neverlib 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
- neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
- neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
- neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
- neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
- neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
- neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
- neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
- neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
- neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
- neverlib/.history/filter/__init___20250820103351.py +70 -0
- neverlib/.history/filter/__init___20250821102348.py +70 -0
- neverlib/.history/filter/__init___20250821102405.py +14 -0
- neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
- neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
- neverlib/{filter/AudoEQ/auto_eq_de.py → .history/filter/auto_eq/de_eq_20250820103848.py} +1 -1
- neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
- neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
- neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py} +1 -1
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
- neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
- neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
- neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
- neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
- neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
- neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
- neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
- neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
- neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
- neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
- neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
- neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
- neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
- neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
- neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
- neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
- neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
- neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
- neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
- neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
- neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
- neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
- neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
- neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
- neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
- neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
- neverlib/.history/metrics/snr_20250806010538.py +177 -0
- neverlib/.history/metrics/snr_20250806211634.py +184 -0
- neverlib/.history/metrics/spec_20250805234209.py +45 -0
- neverlib/.history/metrics/spec_20250816135530.py +11 -0
- neverlib/.history/metrics/spec_20250816135654.py +16 -0
- neverlib/.history/metrics/spec_20250816135736.py +68 -0
- neverlib/.history/metrics/spec_20250816135904.py +75 -0
- neverlib/.history/metrics/spec_20250816135921.py +82 -0
- neverlib/.history/metrics/spec_20250816140111.py +82 -0
- neverlib/.history/metrics/spec_20250816140543.py +136 -0
- neverlib/.history/metrics/spec_20250816140559.py +172 -0
- neverlib/.history/metrics/spec_20250816140602.py +172 -0
- neverlib/.history/metrics/spec_20250816140608.py +172 -0
- neverlib/.history/metrics/spec_20250816140654.py +148 -0
- neverlib/.history/metrics/spec_20250816140705.py +144 -0
- neverlib/.history/metrics/spec_20250816140755.py +138 -0
- neverlib/.history/metrics/spec_20250816140823.py +170 -0
- neverlib/.history/metrics/spec_20250816140832.py +170 -0
- neverlib/.history/metrics/spec_20250816140833.py +170 -0
- neverlib/.history/metrics/spec_20250816140922.py +147 -0
- neverlib/.history/metrics/spec_20250816141148.py +107 -0
- neverlib/.history/metrics/spec_20250816141219.py +123 -0
- neverlib/.history/metrics/spec_20250816141732.py +178 -0
