multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.1__cp312-cp312-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of multipers might be problematic. Click here for more details.
- multipers/__init__.py +33 -31
- multipers/_signed_measure_meta.py +430 -430
- multipers/_slicer_meta.py +211 -212
- multipers/data/MOL2.py +458 -458
- multipers/data/UCR.py +18 -18
- multipers/data/graphs.py +466 -466
- multipers/data/immuno_regions.py +27 -27
- multipers/data/pytorch2simplextree.py +90 -90
- multipers/data/shape3d.py +101 -101
- multipers/data/synthetic.py +113 -111
- multipers/distances.py +198 -198
- multipers/filtration_conversions.pxd.tp +84 -84
- multipers/filtrations/__init__.py +18 -0
- multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
- multipers/filtrations/filtrations.py +289 -0
- multipers/filtrations.pxd +224 -224
- multipers/function_rips.cp312-win_amd64.pyd +0 -0
- multipers/function_rips.pyx +105 -105
- multipers/grids.cp312-win_amd64.pyd +0 -0
- multipers/grids.pyx +350 -350
- multipers/gudhi/Persistence_slices_interface.h +132 -132
- multipers/gudhi/Simplex_tree_interface.h +239 -245
- multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
- multipers/gudhi/cubical_to_boundary.h +59 -59
- multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
- multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
- multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
- multipers/gudhi/gudhi/Debug_utils.h +45 -45
- multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
- multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
- multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
- multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
- multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
- multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
- multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
- multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
- multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
- multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
- multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
- multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
- multipers/gudhi/gudhi/Matrix.h +2107 -2107
- multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
- multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
- multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
- multipers/gudhi/gudhi/Off_reader.h +173 -173
- multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
- multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
- multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
- multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
- multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
- multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
- multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
- multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
- multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
- multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
- multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
- multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
- multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
- multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
- multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
- multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
- multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
- multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
- multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
- multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
- multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
- multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
- multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
- multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
- multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
- multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
- multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
- multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
- multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
- multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
- multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
- multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
- multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
- multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
- multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
- multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
- multipers/gudhi/gudhi/Points_off_io.h +171 -171
- multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
- multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
- multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
- multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
- multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
- multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
- multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
- multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
- multipers/gudhi/gudhi/distance_functions.h +62 -62
- multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
- multipers/gudhi/gudhi/persistence_interval.h +253 -253
- multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
- multipers/gudhi/gudhi/reader_utils.h +367 -367
- multipers/gudhi/mma_interface_coh.h +256 -255
- multipers/gudhi/mma_interface_h0.h +223 -231
- multipers/gudhi/mma_interface_matrix.h +291 -282
- multipers/gudhi/naive_merge_tree.h +536 -575
- multipers/gudhi/scc_io.h +310 -289
- multipers/gudhi/truc.h +957 -888
- multipers/io.cp312-win_amd64.pyd +0 -0
- multipers/io.pyx +714 -711
- multipers/ml/accuracies.py +90 -90
- multipers/ml/invariants_with_persistable.py +79 -79
- multipers/ml/kernels.py +176 -176
- multipers/ml/mma.py +713 -714
- multipers/ml/one.py +472 -472
- multipers/ml/point_clouds.py +352 -346
- multipers/ml/signed_measures.py +1589 -1589
- multipers/ml/sliced_wasserstein.py +461 -461
- multipers/ml/tools.py +113 -113
- multipers/mma_structures.cp312-win_amd64.pyd +0 -0
- multipers/mma_structures.pxd +127 -127
- multipers/mma_structures.pyx +4 -8
- multipers/mma_structures.pyx.tp +1083 -1085
- multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
- multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
- multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
- multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
- multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
- multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
- multipers/multiparameter_edge_collapse.py +41 -41
- multipers/multiparameter_module_approximation/approximation.h +2298 -2295
- multipers/multiparameter_module_approximation/combinatory.h +129 -129
- multipers/multiparameter_module_approximation/debug.h +107 -107
- multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
- multipers/multiparameter_module_approximation/heap_column.h +238 -238
- multipers/multiparameter_module_approximation/images.h +79 -79
- multipers/multiparameter_module_approximation/list_column.h +174 -174
- multipers/multiparameter_module_approximation/list_column_2.h +232 -232
- multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
- multipers/multiparameter_module_approximation/set_column.h +135 -135
- multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
- multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
- multipers/multiparameter_module_approximation/utilities.h +403 -419
- multipers/multiparameter_module_approximation/vector_column.h +223 -223
- multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
- multipers/multiparameter_module_approximation/vineyards.h +464 -464
- multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
- multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
- multipers/multiparameter_module_approximation.pyx +218 -217
- multipers/pickle.py +90 -53
- multipers/plots.py +342 -334
- multipers/point_measure.cp312-win_amd64.pyd +0 -0
- multipers/point_measure.pyx +322 -320
- multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
- multipers/simplex_tree_multi.pxd +133 -133
- multipers/simplex_tree_multi.pyx +115 -48
- multipers/simplex_tree_multi.pyx.tp +1947 -1935
- multipers/slicer.cp312-win_amd64.pyd +0 -0
- multipers/slicer.pxd +281 -100
- multipers/slicer.pxd.tp +218 -214
- multipers/slicer.pyx +1570 -507
- multipers/slicer.pyx.tp +931 -914
- multipers/tensor/tensor.h +672 -672
- multipers/tensor.pxd +13 -13
- multipers/test.pyx +44 -44
- multipers/tests/__init__.py +57 -57
- multipers/torch/diff_grids.py +217 -217
- multipers/torch/rips_density.py +310 -304
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
- multipers-2.3.1.dist-info/RECORD +182 -0
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
- multipers/tests/test_diff_helper.py +0 -73
- multipers/tests/test_hilbert_function.py +0 -82
- multipers/tests/test_mma.py +0 -83
- multipers/tests/test_point_clouds.py +0 -49
- multipers/tests/test_python-cpp_conversion.py +0 -82
- multipers/tests/test_signed_betti.py +0 -181
- multipers/tests/test_signed_measure.py +0 -89
- multipers/tests/test_simplextreemulti.py +0 -221
- multipers/tests/test_slicer.py +0 -221
- multipers-2.2.3.dist-info/RECORD +0 -189
- {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
multipers/data/immuno_regions.py
CHANGED
|
@@ -1,27 +1,27 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
from pandas import read_csv
|
|
3
|
-
from os.path import expanduser
|
|
4
|
-
from os import walk
|
|
5
|
-
from sklearn.preprocessing import LabelEncoder
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def get(DATASET_PATH = expanduser("~/Datasets/")):
|
|
10
|
-
DATASET_PATH += "1.5mmRegions/"
|
|
11
|
