neverlib 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
- neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
- neverlib/.history/filter/__init___20250820103351.py +70 -0
- neverlib/.history/filter/__init___20250821102348.py +70 -0
- neverlib/.history/filter/__init___20250821102405.py +14 -0
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
- neverlib/{filter/AudoEQ/auto_eq_de.py → .history/filter/auto_eq/de_eq_20250820103848.py} +1 -1
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
- neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py} +1 -1
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
- neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
- neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
- neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
- neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
- neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
- neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
- neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
- neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
- neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
- neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
- neverlib/.history/metrics/snr_20250806010538.py +177 -0
- neverlib/.history/metrics/snr_20250806211634.py +184 -0
- neverlib/.history/metrics/spec_20250805234209.py +45 -0
- neverlib/.history/metrics/spec_20250816135530.py +11 -0
- neverlib/.history/metrics/spec_20250816135654.py +16 -0
- neverlib/.history/metrics/spec_20250816135736.py +68 -0
- neverlib/.history/metrics/spec_20250816135904.py +75 -0
- neverlib/.history/metrics/spec_20250816135921.py +82 -0
- neverlib/.history/metrics/spec_20250816140111.py +82 -0
- neverlib/.history/metrics/spec_20250816140543.py +136 -0
- neverlib/.history/metrics/spec_20250816140559.py +172 -0
- neverlib/.history/metrics/spec_20250816140602.py +172 -0
- neverlib/.history/metrics/spec_20250816140608.py +172 -0
- neverlib/.history/metrics/spec_20250816140654.py +148 -0
- neverlib/.history/metrics/spec_20250816140705.py +144 -0
- neverlib/.history/metrics/spec_20250816140755.py +138 -0
- neverlib/.history/metrics/spec_20250816140823.py +170 -0
- neverlib/.history/metrics/spec_20250816140832.py +170 -0
- neverlib/.history/metrics/spec_20250816140833.py +170 -0
- neverlib/.history/metrics/spec_20250816140922.py +147 -0
- neverlib/.history/metrics/spec_20250816141148.py +107 -0
- neverlib/.history/metrics/spec_20250816141219.py +123 -0
- neverlib/.history/metrics/spec_20250816141732.py +178 -0
- neverlib/.history/metrics/spec_20250816141740.py +178 -0
- neverlib/.history/metrics/spec_20250816142030.py +178 -0
- neverlib/.history/metrics/spec_20250816142107.py +135 -0
- neverlib/.history/metrics/spec_20250816142126.py +135 -0
- neverlib/.history/metrics/spec_20250816142410.py +135 -0
- neverlib/.history/metrics/spec_20250816142415.py +136 -0
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
- neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
- neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
- neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
- neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
- neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
- neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
- neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
- neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
- neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
- neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
- neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
- neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
- neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
- neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
- neverlib/.specstory/.what-is-this.md +69 -0
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
- neverlib/Docs/audio_aug/test_snr.py +55 -0
- neverlib/audio_aug/HarmonicDistortion.py +79 -0
- neverlib/audio_aug/TFDrop.py +41 -0
- neverlib/audio_aug/TFMask.py +56 -0
- neverlib/audio_aug/audio_aug.py +16 -1
- neverlib/audio_aug/clip_aug.py +41 -0
- neverlib/audio_aug/coder_aug.py +209 -0
- neverlib/audio_aug/coder_aug2.py +118 -0
- neverlib/audio_aug/loss_packet_aug.py +103 -0
- neverlib/audio_aug/quant_aug.py +78 -0
- neverlib/data_analyze/__init__.py +14 -0
- neverlib/filter/auto_eq/__init__.py +36 -0
- neverlib/filter/auto_eq/de_eq.py +360 -0
- neverlib/filter/auto_eq/freq_eq.py +76 -0
- neverlib/filter/{AudoEQ/auto_eq_ga_advanced.py → auto_eq/ga_eq_advanced.py} +1 -1
- neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
- neverlib/metrics/dnsmos.py +58 -101
- neverlib/metrics/lpc_lsp.py +118 -0
- neverlib/metrics/snr.py +11 -4
- neverlib/metrics/spec.py +136 -45
- neverlib/utils/utils.py +17 -14
- neverlib/vad/PreProcess.py +5 -2
- neverlib/vad/VAD_Silero.py +1 -1
- neverlib/vad/VAD_WebRTC.py +1 -1
- neverlib/vad/VAD_funasr.py +1 -1
- neverlib/vad/VAD_vadlib.py +1 -1
- neverlib/vad/VAD_whisper.py +1 -1
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/METADATA +1 -1
- neverlib-0.2.4.dist-info/RECORD +229 -0
- neverlib-0.2.3.dist-info/RECORD +0 -53
- /neverlib/{dataAnalyze/__init__.py → .history/dataAnalyze/__init___20250805234204.py} +0 -0
- /neverlib/{filter/AudoEQ/auto_eq_spectral_direct.py → .history/filter/auto_eq/freq_eq_20250805234206.py} +0 -0
- /neverlib/{dataAnalyze → data_analyze}/README.md +0 -0
- /neverlib/{dataAnalyze → data_analyze}/dataset_analyzer.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/quality_metrics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/rms_distrubution.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/spectral_analysis.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/statistics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/temporal_features.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/visualization.py +0 -0
- /neverlib/filter/{AudoEQ → auto_eq}/README.md +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/WHEEL +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description: 音频信号频域客观度量指标计算工具
|
|
5
|
+
主要功能:
|
|
6
|
+
1. SD (Spectral Distance) - 频谱距离
|
|
7
|
+
- 计算两个音频信号在频域上的差异程度
|
|
8
|
+
- 适用于音频质量评估和信号相似性分析
|
|
9
|
+
|
|
10
|
+
2. LSD (Log-Spectral Distance) - 对数谱距离
|
|
11
|
+
- 在对数功率谱域计算信号距离
|
|
12
|
+
- 更符合人耳听觉特性,常用于语音质量评估
|
|
13
|
+
|
|
14
|
+
3. MCD (Mel-Cepstral Distance) - 梅尔倒谱距离
|
|
15
|
+
- 基于MFCC特征的音频相似性度量
|
|
16
|
+
- 广泛应用于语音合成、语音识别等任务
|
|
17
|
+
'''
|
|
18
|
+
|
|
19
|
+
import librosa
|
|
20
|
+
import numpy as np
|
|
21
|
+
import soundfile as sf
|
|
22
|
+
from neverlib.utils import EPS
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def sd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
26
|
+
"""
|
|
27
|
+
计算两个音频信号之间的频谱距离 (Spectral Distance)。
|
|
28
|
+
该指标衡量两个信号在频域上的差异程度。
|
|
29
|
+
Args:
|
|
30
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
31
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
32
|
+
n_fft (int): FFT点数,决定频率分辨率,默认为2048
|
|