- neverlib/.history/metrics/spec_20250816141740.py +178 -0
- neverlib/.history/metrics/spec_20250816142030.py +178 -0
- neverlib/.history/metrics/spec_20250816142107.py +135 -0
- neverlib/.history/metrics/spec_20250816142126.py +135 -0
- neverlib/.history/metrics/spec_20250816142410.py +135 -0
- neverlib/.history/metrics/spec_20250816142415.py +136 -0
- neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
- neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
- neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
- neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
- neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
- neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
- neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
- neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
- neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
- neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
- neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
- neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
- neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
- neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
- neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
- neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
- neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
- neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
- neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
- neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
- neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
- neverlib/.specstory/.what-is-this.md +69 -0
- neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
- neverlib/Docs/audio_aug/test_snr.py +55 -0
- neverlib/audio_aug/HarmonicDistortion.py +79 -0
- neverlib/audio_aug/TFDrop.py +41 -0
- neverlib/audio_aug/TFMask.py +56 -0
- neverlib/audio_aug/audio_aug.py +16 -1
- neverlib/audio_aug/clip_aug.py +41 -0
- neverlib/audio_aug/coder_aug.py +209 -0
- neverlib/audio_aug/coder_aug2.py +118 -0
- neverlib/audio_aug/loss_packet_aug.py +103 -0
- neverlib/audio_aug/quant_aug.py +78 -0
- neverlib/data_analyze/__init__.py +14 -0
- neverlib/filter/auto_eq/__init__.py +36 -0
- neverlib/filter/auto_eq/de_eq.py +360 -0
- neverlib/filter/auto_eq/freq_eq.py +76 -0
- neverlib/filter/{AudoEQ/auto_eq_ga_advanced.py → auto_eq/ga_eq_advanced.py} +1 -1
- neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
- neverlib/metrics/dnsmos.py +58 -101
- neverlib/metrics/lpc_lsp.py +118 -0
- neverlib/metrics/snr.py +11 -4
- neverlib/metrics/spec.py +136 -45
- neverlib/utils/utils.py +17 -14
- neverlib/vad/PreProcess.py +5 -2
- neverlib/vad/VAD_Silero.py +1 -1
- neverlib/vad/VAD_WebRTC.py +1 -1
- neverlib/vad/VAD_funasr.py +1 -1
- neverlib/vad/VAD_vadlib.py +1 -1
- neverlib/vad/VAD_whisper.py +1 -1
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/METADATA +1 -1
- neverlib-0.2.4.dist-info/RECORD +229 -0
- neverlib-0.2.3.dist-info/RECORD +0 -53
- /neverlib/{dataAnalyze/__init__.py → .history/dataAnalyze/__init___20250805234204.py} +0 -0
- /neverlib/{filter/AudoEQ/auto_eq_spectral_direct.py → .history/filter/auto_eq/freq_eq_20250805234206.py} +0 -0
- /neverlib/{dataAnalyze → data_analyze}/README.md +0 -0
- /neverlib/{dataAnalyze → data_analyze}/dataset_analyzer.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/quality_metrics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/rms_distrubution.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/spectral_analysis.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/statistics.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/temporal_features.py +0 -0
- /neverlib/{dataAnalyze → data_analyze}/visualization.py +0 -0
- /neverlib/filter/{AudoEQ → auto_eq}/README.md +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/WHEEL +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
- {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import librosa
|
|
3
|
+
|
|
4
|
+
def pre_emphasis(signal, coeff=0.97):
|
|
5
|
+
"""预加重"""
|
|
6
|
+
