multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.1__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp312-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp312-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp312-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +281 -100
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
@@ -1,369 +1,369 @@
1
- #pragma once
2
- #include <gudhi/Simplex_tree_multi.h>
3
- #include "gudhi/truc.h"
4
- #include "multi_parameter_rank_invariant/persistence_slices.h"
5
- #include "tensor/tensor.h"
6
- #include <algorithm>
7
- #include <cstddef>
8
- #include <gudhi/One_critical_filtration.h>
9
- #include <oneapi/tbb/enumerable_thread_specific.h>
10
- #include <oneapi/tbb/parallel_for.h>
11
- #include <ostream>
12
- #include <utility> // std::pair
13
- #include <vector>
14
-
15
- namespace Gudhi {
16
- namespace multiparameter {
17
- namespace rank_invariant {
18
- using Index = truc_interface::index_type;
19
-
20
- // using Elbow = std::vector<std::pair<>>;grid
21
- template <typename index_type>
22
- inline void push_in_elbow(index_type &i, index_type &j, const index_type I, const index_type J) {
23
- if (j < J) {
24
- j++;
25
- return;
26
- }
27
- if (i < I) {
28
- i++;
29
- return;
30
- }
31
- j++;
32
- return;
33
- }
34
-
35
- template <typename index_type, typename value_type>
36
- inline value_type get_slice_rank_filtration(const value_type x,
37
- const value_type y,
38
- const index_type I,
39
- const index_type J) {
40
- if (x > static_cast<value_type>(I))
41
- return std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity()
42
- : std::numeric_limits<value_type>::max();
43
- if (y > static_cast<value_type>(J)) return I + static_cast<index_type>(y);
44
- return J + static_cast<index_type>(x);
45
- }
46
-
47
- template <typename index_type>
48
- inline std::pair<index_type, index_type> get_coordinates(index_type in_slice_value, index_type I, index_type J) {
49
- if (in_slice_value <= J) return {0, J};
50
- if (in_slice_value <= I + J) return {in_slice_value - J, J};
51
- return {I, in_slice_value - I};
52
- }
53
-
54
- template <typename dtype, typename index_type, typename Filtration>
55
- inline void compute_2d_rank_invariant_of_elbow(
56
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
57
- Simplex_tree_std &_st_container, // copy of st_multi
58
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
59
- const index_type I,
60
- const index_type J,
61
- const std::vector<index_type> &grid_shape,
62
- const std::vector<index_type> &degrees,
63
- const int expand_collapse_max_dim = 0) {
64
- // const bool verbose = false; // verbose
65
- using value_type = typename Simplex_tree_std::Filtration_value;
66
- constexpr const value_type inf = std::numeric_limits<value_type>::infinity();
67
-
68
- // const auto X = grid_shape[1], Y = grid_shape[2]; // First axis is degree
69
- const auto Y = grid_shape[2];
70
- // Fills the filtration in the container
71
- // TODO : C++23 zip, when Apples clang will stop being obsolete
72
- auto sh_standard = _st_container.complex_simplex_range().begin();
73
- auto _end = _st_container.complex_simplex_range().end();
74
- auto sh_multi = st_multi.complex_simplex_range().begin();
75
- for (; sh_standard != _end; ++sh_multi, ++sh_standard) {
76
- const Filtration &multi_filtration = st_multi.filtration(*sh_multi);
77
- value_type filtration_in_slice;
78
- if constexpr (Filtration::is_multi_critical) {
79
- filtration_in_slice = inf;
80
- for (const auto &stuff : multi_filtration) {
81
- value_type x = stuff[0];
82
- value_type y = stuff[1];
83
- filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
84
- }
85
- } else {
86
- value_type x = multi_filtration[0];
87
- value_type y = multi_filtration[1];
88
- filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
89
- }
90
- _st_container.assign_filtration(*sh_standard, filtration_in_slice);
91
- }
92
- const std::vector<Barcode> &barcodes = compute_dgms(_st_container, degrees, expand_collapse_max_dim);
93
- index_type degree_index = 0;
94
- for (const auto &barcode : barcodes) { // TODO range view cartesian product