33
|
+
hop_length (int): 帧移,决定时间分辨率,默认为512
|
|
34
|
+
win_length (int, optional): 窗长,如果为None则默认为n_fft
|
|
35
|
+
Returns:
|
|
36
|
+
float: 频谱距离值,值越小表示两个信号越相似
|
|
37
|
+
"""
|
|
38
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
39
|
+
|
|
40
|
+
# 计算短时傅里叶变换
|
|
41
|
+
ref_spec = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
42
|
+
test_spec = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
43
|
+
|
|
44
|
+
# 计算频谱距离:均方根误差
|
|
45
|
+
spec_diff = ref_spec - test_spec
|
|
46
|
+
squared_diff = np.abs(spec_diff) ** 2
|
|
47
|
+
mean_squared_diff = np.mean(squared_diff)
|
|
48
|
+
sd_value = np.sqrt(mean_squared_diff)
|
|
49
|
+
|
|
50
|
+
return sd_value
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def lsd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
56
|
+
"""
|
|
57
|
+
计算两个一维音频信号之间的对数谱距离 (Log-Spectral Distance, LSD)。
|
|
58
|
+
该实现遵循标准的LSD定义: 整体均方根误差。
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
ref_wav (np.ndarray): 原始的、干净的参考信号 (一维数组)。
|
|
62
|
+
test_wav (np.ndarray): 模型估计或处理后的信号 (一维数组)。
|
|
63
|
+
n_fft (int): FFT点数, 决定了频率分辨率。
|
|
64
|
+
hop_length (int): 帧移, 决定了时间分辨率。
|
|
65
|
+
win_length (int, optional): 窗长。如果为None, 则默认为n_fft。
|
|
66
|
+
epsilon (float): 一个非常小的数值, 用于防止对零取对数, 保证数值稳定性。
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
float: 对数谱距离值, 单位为分贝 (dB)。
|
|
70
|
+
"""
|
|
71
|
+
assert ref_wav.ndim == 1 and test_wav.ndim == 1, "输入信号必须是一维数组。"
|
|
72
|
+
|
|
73
|
+
if win_length is None:
|
|
74
|
+
win_length = n_fft
|
|
75
|
+
|
|
76
|
+
ref_stft = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
77
|
+
test_stft = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
78
|
+
|
|
79
|
+
ref_power_spec = np.abs(ref_stft) ** 2 # (F,T)
|
|
80
|
+
test_power_spec = np.abs(test_stft) ** 2 # (F,T)
|
|
81
|
+
|
|
82
|
+
ref_log_power_spec = 10 * np.log10(ref_power_spec + EPS)
|
|
83
|
+
test_log_power_spec = 10 * np.log10(test_power_spec + EPS)
|
|
84
|
+
|
|
85
|
+
squared_error = (ref_log_power_spec - test_log_power_spec) ** 2
|
|
86
|
+
lsd_val = np.sqrt(np.mean(squared_error))
|
|
87
|
+
|
|
88
|
+
return lsd_val
|
|
89
|
+
|
|
90
|
+
def mcd(ref_wav, test_wav, sr=16000, n_mfcc=13):
|
|
91
|
+
"""
|
|
92
|
+
计算两个音频信号之间的梅尔倒谱距离 (Mel-Cepstral Distance, MCD)。
|
|
93
|
+
该指标常用于语音合成质量评估,值越小表示两个信号越相似。
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
97
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
98
|
+
sr (int): 采样率,默认为16000Hz
|
|
99
|
+
n_mfcc (int): MFCC系数个数,默认为13
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
float: 梅尔倒谱距离值,值越小表示两个信号越相似
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
106
|
+
|
|
107
|
+
# 计算MFCC特征
|
|
108
|
+
ref_mfcc = librosa.feature.mfcc(y=ref_wav, sr=sr, n_mfcc=n_mfcc)
|
|
109
|
+
test_mfcc = librosa.feature.mfcc(y=test_wav, sr=sr, n_mfcc=n_mfcc)
|
|
110
|
+
|
|
111
|
+
# 计算MCD (跳过0阶系数,因为0阶主要表示能量)
|
|
112
|
+
diff = ref_mfcc[1:] - test_mfcc[1:]
|
|
113
|
+
mcd_value = (10.0 / np.log(10)) * np.sqrt(2 * np.mean(np.sum(diff ** 2, axis=0)))
|
|
114
|
+
|
|
115
|
+
return mcd_value
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
if __name__ == "__main__":
|
|
119
|
+
ref_file = "../data/vad_example.wav" # 参考语音文件路径
|
|
120
|
+
test_file = "../data/vad_example.wav" # 测试语音文件路径
|
|
121
|
+
|
|
122
|
+
ref_wav, ref_sr = sf.read(ref_file)
|
|
123
|
+
test_wav, test_sr = sf.read(test_file)
|
|
124
|
+
assert ref_sr == test_sr == 16000, "采样率必须为16000Hz"
|
|
125
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
126
|
+
|
|
127
|
+