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
|
|
7
|
+
|
|
8
|
+
def framing(signal, frame_size, frame_stride, fs):
|
|
9
|
+
"""分帧 + 汉明窗"""
|
|
10
|
+
frame_length = int(round(frame_size * fs))
|
|
11
|
+
frame_step = int(round(frame_stride * fs))
|
|
12
|
+
|
|
13
|
+
# 使用 librosa 进行分帧
|
|
14
|
+
frames = librosa.util.frame(signal, frame_length=frame_length, hop_length=frame_step, axis=0)
|
|
15
|
+
|
|
16
|
+
# 应用汉明窗
|
|
17
|
+
hamming_window = np.hamming(frame_length)
|
|
18
|
+
frames = frames.T * hamming_window
|
|
19
|
+
|
|
20
|
+
return frames
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def lpc_analysis(frame, order):
|
|
24
|
+
"""对一帧做 LPC 分析"""
|
|
25
|
+
a = librosa.lpc(frame, order=order)
|
|
26
|
+
return a
|
|
27
|
+
|
|
28
|
+
def lpc_to_lsp(a, num_points=512):
|
|
29
|
+
"""
|
|
30
|
+
LPC -> LSP 转换(简易近似版,零点搜索法)
|
|
31
|
+
"""
|
|
32
|
+
p = len(a) - 1
|
|
33
|
+
a = np.array(a)
|
|
34
|
+
# 构造P(z) Q(z)
|
|
35
|
+
P = np.zeros(p+1)
|
|
36
|
+
Q = np.zeros(p+1)
|
|
37
|
+
for i in range(p+1):
|
|
38
|
+
if i == 0:
|
|
39
|
+
P[i] = 1 + a[i]
|
|
40
|
+
Q[i] = 1 - a[i]
|
|
41
|
+
else:
|
|
42
|
+
P[i] = a[i] + a[p - i]
|
|
43
|
+
Q[i] = a[i] - a[p - i]
|
|
44
|
+
# 频域采样找过零点
|
|
45
|
+
w = np.linspace(0, np.pi, num_points)
|
|
46
|
+
Pw = np.polyval(P[::-1], np.cos(w))
|
|
47
|
+
Qw = np.polyval(Q[::-1], np.cos(w))
|
|
48
|
+
|
|
49
|
+
# 找零点近似位置
|
|
50
|
+
roots_P = w[np.where(np.diff(np.sign(Pw)) != 0)]
|
|
51
|
+
roots_Q = w[np.where(np.diff(np.sign(Qw)) != 0)]
|
|
52
|
+
lsp = np.sort(np.concatenate([roots_P, roots_Q]))
|
|
53
|
+
return lsp
|
|
54
|
+
|
|
55
|
+
def lsp_mse(lsp1, lsp2):
|
|
56
|
+
"""计算两个 LSP 向量的均方差"""
|
|
57
|
+
return np.mean((lsp1 - lsp2) ** 2)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def lpc_lsp_distance(ref_wav, test_wav, frame_size=0.025, frame_stride=0.01, order=12):
|
|
61
|
+
"""主函数:计算 LPC-LSP 参数失真"""
|
|
62
|
+
ref_sig, fs_r = librosa.load(ref_wav, sr=None)
|
|
63
|
+
test_sig, fs_t = librosa.load(test_wav, sr=None)
|
|
64
|
+
|
|
65
|
+
# 预加重
|
|
66
|
+
ref_sig = pre_emphasis(ref_sig)
|
|
67
|
+
test_sig = pre_emphasis(test_sig)
|
|
68
|
+
|
|
69
|
+
# 分帧
|
|
70
|
+
ref_frames = framing(ref_sig, frame_size, frame_stride, fs_r)
|
|
71
|
+
test_frames = framing(test_sig, frame_size, frame_stride, fs_t)
|
|
72
|
+
|
|
73
|
+
# 对齐帧数(简单切到最短)
|
|
74
|
+
num_frames = min(len(ref_frames), len(test_frames))
|
|
75
|
+
ref_frames = ref_frames[:num_frames]
|
|
76
|
+
test_frames = test_frames[:num_frames]
|
|
77
|
+
|
|
78
|
+
distances = []
|
|
79
|
+
for i in range(num_frames):
|
|
80
|
+
a_ref = lpc_analysis(ref_frames[i], order)
|
|
81
|
+
a_test = lpc_analysis(test_frames[i], order)
|
|
82
|
+
lsp_ref = lpc_to_lsp(a_ref)
|
|
83
|
+
lsp_test = lpc_to_lsp(a_test)
|
|
84
|
+
# 对齐长度(简单裁切)
|
|
85
|
+
min_len = min(len(lsp_ref), len(lsp_test))
|
|
86
|
+
dist = lsp_mse(lsp_ref[:min_len], lsp_test[:min_len])
|
|
87
|
+
distances.append(dist)
|
|
88
|
+
|
|
89
|
+
return np.mean(distances), distances
|
|
90
|
+
|
|
91
|
+
if __name__ == "__main__":
|
|
92
|
+
ref_file = "ref.wav" # 参考语音文件路径
|
|
93
|
+
test_file = "test.wav" # 测试语音文件路径
|
|
94
|
+
|
|
95
|
+
avg_dist, dist_list = lpc_lsp_distance(ref_file, test_file)
|
|
96
|
+
print(f"平均 LSP MSE 失真: {avg_dist}")
|
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import librosa
|
|
3
|
+
import soundfile as sf
|
|
4
|
+
|
|
5
|
+
def pre_emphasis(signal, coeff=0.97):
|
|
6
|
+
"""预加重"""
|
|
7
|
+
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
|
|
8
|
+
|
|
9
|
+
def framing(signal, frame_size, frame_stride, fs):
|
|
10
|
+
"""分帧 + 汉明窗"""
|
|
11
|
+
frame_length = int(round(frame_size * fs))
|
|
12
|
+
frame_step = int(round(frame_stride * fs))
|
|
13
|
+
|
|
14
|
+
# 使用 librosa 进行分帧
|
|
15
|
+
frames = librosa.util.frame(signal, frame_length=frame_length, hop_length=frame_step, axis=0)
|
|
16
|
+
|
|
17
|
+
# 应用汉明窗
|
|
18
|
+
hamming_window = np.hamming(frame_length)
|
|
19
|
+
frames = frames.T * hamming_window
|
|
20
|
+
|
|
21
|
+
return frames
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def lpc_analysis(frame, order):