95
- for (const auto &bar : barcode) {
96
- auto birth = static_cast<index_type>(bar.first);
97
- auto death = static_cast<index_type>(
98
- std::min(bar.second,
99
- static_cast<typename Simplex_tree_std::Filtration_value>(Y + I))); // I,J atteints, pas X ni Y
100
-
101
- // todo : optimize
102
- // auto [a,b] = get_coordinates(birth, I,J);
103
- for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
104
- for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
105
- auto [i, j] = get_coordinates(intermediate_birth, I, J);
106
- auto [k, l] = get_coordinates(intermediate_death, I, J);
107
- if (((i < k || j == J) && (j < l || k == I))) {
108
- // std::vector<index_type> coordinates_to_remove =
109
- // {degree_index,i,j,k,l}; out[coordinates_to_remove]++;
110
- out[{degree_index, i, j, k, l}]++;
111
- }
112
- }
113
- }
114
- }
115
- degree_index++;
116
- }
117
- }
118
-
119
- template <typename dtype, typename index_type, typename Filtration>
120
- inline void compute_2d_rank_invariant(
121
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
122
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
123
- const std::vector<index_type> &grid_shape,
124
- const std::vector<index_type> &degrees,
125
- bool expand_collapse) {
126
- if (degrees.size() == 0) return;
127
- assert(st_multi.get_number_of_parameters() == 2);
128
- Simplex_tree_std st_;
129
- Gudhi::multi_persistence::flatten(st_, st_multi,
130
- 0); // copies the st_multi to a standard 1-pers simplextree
131
- const int max_dim = expand_collapse ? *std::max_element(degrees.begin(), degrees.end()) + 1 : 0;
132
- index_type X = grid_shape[1];
133
- index_type Y = grid_shape[2]; // First axis is degree
134
- tbb::enumerable_thread_specific<Simplex_tree_std> thread_simplex_tree(st_); // initialize with a good simplextree
135
- tbb::parallel_for(0, X, [&](index_type I) {
136
- tbb::parallel_for(0, Y, [&](index_type J) {
137
- auto &st_container = thread_simplex_tree.local();
138
- compute_2d_rank_invariant_of_elbow<dtype, index_type, Filtration>(
139
- st_multi, st_container, out, I, J, grid_shape, degrees, max_dim);
140
- });
141
- });
142
- }
143
-
144
- template <typename Filtration, typename dtype, typename indices_type, typename... Args>
145
- void compute_rank_invariant_python(
146
- Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
147
- dtype *data_ptr,
148
- const std::vector<indices_type> grid_shape,
149
- const std::vector<indices_type> degrees,
150
- indices_type n_jobs,
151
- bool expand_collapse) {
152
- if (degrees.size() == 0) return;
153
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
154
-
155
- oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
156
- arena.execute([&] {
157
- compute_2d_rank_invariant<dtype, indices_type, Filtration>(
158
- st_multi, container, grid_shape, degrees, expand_collapse);
159
- });
160
-
161
- return;
162
- }
163
-
164
- template <class PersBackend,
165
- class Structure,
166
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
167
- typename dtype,
168
- typename index_type>
169
- inline void compute_2d_rank_invariant_of_elbow(
170
- typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe &slicer, // truc slicer
171
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
172
- const index_type I,
173
- const index_type J,
174
- const std::vector<index_type> &grid_shape,
175
- const std::vector<index_type> &degrees,
176
- // std::vector<Index> &order_container, // constant size
177
- // std::vector<typename MultiFiltration::value_type> &one_persistence, // constant size
178
- const bool flip_death = false,
179
- const bool ignore_inf = true) {
180
- using value_type = typename MultiFiltration::value_type;
181
- const auto &filtrations_values = slicer.get_filtrations();
182
- auto num_generators = filtrations_values.size();
183
- // one_persistence.resize(num_generators); // local variable should be
184
- // initialized correctly
185
- const auto Y = grid_shape[2];
186
- constexpr const bool verbose = false;
187
- if constexpr (verbose) std::cout << "filtration_in_slice : [ ";
188
- for (auto i = 0u; i < num_generators; ++i) {
