neverlib 0.2.3__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (207) hide show
  1. neverlib/.history/Docs/audio_aug/test_snr_20250806011311.py +0 -0
  2. neverlib/.history/Docs/audio_aug/test_snr_20250806011331.py +75 -0
  3. neverlib/.history/Docs/audio_aug/test_snr_20250806011342.py +57 -0
  4. neverlib/.history/Docs/audio_aug/test_snr_20250806011352.py +57 -0
  5. neverlib/.history/Docs/audio_aug/test_snr_20250806011403.py +57 -0
  6. neverlib/.history/Docs/audio_aug/test_snr_20250806011413.py +57 -0
  7. neverlib/.history/Docs/audio_aug/test_snr_20250806011435.py +55 -0
  8. neverlib/.history/Docs/vad/1_20250810032405.py +0 -0
  9. neverlib/.history/Docs/vad/1_20250810032417.py +39 -0
  10. neverlib/.history/audio_aug/audio_aug_20250806010451.py +125 -0
  11. neverlib/.history/audio_aug/audio_aug_20250806010750.py +138 -0
  12. neverlib/.history/audio_aug/audio_aug_20250806010759.py +140 -0
  13. neverlib/.history/audio_aug/audio_aug_20250806010803.py +140 -0
  14. neverlib/.history/audio_aug/audio_aug_20250806010809.py +140 -0
  15. neverlib/.history/audio_aug/audio_aug_20250806011108.py +140 -0
  16. neverlib/.history/dataAnalyze/__init___20250806204125.py +14 -0
  17. neverlib/.history/dataAnalyze/__init___20250806204139.py +14 -0
  18. neverlib/.history/dataAnalyze/__init___20250806204159.py +14 -0
  19. neverlib/.history/filter/__init___20250820103351.py +70 -0
  20. neverlib/.history/filter/__init___20250821102348.py +70 -0
  21. neverlib/.history/filter/__init___20250821102405.py +14 -0
  22. neverlib/.history/filter/auto_eq/__init___20250819213121.py +36 -0
  23. neverlib/.history/filter/auto_eq/__init___20250821102241.py +36 -0
  24. neverlib/.history/filter/auto_eq/__init___20250821102259.py +36 -0
  25. neverlib/.history/filter/auto_eq/__init___20250821102307.py +36 -0
  26. neverlib/.history/filter/auto_eq/__init___20250821102310.py +36 -0
  27. neverlib/.history/filter/auto_eq/__init___20250821102318.py +36 -0
  28. neverlib/.history/filter/auto_eq/__init___20250821102507.py +36 -0
  29. neverlib/{filter/AudoEQ/auto_eq_de.py → .history/filter/auto_eq/de_eq_20250820103848.py} +1 -1
  30. neverlib/.history/filter/auto_eq/de_eq_20250821102422.py +360 -0
  31. neverlib/.history/filter/auto_eq/freq_eq_20250820140732.py +75 -0
  32. neverlib/.history/filter/auto_eq/freq_eq_20250820140745.py +75 -0
  33. neverlib/.history/filter/auto_eq/freq_eq_20250820140816.py +75 -0
  34. neverlib/.history/filter/auto_eq/freq_eq_20250820140938.py +77 -0
  35. neverlib/.history/filter/auto_eq/freq_eq_20250820141003.py +77 -0
  36. neverlib/.history/filter/auto_eq/freq_eq_20250820141006.py +77 -0
  37. neverlib/.history/filter/auto_eq/freq_eq_20250820141019.py +77 -0
  38. neverlib/.history/filter/auto_eq/freq_eq_20250820141049.py +77 -0
  39. neverlib/.history/filter/auto_eq/freq_eq_20250820141211.py +77 -0
  40. neverlib/.history/filter/auto_eq/freq_eq_20250820141227.py +77 -0
  41. neverlib/.history/filter/auto_eq/freq_eq_20250820141311.py +78 -0
  42. neverlib/.history/filter/auto_eq/freq_eq_20250820141340.py +78 -0
  43. neverlib/.history/filter/auto_eq/freq_eq_20250820141712.py +78 -0
  44. neverlib/.history/filter/auto_eq/freq_eq_20250820141733.py +78 -0
  45. neverlib/.history/filter/auto_eq/freq_eq_20250820141755.py +78 -0
  46. neverlib/.history/filter/auto_eq/freq_eq_20250821102434.py +76 -0
  47. neverlib/.history/filter/auto_eq/freq_eq_20250821102500.py +76 -0
  48. neverlib/.history/filter/auto_eq/freq_eq_20250821102502.py +76 -0
  49. neverlib/{filter/AudoEQ/auto_eq_ga_basic.py → .history/filter/auto_eq/ga_eq_basic_20250820102957.py} +1 -1
  50. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113054.py +380 -0
  51. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113150.py +380 -0
  52. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113520.py +385 -0
  53. neverlib/.history/filter/auto_eq/ga_eq_basic_20250820113525.py +385 -0
  54. neverlib/.history/filter/auto_eq/ga_eq_basic_20250821102212.py +385 -0
  55. neverlib/.history/metrics/dnsmos_20250806001612.py +160 -0