|
|
25
|
+
"""对一帧做 LPC 分析"""
|
|
26
|
+
a = librosa.lpc(frame, order=order)
|
|
27
|
+
return a
|
|
28
|
+
|
|
29
|
+
def lpc_to_lsp(a, num_points=512):
|
|
30
|
+
"""
|
|
31
|
+
LPC -> LSP 转换(简易近似版,零点搜索法)
|
|
32
|
+
"""
|
|
33
|
+
p = len(a) - 1
|
|
34
|
+
a = np.array(a)
|
|
35
|
+
# 构造P(z) Q(z)
|
|
36
|
+
P = np.zeros(p+1)
|
|
37
|
+
Q = np.zeros(p+1)
|
|
38
|
+
for i in range(p+1):
|
|
39
|
+
if i == 0:
|
|
40
|
+
P[i] = 1 + a[i]
|
|
41
|
+
Q[i] = 1 - a[i]
|
|
42
|
+
else:
|
|
43
|
+
P[i] = a[i] + a[p - i]
|
|
44
|
+
Q[i] = a[i] - a[p - i]
|
|
45
|
+
# 频域采样找过零点
|
|
46
|
+
w = np.linspace(0, np.pi, num_points)
|
|
47
|
+
Pw = np.polyval(P[::-1], np.cos(w))
|
|
48
|
+
Qw = np.polyval(Q[::-1], np.cos(w))
|
|
49
|
+
|
|
50
|
+
# 找零点近似位置
|
|
51
|
+
roots_P = w[np.where(np.diff(np.sign(Pw)) != 0)]
|
|
52
|
+
roots_Q = w[np.where(np.diff(np.sign(Qw)) != 0)]
|
|
53
|
+
lsp = np.sort(np.concatenate([roots_P, roots_Q]))
|
|
54
|
+
return lsp
|
|
55
|
+
|
|
56
|
+
def lsp_mse(lsp1, lsp2):
|
|
57
|
+
"""计算两个 LSP 向量的均方差"""
|
|
58
|
+
return np.mean((lsp1 - lsp2) ** 2)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def lpc_lsp_distance(ref_wav, test_wav, frame_size=0.025, frame_stride=0.01, order=12):
|
|
62
|
+
"""主函数:计算 LPC-LSP 参数失真"""
|
|
63
|
+
ref_sig, fs_r = sf.read(ref_wav, dtype='float32')
|
|
64
|
+
test_sig, fs_t = sf.read(test_wav, dtype='float32')
|
|
65
|
+
|
|
66
|
+
# 预加重
|
|
67
|
+
ref_sig = pre_emphasis(ref_sig)
|
|
68
|
+
test_sig = pre_emphasis(test_sig)
|
|
69
|
+
|
|
70
|
+
# 分帧
|
|
71
|
+
ref_frames = framing(ref_sig, frame_size, frame_stride, fs_r)
|
|
72
|
+
test_frames = framing(test_sig, frame_size, frame_stride, fs_t)
|
|
73
|
+
|
|
74
|
+
# 对齐帧数(简单切到最短)
|
|
75
|
+
num_frames = min(len(ref_frames), len(test_frames))
|
|
76
|
+
ref_frames = ref_frames[:num_frames]
|
|
77
|
+
test_frames = test_frames[:num_frames]
|
|
78
|
+
|
|
79
|
+
distances = []
|
|
80
|
+
for i in range(num_frames):
|
|
81
|
+
a_ref = lpc_analysis(ref_frames[i], order)
|
|
82
|
+
a_test = lpc_analysis(test_frames[i], order)
|
|
83
|
+
lsp_ref = lpc_to_lsp(a_ref)
|
|
84
|
+
lsp_test = lpc_to_lsp(a_test)
|
|
85
|
+
# 对齐长度(简单裁切)
|
|
86
|
+
min_len = min(len(lsp_ref), len(lsp_test))
|
|
87
|
+
dist = lsp_mse(lsp_ref[:min_len], lsp_test[:min_len])
|
|
88
|
+
distances.append(dist)
|
|
89
|
+
|
|
90
|
+
return np.mean(distances), distances
|
|
91
|
+
|
|
92
|
+
if __name__ == "__main__":
|
|
93
|
+
ref_file = "ref.wav" # 参考语音文件路径
|
|
94
|
+
test_file = "test.wav" # 测试语音文件路径
|
|
95
|
+
|
|
96
|
+
avg_dist, dist_list = lpc_lsp_distance(ref_file, test_file)
|
|
97
|
+
print(f"平均 LSP MSE 失真: {avg_dist}")
|
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
'''
|
|
2
|
+
LPC-LSP 参数失真计算
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
'''
|
|
8
|
+
import numpy as np
|
|
9
|
+
import librosa
|
|
10
|
+
import soundfile as sf
|
|
11
|
+
|
|
12
|
+
def pre_emphasis(signal, coeff=0.97):
|
|
13
|
+
"""预加重"""
|
|
14
|
+
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
|
|
15
|
+
|
|
16
|
+
def framing(signal, frame_size, frame_stride, fs):
|
|
17
|
+
"""分帧 + 汉明窗"""
|
|
18
|
+
frame_length = int(round(frame_size * fs))
|
|
19
|
+
frame_step = int(round(frame_stride * fs))
|
|
20
|
+
|
|
21
|
+
# 使用 librosa 进行分帧
|
|
22
|
+
frames = librosa.util.frame(signal, frame_length=frame_length, hop_length=frame_step, axis=0)
|
|
23
|
+
|
|
24
|
+
# 应用汉明窗
|
|
25
|
+
hamming_window = np.hamming(frame_length)
|
|
26
|
+
frames = frames.T * hamming_window
|
|
27
|
+
|
|
28
|
+
return frames
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def lpc_analysis(frame, order):
|
|
32
|
+
"""对一帧做 LPC 分析"""
|
|
33
|
+
a = librosa.lpc(frame, order=order)
|
|
34
|
+
return a
|
|
35
|
+
|
|
36
|
+
def lpc_to_lsp(a, num_points=512):
|
|
37
|
+
"""
|
|
38
|
+
LPC -> LSP 转换(简易近似版,零点搜索法)
|
|
39
|
+
"""
|
|
40
|
+
p = len(a) - 1
|
|
41
|
+
a = np.array(a)
|
|
42
|
+
# 构造P(z) Q(z)
|
|
43
|
+
P = np.zeros(p+1)
|
|
44
|
+
Q = np.zeros(p+1)
|
|
45
|
+
for i in range(p+1):
|
|
46
|
+
if i == 0:
|
|
47
|
+
P[i] = 1 + a[i]
|
|
48
|
+
Q[i] = 1 - a[i]
|
|
49
|
+
else:
|
|
50
|
+
P[i] = a[i] + a[p - i]
|
|
51
|
+
Q[i] = a[i] - a[p - i]
|
|
52
|
+
# 频域采样找过零点
|
|
53
|
+
w = np.linspace(0, np.pi, num_points)
|
|
54
|
+
Pw = np.polyval(P[::-1], np.cos(w))
|
|
55
|
+
Qw = np.polyval(Q[::-1], np.cos(w))
|
|
56
|
+
|
|
57
|
+
# 找零点近似位置
|
|
58
|
+
roots_P = w[np.where(np.diff(np.sign(Pw)) != 0)]
|
|
59
|
+
roots_Q = w[np.where(np.diff(np.sign(Qw)) != 0)]
|
|
60
|
+
lsp = np.sort(np.concatenate([roots_P, roots_Q]))
|
|
61
|
+
return lsp
|
|
62
|
+
|
|
63
|
+
def lsp_mse(lsp1, lsp2):
|
|
64
|
+
"""计算两个 LSP 向量的均方差"""
|
|
65
|
+
return np.mean((lsp1 - lsp2) ** 2)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def lpc_lsp_distance(ref_wav, test_wav, frame_size=0.025, frame_stride=0.01, order=12):
|
|
69
|
+
"""主函数:计算 LPC-LSP 参数失真"""
|
|
70
|
+
ref_sig, fs_r = sf.read(ref_wav, dtype='float32')
|
|
71
|
+
test_sig, fs_t = sf.read(test_wav, dtype='float32')
|
|
72
|
+
|
|
73
|
+
# 预加重
|
|
74
|
+
ref_sig = pre_emphasis(ref_sig)
|
|
75
|
+
test_sig = pre_emphasis(test_sig)
|
|
76
|
+
|
|
77
|
+
# 分帧
|
|
78
|
+
ref_frames = framing(ref_sig, frame_size, frame_stride, fs_r)
|
|
79
|
+
test_frames = framing(test_sig, frame_size, frame_stride, fs_t)
|
|
80
|
+
|
|
81
|
+
# 对齐帧数(简单切到最短)
|
|
82
|
+
num_frames = min(len(ref_frames), len(test_frames))
|
|
83
|
+
ref_frames = ref_frames[:num_frames]
|
|
84
|
+
test_frames = test_frames[:num_frames]
|
|
85
|
+
|
|
86
|
+
distances = []
|
|
87
|
+
for i in range(num_frames):
|
|
88
|
+
a_ref = lpc_analysis(ref_frames[i], order)
|
|
89
|
+
a_test = lpc_analysis(test_frames[i], order)
|
|
90
|
+
lsp_ref = lpc_to_lsp(a_ref)
|
|
91
|
+
lsp_test = lpc_to_lsp(a_test)
|
|
92
|
+
# 对齐长度(简单裁切)
|
|
93
|
+
min_len = min(len(lsp_ref), len(lsp_test))
|
|
94
|
+
dist = lsp_mse(lsp_ref[:min_len], lsp_test[:min_len])
|
|
95
|
+
distances.append(dist)
|
|
96
|
+
|
|
97
|
+
return np.mean(distances), distances
|
|
98
|
+
|
|
99
|
+
if __name__ == "__main__":
|
|
100
|
+
ref_file = "ref.wav" # 参考语音文件路径
|
|
101
|
+
test_file = "test.wav" # 测试语音文件路径
|
|
102
|
+
|
|
103
|
+
avg_dist, dist_list = lpc_lsp_distance(ref_file, test_file)
|
|
104
|
+
print(f"平均 LSP MSE 失真: {avg_dist}")
|
|
@@ -0,0 +1,100 @@
|
|
|
1
|
+
'''
|
|
2
|
+
LPC-LSP 参数失真计算
|
|
3
|
+
'''
|
|
4
|
+
import numpy as np
|
|
5
|
+
import librosa
|
|
6
|
+
import soundfile as sf
|
|
7
|
+
|
|
8
|
+
def pre_emphasis(signal, coeff=0.97):
|
|
9
|
+
"""预加重"""
|
|
10
|
+
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
|
|
11
|
+
|
|
12
|
+
def framing(signal, frame_size, frame_stride, fs):
|
|
13
|
+
"""分帧 + 汉明窗"""
|
|
14
|
+
frame_length = int(round(frame_size * fs))
|
|
15
|
+
frame_step = int(round(frame_stride * fs))
|
|
16
|
+
|
|
17
|
+
# 使用 librosa 进行分帧
|
|
18
|
+
frames = librosa.util.frame(signal, frame_length=frame_length, hop_length=frame_step, axis=0)
|
|
19
|
+
|
|
20
|
+
# 应用汉明窗
|
|
21
|
+
hamming_window = np.hamming(frame_length)
|
|
22
|
+
frames = frames.T * hamming_window
|
|
23
|
+
|
|
24
|
+
return frames
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def lpc_analysis(frame, order):
|
|
28
|
+
"""对一帧做 LPC 分析"""
|
|
29
|
+
a = librosa.lpc(frame, order=order)
|
|
30
|
+
return a
|
|
31
|
+
|
|
32
|
+
def lpc_to_lsp(a, num_points=512):
|
|
33
|
+
"""
|
|
34
|
+
LPC -> LSP 转换(简易近似版,零点搜索法)
|
|
35
|
+
"""
|
|
36
|
+
p = len(a) - 1
|
|
37
|
+
a = np.array(a)
|
|
38
|
+
# 构造P(z) Q(z)
|
|
39
|
+
P = np.zeros(p+1)
|
|
40
|
+
Q = np.zeros(p+1)
|
|
41
|
+
for i in range(p+1):
|
|
42
|
+
if i == 0:
|
|
43
|
+
P[i] = 1 + a[i]
|
|
44
|
+
Q[i] = 1 - a[i]
|
|
45
|
+
else:
|
|
46
|
+
P[i] = a[i] + a[p - i]
|
|
47
|
+
Q[i] = a[i] - a[p - i]
|
|
48
|
+
# 频域采样找过零点
|
|
49
|
+
w = np.linspace(0, np.pi, num_points)
|
|
50
|
+
Pw = np.polyval(P[::-1], np.cos(w))
|
|
51
|
+
Qw = np.polyval(Q[::-1], np.cos(w))
|
|
52
|
+
|
|
53
|
+
# 找零点近似位置
|
|
54
|
+
roots_P = w[np.where(np.diff(np.sign(Pw)) != 0)]
|
|
55
|
+
roots_Q = w[np.where(np.diff(np.sign(Qw)) != 0)]
|
|
56
|
+
lsp = np.sort(np.concatenate([roots_P, roots_Q]))
