ # 读取音频文件
68
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
69
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
70
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
71
+ reference_audio = wav_3956[:, 1]
72
+ target_audio = wav_3956[:, 0]
73
+ eq_curve, compensated_audio = compute_frequency_eq(
74
+ reference_audio, target_audio,
75
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
76
+ plot_results=True
77
+ )
78
+ sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -0,0 +1,78 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import os
7
+ import numpy as np
8
+ import librosa
9
+ import soundfile as sf
10
+ import pandas
11
+ import matplotlib.pyplot as plt
12
+
13
+ np.set_printoptions(precision=8)
14
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
15
+
16
+
17
+ def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
18
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
19
+
20
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
21
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
22
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
23
+ # 求时间平均, 频响曲线 Frequency_Response_curve
24
+ reference_response = np.mean(magnitude_reference, axis=1)
25
+ target_response = np.mean(magnitude_target, axis=1)
26
+
27
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
28
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
29
+
30
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
31
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
32
+
33
+ if plot_results:
34
+ plt.figure(figsize=(10, 5))
35
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
36
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
37
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
38
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
39
+ plt.xlabel('Frequency (Hz)')
40
+ plt.ylabel('Amplitude (dB)')
41
+ plt.title('Frequency Response Compensation')
42
+ plt.grid(True)
43
+ plt.legend()
44
+ plt.xscale('log')
45
+ plt.grid(True, ls="--", alpha=0.4)
46
+ plt.tight_layout()
47
+ # plt.show()
48
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
49
+
50
+ # 拿到EQ之后我们对音频进行EQ补偿
51
+ reference_phase = np.angle(stft_reference) # (F,T)
52
+ for freq_idx in range(magnitude_reference.shape[0]):
53
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
54
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
55
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
56
+
57
+ return eq_curve, compensated_audio
58
+
59
+
60
+ if __name__ == "__main__":
61
+ SAMPLE_RATE = 16000
62
+ WINDOW_SIZE = FFT_SIZE = 512
63
+ # reference_audio_path = "../../data/white.wav"
64
+ # target_audio_path = "../../data/white_EQ.wav"
65
+ # print(os.path.exists(reference_audio_path))
66
+
67
+ # 读取音频文件
68
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
69
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
70
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
71
+ reference_audio = wav_3956[:, 1]
72
+ target_audio = wav_3956[:, 0]
73
+ eq_curve, compensated_audio = compute_frequency_eq(
74
+ reference_audio, target_audio,
75
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
76
+ plot_results=True
77
+ )
78
+ sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -0,0 +1,76 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import numpy as np
7
+ import librosa
8
+ import soundfile as sf
9
+ import matplotlib.pyplot as plt
10
+
11
+ np.set_printoptions(precision=8)
12
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
13
+
14
+
15
+ def compute_frequency_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
16
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
17
+
18
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
19
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
20
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
21
+ # 求时间平均, 频响曲线 Frequency_Response_curve
22
+ reference_response = np.mean(magnitude_reference, axis=1)
23
+ target_response = np.mean(magnitude_target, axis=1)
24
+
25
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
26
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
27
+
28
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
29
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
30
+
31
+ if plot_results:
32
+ plt.figure(figsize=(10, 5))
33
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
34
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
35
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
36
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
37
+ plt.xlabel('Frequency (Hz)')
38
+ plt.ylabel('Amplitude (dB)')
39