  56. neverlib/.history/metrics/dnsmos_20250815180659.py +160 -0
  57. neverlib/.history/metrics/dnsmos_20250815180701.py +158 -0
  58. neverlib/.history/metrics/dnsmos_20250815181321.py +154 -0
  59. neverlib/.history/metrics/dnsmos_20250815181327.py +154 -0
  60. neverlib/.history/metrics/dnsmos_20250815181331.py +154 -0
  61. neverlib/.history/metrics/dnsmos_20250815181620.py +154 -0
  62. neverlib/.history/metrics/dnsmos_20250815181631.py +154 -0
  63. neverlib/.history/metrics/dnsmos_20250815181742.py +154 -0
  64. neverlib/.history/metrics/dnsmos_20250815181824.py +153 -0
  65. neverlib/.history/metrics/dnsmos_20250815181834.py +153 -0
  66. neverlib/.history/metrics/dnsmos_20250815181922.py +153 -0
  67. neverlib/.history/metrics/dnsmos_20250815182011.py +147 -0
  68. neverlib/.history/metrics/dnsmos_20250815182036.py +144 -0
  69. neverlib/.history/metrics/dnsmos_20250815182936.py +143 -0
  70. neverlib/.history/metrics/dnsmos_20250815182942.py +143 -0
  71. neverlib/.history/metrics/dnsmos_20250815183032.py +137 -0
  72. neverlib/.history/metrics/dnsmos_20250815183101.py +144 -0
  73. neverlib/.history/metrics/dnsmos_20250815183121.py +144 -0
  74. neverlib/.history/metrics/dnsmos_20250815183123.py +143 -0
  75. neverlib/.history/metrics/dnsmos_20250815183214.py +143 -0
  76. neverlib/.history/metrics/dnsmos_20250815183240.py +143 -0
  77. neverlib/.history/metrics/dnsmos_20250815183248.py +144 -0
  78. neverlib/.history/metrics/dnsmos_20250815183407.py +142 -0
  79. neverlib/.history/metrics/dnsmos_20250815183409.py +142 -0
  80. neverlib/.history/metrics/dnsmos_20250815183431.py +142 -0
  81. neverlib/.history/metrics/dnsmos_20250815183507.py +140 -0
  82. neverlib/.history/metrics/dnsmos_20250815183513.py +139 -0
  83. neverlib/.history/metrics/dnsmos_20250815183618.py +139 -0
  84. neverlib/.history/metrics/dnsmos_20250815183709.py +140 -0
  85. neverlib/.history/metrics/dnsmos_20250815183756.py +137 -0
  86. neverlib/.history/metrics/dnsmos_20250815183815.py +128 -0
  87. neverlib/.history/metrics/dnsmos_20250815183827.py +129 -0
  88. neverlib/.history/metrics/dnsmos_20250815183913.py +117 -0
  89. neverlib/.history/metrics/dnsmos_20250815183914.py +117 -0
  90. neverlib/.history/metrics/dnsmos_20250815184003.py +118 -0
  91. neverlib/.history/metrics/dnsmos_20250815184040.py +118 -0
  92. neverlib/.history/metrics/dnsmos_20250815184049.py +118 -0
  93. neverlib/.history/metrics/dnsmos_20250815184104.py +117 -0
  94. neverlib/.history/metrics/dnsmos_20250815184200.py +117 -0
  95. neverlib/.history/metrics/lpc_lsp_metric_20250816015944.py +128 -0
  96. neverlib/.history/metrics/lpc_lsp_metric_20250816020142.py +128 -0
  97. neverlib/.history/metrics/lpc_lsp_metric_20250816020156.py +128 -0
  98. neverlib/.history/metrics/lpc_lsp_metric_20250816020554.py +130 -0
  99. neverlib/.history/metrics/lpc_lsp_metric_20250816020600.py +125 -0
  100. neverlib/.history/metrics/lpc_lsp_metric_20250816020631.py +120 -0
  101. neverlib/.history/metrics/lpc_lsp_metric_20250816020746.py +118 -0
  102. neverlib/.history/metrics/lpc_me_20250816013111.py +0 -0
  103. neverlib/.history/metrics/lpc_me_20250816013129.py +121 -0
  104. neverlib/.history/metrics/lpc_me_20250816015430.py +103 -0
  105. neverlib/.history/metrics/lpc_me_20250816015535.py +96 -0
  106. neverlib/.history/metrics/lpc_me_20250816015542.py +96 -0
  107. neverlib/.history/metrics/lpc_me_20250816015636.py +97 -0
  108. neverlib/.history/metrics/lpc_me_20250816015658.py +104 -0
  109. neverlib/.history/metrics/lpc_me_20250816015703.py +100 -0
  110. neverlib/.history/metrics/lpc_me_20250816015945.py +128 -0
  111. neverlib/.history/metrics/snr_20250806010538.py +177 -0
  112. neverlib/.history/metrics/snr_20250806211634.py +184 -0
  113. neverlib/.history/metrics/spec_20250805234209.py +45 -0
  114. neverlib/.history/metrics/spec_20250816135530.py +11 -0
  115. neverlib/.history/metrics/spec_20250816135654.py +16 -0
  116. neverlib/.history/metrics/spec_20250816135736.py +68 -0
  117. neverlib/.history/metrics/spec_20250816135904.py +75 -0