mcd_value = mcd(ref_wav, test_wav)
|
|
128
|
+
print(f"梅尔倒谱距离: {mcd_value:.2f}")
|
|
129
|
+
|
|
130
|
+
lsd_value = lsd(ref_wav, test_wav)
|
|
131
|
+
print(f"对数谱距离: {lsd_value:.2f}")
|
|
132
|
+
|
|
133
|
+
sd_value = sd(ref_wav, test_wav)
|
|
134
|
+
print(f"频谱距离: {sd_value:.2f}")
|
|
135
|
+
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description: 音频信号频域客观度量指标计算工具
|
|
5
|
+
主要功能:
|
|
6
|
+
1. SD (Spectral Distance) - 频谱距离
|
|
7
|
+
- 计算两个音频信号在频域上的差异程度
|
|
8
|
+
- 适用于音频质量评估和信号相似性分析
|
|
9
|
+
|
|
10
|
+
2. LSD (Log-Spectral Distance) - 对数谱距离
|
|
11
|
+
- 在对数功率谱域计算信号距离
|
|
12
|
+
- 更符合人耳听觉特性,常用于语音质量评估
|
|
13
|
+
|
|
14
|
+
3. MCD (Mel-Cepstral Distance) - 梅尔倒谱距离
|
|
15
|
+
- 基于MFCC特征的音频相似性度量
|
|
16
|
+
- 广泛应用于语音合成、语音识别等任务
|
|
17
|
+
'''
|
|
18
|
+
|
|
19
|
+
import librosa
|
|
20
|
+
import numpy as np
|
|
21
|
+
import soundfile as sf
|
|
22
|
+
from neverlib.utils import EPS
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def sd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
26
|
+
"""
|
|
27
|
+
计算两个音频信号之间的频谱距离 (Spectral Distance)。
|
|
28
|
+
该指标衡量两个信号在频域上的差异程度。
|
|
29
|
+
Args:
|
|
30
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
31
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
32
|
+
n_fft (int): FFT点数,决定频率分辨率,默认为2048
|
|
33
|
+
hop_length (int): 帧移,决定时间分辨率,默认为512
|
|
34
|
+
win_length (int, optional): 窗长,如果为None则默认为n_fft
|
|
35
|
+
Returns:
|
|
36
|
+
float: 频谱距离值,值越小表示两个信号越相似
|
|
37
|
+
"""
|
|
38
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
39
|
+
|
|
40
|
+
# 计算短时傅里叶变换
|
|
41
|
+
ref_spec = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
42
|
+
test_spec = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
43
|
+
|
|
44
|
+
# 计算频谱距离:均方根误差
|
|
45
|
+
spec_diff = ref_spec - test_spec
|
|
46
|
+
squared_diff = np.abs(spec_diff) ** 2
|
|
47
|
+
mean_squared_diff = np.mean(squared_diff)
|
|
48
|
+
sd_value = np.sqrt(mean_squared_diff)
|
|
49
|
+
|
|
50
|
+
return sd_value
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def lsd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
56
|
+
"""
|
|
57
|
+
计算两个一维音频信号之间的对数谱距离 (Log-Spectral Distance, LSD)。
|
|
58
|
+
该实现遵循标准的LSD定义: 整体均方根误差。
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
ref_wav (np.ndarray): 原始的、干净的参考信号 (一维数组)。
|
|
62
|
+
test_wav (np.ndarray): 模型估计或处理后的信号 (一维数组)。
|
|
63
|
+
n_fft (int): FFT点数, 决定了频率分辨率。
|
|
64
|
+
hop_length (int): 帧移, 决定了时间分辨率。
|
|
65
|
+
win_length (int, optional): 窗长。如果为None, 则默认为n_fft。
|
|
66
|
+
epsilon (float): 一个非常小的数值, 用于防止对零取对数, 保证数值稳定性。
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
float: 对数谱距离值, 单位为分贝 (dB)。
|
|
70
|
+
"""
|
|
71
|
+
assert ref_wav.ndim == 1 and test_wav.ndim == 1, "输入信号必须是一维数组。"
|
|
72
|
+
|
|
73
|
+
if win_length is None:
|
|
74
|
+
win_length = n_fft
|
|
75
|
+
|
|
76
|
+
ref_stft = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
77
|
+
test_stft = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
78
|
+
|
|
79
|
+
ref_power_spec = np.abs(ref_stft) ** 2 # (F,T)
|
|
80
|
+
test_power_spec = np.abs(test_stft) ** 2 # (F,T)
|
|
81
|
+
|
|
82
|
+
ref_log_power_spec = 10 * np.log10(ref_power_spec + EPS)
|
|
83
|
+
test_log_power_spec = 10 * np.log10(test_power_spec + EPS)
|
|
84
|
+
|
|
85
|
+
squared_error = (ref_log_power_spec - test_log_power_spec) ** 2
|
|
86
|
+
lsd_val = np.sqrt(np.mean(squared_error))
|
|
87
|
+
|
|
88
|
+
return lsd_val
|
|
89
|
+
|
|
90
|
+
def mcd(ref_wav, test_wav, sr=16000, n_mfcc=13):
|
|
91
|
+
"""
|
|
92
|
+
计算两个音频信号之间的梅尔倒谱距离 (Mel-Cepstral Distance, MCD)。