|
|
57
|
+
return lsp
|
|
58
|
+
|
|
59
|
+
def lsp_mse(lsp1, lsp2):
|
|
60
|
+
"""计算两个 LSP 向量的均方差"""
|
|
61
|
+
return np.mean((lsp1 - lsp2) ** 2)
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
def lpc_lsp_distance(ref_wav, test_wav, frame_size=0.025, frame_stride=0.01, order=12):
|
|
65
|
+
"""主函数:计算 LPC-LSP 参数失真"""
|
|
66
|
+
ref_sig, fs_r = sf.read(ref_wav, dtype='float32')
|
|
67
|
+
test_sig, fs_t = sf.read(test_wav, dtype='float32')
|
|
68
|
+
|
|
69
|
+
# 预加重
|
|
70
|
+
ref_sig = pre_emphasis(ref_sig)
|
|
71
|
+
test_sig = pre_emphasis(test_sig)
|
|
72
|
+
|
|
73
|
+
# 分帧
|
|
74
|
+
ref_frames = framing(ref_sig, frame_size, frame_stride, fs_r)
|
|
75
|
+
test_frames = framing(test_sig, frame_size, frame_stride, fs_t)
|
|
76
|
+
|
|
77
|
+
# 对齐帧数(简单切到最短)
|
|
78
|
+
num_frames = min(len(ref_frames), len(test_frames))
|
|
79
|
+
ref_frames = ref_frames[:num_frames]
|
|
80
|
+
test_frames = test_frames[:num_frames]
|
|
81
|
+
|
|
82
|
+
distances = []
|
|
83
|
+
for i in range(num_frames):
|
|
84
|
+
a_ref = lpc_analysis(ref_frames[i], order)
|
|
85
|
+
a_test = lpc_analysis(test_frames[i], order)
|
|
86
|
+
lsp_ref = lpc_to_lsp(a_ref)
|
|
87
|
+
lsp_test = lpc_to_lsp(a_test)
|
|
88
|
+
# 对齐长度(简单裁切)
|
|
89
|
+
min_len = min(len(lsp_ref), len(lsp_test))
|
|
90
|
+
dist = lsp_mse(lsp_ref[:min_len], lsp_test[:min_len])
|
|
91
|
+
distances.append(dist)
|
|
92
|
+
|
|
93
|
+
return np.mean(distances), distances
|
|
94
|
+
|
|
95
|
+
if __name__ == "__main__":
|
|
96
|
+
ref_file = "ref.wav" # 参考语音文件路径
|
|
97
|
+
test_file = "test.wav" # 测试语音文件路径
|
|
98
|
+
|
|
99
|
+
avg_dist, dist_list = lpc_lsp_distance(ref_file, test_file)
|
|
100
|
+
print(f"平均 LSP MSE 失真: {avg_dist}")
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
'''
|
|
2
|
+
功能描述
|
|
3
|
+
|
|
4
|
+
计算参考语音和测试语音之间的线性预测编码-线谱对(LPC-LSP)参
|
|
5
|
+
数失真度
|
|
6
|
+
|
|
7
|
+
主要组件
|
|
8
|
+
|
|
9
|
+
预处理函数:
|
|
10
|
+
- pre_emphasis(): 预加重滤波,增强高频成分
|
|
11
|
+
- framing(): 分帧处理并应用汉明窗
|
|
12
|
+
|
|
13
|
+
LPC分析:
|
|
14
|
+
- lpc_analysis(): 使用librosa.lpc进行线性预测分析
|
|
15
|
+
- lpc_to_lsp(): LPC系数转换为线谱对参数
|
|
16
|
+
|
|
17
|
+
距离计算:
|
|
18
|
+
- lsp_mse(): 计算LSP向量间的均方误差
|
|
19
|
+
- lpc_lsp_distance(): 主函数,返回平均失真度和逐帧失真列表
|
|
20
|
+
|
|
21
|
+
技术特点
|
|
22
|
+
|
|
23
|
+
- 使用soundfile读取音频(支持多种格式)
|
|
24
|
+
- librosa进行LPC分析(替代了自定义算法)
|
|
25
|
+
- 基于LSP的频域失真测量,对量化误差敏感度更低
|
|
26
|
+
- 逐帧分析捕捉语音时变特性
|
|
27
|
+
|
|
28
|
+
应用场景
|
|
29
|
+
|
|
30
|
+
语音编码器质量评估、语音增强效果测量、语音合成质量分析
|
|
31
|
+
'''
|
|
32
|
+
import numpy as np
|
|
33
|
+
import librosa
|
|
34
|
+
import soundfile as sf
|
|
35
|
+
|
|
36
|
+
def pre_emphasis(signal, coeff=0.97):
|
|
37
|
+
"""预加重"""
|
|
38
|
+
return np.append(signal[0], signal[1:] - coeff * signal[:-1])
|
|
39
|
+
|
|
40
|
+
def framing(signal, frame_size, frame_stride, fs):
|
|
41
|
+
"""分帧 + 汉明窗"""
|
|
42
|
+
frame_length = int(round(frame_size * fs))
|
|
43
|
+
frame_step = int(round(frame_stride * fs))
|
|
44
|
+
|
|
45
|
+
# 使用 librosa 进行分帧
|
|
46
|
+
frames = librosa.util.frame(signal, frame_length=frame_length, hop_length=frame_step, axis=0)
|
|
47
|
+
|
|
48
|
+
# 应用汉明窗
|
|
49
|
+
hamming_window = np.hamming(frame_length)
|
|
50
|
+
frames = frames.T * hamming_window
|
|
51
|
+
|
|
52
|
+
return frames
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def lpc_analysis(frame, order):
|
|
56
|
+
"""对一帧做 LPC 分析"""
|
|
57
|
+
a = librosa.lpc(frame, order=order)
|
|
58
|
+
return a
|
|
59
|
+
|
|
60
|
+
def lpc_to_lsp(a, num_points=512):
|
|
61
|
+
"""
|
|
62
|
+
LPC -> LSP 转换(简易近似版,零点搜索法)
|
|
63
|
+
"""
|
|
64
|
+
p = len(a) - 1
|
|
65
|
+
a = np.array(a)
|
|
66
|
+
# 构造P(z) Q(z)
|
|
67
|
+
P = np.zeros(p+1)
|
|
68
|
+
Q = np.zeros(p+1)
|
|
69
|
+
for i in range(p+1):
|
|
70
|
+
if i == 0:
|
|
71
|
+
P[i] = 1 + a[i]
|
|
72
|
+
Q[i] = 1 - a[i]
|
|
73
|
+
else:
|
|
74
|
+
P[i] = a[i] + a[p - i]
|
|
75
|
+
Q[i] = a[i] - a[p - i]
|
|
76
|
+
# 频域采样找过零点
|
|
77
|
+
w = np.linspace(0, np.pi, num_points)
|
|
78
|
+
Pw = np.polyval(P[::-1], np.cos(w))
|
|
79
|
+
Qw = np.polyval(Q[::-1], np.cos(w))
|
|
80
|
+