  118. neverlib/.history/metrics/spec_20250816135921.py +82 -0
  119. neverlib/.history/metrics/spec_20250816140111.py +82 -0
  120. neverlib/.history/metrics/spec_20250816140543.py +136 -0
  121. neverlib/.history/metrics/spec_20250816140559.py +172 -0
  122. neverlib/.history/metrics/spec_20250816140602.py +172 -0
  123. neverlib/.history/metrics/spec_20250816140608.py +172 -0
  124. neverlib/.history/metrics/spec_20250816140654.py +148 -0
  125. neverlib/.history/metrics/spec_20250816140705.py +144 -0
  126. neverlib/.history/metrics/spec_20250816140755.py +138 -0
  127. neverlib/.history/metrics/spec_20250816140823.py +170 -0
  128. neverlib/.history/metrics/spec_20250816140832.py +170 -0
  129. neverlib/.history/metrics/spec_20250816140833.py +170 -0
  130. neverlib/.history/metrics/spec_20250816140922.py +147 -0
  131. neverlib/.history/metrics/spec_20250816141148.py +107 -0
  132. neverlib/.history/metrics/spec_20250816141219.py +123 -0
  133. neverlib/.history/metrics/spec_20250816141732.py +178 -0
  134. neverlib/.history/metrics/spec_20250816141740.py +178 -0
  135. neverlib/.history/metrics/spec_20250816142030.py +178 -0
  136. neverlib/.history/metrics/spec_20250816142107.py +135 -0
  137. neverlib/.history/metrics/spec_20250816142126.py +135 -0
  138. neverlib/.history/metrics/spec_20250816142410.py +135 -0
  139. neverlib/.history/metrics/spec_20250816142415.py +136 -0
  140. neverlib/.history/metrics/spec_metric_20250816135156.py +0 -0
  141. neverlib/.history/metrics/spec_metric_20250816135226.py +5 -0
  142. neverlib/.history/metrics/spec_metric_20250816135227.py +10 -0
  143. neverlib/.history/metrics/spec_metric_20250816135306.py +15 -0
  144. neverlib/.history/metrics/spec_metric_20250816135442.py +31 -0
  145. neverlib/.history/metrics/spec_metric_20250816135448.py +31 -0
  146. neverlib/.history/metrics/spec_metric_20250816135520.py +29 -0
  147. neverlib/.history/metrics/spec_metric_20250816135537.py +63 -0
  148. neverlib/.history/metrics/spec_metric_20250816135653.py +65 -0
  149. neverlib/.history/vad/PreProcess_20250805234211.py +63 -0
  150. neverlib/.history/vad/PreProcess_20250809232455.py +63 -0
  151. neverlib/.history/vad/PreProcess_20250816020725.py +66 -0
  152. neverlib/.history/vad/VAD_Silero_20250805234211.py +50 -0
  153. neverlib/.history/vad/VAD_Silero_20250809232456.py +50 -0
  154. neverlib/.history/vad/VAD_WebRTC_20250805234211.py +61 -0
  155. neverlib/.history/vad/VAD_WebRTC_20250809232456.py +61 -0
  156. neverlib/.history/vad/VAD_funasr_20250805234211.py +54 -0
  157. neverlib/.history/vad/VAD_funasr_20250809232456.py +54 -0
  158. neverlib/.history/vad/VAD_vadlib_20250805234211.py +70 -0
  159. neverlib/.history/vad/VAD_vadlib_20250809232455.py +70 -0
  160. neverlib/.history/vad/VAD_whisper_20250805234211.py +55 -0
  161. neverlib/.history/vad/VAD_whisper_20250809232456.py +55 -0
  162. neverlib/.specstory/.what-is-this.md +69 -0
  163. neverlib/.specstory/history/2025-08-05_17-06Z-/350/277/231/344/270/200/346/255/245/347/232/204/347/233/256/347/232/204/346/230/257/344/273/200/344/271/210.md +424 -0
  164. neverlib/Docs/audio_aug/test_snr.py +55 -0
  165. neverlib/audio_aug/HarmonicDistortion.py +79 -0
  166. neverlib/audio_aug/TFDrop.py +41 -0
  167. neverlib/audio_aug/TFMask.py +56 -0
  168. neverlib/audio_aug/audio_aug.py +16 -1
  169. neverlib/audio_aug/clip_aug.py +41 -0
  170. neverlib/audio_aug/coder_aug.py +209 -0
  171. neverlib/audio_aug/coder_aug2.py +118 -0
  172. neverlib/audio_aug/loss_packet_aug.py +103 -0
  173. neverlib/audio_aug/quant_aug.py +78 -0
  174. neverlib/data_analyze/__init__.py +14 -0
  175. neverlib/filter/auto_eq/__init__.py +36 -0
  176. neverlib/filter/auto_eq/de_eq.py +360 -0
  177. neverlib/filter/auto_eq/freq_eq.py +76 -0
  178. neverlib/filter/{AudoEQ/auto_eq_ga_advanced.py → auto_eq/ga_eq_advanced.py} +1 -1
  179. neverlib/filter/auto_eq/ga_eq_basic.py +385 -0
  180. neverlib/metrics/dnsmos.py +58 -101
  181. neverlib/metrics/lpc_lsp.py +118 -0
  182. neverlib/metrics/snr.py +11 -4
  183. neverlib/metrics/spec.py +136 -45