|
|
93
|
+
该指标常用于语音合成质量评估,值越小表示两个信号越相似。
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
97
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
98
|
+
sr (int): 采样率,默认为16000Hz
|
|
99
|
+
n_mfcc (int): MFCC系数个数,默认为13
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
float: 梅尔倒谱距离值,值越小表示两个信号越相似
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
106
|
+
|
|
107
|
+
# 计算MFCC特征
|
|
108
|
+
ref_mfcc = librosa.feature.mfcc(y=ref_wav, sr=sr, n_mfcc=n_mfcc)
|
|
109
|
+
test_mfcc = librosa.feature.mfcc(y=test_wav, sr=sr, n_mfcc=n_mfcc)
|
|
110
|
+
|
|
111
|
+
# 计算MCD (跳过0阶系数,因为0阶主要表示能量)
|
|
112
|
+
diff = ref_mfcc[1:] - test_mfcc[1:]
|
|
113
|
+
mcd_value = (10.0 / np.log(10)) * np.sqrt(2 * np.mean(np.sum(diff ** 2, axis=0)))
|
|
114
|
+
|
|
115
|
+
return mcd_value
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
if __name__ == "__main__":
|
|
119
|
+
ref_file = "../data/vad_example.wav" # 参考语音文件路径
|
|
120
|
+
test_file = "../data/vad_example.wav" # 测试语音文件路径
|
|
121
|
+
|
|
122
|
+
ref_wav, ref_sr = sf.read(ref_file)
|
|
123
|
+
test_wav, test_sr = sf.read(test_file)
|
|
124
|
+
assert ref_sr == test_sr == 16000, "采样率必须为16000Hz"
|
|
125
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
126
|
+
|
|
127
|
+
mcd_value = mcd(ref_wav, test_wav)
|
|
128
|
+
print(f"梅尔倒谱距离: {mcd_value:.2f}")
|
|
129
|
+
|
|
130
|
+
lsd_value = lsd(ref_wav, test_wav)
|
|
131
|
+
print(f"对数谱距离: {lsd_value:.2f}")
|
|
132
|
+
|
|
133
|
+
sd_value = sd(ref_wav, test_wav)
|
|
134
|
+
print(f"频谱距离: {sd_value:.2f}")
|
|
135
|
+
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description: 音频信号频域客观度量指标计算工具
|
|
5
|
+
主要功能:
|
|
6
|
+
1. SD (Spectral Distance) - 频谱距离
|
|
7
|
+
- 计算两个音频信号在频域上的差异程度
|
|
8
|
+
- 适用于音频质量评估和信号相似性分析
|
|
9
|
+
|
|
10
|
+
2. LSD (Log-Spectral Distance) - 对数谱距离
|
|
11
|
+
- 在对数功率谱域计算信号距离
|
|
12
|
+
- 更符合人耳听觉特性,常用于语音质量评估
|
|
13
|
+
|
|
14
|
+
3. MCD (Mel-Cepstral Distance) - 梅尔倒谱距离
|
|
15
|
+
- 基于MFCC特征的音频相似性度量
|
|
16
|
+
- 广泛应用于语音合成、语音识别等任务
|
|
17
|
+
'''
|
|
18
|
+
|
|
19
|
+
import librosa
|
|
20
|
+
import numpy as np
|
|
21
|
+
import soundfile as sf
|
|
22
|
+
from neverlib.utils import EPS
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def sd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
26
|
+
"""
|
|
27
|
+
计算两个音频信号之间的频谱距离 (Spectral Distance)。
|
|
28
|
+
该指标衡量两个信号在频域上的差异程度。
|
|
29
|
+
Args:
|
|
30
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
31
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
32
|
+
n_fft (int): FFT点数,决定频率分辨率,默认为2048
|
|
33
|
+
hop_length (int): 帧移,决定时间分辨率,默认为512
|
|
34
|
+
win_length (int, optional): 窗长,如果为None则默认为n_fft
|
|
35
|
+
Returns:
|
|
36
|
+
float: 频谱距离值,值越小表示两个信号越相似
|
|
37
|
+
"""
|
|
38
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
39
|
+
|
|
40
|
+
# 计算短时傅里叶变换
|
|
41
|
+
ref_spec = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
42
|
+
test_spec = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
43
|
+
|
|
44
|
+
# 计算频谱距离:均方根误差
|
|
45
|
+
spec_diff = ref_spec - test_spec
|
|
46
|
+
squared_diff = np.abs(spec_diff) ** 2
|
|
47
|
+
mean_squared_diff = np.mean(squared_diff)
|
|
48
|
+
sd_value = np.sqrt(mean_squared_diff)
|
|
49
|
+
|
|
50
|
+
return sd_value
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def lsd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
56
|
+
"""
|
|
57
|
+
计算两个一维音频信号之间的对数谱距离 (Log-Spectral Distance, LSD)。
|
|
58
|
+
该实现遵循标准的LSD定义: 整体均方根误差。
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