-
X, labels = [],[]
|
|
12
|
-
for label in ["FoxP3", "CD8", "CD68"]:
|
|
13
|
-
# for label in ["FoxP3", "CD8"]:
|
|
14
|
-
for root, dirs, files in walk(DATASET_PATH + label+"/"):
|
|
15
|
-
for name in files:
|
|
16
|
-
X.append(np.array(read_csv(DATASET_PATH+label+"/"+name))/1500) ## Rescaled
|
|
17
|
-
labels.append(label)
|
|
18
|
-
return X, LabelEncoder().fit_transform(np.array(labels))
|
|
19
|
-
|
|
20
|
-
def get_immuno(i=1, DATASET_PATH = expanduser("~/Datasets/")):
|
|
21
|
-
immu_dataset = read_csv(DATASET_PATH+f"LargeHypoxicRegion{i}.csv")
|
|
22
|
-
X = np.array(immu_dataset['x'])
|
|
23
|
-
X /= np.max(X)
|
|
24
|
-
Y = np.array(immu_dataset['y'])
|
|
25
|
-
Y /= np.max(Y)
|
|
26
|
-
labels = LabelEncoder().fit_transform(immu_dataset['Celltype'])
|
|
27
|
-
return np.asarray([X,Y]).T, labels
|
|
1
|
+
import numpy as np
|
|
2
|
+
from pandas import read_csv
|
|
3
|
+
from os.path import expanduser
|
|
4
|
+
from os import walk
|
|
5
|
+
from sklearn.preprocessing import LabelEncoder
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def get(DATASET_PATH = expanduser("~/Datasets/")):
|
|
10
|
+
DATASET_PATH += "1.5mmRegions/"
|
|
11
|
+
X, labels = [],[]
|
|
12
|
+
for label in ["FoxP3", "CD8", "CD68"]:
|
|
13
|
+
# for label in ["FoxP3", "CD8"]:
|
|
14
|
+
for root, dirs, files in walk(DATASET_PATH + label+"/"):
|
|
15
|
+
for name in files:
|
|
16
|
+
X.append(np.array(read_csv(DATASET_PATH+label+"/"+name))/1500) ## Rescaled
|
|
17
|
+
labels.append(label)
|
|
18
|
+
return X, LabelEncoder().fit_transform(np.array(labels))
|
|
19
|
+
|
|
20
|
+
def get_immuno(i=1, DATASET_PATH = expanduser("~/Datasets/")):
|
|
21
|
+
immu_dataset = read_csv(DATASET_PATH+f"LargeHypoxicRegion{i}.csv")
|
|
22
|
+
X = np.array(immu_dataset['x'])
|
|
23
|
+
X /= np.max(X)
|
|
24
|
+
Y = np.array(immu_dataset['y'])
|
|
25
|
+
Y /= np.max(Y)
|
|
26
|
+
labels = LabelEncoder().fit_transform(immu_dataset['Celltype'])
|
|
27
|
+
return np.asarray([X,Y]).T, labels
|
|
@@ -1,91 +1,91 @@
|
|
|
1
|
-
from tqdm import tqdm
|
|
2
|
-
import numpy as np
|
|
3
|
-
from torch_geometric.data.data import Data
|
|
4
|
-
import networkx as nx
|
|
5
|
-
from sklearn.base import BaseEstimator, TransformerMixin
|
|
6
|
-
from typing import Iterable
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
|
|
10
|
-
from sklearn.neighbors import kneighbors_graph
|
|
11
|
-
"""
|
|
12
|
-
sample points and create neighborhoold graph
|
|
13
|
-
"""
|
|
14
|
-
dataset = train_dataset + test_dataset
|
|
15
|
-
indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
|
|
16
|
-
|
|
17
|
-
dataset:list[Data] = [dataset[i] for i in indices]
|
|
18
|
-
_,labels = torch_geometric_2nx(dataset, labels_only=True)
|
|
19
|
-
if labels_only: return labels
|
|
20
|
-
|
|
21
|
-
def data2graph(data:Data):
|
|
22
|
-
pos = data.pos.numpy()
|
|
23
|
-
adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
|
|
24
|
-
g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
|
|
25
|
-
if exp_flag:
|
|
26
|
-
for u, v in g.edges(): # TODO optimize
|
|
27
|
-
g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
|
|
28
|
-
return g
|
|
29
|
-
#TODO : nx.set_edge_attributes()
|
|
30
|
-
|
|
31
|
-
return [data2graph(data) for data in dataset], labels
|
|
32
|
-
def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
|
|
33
|
-
"""
|
|
34
|
-
:param dataset:
|
|
35
|
-
:param labels_only: return labels only
|
|
36
|
-
:param print_flag:
|
|
37
|
-
:param weight_flag: whether computing distance as weights or not
|
|
38
|
-
:return:
|
|
39
|
-
"""
|
|
40
|
-
if labels_only:
|
|
41
|
-
return None, [int(data.y) for data in dataset]
|
|
42
|
-
def data2graph(data:Data):
|
|
43
|
-
edges = np.unique(data.edge_index.numpy().T, axis=0)
|
|
44
|
-
g = nx.from_edgelist(edges)
|
|
45
|
-
edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
|
|
46
|
-
nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
|
|
47
|
-
nx.set_edge_attributes(g, edge_filtration, "geodesic")
|
|
48
|
-
return g
|
|
49
|
-
return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
|
|
53
|
-
""" load modelnet 10 or 40 and convert to graphs"""
|
|
54
|
-
from torch_geometric.transforms import FaceToEdge
|
|
55
|
-
from .shape3d import load_modelnet
|
|
56
|
-
train_dataset, test_dataset = load_modelnet(version, point_flag = False)
|
|
57
|
-
dataset = train_dataset + test_dataset
|
|
58
|
-
if b>0: dataset = [dataset[i] for i in range(a,b)]
|
|
59
|
-
if labels_only:
|
|
60
|
-
return torch_geometric_2nx(dataset, labels_only=True)
|
|
61
|
-
dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
|
|
62
|
-
graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
|
|
63
|
-
return graphs, labels
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
class Torch2SimplexTree(BaseEstimator,TransformerMixin):
|
|
69
|
-
"""
|
|
70
|
-
WARNING : build in progress
|
|
71
|
-
PyTorch Data-like to simplextree.