+ plt.title('Frequency Response Compensation')
40
+ plt.grid(True)
41
+ plt.legend()
42
+ plt.xscale('log')
43
+ plt.grid(True, ls="--", alpha=0.4)
44
+ plt.tight_layout()
45
+ # plt.show()
46
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
47
+
48
+ # 拿到EQ之后我们对音频进行EQ补偿
49
+ reference_phase = np.angle(stft_reference) # (F,T)
50
+ for freq_idx in range(magnitude_reference.shape[0]):
51
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
52
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
53
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
54
+
55
+ return eq_curve, compensated_audio
56
+
57
+
58
+ if __name__ == "__main__":
59
+ SAMPLE_RATE = 16000
60
+ WINDOW_SIZE = FFT_SIZE = 512
61
+ # reference_audio_path = "../../data/white.wav"
62
+ # target_audio_path = "../../data/white_EQ.wav"
63
+ # print(os.path.exists(reference_audio_path))
64
+
65
+ # 读取音频文件
66
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
67
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
68
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
69
+ reference_audio = wav_3956[:, 1]
70
+ target_audio = wav_3956[:, 0]
71
+ eq_curve, compensated_audio = compute_frequency_eq(
72
+ reference_audio, target_audio,
73
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
74
+ plot_results=True
75
+ )
76
+ sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -0,0 +1,76 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import numpy as np
7
+ import librosa
8
+ import soundfile as sf
9
+ import matplotlib.pyplot as plt
10
+
11
+ np.set_printoptions(precision=8)
12
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
13
+
14
+
15
+ def get_freq_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
16
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
17
+
18
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
19
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
20
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
21
+ # 求时间平均, 频响曲线 Frequency_Response_curve
22
+ reference_response = np.mean(magnitude_reference, axis=1)
23
+ target_response = np.mean(magnitude_target, axis=1)
24
+
25
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
26
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
27
+
28
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
29
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
30
+
31
+ if plot_results:
32
+ plt.figure(figsize=(10, 5))
33
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
34
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
35
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
36
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
37
+ plt.xlabel('Frequency (Hz)')
38
+ plt.ylabel('Amplitude (dB)')
39
+ plt.title('Frequency Response Compensation')
40
+ plt.grid(True)
41
+ plt.legend()
42
+ plt.xscale('log')
43
+ plt.grid(True, ls="--", alpha=0.4)
44
+ plt.tight_layout()
45
+ # plt.show()
46
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
47
+
48
+ # 拿到EQ之后我们对音频进行EQ补偿
49
+ reference_phase = np.angle(stft_reference) # (F,T)
50
+ for freq_idx in range(magnitude_reference.shape[0]):
51
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
52
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
53
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
54
+
55
+ return eq_curve, compensated_audio
56
+
57
+
58
+ if __name__ == "__main__":
59
+ SAMPLE_RATE = 16000
60
+ WINDOW_SIZE = FFT_SIZE = 512
61
+ # reference_audio_path = "../../data/white.wav"
62
+ # target_audio_path = "../../data/white_EQ.wav"
63
+ # print(os.path.exists(reference_audio_path))
64
+
65
+ # 读取音频文件
66
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
67
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
68
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
69
+ reference_audio = wav_3956[:, 1]
70
+ target_audio = wav_3956[:, 0]
71
+ eq_curve, compensated_audio = compute_frequency_eq(
72
+ reference_audio, target_audio,
73
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
74
+ plot_results=True
75
+ )
76
+ sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -0,0 +1,76 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-04 21:49:05
4
+ Description: 自动EQ补偿
5
+ '''
6
+ import numpy as np
7
+ import librosa
8
+ import soundfile as sf
9
+ import matplotlib.pyplot as plt
10
+
11
+ np.set_printoptions(precision=8)
12
+ np.set_printoptions(suppress=True) # 打印不使用科学计数法
13
+
14
+
15
+ def get_freq_eq(reference_audio, target_audio, sample_rate, fft_size, window_size, plot_results=False):
16
+ freq_bins = np.fft.rfftfreq(fft_size, d=1.0 / sample_rate) # [0, 31.25, 62.5,.....]