ref_wav (np.ndarray): 原始的、干净的参考信号 (一维数组)。
|
|
62
|
+
test_wav (np.ndarray): 模型估计或处理后的信号 (一维数组)。
|
|
63
|
+
n_fft (int): FFT点数, 决定了频率分辨率。
|
|
64
|
+
hop_length (int): 帧移, 决定了时间分辨率。
|
|
65
|
+
win_length (int, optional): 窗长。如果为None, 则默认为n_fft。
|
|
66
|
+
epsilon (float): 一个非常小的数值, 用于防止对零取对数, 保证数值稳定性。
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
float: 对数谱距离值, 单位为分贝 (dB)。
|
|
70
|
+
"""
|
|
71
|
+
assert ref_wav.ndim == 1 and test_wav.ndim == 1, "输入信号必须是一维数组。"
|
|
72
|
+
|
|
73
|
+
if win_length is None:
|
|
74
|
+
win_length = n_fft
|
|
75
|
+
|
|
76
|
+
ref_stft = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
77
|
+
test_stft = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
78
|
+
|
|
79
|
+
ref_power_spec = np.abs(ref_stft) ** 2 # (F,T)
|
|
80
|
+
test_power_spec = np.abs(test_stft) ** 2 # (F,T)
|
|
81
|
+
|
|
82
|
+
ref_log_power_spec = 10 * np.log10(ref_power_spec + EPS)
|
|
83
|
+
test_log_power_spec = 10 * np.log10(test_power_spec + EPS)
|
|
84
|
+
|
|
85
|
+
squared_error = (ref_log_power_spec - test_log_power_spec) ** 2
|
|
86
|
+
lsd_val = np.sqrt(np.mean(squared_error))
|
|
87
|
+
|
|
88
|
+
return lsd_val
|
|
89
|
+
|
|
90
|
+
def mcd(ref_wav, test_wav, sr=16000, n_mfcc=13):
|
|
91
|
+
"""
|
|
92
|
+
计算两个音频信号之间的梅尔倒谱距离 (Mel-Cepstral Distance, MCD)。
|
|
93
|
+
该指标常用于语音合成质量评估,值越小表示两个信号越相似。
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
97
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
98
|
+
sr (int): 采样率,默认为16000Hz
|
|
99
|
+
n_mfcc (int): MFCC系数个数,默认为13
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
float: 梅尔倒谱距离值,值越小表示两个信号越相似
|
|
103
|
+
|
|
104
|
+
"""
|
|
105
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
106
|
+
|
|
107
|
+
# 计算MFCC特征
|
|
108
|
+
ref_mfcc = librosa.feature.mfcc(y=ref_wav, sr=sr, n_mfcc=n_mfcc)
|
|
109
|
+
test_mfcc = librosa.feature.mfcc(y=test_wav, sr=sr, n_mfcc=n_mfcc)
|
|
110
|
+
|
|
111
|
+
# 计算MCD (跳过0阶系数,因为0阶主要表示能量)
|
|
112
|
+
diff = ref_mfcc[1:] - test_mfcc[1:]
|
|
113
|
+
mcd_value = (10.0 / np.log(10)) * np.sqrt(2 * np.mean(np.sum(diff ** 2, axis=0)))
|
|
114
|
+
|
|
115
|
+
return mcd_value
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
if __name__ == "__main__":
|
|
119
|
+
ref_file = "../data/vad_example.wav" # 参考语音文件路径
|
|
120
|
+
test_file = "../data/vad_example.wav" # 测试语音文件路径
|
|
121
|
+
|
|
122
|
+
ref_wav, ref_sr = sf.read(ref_file)
|
|
123
|
+
test_wav, test_sr = sf.read(test_file)
|
|
124
|
+
assert ref_sr == test_sr == 16000, "采样率必须为16000Hz"
|
|
125
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
126
|
+
|
|
127
|
+
mcd_value = mcd(ref_wav, test_wav)
|
|
128
|
+
print(f"梅尔倒谱距离: {mcd_value:.2f}")
|
|
129
|
+
|
|
130
|
+
lsd_value = lsd(ref_wav, test_wav)
|
|
131
|
+
print(f"对数谱距离: {lsd_value:.2f}")
|
|
132
|
+
|
|
133
|
+
sd_value = sd(ref_wav, test_wav)
|
|
134
|
+
print(f"频谱距离: {sd_value:.2f}")
|
|
135
|
+
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description: 音频信号频域客观度量指标计算工具
|
|
5
|
+
主要功能:
|
|
6
|
+
1. SD (Spectral Distance) - 频谱距离
|
|
7
|
+
- 计算两个音频信号在频域上的差异程度
|
|
8
|
+
- 适用于音频质量评估和信号相似性分析
|
|
9
|
+
|
|
10
|
+
2. LSD (Log-Spectral Distance) - 对数谱距离
|
|
11
|
+
- 在对数功率谱域计算信号距离
|
|
12
|
+
- 更符合人耳听觉特性,常用于语音质量评估
|
|
13
|
+
|
|
14
|
+
3. MCD (Mel-Cepstral Distance) - 梅尔倒谱距离
|
|
15
|
+
- 基于MFCC特征的音频相似性度量
|
|
16
|
+
- 广泛应用于语音合成、语音识别等任务
|
|
17
|
+
'''
|
|
18
|
+
|
|
19
|
+
import librosa
|
|
20
|
+
import numpy as np
|
|
21
|
+
import soundfile as sf
|
|
22
|
+
from neverlib.utils import EPS