  184. neverlib/utils/utils.py +17 -14
  185. neverlib/vad/PreProcess.py +5 -2
  186. neverlib/vad/VAD_Silero.py +1 -1
  187. neverlib/vad/VAD_WebRTC.py +1 -1
  188. neverlib/vad/VAD_funasr.py +1 -1
  189. neverlib/vad/VAD_vadlib.py +1 -1
  190. neverlib/vad/VAD_whisper.py +1 -1
  191. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/METADATA +1 -1
  192. neverlib-0.2.4.dist-info/RECORD +229 -0
  193. neverlib-0.2.3.dist-info/RECORD +0 -53
  194. /neverlib/{dataAnalyze/__init__.py → .history/dataAnalyze/__init___20250805234204.py} +0 -0
  195. /neverlib/{filter/AudoEQ/auto_eq_spectral_direct.py → .history/filter/auto_eq/freq_eq_20250805234206.py} +0 -0
  196. /neverlib/{dataAnalyze → data_analyze}/README.md +0 -0
  197. /neverlib/{dataAnalyze → data_analyze}/dataset_analyzer.py +0 -0
  198. /neverlib/{dataAnalyze → data_analyze}/quality_metrics.py +0 -0
  199. /neverlib/{dataAnalyze → data_analyze}/rms_distrubution.py +0 -0
  200. /neverlib/{dataAnalyze → data_analyze}/spectral_analysis.py +0 -0
  201. /neverlib/{dataAnalyze → data_analyze}/statistics.py +0 -0
  202. /neverlib/{dataAnalyze → data_analyze}/temporal_features.py +0 -0
  203. /neverlib/{dataAnalyze → data_analyze}/visualization.py +0 -0
  204. /neverlib/filter/{AudoEQ → auto_eq}/README.md +0 -0
  205. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/WHEEL +0 -0
  206. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/licenses/LICENSE +0 -0
  207. {neverlib-0.2.3.dist-info → neverlib-0.2.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,140 @@
1
+ # -*- coding:utf-8 -*-
2
+ # Author:凌逆战 | Never
3
+ # Date: 2024/9/27
4
+ """
5
+
6
+ """
7
+ import random
8
+ import numpy as np
9
+ import soundfile as sf
10
+ from scipy import signal
11
+ from neverlib.utils import EPS
12
+
13
+
14
+ def volume_norm(wav):
15
+ """
16
+ 音量归一化
17
+ :param wav: (T,)
18
+ :return: (T,)
19
+ """
20
+ wav = wav / (np.max(np.abs(wav)) + 1e-8)
21
+ return wav
22
+
23
+
24
+ def add_reverb(wav, rir, ratio=1, mode="same"):
25
+ """添加混响,
26
+ Args:
27
+ wav: [T, channel]
28
+ rir: [T, channel]
29
+ ratio: 0-1
30
+ mode: "same" for SE or "full" for kws
31
+ """
32
+ if random.random() < ratio:
33
+ wav = signal.fftconvolve(wav, rir, mode=mode) # (28671, 3)
34
+ # note: 建议过完添加混响后再进行归一化, 否则可能会出现溢出
35
+ # wav = volume_norm(wav)
36
+ return wav
37
+
38
+
39
+ def snr_aug_changeNoise(clean, noise, snr):
40
+ """
41
+ 保持语音不变, 改变噪声的幅度
42
+ snr = 10 * log10(signal_power / k*noise_power)
43
+ """
44
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
45
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
46
+ noise_power = np.mean(noise ** 2) # 噪声功率
47
+ noise_scale = np.sqrt(clean_power / (noise_power * 10 ** (snr / 10) + EPS))
48
+ noisy = clean + noise_scale * noise
49
+ return noisy, noise_scale
50
+
51
+
52
+ def snr_aug_changeNoise(clean, noise, snr):
53
+ """
54
+ 保持语音不变, 改变噪声的幅度
55
+ snr = 10 * log10(signal_power / k*noise_power)
56
+ """
57
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
58
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
59
+ noise_power = np.mean(noise ** 2) # 噪声功率
60
+ snr_in = 10 * np.log10(clean_power / (noise_power + EPS) + EPS)
61
+ snr_gain = snr_in - snr
62
+ gain = 10 ** (snr_gain / 20)
63
+ noisy = clean + gain * noise
64
+ return noisy
65
+
66
+
67
+ def snr_aug_changeClean(clean, noise, snr):
68
+ """
69
+ 保持噪声不变, 改变语音的幅度
70
+ snr = 10 * log10(k*signal_power/ noise_power)
71
+ """
72
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
73
+ clean_power = np.mean(clean ** 2)
74
+ noise_power = np.mean(noise ** 2)
75
+ clean_scale = np.sqrt(noise_power * 10 ** (snr / 10) / (clean_power + 1e-8))
76
+ noisy = clean * clean_scale + noise
77
+
78
+ return noisy, clean_scale
79
+
80
+
81
+ def snr_aug_Interpolation(clean, noise, snr):
82
+ """
83
+ 在已知clean_len<=noise_len的情况下
84
+ 将clean插入到noise中的snr aug方法
85
+ Args:
86
+ clean: 语音
87
+ noise: 噪声
88
+ snr: snr=random.uniform(*snr_range)
89
+ """
90
+ clean_len, noise_len = clean.shape[0], noise.shape[0]
91
+ assert clean_len <= noise_len, f"clean_len must be less than noise_len."