17
+
18
+ stft_reference = librosa.stft(reference_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
19
+ stft_target = librosa.stft(target_audio, n_fft=fft_size, hop_length=window_size // 2, win_length=window_size, window="hann")
20
+ magnitude_reference, magnitude_target = np.abs(stft_reference), np.abs(stft_target) # (F,T)
21
+ # 求时间平均, 频响曲线 Frequency_Response_curve
22
+ reference_response = np.mean(magnitude_reference, axis=1)
23
+ target_response = np.mean(magnitude_target, axis=1)
24
+
25
+ reference_response_db = 20 * np.log10(reference_response) # 取对数幅度谱, 以便更好地可视化
26
+ target_response_db = 20 * np.log10(target_response) # 取对数幅度谱, 以便更好地可视化
27
+
28
+ eq_curve = target_response_db - reference_response_db # 补偿曲线 (28208, 1)
29
+ # print("补偿EQ曲线: ", len(eq_curve), np.array2string(np.power(10, eq_curve / 20), separator=', '))
30
+
31
+ if plot_results:
32
+ plt.figure(figsize=(10, 5))
33
+ # plt.plot(freq_bins, target_response_db, label="Target Response")
34
+ plt.plot(freq_bins, eq_curve, label="EQ Curve")
35
+ # compensated_response = reference_response_db + eq_curve # 补偿后的曲线
36
+ # plt.plot(freq_bins, compensated_response, label="Compensated Response")
37
+ plt.xlabel('Frequency (Hz)')
38
+ plt.ylabel('Amplitude (dB)')
39
+ plt.title('Frequency Response Compensation')
40
+ plt.grid(True)
41
+ plt.legend()
42
+ plt.xscale('log')
43
+ plt.grid(True, ls="--", alpha=0.4)
44
+ plt.tight_layout()
45
+ # plt.show()
46
+ plt.savefig(f"./frequency_eq_fft{window_size}.png")
47
+
48
+ # 拿到EQ之后我们对音频进行EQ补偿
49
+ reference_phase = np.angle(stft_reference) # (F,T)
50
+ for freq_idx in range(magnitude_reference.shape[0]):
51
+ magnitude_reference[freq_idx, :] *= np.power(10, eq_curve[freq_idx] / 20)
52
+ compensated_spectrum = magnitude_reference * np.exp(1.0j * reference_phase)
53
+ compensated_audio = librosa.istft(compensated_spectrum, hop_length=window_size // 2, win_length=window_size, n_fft=fft_size, window="hann")
54
+
55
+ return eq_curve, compensated_audio
56
+
57
+
58
+ if __name__ == "__main__":
59
+ SAMPLE_RATE = 16000
60
+ WINDOW_SIZE = FFT_SIZE = 512
61
+ # reference_audio_path = "../../data/white.wav"
62
+ # target_audio_path = "../../data/white_EQ.wav"
63
+ # print(os.path.exists(reference_audio_path))
64
+
65
+ # 读取音频文件
66
+ # reference_audio, _ = sf.read(reference_audio_path, dtype='float32')
67
+ # target_audio, _ = sf.read(target_audio_path, dtype='float32')
68
+ wav_3956, sr = sf.read("../../data/3956_speech.wav")
69
+ reference_audio = wav_3956[:, 1]
70
+ target_audio = wav_3956[:, 0]
71
+ eq_curve, compensated_audio = compute_frequency_eq(
72
+ reference_audio, target_audio,
73
+ SAMPLE_RATE, FFT_SIZE, WINDOW_SIZE,
74
+ plot_results=True
75
+ )
76
+ sf.write("../../data/frequency_eq.wav", compensated_audio, SAMPLE_RATE)
@@ -7,7 +7,7 @@ import scipy.signal as signal
7
7
  from scipy.signal import lfilter, freqz
8
8
  import matplotlib.pyplot as plt
9
9
  from deap import base, creator, tools, algorithms
10
- from filter import EQFilter
10
+ from neverlib.filter import EQFilter
11
11
 
12
12
  # --- Configuration Parameters ---
13
13
  SOURCE_AUDIO_PATH = "../data/white.wav"