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def sd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
26
|
+
"""
|
|
27
|
+
计算两个音频信号之间的频谱距离 (Spectral Distance)。
|
|
28
|
+
该指标衡量两个信号在频域上的差异程度。
|
|
29
|
+
Args:
|
|
30
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
31
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
32
|
+
n_fft (int): FFT点数,决定频率分辨率,默认为2048
|
|
33
|
+
hop_length (int): 帧移,决定时间分辨率,默认为512
|
|
34
|
+
win_length (int, optional): 窗长,如果为None则默认为n_fft
|
|
35
|
+
Returns:
|
|
36
|
+
float: 频谱距离值,值越小表示两个信号越相似
|
|
37
|
+
"""
|
|
38
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
39
|
+
|
|
40
|
+
# 计算短时傅里叶变换
|
|
41
|
+
ref_spec = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
42
|
+
test_spec = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
|
|
43
|
+
|
|
44
|
+
# 计算频谱距离:均方根误差
|
|
45
|
+
spec_diff = ref_spec - test_spec
|
|
46
|
+
squared_diff = np.abs(spec_diff) ** 2
|
|
47
|
+
mean_squared_diff = np.mean(squared_diff)
|
|
48
|
+
sd_value = np.sqrt(mean_squared_diff)
|
|
49
|
+
|
|
50
|
+
return sd_value
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def lsd(ref_wav, test_wav, n_fft=2048, hop_length=512, win_length=None):
|
|
56
|
+
"""
|
|
57
|
+
计算两个一维音频信号之间的对数谱距离 (Log-Spectral Distance, LSD)。
|
|
58
|
+
该实现遵循标准的LSD定义: 整体均方根误差。
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
ref_wav (np.ndarray): 原始的、干净的参考信号 (一维数组)。
|
|
62
|
+
test_wav (np.ndarray): 模型估计或处理后的信号 (一维数组)。
|
|
63
|
+
n_fft (int): FFT点数, 决定了频率分辨率。
|
|
64
|
+
hop_length (int): 帧移, 决定了时间分辨率。
|
|
65
|
+
win_length (int, optional): 窗长。如果为None, 则默认为n_fft。
|
|
66
|
+
epsilon (float): 一个非常小的数值, 用于防止对零取对数, 保证数值稳定性。
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
float: 对数谱距离值, 单位为分贝 (dB)。
|
|
70
|
+
"""
|
|
71
|
+
assert ref_wav.ndim == 1 and test_wav.ndim == 1, "输入信号必须是一维数组。"
|
|
72
|
+
|
|
73
|
+
if win_length is None:
|
|
74
|
+
win_length = n_fft
|
|
75
|
+
|
|
76
|
+
ref_stft = librosa.stft(ref_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
77
|
+
test_stft = librosa.stft(test_wav, n_fft=n_fft, hop_length=hop_length, win_length=win_length) # (F,T)
|
|
78
|
+
|
|
79
|
+
ref_power_spec = np.abs(ref_stft) ** 2 # (F,T)
|
|
80
|
+
test_power_spec = np.abs(test_stft) ** 2 # (F,T)
|
|
81
|
+
|
|
82
|
+
ref_log_power_spec = 10 * np.log10(ref_power_spec + EPS)
|
|
83
|
+
test_log_power_spec = 10 * np.log10(test_power_spec + EPS)
|
|
84
|
+
|
|
85
|
+
squared_error = (ref_log_power_spec - test_log_power_spec) ** 2
|
|
86
|
+
lsd_val = np.sqrt(np.mean(squared_error))
|
|
87
|
+
|
|
88
|
+
return lsd_val
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
def mcd(ref_wav, test_wav, sr=16000, n_mfcc=13):
|
|
92
|
+
"""
|
|
93
|
+
计算两个音频信号之间的梅尔倒谱距离 (Mel-Cepstral Distance, MCD)。
|
|
94
|
+
该指标常用于语音合成质量评估,值越小表示两个信号越相似。
|
|
95
|
+
|
|
96
|
+
Args:
|
|
97
|
+
ref_wav (np.ndarray): 参考音频信号 (一维数组)
|
|
98
|
+
test_wav (np.ndarray): 测试音频信号 (一维数组)
|
|
99
|
+
sr (int): 采样率,默认为16000Hz
|
|
100
|
+
n_mfcc (int): MFCC系数个数,默认为13
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
float: 梅尔倒谱距离值,值越小表示两个信号越相似
|
|
104
|
+
|
|
105
|
+
"""
|
|
106
|
+
assert len(ref_wav) == len(test_wav), "输入信号长度必须相同"
|
|
107
|
+
|
|
108
|
+
# 计算MFCC特征
|
|
109
|
+
ref_mfcc = librosa.feature.mfcc(y=ref_wav, sr=sr, n_mfcc=n_mfcc)
|
|
110
|
+
test_mfcc = librosa.feature.mfcc(y=test_wav, sr=sr, n_mfcc=n_mfcc)
|
|
111
|
+
|
|
112
|
+
# 计算MCD (跳过0阶系数,因为0阶主要表示能量)
|
|
113
|
+
diff = ref_mfcc[1:] - test_mfcc[1:]
|
|
114
|
+
mcd_value = (10.0 / np.log(10)) * np.sqrt(2 * np.mean(np.sum(diff ** 2, axis=0)))
|
|