189
- const auto &f = filtrations_values[i];
190
- value_type filtration_in_slice = MultiFiltration::Generator::T_inf;
191
- if constexpr (MultiFiltration::is_multi_critical) {
192
- for (const auto &stuff : f) {
193
- value_type x = stuff[0];
194
- value_type y = stuff[1];
195
-
196
- filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
197
- }
198
- } else {
199
- value_type x = f[0];
200
- value_type y = f[1];
201
- filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
202
- }
203
- if constexpr (verbose) std::cout << filtration_in_slice << ",";
204
- slicer.get_one_filtration()[i] = filtration_in_slice;
205
- }
206
- if constexpr (verbose) std::cout << "\b]" << std::endl;
207
-
208
- index_type degree_index = 0;
209
- // order_container.resize(slicer.num_generators()); // local variable should
210
- // be initialized correctly
211
- // TODO : use slicer::ThreadSafe instead of maintaining one_pers & order
212
- // BUG : This will break as soon as slicer interface change
213
-
214
- using bc_type = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::split_barcode;
215
- bc_type barcodes;
216
- if constexpr (PersBackend::is_vine) {
217
- // slicer.set_one_filtration(one_persistence);
218
- if (I == 0 && J == 0) [[unlikely]] // this is dangerous, assumes it starts at 0 0
219
- {
220
- // TODO : This is a good optimization but needs a patch on
221
- // PersistenceMatrix std::vector<bool>
222
- // degrees_index(slicer.get_dimensions().back()+1, false); for (const auto
223
- // &degree : degrees) {
224
- // if (degree <= slicer.get_dimensions())
225
- // degrees_index[degree] = true;
226
- // }
227
- // slicer.compute_persistence(degrees_index);
228
- slicer.compute_persistence();
229
- } else {
230
- slicer.vineyard_update();
231
- }
232
- barcodes = slicer.get_barcode();
233
- } else {
234
- slicer.compute_persistence(ignore_inf);
235
- barcodes = slicer.get_barcode();
236
- }
237
-
238
- // note one_pers not necesary when vine, but does the same computation
239
-
240
- for (auto degree : degrees) {
241
- // this assumes barcodes degrees starts from 0
242
- if constexpr (verbose) std::cout << "Adding Barcode of degree " << degree << std::endl;
243
- if (degree >= static_cast<index_type>(barcodes.size())) continue;
244
- const auto &barcode = barcodes[degree];
245
- for (const auto &bar : barcode) {
246
- if (bar.first > Y + I) continue;
247
- if constexpr (verbose)
248
- std::cout << bar.first << " " << bar.second << "checkinf: " << MultiFiltration::Generator::T_inf << " ==? "
249
- << (bar.first == MultiFiltration::Generator::T_inf) << std::endl;
250
- auto birth = static_cast<index_type>(bar.first);
251
- auto death = static_cast<index_type>(
252
- std::min(bar.second,
253
- static_cast<typename MultiFiltration::value_type>(Y + I))); // I,J atteints, pas X ni Y
254
- if constexpr (false) std::cout << "Birth " << birth << " Death " << death << std::endl;
255
- for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
256
- for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
257
- auto [i, j] = get_coordinates(intermediate_birth, I, J);
258
- auto [k, l] = get_coordinates(intermediate_death, I, J);
259
- if (((i < k || j == J) && (j < l || k == I))) {
260
- if (flip_death)
261
- out[{degree_index, i, j, I - 1 - k, J - 1 - l}]++;
262
- else
263
- out[{degree_index, i, j, k, l}]++;
264
- }
265
- if constexpr (false) std::cout << degree_index << " " << i << " " << j << " " << k << " " << l << std::endl;
266
- }
267
- }
268
- }
269
- degree_index++;
270
- }
271
- };
272
-
273
- template <class PersBackend,
274
- class Structure,
275
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
276
- typename dtype,
277
- typename index_type>
278
- inline void compute_2d_rank_invariant(
279
- truc_interface::Truc<PersBackend, Structure, MultiFiltration> &slicer,
280
- const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
281
- const std::vector<index_type> &grid_shape,
282
- const std::vector<index_type> &degrees,
283
- const bool flip_death,
284
- const bool ignore_inf) {
285
- if (degrees.size() == 0) return;
286
- index_type X = grid_shape[1];
287