92
+ noisy = noise.copy()
93
+ index = random.randint(0, noise_len - clean_len)
94
+ noise = noise[index:index + clean_len, :]
95
+ noisy_tmp, _ = snr_aug_changeClean(clean, noise, snr)
96
+ noisy[index:index + clean_len, :] = noisy_tmp
97
+ return noisy
98
+
99
+
100
+ def get_audio_segments(wav_len, audio_path_list, sr=16000):
101
+ """
102
+ 从音频列表中随机拼接指定长度音频
103
+ Args:
104
+ wav_len: 需要返回的音频长度
105
+ audio_path_list: 音频路径列表
106
+ sr: 采样率
107
+ Returns:返回指定长度的音频
108
+ """
109
+ audio_len = 0
110
+ wav_list = []
111
+ while audio_len < wav_len:
112
+ audio_path = random.choice(audio_path_list)
113
+ wav, wav_sr = sf.read(audio_path, always_2d=True, dtype='float32')
114
+ assert wav_sr == sr, f"音频采样率是{wav_sr}, 期望{sr}"
115
+ audio_len += len(wav)
116
+ wav_list.append(wav)
117
+ wav = np.concatenate(wav_list, axis=0)
118
+ if len(wav) > wav_len:
119
+ # 随机截取clean_len
120
+ start = random.randint(0, len(wav) - wav_len)
121
+ wav = wav[start:start + wav_len, :]
122
+ return wav
123
+
124
+
125
+ def volume_aug(wav, range, rate, method="linmax"):
126
+ """音量增强 """
127
+ if random.random() < rate:
128
+ target_level = random.uniform(range[0], range[1])
129
+ if method == "dbrms":
130
+ wav_rms = (wav ** 2).mean() ** 0.5
131
+ scalar = 10 ** (target_level / 20) / (np.max(wav_rms) + EPS)
132
+ elif method == "linmax":
133
+ ipt_max = np.max(np.abs(wav))
134
+ # wav/wav_max*target_level=target_level_wav
135
+ # 处理后音频的 最大值就是target_level
136
+ scalar = target_level / (ipt_max + EPS)
137
+ else:
138
+ raise ValueError("method must be 'dbrms' or 'linmax'")
139
+ wav *= scalar
140
+ return wav
@@ -0,0 +1,140 @@
1
+ # -*- coding:utf-8 -*-
2
+ # Author:凌逆战 | Never
3
+ # Date: 2024/9/27
4
+ """
5
+
6
+ """
7
+ import random
8
+ import numpy as np
9
+ import soundfile as sf
10
+ from scipy import signal
11
+ from neverlib.utils import EPS
12
+
13
+
14
+ def volume_norm(wav):
15
+ """
16
+ 音量归一化
17
+ :param wav: (T,)
18
+ :return: (T,)
19
+ """
20
+ wav = wav / (np.max(np.abs(wav)) + 1e-8)
21
+ return wav
22
+
23
+
24
+ def add_reverb(wav, rir, ratio=1, mode="same"):
25
+ """添加混响,
26
+ Args:
27
+ wav: [T, channel]
28
+ rir: [T, channel]
29
+ ratio: 0-1
30
+ mode: "same" for SE or "full" for kws
31
+ """
32
+ if random.random() < ratio:
33
+ wav = signal.fftconvolve(wav, rir, mode=mode) # (28671, 3)
34
+ # note: 建议过完添加混响后再进行归一化, 否则可能会出现溢出
35
+ # wav = volume_norm(wav)
36
+ return wav
37
+
38
+
39
+ def snr_aug_changeNoise(clean, noise, snr):
40
+ """
41
+ 保持语音不变, 改变噪声的幅度
42
+ snr = 10 * log10(signal_power / k*noise_power)
43
+ """
44
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
45
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
46
+ noise_power = np.mean(noise ** 2) # 噪声功率
47
+ noise_scale = np.sqrt(clean_power / (noise_power * 10 ** (snr / 10) + EPS))
48
+ noisy = clean + noise_scale * noise
49
+ return noisy, noise_scale
50
+
51
+
52
+ def snr_aug_changeNoise(clean, noise, snr):
53
+ """
54
+ 保持语音不变, 改变噪声的幅度
55
+ snr = 10 * log10(signal_power / k*noise_power)
56
+ """
57
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
58
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
59
+ noise_power = np.mean(noise ** 2) # 噪声功率
60
+ snr_in = 10 * np.log10(clean_power / (noise_power + EPS) + EPS)
61
+ snr_gain = snr_in - snr
62
+ gain = 10 ** (snr_gain / 20)
63
+ noisy = clean + gain * noise
64
+ return noisy
65
+
66
+
67
+ def snr_aug_changeClean(clean, noise, snr):
68
+ """
69
+ 保持噪声不变, 改变语音的幅度
70
+ snr = 10 * log10(k*signal_power/ noise_power)
71
+ """
72
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
73
+ clean_power = np.mean(clean ** 2)
74
+ noise_power = np.mean(noise ** 2)
75
+ clean_scale = np.sqrt(noise_power * 10 ** (snr / 10) / (clean_power + 1e-8))
76
+ noisy = clean * clean_scale + noise
77
+
78
+ return noisy, clean_scale
79
+
80
+
81
+ def snr_aug_Interpolation(clean, noise, snr):
82
+ """
83
+ 在已知clean_len<=noise_len的情况下
84
+ 将clean插入到noise中的snr aug方法
85
+ Args:
86
+ clean: 语音
87
+ noise: 噪声
88
+ snr: snr=random.uniform(*snr_range)
89
+ """
90
+ clean_len, noise_len = clean.shape[0], noise.shape[0]
91
+ assert clean_len <= noise_len, f"clean_len must be less than noise_len."