115
|
+
|
|
116
|
+
return mcd_value
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
if __name__ == "__main__":
|
|
120
|
+
ref_file = "../data/vad_example.wav" # 参考语音文件路径
|
|
121
|
+
test_file = "../data/vad_example.wav" # 测试语音文件路径
|
|
122
|
+
|
|
123
|
+
ref_wav, ref_sr = sf.read(ref_file)
|
|
124
|
+
test_wav, test_sr = sf.read(test_file)
|
|
125
|
+
assert ref_sr == test_sr == 16000, "采样率必须为16000Hz"
|
|
126
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
127
|
+
|
|
128
|
+
mcd_value = mcd(ref_wav, test_wav)
|
|
129
|
+
print(f"梅尔倒谱距离: {mcd_value:.2f}")
|
|
130
|
+
|
|
131
|
+
lsd_value = lsd(ref_wav, test_wav)
|
|
132
|
+
print(f"对数谱距离: {lsd_value:.2f}")
|
|
133
|
+
|
|
134
|
+
sd_value = sd(ref_wav, test_wav)
|
|
135
|
+
print(f"频谱距离: {sd_value:.2f}")
|
|
136
|
+
|
|
File without changes
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description:
|
|
5
|
+
'''
|
|
6
|
+
|
|
7
|
+
import librosa
|
|
8
|
+
import numpy as np
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def mcd(ref_wav, test_wav, sr=16000):
|
|
13
|
+
"""
|
|
14
|
+
梅尔倒谱距离 Mel-Cepstral Distance(MCD)
|
|
15
|
+
ref_spec: 参考频谱
|
|
16
|
+
test_spec: 测试频谱
|
|
17
|
+
"""
|
|
18
|
+
ref_wav, ref_sr = sf.read(ref_wav)
|
|
19
|
+
test_wav, test_sr = sf.read(test_wav)
|
|
20
|
+
assert ref_sr == test_sr == sr, "采样率必须为16000Hz"
|
|
21
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
22
|
+
|
|
23
|
+
ref_mfc = librosa.feature.mfcc(y=ref_wav, sr=sr)
|
|
24
|
+
test_mfc = librosa.feature.mfcc(y=test_wav, sr=sr)
|
|
25
|
+
|
|
26
|
+
mcd = np.mean(np.abs(ref_mfc - test_mfc))
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
return mcd
|
|
31
|
+
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description:
|
|
5
|
+
'''
|
|
6
|
+
|
|
7
|
+
import librosa
|
|
8
|
+
import numpy as np
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def mcd(ref_wav, test_wav, sr=16000):
|
|
13
|
+
"""
|
|
14
|
+
梅尔倒谱距离 Mel-Cepstral Distance(MCD)
|
|
15
|
+
ref_spec: 参考频谱
|
|
16
|
+
test_spec: 测试频谱
|
|
17
|
+
"""
|
|
18
|
+
ref_wav, ref_sr = sf.read(ref_wav)
|
|
19
|
+
test_wav, test_sr = sf.read(test_wav)
|
|
20
|
+
assert ref_sr == test_sr == sr, "采样率必须为16000Hz"
|
|
21
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
22
|
+
|
|
23
|
+
ref_mfc = librosa.feature.mfcc(y=ref_wav, sr=sr)
|
|
24
|
+
test_mfc = librosa.feature.mfcc(y=test_wav, sr=sr)
|
|
25
|
+
|
|
26
|
+
# 计算 MCD (跳过 0 阶)
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
return mcd
|
|
31
|
+
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
'''
|
|
2
|
+
Author: 凌逆战 | Never
|
|
3
|
+
Date: 2025-08-16 13:51:57
|
|
4
|
+
Description:
|
|
5
|
+
'''
|
|
6
|
+
|
|
7
|
+
import librosa
|
|
8
|
+
import numpy as np
|
|
9
|
+
import soundfile as sf
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def mcd(ref_wav, test_wav, sr=16000):
|
|
13
|
+
"""
|
|
14
|
+
梅尔倒谱距离 Mel-Cepstral Distance
|
|
15
|
+
ref_spec: 参考频谱
|
|
16
|
+
test_spec: 测试频谱
|
|
17
|
+
"""
|
|
18
|
+
ref_wav, ref_sr = sf.read(ref_wav)
|
|
19
|
+
test_wav, test_sr = sf.read(test_wav)
|
|
20
|
+
assert ref_sr == test_sr == sr, "采样率必须为16000Hz"
|
|
21
|
+
assert len(ref_wav) == len(test_wav), "音频长度必须相同"
|
|
22
|
+
|
|
23
|
+
ref_mfcc = librosa.feature.mfcc(y=ref_wav, sr=sr)
|
|
24
|
+
test_mfcc = librosa.feature.mfcc(y=test_wav, sr=sr)
|
|
25
|
+
|
|
26
|
+
# 计算 MCD (跳过 0 阶)
|
|
27
|
+
diff = ref_mfcc[1:] - test_mfcc[1:]
|
|
28
|
+
mcd = (10.0 / np.log(10)) * np.sqrt(2 * np.mean(np.sum(diff ** 2, axis=0)))
|
|
29
|
+
return mcd
|