- index_type Y = grid_shape[2]; // First axis is degree
288
- constexpr const bool verbose = false;
289
- if constexpr (verbose)
290
- std::cout << "Shape " << grid_shape[0] << " " << grid_shape[1] << " " << grid_shape[2] << " " << grid_shape[3]
291
- << " " << grid_shape[4] << std::endl;
292
-
293
- using ThreadSafe = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe;
294
- ThreadSafe slicer_thread(slicer);
295
- tbb::enumerable_thread_specific<ThreadSafe> thread_locals(slicer_thread);
296
- tbb::parallel_for(0, X, [&](index_type I) {
297
- tbb::parallel_for(0, Y, [&](index_type J) {
298
- if constexpr (verbose) std::cout << "Computing elbow " << I << " " << J << "...";
299
- ThreadSafe &slicer = thread_locals.local();
300
- compute_2d_rank_invariant_of_elbow<PersBackend, Structure, MultiFiltration, dtype, index_type>(
301
- slicer, out, I, J, grid_shape, degrees, flip_death, ignore_inf);
302
- if constexpr (verbose) std::cout << "Done!" << std::endl;
303
- });
304
- });
305
- }
306
-
307
- template <class PersBackend,
308
- class Structure,
309
- class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
310
- typename dtype,
311
- typename indices_type>
312
- void compute_rank_invariant_python(truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
313
- dtype *data_ptr,
314
- const std::vector<indices_type> grid_shape,
315
- const std::vector<indices_type> degrees,
316
- indices_type n_jobs,
317
- const bool ignore_inf) {
318
- if (degrees.size() == 0) return;
319
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
320
- if constexpr (false){
321
- std::cout << "ignore_inf " << ignore_inf << std::endl;
322
- }
323
-
324
- oneapi::tbb::task_arena arena(PersBackend::is_vine ? 1 : n_jobs); // limits the number of threads
325
- arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, false, ignore_inf); });
326
-
327
- return;
328
- }
329
-
330
- template <typename PersBackend,
331
- typename Structure,
332
- typename MultiFiltration,
333
- typename dtype = int,
334
- typename indices_type = int>
335
- std::pair<std::vector<std::vector<indices_type>>, std::vector<dtype>> compute_rank_signed_measure(
336
- truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
337
- dtype *data_ptr,
338
- const std::vector<indices_type> grid_shape,
339
- const std::vector<indices_type> degrees,
340
- indices_type n_jobs,
341
- bool verbose,
342
- const bool ignore_inf) {
343
- if (degrees.size() == 0) return {{}, {}};
344
- tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
345
- oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
346
- constexpr bool flip_death = true;
347
- arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, flip_death, ignore_inf); });
348
-
349
- if (verbose) {
350
- std::cout << "Done.\n";
351
- std::cout << "Computing mobius inversion ..." << std::flush;
352
- }
353
-
354
- // for (indices_type axis :
355
- // std::views::iota(2,st_multi.get_number_of_parameters()+1)) // +1 for the
356
- // degree in axis 0
357
- for (std::size_t axis = 0u; axis < slicer.num_parameters() + 1; axis++) container.differentiate(axis);
358
- if (verbose) {
359
- std::cout << "Done.\n";
360
- std::cout << "Sparsifying the measure ..." << std::flush;
361
- }
362
- auto raw_signed_measure = container.sparsify({false, false, true, true});
363
- if (verbose) {
364
- std::cout << "Done.\n";
365
- }
366
- return raw_signed_measure;
367
- }
368
-
369
- }}} // namespace Gudhi::multiparameter::rank_invariant
1
+ #pragma once
2
+ #include <gudhi/Simplex_tree_multi.h>
3
+ #include "gudhi/truc.h"
4
+ #include "multi_parameter_rank_invariant/persistence_slices.h"
5
+ #include "tensor/tensor.h"
6
+ #include <algorithm>
7
+ #include <cstddef>
8
+ #include <gudhi/One_critical_filtration.h>
9
+ #include <oneapi/tbb/enumerable_thread_specific.h>
10
+ #include <oneapi/tbb/parallel_for.h>
11
+ #include <ostream>
12
+ #include <utility> // std::pair
13
+ #include <vector>
14
+
15
+ namespace Gudhi {
16
+ namespace multiparameter {
17
+ namespace rank_invariant {
18
+ using Index = truc_interface::index_type;
19
+
20
+ // using Elbow = std::vector<std::pair<>>;grid
21