|
|
72
|
-
|
|
73
|
-
Input
|
|
74
|
-
-----
|
|
75
|
-
Class having `pos`, `edges`, `faces` methods
|
|
76
|
-
|
|
77
|
-
Filtrations
|
|
78
|
-
-----------
|
|
79
|
-
- Geodesic (geodesic rips)
|
|
80
|
-
- eccentricity
|
|
81
|
-
"""
|
|
82
|
-
import multipers as mp
|
|
83
|
-
|
|
84
|
-
def __init__(self, filtrations:Iterable[str]=[]):
|
|
85
|
-
super().__init__()
|
|
86
|
-
|
|
87
|
-
def fit(self, X, y=None):
|
|
88
|
-
return self
|
|
89
|
-
|
|
90
|
-
def transform(self,X:list[nx.Graph]):
|
|
1
|
+
from tqdm import tqdm
|
|
2
|
+
import numpy as np
|
|
3
|
+
from torch_geometric.data.data import Data
|
|
4
|
+
import networkx as nx
|
|
5
|
+
from sklearn.base import BaseEstimator, TransformerMixin
|
|
6
|
+
from typing import Iterable
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def modelnet2pts2gs(train_dataset, test_dataset , nbr_size = 8, exp_flag = True, labels_only = False,n=100, n_jobs=1, random=False):
|
|
10
|
+
from sklearn.neighbors import kneighbors_graph
|
|
11
|
+
"""
|
|
12
|
+
sample points and create neighborhoold graph
|
|
13
|
+
"""
|
|
14
|
+
dataset = train_dataset + test_dataset
|
|
15
|
+
indices = np.random.choice(range(len(dataset)),replace=False, size=n) if random else range(n)
|
|
16
|
+
|
|
17
|
+
dataset:list[Data] = [dataset[i] for i in indices]
|
|
18
|
+
_,labels = torch_geometric_2nx(dataset, labels_only=True)
|
|
19
|
+
if labels_only: return labels
|
|
20
|
+
|
|
21
|
+
def data2graph(data:Data):
|
|
22
|
+
pos = data.pos.numpy()
|
|
23
|
+
adj = kneighbors_graph(pos, nbr_size, mode='distance', n_jobs=n_jobs)
|
|
24
|
+
g = nx.from_scipy_sparse_array(adj, edge_attribute= 'weight')
|
|
25
|
+
if exp_flag:
|
|
26
|
+
for u, v in g.edges(): # TODO optimize
|
|
27
|
+
g[u][v]['weight'] = np.exp(-g[u][v]['weight'])
|
|
28
|
+
return g
|
|
29
|
+
#TODO : nx.set_edge_attributes()
|
|
30
|
+
|
|
31
|
+
return [data2graph(data) for data in dataset], labels
|
|
32
|
+
def torch_geometric_2nx(dataset, labels_only = False, print_flag = False, weight_flag = False):
|
|
33
|
+
"""
|
|
34
|
+
:param dataset:
|
|
35
|
+
:param labels_only: return labels only
|
|
36
|
+
:param print_flag:
|
|
37
|
+
:param weight_flag: whether computing distance as weights or not
|
|
38
|
+
:return:
|
|
39
|
+
"""
|
|
40
|
+
if labels_only:
|
|
41
|
+
return None, [int(data.y) for data in dataset]
|
|
42
|
+
def data2graph(data:Data):
|
|
43
|
+
edges = np.unique(data.edge_index.numpy().T, axis=0)
|
|
44
|
+
g = nx.from_edgelist(edges)
|
|
45
|
+
edge_filtration = {(u,v):np.linalg.norm(data.pos[u] - data.pos[v]) for u,v in g.edges}
|
|
46
|
+
nx.set_node_attributes(g,{node:0 for node in g.nodes}, "geodesic")
|
|
47
|
+
nx.set_edge_attributes(g, edge_filtration, "geodesic")
|
|
48
|
+
return g
|
|
49
|
+
return [data2graph(data) for data in tqdm(dataset, desc="Turning Data to graphs")], [int(data.y) for data in dataset]
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def modelnet2graphs(version = '10', print_flag = False, labels_only = False, a = 0, b = 10, weight_flag = False):
|
|
53
|
+
""" load modelnet 10 or 40 and convert to graphs"""
|
|
54
|
+
from torch_geometric.transforms import FaceToEdge
|
|
55
|
+
from .shape3d import load_modelnet
|
|
56
|
+
train_dataset, test_dataset = load_modelnet(version, point_flag = False)
|
|
57
|
+
dataset = train_dataset + test_dataset
|
|
58
|
+
if b>0: dataset = [dataset[i] for i in range(a,b)]
|
|
59
|
+
if labels_only:
|
|
60
|
+
return torch_geometric_2nx(dataset, labels_only=True)
|
|
61
|
+
dataset = [FaceToEdge(remove_faces=False)(data) for data in dataset]
|
|
62
|
+
graphs, labels = torch_geometric_2nx(dataset, print_flag=print_flag, weight_flag= weight_flag)
|
|
63
|
+
return graphs, labels
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class Torch2SimplexTree(BaseEstimator,TransformerMixin):
|
|
69
|
+
"""
|
|
70
|
+
WARNING : build in progress
|
|
71
|
+
PyTorch Data-like to simplextree.