|
|
81
|
+
# 找零点近似位置
|
|
82
|
+
roots_P = w[np.where(np.diff(np.sign(Pw)) != 0)]
|
|
83
|
+
roots_Q = w[np.where(np.diff(np.sign(Qw)) != 0)]
|
|
84
|
+
lsp = np.sort(np.concatenate([roots_P, roots_Q]))
|
|
85
|
+
return lsp
|
|
86
|
+
|
|
87
|
+
def lsp_mse(lsp1, lsp2):
|
|
88
|
+
"""计算两个 LSP 向量的均方差"""
|
|
89
|
+
return np.mean((lsp1 - lsp2) ** 2)
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def lpc_lsp_distance(ref_wav, test_wav, frame_size=0.025, frame_stride=0.01, order=12):
|
|
93
|
+
"""主函数:计算 LPC-LSP 参数失真"""
|
|
94
|
+
ref_sig, fs_r = sf.read(ref_wav, dtype='float32')
|
|
95
|
+
test_sig, fs_t = sf.read(test_wav, dtype='float32')
|
|
96
|
+
|
|
97
|
+
# 预加重
|
|
98
|
+
ref_sig = pre_emphasis(ref_sig)
|
|
99
|
+
test_sig = pre_emphasis(test_sig)
|
|
100
|
+
|
|
101
|
+
# 分帧
|
|
102
|
+
ref_frames = framing(ref_sig, frame_size, frame_stride, fs_r)
|
|
103
|
+
test_frames = framing(test_sig, frame_size, frame_stride, fs_t)
|
|
104
|
+
|
|
105
|
+
# 对齐帧数(简单切到最短)
|
|
106
|
+
num_frames = min(len(ref_frames), len(test_frames))
|
|
107
|
+
ref_frames = ref_frames[:num_frames]
|
|
108
|
+
test_frames = test_frames[:num_frames]
|
|
109
|
+
|
|
110
|
+
distances = []
|
|
111
|
+
for i in range(num_frames):
|
|
112
|
+
a_ref = lpc_analysis(ref_frames[i], order)
|
|
113
|
+
a_test = lpc_analysis(test_frames[i], order)
|
|
114
|
+
lsp_ref = lpc_to_lsp(a_ref)
|
|
115
|
+
lsp_test = lpc_to_lsp(a_test)
|
|
116
|
+
# 对齐长度(简单裁切)
|
|
117
|
+
min_len = min(len(lsp_ref), len(lsp_test))
|
|
118
|
+
dist = lsp_mse(lsp_ref[:min_len], lsp_test[:min_len])
|
|
119
|
+
distances.append(dist)
|
|
120
|
+
|
|
121
|
+
return np.mean(distances), distances
|
|
122
|
+
|
|
123
|
+
if __name__ == "__main__":
|
|
124
|
+
ref_file = "ref.wav" # 参考语音文件路径
|
|
125
|
+
test_file = "test.wav" # 测试语音文件路径
|
|
126
|
+
|
|
127
|
+
avg_dist, dist_list = lpc_lsp_distance(ref_file, test_file)
|
|
128
|
+
print(f"平均 LSP MSE 失真: {avg_dist}")
|
|
@@ -0,0 +1,177 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
sys.path.append("../")
|
|
3
|
+
import librosa
|
|
4
|
+
import numpy as np
|
|
5
|
+
from neverlib.vad.utils import vad2nad
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def get_snr(speech, noise):
|
|
9
|
+
"""计算信噪比
|
|
10
|
+
Args:
|
|
11
|
+
speech: 语音音频
|
|
12
|
+
noise: 噪声音频
|
|
13
|
+
Returns:
|
|
14
|
+
snr: 信噪比
|
|
15
|
+
"""
|
|
16
|
+
assert speech.ndim == noise.ndim, "speech和noise的维度不一样"
|
|
17
|
+
|
|
18
|
+
power_speech = np.mean(speech**2)
|
|
19
|
+
power_noise = max(np.mean(noise**2), 1e-10)
|
|
20
|
+
|
|
21
|
+
snr = 10 * np.log10(power_speech / power_noise)
|
|
22
|
+
return snr
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def get_snr_from_noisy(noisy, speech_vad=None):
|
|
26
|
+
"""根据带噪音频计算信噪比
|
|
27
|
+
Args:
|
|
28
|
+
noisy: 带噪音频
|
|
29
|
+
speech_vad: [{start:xxx, end:xxx}, ...]
|
|
30
|
+
Returns:
|
|
31
|
+
snr: 信噪比
|
|
32
|
+
"""
|
|
33
|
+
assert speech_vad is not None, "speech_vad不能为空"
|
|
34
|
+
|
|
35
|
+
# 提取语音段
|
|
36
|
+
speech_segments = []
|
|
37
|
+
for segment in speech_vad:
|
|
38
|
+
start = segment['start']
|
|
39
|
+
end = segment['end']
|
|
40
|
+
speech_segments.append(noisy[start:end])
|
|
41
|
+
speech = np.concatenate(speech_segments, axis=0)
|
|
42
|
+
|
|
43
|
+
# 提取非语音段
|
|
44
|
+
noise_segments = []
|
|
45
|
+
noise_point_list = vad2nad(speech_vad, len(noisy))
|
|
46
|
+
for noise_point in noise_point_list:
|
|
47
|
+
noise_segments.append(noisy[noise_point['start']:noise_point['end']])
|
|
48
|
+
noise = np.concatenate(noise_segments, axis=0)
|
|
49
|
+
|
|
50
|
+
return get_snr(speech, noise)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def seg_snr(clean, noisy, frame_length: int, hop_length: int):
|
|
54
|
+
"""
|
|
55
|
+
分帧计算信噪比
|
|
56
|
+
Args:
|
|
57
|
+
clean: 干净音频, numpy array
|
|
58
|
+
noisy: 带噪音频, numpy array
|
|
59
|
+
frame_length: 帧长
|
|
60
|
+
hop_length: 帧移
|
|
61
|
+
Returns:
|
|
62
|
+
snr_mean: 平均信噪比, float
|
|
63
|
+
Raises:
|
|
64
|
+
ValueError: 当输入参数不合法时抛出
|
|
65
|
+
"""
|
|
66
|
+
assert clean.shape == noisy.shape, "clean和noisy的维度不一样"