+ template <typename index_type>
22
+ inline void push_in_elbow(index_type &i, index_type &j, const index_type I, const index_type J) {
23
+ if (j < J) {
24
+ j++;
25
+ return;
26
+ }
27
+ if (i < I) {
28
+ i++;
29
+ return;
30
+ }
31
+ j++;
32
+ return;
33
+ }
34
+
35
+ template <typename index_type, typename value_type>
36
+ inline value_type get_slice_rank_filtration(const value_type x,
37
+ const value_type y,
38
+ const index_type I,
39
+ const index_type J) {
40
+ if (x > static_cast<value_type>(I))
41
+ return std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity()
42
+ : std::numeric_limits<value_type>::max();
43
+ if (y > static_cast<value_type>(J)) return I + static_cast<index_type>(y);
44
+ return J + static_cast<index_type>(x);
45
+ }
46
+
47
+ template <typename index_type>
48
+ inline std::pair<index_type, index_type> get_coordinates(index_type in_slice_value, index_type I, index_type J) {
49
+ if (in_slice_value <= J) return {0, J};
50
+ if (in_slice_value <= I + J) return {in_slice_value - J, J};
51
+ return {I, in_slice_value - I};
52
+ }
53
+
54
+ template <typename dtype, typename index_type, typename Filtration>
55
+ inline void compute_2d_rank_invariant_of_elbow(
56
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
57
+ Simplex_tree_std &_st_container, // copy of st_multi
58
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
59
+ const index_type I,
60
+ const index_type J,
61
+ const std::vector<index_type> &grid_shape,
62
+ const std::vector<index_type> &degrees,
63
+ const int expand_collapse_max_dim = 0) {
64
+ // const bool verbose = false; // verbose
65
+ using value_type = typename Simplex_tree_std::Filtration_value;
66
+ constexpr const value_type inf = std::numeric_limits<value_type>::infinity();
67
+
68
+ // const auto X = grid_shape[1], Y = grid_shape[2]; // First axis is degree
69
+ const auto Y = grid_shape[2];
70
+ // Fills the filtration in the container
71
+ // TODO : C++23 zip, when Apples clang will stop being obsolete
72
+ auto sh_standard = _st_container.complex_simplex_range().begin();
73
+ auto _end = _st_container.complex_simplex_range().end();
74
+ auto sh_multi = st_multi.complex_simplex_range().begin();
75
+ for (; sh_standard != _end; ++sh_multi, ++sh_standard) {
76
+ const Filtration &multi_filtration = st_multi.filtration(*sh_multi);
77
+ value_type filtration_in_slice;
78
+ if constexpr (Filtration::is_multi_critical) {
79
+ filtration_in_slice = inf;
80
+ for (const auto &stuff : multi_filtration) {
81
+ value_type x = stuff[0];
82
+ value_type y = stuff[1];
83
+ filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
84
+ }
85
+ } else {
86
+ value_type x = multi_filtration[0];
87
+ value_type y = multi_filtration[1];
88
+ filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
89
+ }
90
+ _st_container.assign_filtration(*sh_standard, filtration_in_slice);
91
+ }
92
+ const std::vector<Barcode> &barcodes = compute_dgms(_st_container, degrees, expand_collapse_max_dim);
93
+ index_type degree_index = 0;
94
+ for (const auto &barcode : barcodes) { // TODO range view cartesian product
95
+ for (const auto &bar : barcode) {
96
+ auto birth = static_cast<index_type>(bar.first);
97
+ auto death = static_cast<index_type>(
98
+ std::min(bar.second,
99
+ static_cast<typename Simplex_tree_std::Filtration_value>(Y + I))); // I,J atteints, pas X ni Y
100
+
101
+ // todo : optimize
102
+ // auto [a,b] = get_coordinates(birth, I,J);
103
+ for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
104
+ for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
105
+ auto [i, j] = get_coordinates(intermediate_birth, I, J);
106
+ auto [k, l] = get_coordinates(intermediate_death, I, J);
107
+ if (((i < k || j == J) && (j < l || k == I))) {
108
+ // std::vector<index_type> coordinates_to_remove =
109
+ // {degree_index,i,j,k,l}; out[coordinates_to_remove]++;
110
+ out[{degree_index, i, j, k, l}]++;
111
+ }
112
+ }
113
+ }
114
+ }
115
+ degree_index++;
116
+ }
117
+ }
118
+
119
+ template <typename dtype, typename index_type, typename Filtration>
120
+ inline void compute_2d_rank_invariant(
121