|
|
72
|
+
|
|
73
|
+
Input
|
|
74
|
+
-----
|
|
75
|
+
Class having `pos`, `edges`, `faces` methods
|
|
76
|
+
|
|
77
|
+
Filtrations
|
|
78
|
+
-----------
|
|
79
|
+
- Geodesic (geodesic rips)
|
|
80
|
+
- eccentricity
|
|
81
|
+
"""
|
|
82
|
+
import multipers as mp
|
|
83
|
+
|
|
84
|
+
def __init__(self, filtrations:Iterable[str]=[]):
|
|
85
|
+
super().__init__()
|
|
86
|
+
|
|
87
|
+
def fit(self, X, y=None):
|
|
88
|
+
return self
|
|
89
|
+
|
|
90
|
+
def transform(self,X:list[nx.Graph]):
|
|
91
91
|
return
|
multipers/data/shape3d.py
CHANGED
|
@@ -1,101 +1,101 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
from os.path import expanduser
|
|
3
|
-
from torch_geometric.datasets import ModelNet
|
|
4
|
-
|
|
5
|
-
DATASET_PATH = expanduser("~/Datasets/")
|
|
6
|
-
import os
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
####################### MODELNET
|
|
10
|
-
def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
|
|
11
|
-
from torch_geometric.transforms import FaceToEdge, SamplePoints
|
|
12
|
-
"""
|
|
13
|
-
:param point_flag: Sample points if point_flag true. Otherwise load mesh
|
|
14
|
-
:return: train_dataset, test_dataset
|
|
15
|
-
"""
|
|
16
|
-
assert version in ['10', '40']
|
|
17
|
-
if sample_points:
|
|
18
|
-
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
|
|
19
|
-
else:
|
|
20
|
-
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
|
|
21
|
-
path = f"{DATASET_PATH}/ModelNet{version}"
|
|
22
|
-
if reset:
|
|
23
|
-
# print(f"rm -rf {path}")
|
|
24
|
-
os.system(f"rm -rf {path+'/processed/'}")
|
|
25
|
-
train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
|
|
26
|
-
test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
|
|
27
|
-
return train_dataset, test_dataset
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def get_ModelNet(dataset, num_graph, seed):
|
|
31
|
-
train,test = load_modelnet(version=dataset[8:])
|
|
32
|
-
test_size = len(test) / len(train)
|
|
33
|
-
if num_graph >0:
|
|
34
|
-
np.random.seed(seed)
|
|
35
|
-
indices = np.random.choice(len(train), num_graph, replace=False)
|
|
36
|
-
train = train[indices]
|
|
37
|
-
indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
|
|
38
|
-
test = test[indices]
|
|
39
|
-
np.random.seed() # resets seed
|
|
40
|
-
return train, test
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
|
|
44
|
-
if dataset.startswith("ModelNet"):
|
|
45
|
-
return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
|
|
46
|
-
datasets = get_(dataset=dataset, num_sample=num_graph)
|
|
47
|
-
graphs = []
|
|
48
|
-
labels = []
|
|
49
|
-
np.random.seed(seed)
|
|
50
|
-
for data, ls in datasets:
|
|
51
|
-
nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
|
|
52
|
-
for i,node in enumerate(nodes):
|
|
53
|
-
data_ = data # if i == 0 else None # prevents doing copies
|
|
54
|
-
graphs.append([data_, node])
|
|
55
|
-
labels.append(ls[node])
|
|
56
|
-
return graphs, labels
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
|
|
60
|
-
from torch_geometric.io import read_off
|
|
61
|
-
if dataset.startswith("3dshapes/"):
|
|
62
|
-
dataset_ = dataset[len("3dshapes/"):]
|
|
63
|
-
else:
|
|
64
|
-
dataset_ = dataset
|
|
65
|
-
if dataset_num is None and "/" in dataset_:
|
|
66
|
-
position = dataset_.rfind("/")
|
|
67
|
-
dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
|
|
68
|
-
dataset_ = dataset_[:position]
|
|
69
|
-
|
|
70
|
-
if dataset_num is None: # gets a random (available) number for this dataset
|
|
71
|
-
from os import listdir
|
|
72
|
-
from random import choice
|
|
73
|
-
files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
|
|
74
|
-
if num_sample <= 0:
|
|
75
|
-
files = [file for file in files if "label" not in file]
|
|
76
|
-
else:
|
|
77
|
-
files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
|
|
78
|
-
dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
|
|
79
|
-
|
|
80
|
-
print("Dataset nums : ", *dataset_nums)
|
|
81
|
-