92
+ noisy = noise.copy()
93
+ index = random.randint(0, noise_len - clean_len)
94
+ noise = noise[index:index + clean_len, :]
95
+ noisy_tmp, _ = snr_aug_changeClean(clean, noise, snr)
96
+ noisy[index:index + clean_len, :] = noisy_tmp
97
+ return noisy
98
+
99
+
100
+ def get_audio_segments(wav_len, audio_path_list, sr=16000):
101
+ """
102
+ 从音频列表中随机拼接指定长度音频
103
+ Args:
104
+ wav_len: 需要返回的音频长度
105
+ audio_path_list: 音频路径列表
106
+ sr: 采样率
107
+ Returns:返回指定长度的音频
108
+ """
109
+ audio_len = 0
110
+ wav_list = []
111
+ while audio_len < wav_len:
112
+ audio_path = random.choice(audio_path_list)
113
+ wav, wav_sr = sf.read(audio_path, always_2d=True, dtype='float32')
114
+ assert wav_sr == sr, f"音频采样率是{wav_sr}, 期望{sr}"
115
+ audio_len += len(wav)
116
+ wav_list.append(wav)
117
+ wav = np.concatenate(wav_list, axis=0)
118
+ if len(wav) > wav_len:
119
+ # 随机截取clean_len
120
+ start = random.randint(0, len(wav) - wav_len)
121
+ wav = wav[start:start + wav_len, :]
122
+ return wav
123
+
124
+
125
+ def volume_aug(wav, range, rate, method="linmax"):
126
+ """音量增强 """
127
+ if random.random() < rate:
128
+ target_level = random.uniform(range[0], range[1])
129
+ if method == "dbrms":
130
+ wav_rms = (wav ** 2).mean() ** 0.5
131
+ scalar = 10 ** (target_level / 20) / (np.max(wav_rms) + EPS)
132
+ elif method == "linmax":
133
+ ipt_max = np.max(np.abs(wav))
134
+ # wav/wav_max*target_level=target_level_wav
135
+ # 处理后音频的 最大值就是target_level
136
+ scalar = target_level / (ipt_max + EPS)
137
+ else:
138
+ raise ValueError("method must be 'dbrms' or 'linmax'")
139
+ wav *= scalar
140
+ return wav
@@ -0,0 +1,140 @@
1
+ # -*- coding:utf-8 -*-
2
+ # Author:凌逆战 | Never
3
+ # Date: 2024/9/27
4
+ """
5
+
6
+ """
7
+ import random
8
+ import numpy as np
9
+ import soundfile as sf
10
+ from scipy import signal
11
+ from neverlib.utils import EPS
12
+
13
+
14
+ def volume_norm(wav):
15
+ """
16
+ 音量归一化
17
+ :param wav: (T,)
18
+ :return: (T,)
19
+ """
20
+ wav = wav / (np.max(np.abs(wav)) + 1e-8)
21
+ return wav
22
+
23
+
24
+ def add_reverb(wav, rir, ratio=1, mode="same"):
25
+ """添加混响,
26
+ Args:
27
+ wav: [T, channel]
28
+ rir: [T, channel]
29
+ ratio: 0-1
30
+ mode: "same" for SE or "full" for kws
31
+ """
32
+ if random.random() < ratio:
33
+ wav = signal.fftconvolve(wav, rir, mode=mode) # (28671, 3)
34
+ # note: 建议过完添加混响后再进行归一化, 否则可能会出现溢出
35
+ # wav = volume_norm(wav)
36
+ return wav
37
+
38
+
39
+ def snr_aug_changeNoise(clean, noise, snr):
40
+ """
41
+ 保持语音不变, 改变噪声的幅度
42
+ snr = 10 * log10(signal_power / k*noise_power)
43
+ """
44
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
45
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
46
+ noise_power = np.mean(noise ** 2) # 噪声功率
47
+ noise_scale = np.sqrt(clean_power / (noise_power * 10 ** (snr / 10) + EPS))
48
+ noisy = clean + noise_scale * noise
49
+ return noisy, noise_scale
50
+
51
+
52
+ def snr_aug_changeNoise_v2(clean, noise, snr):
53
+ """
54
+ 保持语音不变, 改变噪声的幅度
55
+ snr = 10 * log10(signal_power / k*noise_power)
56
+ """
57
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
58
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
59
+ noise_power = np.mean(noise ** 2) # 噪声功率
60
+ snr_in = 10 * np.log10(clean_power / (noise_power + EPS) + EPS)
61
+ snr_gain = snr_in - snr
62
+ gain = 10 ** (snr_gain / 20)
63
+ noisy = clean + gain * noise
64
+ return noisy
65
+
66
+
67
+ def snr_aug_changeClean(clean, noise, snr):
68
+ """
69
+ 保持噪声不变, 改变语音的幅度
70
+ snr = 10 * log10(k*signal_power/ noise_power)
71
+ """
72
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
73
+ clean_power = np.mean(clean ** 2)
74
+ noise_power = np.mean(noise ** 2)
75
+ clean_scale = np.sqrt(noise_power * 10 ** (snr / 10) / (clean_power + 1e-8))
76
+ noisy = clean * clean_scale + noise
77
+
78
+ return noisy, clean_scale
79
+
80
+
81
+ def snr_aug_Interpolation(clean, noise, snr):
82
+ """
83
+ 在已知clean_len<=noise_len的情况下
84
+ 将clean插入到noise中的snr aug方法
85
+ Args:
86
+ clean: 语音
87
+ noise: 噪声
88
+ snr: snr=random.uniform(*snr_range)
89
+ """
90
+ clean_len, noise_len = clean.shape[0], noise.shape[0]
91
+ assert clean_len <= noise_len, f"clean_len must be less than noise_len."