|
|
67
|
+
|
|
68
|
+
# 分帧
|
|
69
|
+
clean_frames = librosa.util.frame(clean, frame_length=frame_length, hop_length=hop_length) # (frame_length, n_frames)
|
|
70
|
+
noisy_frames = librosa.util.frame(noisy, frame_length=frame_length, hop_length=hop_length) # (frame_length, n_frames)
|
|
71
|
+
|
|
72
|
+
# 计算每帧的信噪比
|
|
73
|
+
snr_frames = []
|
|
74
|
+
for i in range(clean_frames.shape[1]):
|
|
75
|
+
clean_frame = clean_frames[:, i]
|
|
76
|
+
noisy_frame = noisy_frames[:, i]
|
|
77
|
+
# 跳过静音帧
|
|
78
|
+
if np.all(np.abs(clean_frame) < 1e-6) or np.all(np.abs(noisy_frame) < 1e-6):
|
|
79
|
+
continue
|
|
80
|
+
snr_frames.append(get_snr(clean_frame, noisy_frame))
|
|
81
|
+
|
|
82
|
+
# 如果所有帧都是静音
|
|
83
|
+
if not snr_frames:
|
|
84
|
+
return float('-inf')
|
|
85
|
+
|
|
86
|
+
return np.mean(snr_frames)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def psnr(clean, noisy, max_val=None):
|
|
90
|
+
"""
|
|
91
|
+
计算峰值信噪比
|
|
92
|
+
Args:
|
|
93
|
+
clean: 干净音频, numpy array
|
|
94
|
+
noisy: 带噪音频, numpy array
|
|
95
|
+
max_val: 信号最大值, 如果为None则使用clean信号的实际最大值
|
|
96
|
+
Returns:
|
|
97
|
+
psnr: 峰值信噪比, 单位dB
|
|
98
|
+
"""
|
|
99
|
+
assert clean.shape == noisy.shape, "clean和noisy的维度不一样"
|
|
100
|
+
|
|
101
|
+
# 如果没有指定最大值, 使用clean信号的实际最大值
|
|
102
|
+
if max_val is None:
|
|
103
|
+
max_val = np.abs(clean).max()
|
|
104
|
+
|
|
105
|
+
# 计算均方误差 (MSE)
|
|
106
|
+
mse = np.mean((clean - noisy) ** 2)
|
|
107
|
+
|
|
108
|
+
# 避免除以0
|
|
109
|
+
if mse == 0:
|
|
110
|
+
return float('inf')
|
|
111
|
+
|
|
112
|
+
# 计算PSNR
|
|
113
|
+
psnr = 10 * np.log10(max_val**2 / mse)
|
|
114
|
+
return psnr
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def si_sdr(reference, estimate, epsilon=1e-8):
|
|
118
|
+
"""
|
|
119
|
+
计算尺度不变信噪比 (Scale-Invariant Signal-to-Distortion Ratio, SI-SDR)。
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
reference (np.ndarray): 原始的、干净的参考信号 (一维数组)。
|
|
123
|
+
estimate (np.ndarray): 模型估计或处理后的信号 (一维数组)。
|
|
124
|
+
epsilon (float): 一个非常小的数值, 用于防止分母为零, 保证数值稳定性。
|
|
125
|
+
|
|
126
|
+
Returns:
|
|
127
|
+
float: SI-SDR 值, 单位为分贝 (dB)。
|
|
128
|
+
"""
|
|
129
|
+
assert reference.shape == estimate.shape, "reference和estimate的维度不一样"
|
|
130
|
+
|
|
131
|
+
# 2. 零均值化 (可选但推荐)
|
|
132
|
+
# 移除直流分量, 使计算更关注信号的动态变化
|
|
133
|
+
reference = reference - np.mean(reference)
|
|
134
|
+
estimate = estimate - np.mean(estimate)
|
|
135
|
+
|
|
136
|
+
# 3. 计算目标信号分量 (s_target)
|
|
137
|
+
# s_target 是 estimate 在 reference 上的投影
|
|
138
|
+
# 公式: s_target = (<ŝ, s> / ||s||²) * s
|
|
139
|
+
dot_product = np.dot(estimate, reference) # <ŝ, s> (点积)
|
|
140
|
+
norm_s_squared = np.dot(reference, reference) # ||s||² (s的能量)
|
|
141
|
+
|
|
142
|
+
# 检查参考信号能量, 避免除以零
|
|
143
|
+
if norm_s_squared < epsilon:
|
|
144
|
+
# 如果参考信号几乎是静音, SI-SDR没有意义
|
|
145
|
+
return -np.inf # 返回负无穷或np.nan
|
|
146
|
+
|
|
147
|
+
alpha = dot_product / (norm_s_squared + epsilon) # 最佳缩放因子 α
|
|
148
|
+
s_target = alpha * reference
|
|
149
|
+
|
|
150
|
+
# 4. 计算误差/失真分量 (e_noise)
|
|
151
|
+
e_noise = estimate - s_target
|
|
152
|
+
|
|
153
|
+
# 5. 计算 SI-SDR
|
|
154
|
+
# SI-SDR = 10 * log10 ( ||s_target||² / ||e_noise||² )
|
|
155
|
+
power_s_target = np.sum(s_target**2) # ||s_target||²
|
|
156
|
+
power_e_noise = np.sum(e_noise**2) # ||e_noise||²
|
|
157
|
+
|
|
158
|
+
# 同样加上 epsilon 防止除以零
|
|
159
|
+
if power_e_noise < epsilon:
|
|
160
|
+
# 如果噪声能量极小, 说明匹配得非常好
|
|
161
|
+
return np.inf # 返回正无穷
|
|
162
|
+
|
|
163
|
+
si_sdr_val = 10 * np.log10(power_s_target / (power_e_noise + epsilon))
|
|
164
|
+
|
|
165
|
+
return si_sdr_val
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
if __name__ == "__main__":
|
|
169
|
+
# 生成测试信号
|
|
170
|
+
speech = np.random.randn(1000)
|
|
171
|
+
noise = np.random.randn(1000) * 0.1 # 较小的噪声
|
|
172
|
+
noisy = speech + noise
|
|
173
|
+
|
|
174
|
+
# 测试各种信噪比计算方法
|
|
175
|
+
print(f"SNR: {get_snr(speech, noise):.2f} dB")
|
|
176
|
+
print(f"Segmental SNR: {seg_snr(speech, noisy, 100, 50):.2f} dB")
|
|
177
|
+
print(f"PSNR: {psnr(speech, noisy):.2f} dB")
|