out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
|
|
82
|
-
return out
|
|
83
|
-
|
|
84
|
-
path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
|
|
85
|
-
data = read_off(path)
|
|
86
|
-
faces = data.face.numpy().T
|
|
87
|
-
# data = FaceToEdge(remove_faces=remove_faces)(data)
|
|
88
|
-
#labels
|
|
89
|
-
label_path = path.split(".")[0] + "_labels.txt"
|
|
90
|
-
f = open(label_path, "r")
|
|
91
|
-
labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
|
|
92
|
-
current_label=""
|
|
93
|
-
for i, line in enumerate(f.readlines()):
|
|
94
|
-
if i % 2 == 0:
|
|
95
|
-
current_label = line.strip()
|
|
96
|
-
continue
|
|
97
|
-
faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
|
|
98
|
-
# print(faces_of_label.min())
|
|
99
|
-
nodes_of_label = np.unique(faces[faces_of_label].flatten())
|
|
100
|
-
labels[nodes_of_label] = current_label # les labels sont sur les faces
|
|
101
|
-
return data, labels
|
|
1
|
+
import numpy as np
|
|
2
|
+
from os.path import expanduser
|
|
3
|
+
from torch_geometric.datasets import ModelNet
|
|
4
|
+
|
|
5
|
+
DATASET_PATH = expanduser("~/Datasets/")
|
|
6
|
+
import os
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
####################### MODELNET
|
|
10
|
+
def load_modelnet(version='10', sample_points = False, reset:bool=False, remove_faces=False):
|
|
11
|
+
from torch_geometric.transforms import FaceToEdge, SamplePoints
|
|
12
|
+
"""
|
|
13
|
+
:param point_flag: Sample points if point_flag true. Otherwise load mesh
|
|
14
|
+
:return: train_dataset, test_dataset
|
|
15
|
+
"""
|
|
16
|
+
assert version in ['10', '40']
|
|
17
|
+
if sample_points:
|
|
18
|
+
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), SamplePoints(num=sample_points)
|
|
19
|
+
else:
|
|
20
|
+
pre_transform, transform = FaceToEdge(remove_faces=remove_faces), None
|
|
21
|
+
path = f"{DATASET_PATH}/ModelNet{version}"
|
|
22
|
+
if reset:
|
|
23
|
+
# print(f"rm -rf {path}")
|
|
24
|
+
os.system(f"rm -rf {path+'/processed/'}")
|
|
25
|
+
train_dataset = ModelNet(path, name=version, train=True, transform=transform, pre_transform=pre_transform)
|
|
26
|
+
test_dataset = ModelNet(path, name=version, train=False, transform=transform, pre_transform=pre_transform)
|
|
27
|
+
return train_dataset, test_dataset
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def get_ModelNet(dataset, num_graph, seed):
|
|
31
|
+
train,test = load_modelnet(version=dataset[8:])
|
|
32
|
+
test_size = len(test) / len(train)
|
|
33
|
+
if num_graph >0:
|
|
34
|
+
np.random.seed(seed)
|
|
35
|
+
indices = np.random.choice(len(train), num_graph, replace=False)
|
|
36
|
+
train = train[indices]
|
|
37
|
+
indices = np.random.choice(len(test), int(num_graph*test_size), replace=False)
|
|
38
|
+
test = test[indices]
|
|
39
|
+
np.random.seed() # resets seed
|
|
40
|
+
return train, test
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def get(dataset:str, num_graph=0, seed=0, node_per_graph=0):
|
|
44
|
+
if dataset.startswith("ModelNet"):
|
|
45
|
+
return get_ModelNet(dataset=dataset, num_graph=num_graph, seed=seed)
|
|
46
|
+
datasets = get_(dataset=dataset, num_sample=num_graph)
|
|
47
|
+
graphs = []
|
|
48
|
+
labels = []
|
|
49
|
+
np.random.seed(seed)
|
|
50
|
+
for data, ls in datasets:
|
|
51
|
+
nodes = np.random.choice(range(len(data.pos)), replace=False, size=node_per_graph)
|
|
52
|
+
for i,node in enumerate(nodes):
|
|
53
|
+
data_ = data # if i == 0 else None # prevents doing copies
|
|
54
|
+
graphs.append([data_, node])
|
|
55
|
+
labels.append(ls[node])
|
|
56
|
+
return graphs, labels
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
def get_(dataset:str, dataset_num:int|None=None, num_sample:int=0, DATASET_PATH = expanduser("~/Datasets/")):
|
|
60
|
+
from torch_geometric.io import read_off
|
|
61
|
+
if dataset.startswith("3dshapes/"):
|
|
62
|
+
dataset_ = dataset[len("3dshapes/"):]
|
|
63
|
+
else:
|
|
64
|
+
dataset_ = dataset
|
|
65
|
+
if dataset_num is None and "/" in dataset_:
|
|
66
|
+
position = dataset_.rfind("/")
|
|
67
|
+
dataset_num = int(dataset_[position+1:-4]) # cuts the "<dataset>/" and the ".off"
|
|
68
|
+
dataset_ = dataset_[:position]
|
|
69
|
+
|
|
70
|
+
if dataset_num is None: # gets a random (available) number for this dataset
|
|
71
|
+
from os import listdir
|
|
72
|
+
from random import choice
|
|
73
|
+
files = listdir(DATASET_PATH+f"3dshapes/{dataset_}")
|
|
74
|
+
if num_sample <= 0:
|
|
75
|
+
files = [file for file in files if "label" not in file]
|
|
76
|
+
else:
|
|
77
|
+
files = np.random.choice([file for file in files if "label" not in file], replace=False, size=num_sample)
|
|
78
|
+
dataset_nums = np.sort([int("".join([char for char in file if char.isnumeric()])) for file in files])
|
|
79
|
+
|
|
80
|
+
print("Dataset nums : ", *dataset_nums)
|
|
81
|
+
out = [get_(dataset_, dataset_num=num) for num in dataset_nums]
|
|
82
|
+
return out
|
|
83
|
+
|
|
84
|
+
path = DATASET_PATH+f"3dshapes/{dataset_}/{dataset_num}.off"
|
|
85
|
+
data = read_off(path)
|
|
86
|
+
faces = data.face.numpy().T
|
|
87
|
+
# data = FaceToEdge(remove_faces=remove_faces)(data)
|
|
88
|
+
#labels
|
|
89
|
+
label_path = path.split(".")[0] + "_labels.txt"
|
|
90
|
+
f = open(label_path, "r")
|
|
91
|
+
labels = np.zeros(len(data.pos), dtype="<U10") # Assumes labels are of size at most 10 chars
|
|
92
|
+
current_label=""
|
|
93
|
+
for i, line in enumerate(f.readlines()):
|
|
94
|
+
if i % 2 == 0:
|
|
95
|
+
current_label = line.strip()
|
|
96
|
+
continue
|
|
97
|
+
faces_of_label = np.array(line.strip().split(" "), dtype=int) -1 # this starts at 1, python starts at 0
|
|
98
|
+
# print(faces_of_label.min())
|
|
99
|
+
nodes_of_label = np.unique(faces[faces_of_label].flatten())
|
|
100
|
+
labels[nodes_of_label] = current_label # les labels sont sur les faces
|
|
101
|
+
return data, labels
|
multipers/data/synthetic.py
CHANGED
|
@@ -1,111 +1,113 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def noisy_annulus(
|
|
5
|
-
n1: int = 1000,
|
|
6
|
-
n2: int = 200,
|
|
7
|
-
r1: float = 1,
|
|
8
|
-
r2: float = 2,
|
|
9
|
-
dim: int = 2,
|
|
10
|
-
center: np.ndarray | list | None = None,
|
|
11
|
-
**kwargs
|
|
12
|
-
) -> np.ndarray:
|
|
13
|
-
"""Generates a noisy annulus dataset.
|
|
14
|
-
|
|
15
|
-
Parameters
|
|
16
|
-
----------
|
|
17
|
-
r1 : float.
|
|
18
|
-
Lower radius of the annulus.
|
|
19
|
-
r2 : float.
|
|
20
|
-
Upper radius of the annulus.
|
|
21
|
-
n1 : int
|
|
22
|
-
Number of points in the annulus.
|
|
23
|
-
n2 : int
|
|
24
|
-
Number of points in the square.
|
|
25
|
-
dim : int
|
|
26
|
-
Dimension of the annulus.
|
|
27
|
-
center: list or array
|
|
28
|
-
center of the annulus.
|
|
29
|
-
|
|
30
|
-
Returns
|
|
31
|
-
-------
|
|
32
|
-
numpy array
|
|
33
|
-
Dataset. size : (n1+n2) x dim
|
|
34
|
-
|
|
35
|
-
"""
|
|
36
|
-
theta = np.random.normal(size=(n1, dim))
|
|
37
|
-
theta /= np.linalg.norm(theta, axis=1)[:, None]
|
|
38
|
-
rs = np.sqrt(np.random.uniform(low=r1**2, high=r2**2, size=n1))
|
|
39
|
-
annulus = rs[:, None] * theta
|
|
40
|
-
if center is not None:
|
|
41
|
-
annulus += np.array(center)
|
|
42
|
-
diffuse_noise = np.random.uniform(size=(n2, dim), low=-1.1 * r2, high=1.1 * r2)
|
|
43
|
-
if center is not None:
|
|
44
|
-
diffuse_noise += np.array(center)
|
|
45
|
-
return np.vstack([annulus, diffuse_noise])
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
def three_annulus(num_pts: int = 500, num_outliers: int = 500):
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
x, y =
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
labels =
|
|
111
|
-
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def noisy_annulus(
|
|
5
|
+
n1: int = 1000,
|
|
6
|
+
n2: int = 200,
|
|
7
|
+
r1: float = 1,
|
|
8
|
+
r2: float = 2,
|
|
9
|
+
dim: int = 2,
|
|
10
|
+
center: np.ndarray | list | None = None,
|
|
11
|
+
**kwargs
|
|
12
|
+
) -> np.ndarray:
|
|
13
|
+
"""Generates a noisy annulus dataset.