92
+ noisy = noise.copy()
93
+ index = random.randint(0, noise_len - clean_len)
94
+ noise = noise[index:index + clean_len, :]
95
+ noisy_tmp, _ = snr_aug_changeClean(clean, noise, snr)
96
+ noisy[index:index + clean_len, :] = noisy_tmp
97
+ return noisy
98
+
99
+
100
+ def get_audio_segments(wav_len, audio_path_list, sr=16000):
101
+ """
102
+ 从音频列表中随机拼接指定长度音频
103
+ Args:
104
+ wav_len: 需要返回的音频长度
105
+ audio_path_list: 音频路径列表
106
+ sr: 采样率
107
+ Returns:返回指定长度的音频
108
+ """
109
+ audio_len = 0
110
+ wav_list = []
111
+ while audio_len < wav_len:
112
+ audio_path = random.choice(audio_path_list)
113
+ wav, wav_sr = sf.read(audio_path, always_2d=True, dtype='float32')
114
+ assert wav_sr == sr, f"音频采样率是{wav_sr}, 期望{sr}"
115
+ audio_len += len(wav)
116
+ wav_list.append(wav)
117
+ wav = np.concatenate(wav_list, axis=0)
118
+ if len(wav) > wav_len:
119
+ # 随机截取clean_len
120
+ start = random.randint(0, len(wav) - wav_len)
121
+ wav = wav[start:start + wav_len, :]
122
+ return wav
123
+
124
+
125
+ def volume_aug(wav, range, rate, method="linmax"):
126
+ """音量增强 """
127
+ if random.random() < rate:
128
+ target_level = random.uniform(range[0], range[1])
129
+ if method == "dbrms":
130
+ wav_rms = (wav ** 2).mean() ** 0.5
131
+ scalar = 10 ** (target_level / 20) / (np.max(wav_rms) + EPS)
132
+ elif method == "linmax":
133
+ ipt_max = np.max(np.abs(wav))
134
+ # wav/wav_max*target_level=target_level_wav
135
+ # 处理后音频的 最大值就是target_level
136
+ scalar = target_level / (ipt_max + EPS)
137
+ else:
138
+ raise ValueError("method must be 'dbrms' or 'linmax'")
139
+ wav *= scalar
140
+ return wav
@@ -0,0 +1,140 @@
1
+ # -*- coding:utf-8 -*-
2
+ # Author:凌逆战 | Never
3
+ # Date: 2024/9/27
4
+ """
5
+
6
+ """
7
+ import random
8
+ import numpy as np
9
+ import soundfile as sf
10
+ from scipy import signal
11
+ from neverlib.utils import EPS
12
+
13
+
14
+ def volume_norm(wav):
15
+ """
16
+ 音量归一化
17
+ :param wav: (T,)
18
+ :return: (T,)
19
+ """
20
+ wav = wav / (np.max(np.abs(wav)) + 1e-8)
21
+ return wav
22
+
23
+
24
+ def add_reverb(wav, rir, ratio=1, mode="same"):
25
+ """添加混响,
26
+ Args:
27
+ wav: [T, channel]
28
+ rir: [T, channel]
29
+ ratio: 0-1
30
+ mode: "same" for SE or "full" for kws
31
+ """
32
+ if random.random() < ratio:
33
+ wav = signal.fftconvolve(wav, rir, mode=mode) # (28671, 3)
34
+ # note: 建议过完添加混响后再进行归一化, 否则可能会出现溢出
35
+ # wav = volume_norm(wav)
36
+ return wav
37
+
38
+
39
+ def snr_aug_changeNoise(clean, noise, snr):
40
+ """
41
+ 保持语音不变, 改变噪声的幅度
42
+ snr = 10 * log10(signal_power / k*noise_power)
43
+ """
44
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
45
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
46
+ noise_power = np.mean(noise ** 2) # 噪声功率
47
+ noise_scale = np.sqrt(clean_power / (noise_power * 10 ** (snr / 10) + EPS))
48
+ noisy = clean + noise_scale * noise
49
+ return noisy, noise_scale
50
+
51
+
52
+ def snr_aug_changeNoise_v2(clean, noise, snr):
53
+ """
54
+ 保持语音不变, 改变噪声的幅度
55
+ snr = 10 * log10(signal_power / k*noise_power)
56
+ """
57
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
58
+ clean_power = np.mean(clean ** 2) # 纯净语音功率
59
+ noise_power = np.mean(noise ** 2) # 噪声功率
60
+ snr_in = 10 * np.log10(clean_power / (noise_power + EPS) + EPS)
61
+ snr_gain = snr_in - snr
62
+ gain = 10 ** (snr_gain / 20)
63
+ noisy = clean + gain * noise
64
+ return noisy, gain
65
+
66
+
67
+ def snr_aug_changeClean(clean, noise, snr):
68
+ """
69
+ 保持噪声不变, 改变语音的幅度
70
+ snr = 10 * log10(k*signal_power/ noise_power)
71
+ """
72
+ assert clean.shape == noise.shape, "clean and noise must have the same shape"
73
+ clean_power = np.mean(clean ** 2)
74
+ noise_power = np.mean(noise ** 2)
75
+ clean_scale = np.sqrt(noise_power * 10 ** (snr / 10) / (clean_power + 1e-8))
76
+ noisy = clean * clean_scale + noise
77
+
78
+ return noisy, clean_scale
79
+
80
+
81
+ def snr_aug_Interpolation(clean, noise, snr):
82
+ """
83
+ 在已知clean_len<=noise_len的情况下
84
+ 将clean插入到noise中的snr aug方法
85
+ Args:
86
+ clean: 语音
87
+ noise: 噪声
88
+ snr: snr=random.uniform(*snr_range)
89
+ """
90
+ clean_len, noise_len = clean.shape[0], noise.shape[0]
91
+ assert clean_len <= noise_len, f"clean_len must be less than noise_len."