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
122
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
123
+ const std::vector<index_type> &grid_shape,
124
+ const std::vector<index_type> &degrees,
125
+ bool expand_collapse) {
126
+ if (degrees.size() == 0) return;
127
+ assert(st_multi.get_number_of_parameters() == 2);
128
+ Simplex_tree_std st_;
129
+ Gudhi::multi_persistence::flatten(st_, st_multi,
130
+ 0); // copies the st_multi to a standard 1-pers simplextree
131
+ const int max_dim = expand_collapse ? *std::max_element(degrees.begin(), degrees.end()) + 1 : 0;
132
+ index_type X = grid_shape[1];
133
+ index_type Y = grid_shape[2]; // First axis is degree
134
+ tbb::enumerable_thread_specific<Simplex_tree_std> thread_simplex_tree(st_); // initialize with a good simplextree
135
+ tbb::parallel_for(0, X, [&](index_type I) {
136
+ tbb::parallel_for(0, Y, [&](index_type J) {
137
+ auto &st_container = thread_simplex_tree.local();
138
+ compute_2d_rank_invariant_of_elbow<dtype, index_type, Filtration>(
139
+ st_multi, st_container, out, I, J, grid_shape, degrees, max_dim);
140
+ });
141
+ });
142
+ }
143
+
144
+ template <typename Filtration, typename dtype, typename indices_type, typename... Args>
145
+ void compute_rank_invariant_python(
146
+ Simplex_tree<Gudhi::multi_persistence::Simplex_tree_options_multidimensional_filtration<Filtration>> &st_multi,
147
+ dtype *data_ptr,
148
+ const std::vector<indices_type> grid_shape,
149
+ const std::vector<indices_type> degrees,
150
+ indices_type n_jobs,
151
+ bool expand_collapse) {
152
+ if (degrees.size() == 0) return;
153
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
154
+
155
+ oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
156
+ arena.execute([&] {
157
+ compute_2d_rank_invariant<dtype, indices_type, Filtration>(
158
+ st_multi, container, grid_shape, degrees, expand_collapse);
159
+ });
160
+
161
+ return;
162
+ }
163
+
164
+ template <class PersBackend,
165
+ class Structure,
166
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
167
+ typename dtype,
168
+ typename index_type>
169
+ inline void compute_2d_rank_invariant_of_elbow(
170
+ typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe &slicer, // truc slicer
171
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
172
+ const index_type I,
173
+ const index_type J,
174
+ const std::vector<index_type> &grid_shape,
175
+ const std::vector<index_type> &degrees,
176
+ // std::vector<Index> &order_container, // constant size
177
+ // std::vector<typename MultiFiltration::value_type> &one_persistence, // constant size
178
+ const bool flip_death = false,
179
+ const bool ignore_inf = true) {
180
+ using value_type = typename MultiFiltration::value_type;
181
+ const auto &filtrations_values = slicer.get_filtrations();
182
+ auto num_generators = filtrations_values.size();
183
+ // one_persistence.resize(num_generators); // local variable should be
184
+ // initialized correctly
185
+ const auto Y = grid_shape[2];
186
+ constexpr const bool verbose = false;
187
+ if constexpr (verbose) std::cout << "filtration_in_slice : [ ";
188
+ for (auto i = 0u; i < num_generators; ++i) {
189
+ const auto &f = filtrations_values[i];
190
+ value_type filtration_in_slice = MultiFiltration::Generator::T_inf;
191
+ if constexpr (MultiFiltration::is_multi_critical) {
192
+ for (const auto &stuff : f) {
193
+ value_type x = stuff[0];
194
+ value_type y = stuff[1];
195
+
196
+ filtration_in_slice = std::min(filtration_in_slice, get_slice_rank_filtration(x, y, I, J));
197
+ }
198
+ } else {
199
+ value_type x = f[0];
200
+ value_type y = f[1];
201
+ filtration_in_slice = get_slice_rank_filtration(x, y, I, J);
202
+ }
203
+ if constexpr (verbose) std::cout << filtration_in_slice << ",";
204
+ slicer.get_one_filtration()[i] = filtration_in_slice;
205
+ }
206
+ if constexpr (verbose) std::cout << "\b]" << std::endl;
207
+
208
+ index_type degree_index = 0;
209
+ // order_container.resize(slicer.num_generators()); // local variable should
210
+ // be initialized correctly
211
+ // TODO : use slicer::ThreadSafe instead of maintaining one_pers & order
212