|
|
14
|
+
|
|
15
|
+
Parameters
|
|
16
|
+
----------
|
|
17
|
+
r1 : float.
|
|
18
|
+
Lower radius of the annulus.
|
|
19
|
+
r2 : float.
|
|
20
|
+
Upper radius of the annulus.
|
|
21
|
+
n1 : int
|
|
22
|
+
Number of points in the annulus.
|
|
23
|
+
n2 : int
|
|
24
|
+
Number of points in the square.
|
|
25
|
+
dim : int
|
|
26
|
+
Dimension of the annulus.
|
|
27
|
+
center: list or array
|
|
28
|
+
center of the annulus.
|
|
29
|
+
|
|
30
|
+
Returns
|
|
31
|
+
-------
|
|
32
|
+
numpy array
|
|
33
|
+
Dataset. size : (n1+n2) x dim
|
|
34
|
+
|
|
35
|
+
"""
|
|
36
|
+
theta = np.random.normal(size=(n1, dim))
|
|
37
|
+
theta /= np.linalg.norm(theta, axis=1)[:, None]
|
|
38
|
+
rs = np.sqrt(np.random.uniform(low=r1**2, high=r2**2, size=n1))
|
|
39
|
+
annulus = rs[:, None] * theta
|
|
40
|
+
if center is not None:
|
|
41
|
+
annulus += np.array(center)
|
|
42
|
+
diffuse_noise = np.random.uniform(size=(n2, dim), low=-1.1 * r2, high=1.1 * r2)
|
|
43
|
+
if center is not None:
|
|
44
|
+
diffuse_noise += np.array(center)
|
|
45
|
+
return np.vstack([annulus, diffuse_noise])
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def three_annulus(num_pts: int = 500, num_outliers: int = 500):
|
|
49
|
+
q, r = divmod(num_pts, 3)
|
|
50
|
+
num_pts_1, num_pts_2, num_pts_3 = q, q + (r > 0), q + (r > 1)
|
|
51
|
+
X = np.block(
|
|
52
|
+
[
|
|
53
|
+
[np.random.uniform(low=-2, high=2, size=(num_outliers, 2))],
|
|
54
|
+
[
|
|
55
|
+
np.array(
|
|
56
|
+
noisy_annulus(
|
|
57
|
+
r1=0.6,
|
|
58
|
+
r2=0.9,
|
|
59
|
+
n1=num_pts_1,
|
|
60
|
+
n2=0,
|
|
61
|
+
center=[1, -0.2],
|
|
62
|
+
)
|
|
63
|
+
)
|
|
64
|
+
],
|
|
65
|
+
[
|
|
66
|
+
np.array(
|
|
67
|
+
noisy_annulus(
|
|
68
|
+
r1=0.4,
|
|
69
|
+
r2=0.55,
|
|
70
|
+
n1=num_pts_2,
|
|
71
|
+
n2=0,
|
|
72
|
+
center=[-1.2, -1],
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
],
|
|
76
|
+
[
|
|
77
|
+
np.array(
|
|
78
|
+
noisy_annulus(
|
|
79
|
+
r1=0.3,
|
|
80
|
+
r2=0.4,
|
|
81
|
+
n1=num_pts_3,
|
|
82
|
+
n2=0,
|
|
83
|
+
center=[-0.7, 1.1],
|
|
84
|
+
)
|
|
85
|
+
)
|
|
86
|
+
],
|
|
87
|
+
]
|
|
88
|
+
)
|
|
89
|
+
return X
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
def orbit(n: int = 1000, r: float = 1.0, x0=[]):
|
|
93
|
+
point_list = []
|
|
94
|
+
if len(x0) != 2:
|
|
95
|
+
x, y = np.random.uniform(size=2)
|
|
96
|
+
else:
|
|
97
|
+
x, y = x0
|
|
98
|
+
point_list.append([x, y])
|
|
99
|
+
for _ in range(n - 1):
|
|
100
|
+
x = (x + r * y * (1 - y)) % 1
|
|
101
|
+
y = (y + r * x * (1 - x)) % 1
|
|
102
|
+
point_list.append([x, y])
|
|
103
|
+
return np.asarray(point_list, dtype=float)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def get_orbit5k(num_pts=1000, num_data=5000):
|
|
107
|
+
from sklearn.preprocessing import LabelEncoder
|
|
108
|
+
|
|
109
|
+
rs = [2.5, 3.5, 4, 4.1, 4.3]
|
|
110
|
+
labels = np.random.choice(rs, size=num_data, replace=True)
|
|
111
|
+
X = [orbit(n=num_pts, r=r) for r in labels]
|
|
112
|
+
labels = LabelEncoder().fit_transform(labels)
|
|
113
|
+
return X, labels
|