92
+ noisy = noise.copy()
93
+ index = random.randint(0, noise_len - clean_len)
94
+ noise = noise[index:index + clean_len, :]
95
+ noisy_tmp, _ = snr_aug_changeClean(clean, noise, snr)
96
+ noisy[index:index + clean_len, :] = noisy_tmp
97
+ return noisy
98
+
99
+
100
+ def get_audio_segments(wav_len, audio_path_list, sr=16000):
101
+ """
102
+ 从音频列表中随机拼接指定长度音频
103
+ Args:
104
+ wav_len: 需要返回的音频长度
105
+ audio_path_list: 音频路径列表
106
+ sr: 采样率
107
+ Returns:返回指定长度的音频
108
+ """
109
+ audio_len = 0
110
+ wav_list = []
111
+ while audio_len < wav_len:
112
+ audio_path = random.choice(audio_path_list)
113
+ wav, wav_sr = sf.read(audio_path, always_2d=True, dtype='float32')
114
+ assert wav_sr == sr, f"音频采样率是{wav_sr}, 期望{sr}"
115
+ audio_len += len(wav)
116
+ wav_list.append(wav)
117
+ wav = np.concatenate(wav_list, axis=0)
118
+ if len(wav) > wav_len:
119
+ # 随机截取clean_len
120
+ start = random.randint(0, len(wav) - wav_len)
121
+ wav = wav[start:start + wav_len, :]
122
+ return wav
123
+
124
+
125
+ def volume_aug(wav, range, rate, method="linmax"):
126
+ """音量增强 """
127
+ if random.random() < rate:
128
+ target_level = random.uniform(range[0], range[1])
129
+ if method == "dbrms":
130
+ wav_rms = (wav ** 2).mean() ** 0.5
131
+ scalar = 10 ** (target_level / 20) / (np.max(wav_rms) + EPS)
132
+ elif method == "linmax":
133
+ ipt_max = np.max(np.abs(wav))
134
+ # wav/wav_max*target_level=target_level_wav
135
+ # 处理后音频的 最大值就是target_level
136
+ scalar = target_level / (ipt_max + EPS)
137
+ else:
138
+ raise ValueError("method must be 'dbrms' or 'linmax'")
139
+ wav *= scalar
140
+ return wav
@@ -0,0 +1,14 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-06 00:56:39
4
+ Description:
5
+ '''
6
+ """
7
+ 音频数据分析模块
8
+ Audio Data Analysis Module
9
+
10
+ 提供完整的音频数据分析功能, 包括特征提取、质量评估、统计分析和可视化等。
11
+ """
12
+
13
+ # 基础工具
14
+ from neverlib.dataAnalyze.temporal_features import dB, peak_amplitude, rms_amplitude
@@ -0,0 +1,14 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-06 00:56:39
4
+ Description:
5
+ '''
6
+ """
7
+ 音频数据分析模块
8
+ Audio Data Analysis Module
9
+
10
+ 提供完整的音频数据分析功能, 包括特征提取、质量评估、统计分析和可视化等。
11
+ """
12
+
13
+ # 基础工具
14
+ from .dataAnalyze.temporal_features import dB, peak_amplitude, rms_amplitude
@@ -0,0 +1,14 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-08-06 00:56:39
4
+ Description:
5
+ '''
6
+ """
7
+ 音频数据分析模块
8
+ Audio Data Analysis Module
9
+
10
+ 提供完整的音频数据分析功能, 包括特征提取、质量评估、统计分析和可视化等。
11
+ """
12
+
13
+ # 基础工具
14
+ from neverlib.dataAnalyze.temporal_features import dB, peak_amplitude, rms_amplitude
@@ -0,0 +1,70 @@
1
+ '''
2
+ Author: 凌逆战 | Never
3
+ Date: 2025-03-17 19:23:33
4
+ Description:
5
+ '''
6
+ """
7
+ 节省路径
8
+ from neverlib.filter import common
9
+ 如果没有用户必须完整路径
10
+ from neverlib.filter.common import *
11
+ """
12
+ from .common import *
13
+ from .core import *
14
+ from .biquad import *
15
+
16
+ def __getattr__(name):
17
+ """延迟导入机制 - 只在用户实际使用时才导入需要额外依赖的模块"""
18
+ if name in ['compute_frequency_eq']:
19
+ # 需要 librosa 库的频谱直接补偿方法
20
+ try:
21
+ from .AudoEQ.auto_eq_spectral_direct import compute_frequency_eq
22
+ return compute_frequency_eq
23
+ except ImportError as e:
24
+ raise ImportError(f"使用 {name} 需要安装 librosa: pip install librosa") from e
25
+
26
+ elif name in ['get_filter_function', 'match_frequency_response', 'plot_spectra_comparison']:
27
+ # 差分进化优化方法
28
+ try:
29
+ from .AudoEQ.auto_eq_de import get_filter_function, match_frequency_response, plot_spectra_comparison
30
+ if name == 'get_filter_function':
31
+ return get_filter_function
32
+ elif name == 'match_frequency_response':
33
+ return match_frequency_response
34
+ elif name == 'plot_spectra_comparison':
35
+ return plot_spectra_comparison
36
+ except ImportError as e:
37
+ raise ImportError(f"使用 {name} 需要安装相应依赖,详见 AudoEQ/README.md") from e
38
+
39
+ elif name in ['individual_creator', 'get_magnitude_spectrum_db', 'get_single_filter_freq_response_db_from_coeffs',
40
+ 'get_combined_eq_response_db', 'evaluate_individual', 'custom_mutate']:
41
+ # 需要 deap 库的遗传算法基础版
42
+ try:
43
+ from .AudoEQ.auto_eq_ga_basic import (
44
+ individual_creator, get_magnitude_spectrum_db, get_single_filter_freq_response_db_from_coeffs,
45
+ get_combined_eq_response_db, evaluate_individual, custom_mutate
46
+ )
47
+ if name == 'individual_creator':
48
+ return individual_creator
49
+ elif name == 'get_magnitude_spectrum_db':
50
+ return get_magnitude_spectrum_db
51
+ elif name == 'get_single_filter_freq_response_db_from_coeffs':
52
+ return get_single_filter_freq_response_db_from_coeffs
53
+ elif name == 'get_combined_eq_response_db':
54
+ return get_combined_eq_response_db
55
+ elif name == 'evaluate_individual':
56
+ return evaluate_individual
57
+ elif name == 'custom_mutate':
58
+ return custom_mutate
59
+ except ImportError as e:
60
+ raise ImportError(f"使用 {name} 需要安装 deap: pip install deap") from e
61
+
62
+ elif name == 'EQOptimizer':
63
+ # 需要 deap 库的遗传算法高级版
64
+ try:
65
+ from .AudoEQ.auto_eq_ga_advanced import EQOptimizer
66
+ return EQOptimizer
67
+ except ImportError as e:
68
+ raise ImportError(f"使用 {name} 需要安装 deap: pip install deap") from e
69
+
70
+ raise AttributeError(f"module '{__name__}' has no attribute '{name}'")