+ // BUG : This will break as soon as slicer interface change
213
+
214
+ using bc_type = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::split_barcode;
215
+ bc_type barcodes;
216
+ if constexpr (PersBackend::is_vine) {
217
+ // slicer.set_one_filtration(one_persistence);
218
+ if (I == 0 && J == 0) [[unlikely]] // this is dangerous, assumes it starts at 0 0
219
+ {
220
+ // TODO : This is a good optimization but needs a patch on
221
+ // PersistenceMatrix std::vector<bool>
222
+ // degrees_index(slicer.get_dimensions().back()+1, false); for (const auto
223
+ // &degree : degrees) {
224
+ // if (degree <= slicer.get_dimensions())
225
+ // degrees_index[degree] = true;
226
+ // }
227
+ // slicer.compute_persistence(degrees_index);
228
+ slicer.compute_persistence();
229
+ } else {
230
+ slicer.vineyard_update();
231
+ }
232
+ barcodes = slicer.get_barcode();
233
+ } else {
234
+ slicer.compute_persistence(ignore_inf);
235
+ barcodes = slicer.get_barcode();
236
+ }
237
+
238
+ // note one_pers not necesary when vine, but does the same computation
239
+
240
+ for (auto degree : degrees) {
241
+ // this assumes barcodes degrees starts from 0
242
+ if constexpr (verbose) std::cout << "Adding Barcode of degree " << degree << std::endl;
243
+ if (degree >= static_cast<index_type>(barcodes.size())) continue;
244
+ const auto &barcode = barcodes[degree];
245
+ for (const auto &bar : barcode) {
246
+ if (bar.first > Y + I) continue;
247
+ if constexpr (verbose)
248
+ std::cout << bar.first << " " << bar.second << "checkinf: " << MultiFiltration::Generator::T_inf << " ==? "
249
+ << (bar.first == MultiFiltration::Generator::T_inf) << std::endl;
250
+ auto birth = static_cast<index_type>(bar.first);
251
+ auto death = static_cast<index_type>(
252
+ std::min(bar.second,
253
+ static_cast<typename MultiFiltration::value_type>(Y + I))); // I,J atteints, pas X ni Y
254
+ if constexpr (false) std::cout << "Birth " << birth << " Death " << death << std::endl;
255
+ for (auto intermediate_birth = birth; intermediate_birth < death; intermediate_birth++) {
256
+ for (auto intermediate_death = intermediate_birth; intermediate_death < death; intermediate_death++) {
257
+ auto [i, j] = get_coordinates(intermediate_birth, I, J);
258
+ auto [k, l] = get_coordinates(intermediate_death, I, J);
259
+ if (((i < k || j == J) && (j < l || k == I))) {
260
+ if (flip_death)
261
+ out[{degree_index, i, j, I - 1 - k, J - 1 - l}]++;
262
+ else
263
+ out[{degree_index, i, j, k, l}]++;
264
+ }
265
+ if constexpr (false) std::cout << degree_index << " " << i << " " << j << " " << k << " " << l << std::endl;
266
+ }
267
+ }
268
+ }
269
+ degree_index++;
270
+ }
271
+ };
272
+
273
+ template <class PersBackend,
274
+ class Structure,
275
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
276
+ typename dtype,
277
+ typename index_type>
278
+ inline void compute_2d_rank_invariant(
279
+ truc_interface::Truc<PersBackend, Structure, MultiFiltration> &slicer,
280
+ const tensor::static_tensor_view<dtype, index_type> &out, // assumes its a zero tensor
281
+ const std::vector<index_type> &grid_shape,
282
+ const std::vector<index_type> &degrees,
283
+ const bool flip_death,
284
+ const bool ignore_inf) {
285
+ if (degrees.size() == 0) return;
286
+ index_type X = grid_shape[1];
287
+ index_type Y = grid_shape[2]; // First axis is degree
288
+ constexpr const bool verbose = false;
289
+ if constexpr (verbose)
290
+ std::cout << "Shape " << grid_shape[0] << " " << grid_shape[1] << " " << grid_shape[2] << " " << grid_shape[3]
291
+ << " " << grid_shape[4] << std::endl;
292
+
293
+ using ThreadSafe = typename truc_interface::Truc<PersBackend, Structure, MultiFiltration>::ThreadSafe;
294
+ ThreadSafe slicer_thread(slicer);
295
+ tbb::enumerable_thread_specific<ThreadSafe> thread_locals(slicer_thread);
296
+ tbb::parallel_for(0, X, [&](index_type I) {
297
+ tbb::parallel_for(0, Y, [&](index_type J) {
298
+ if constexpr (verbose) std::cout << "Computing elbow " << I << " " << J << "...";
299
+ ThreadSafe &slicer = thread_locals.local();
300
+ compute_2d_rank_invariant_of_elbow<PersBackend, Structure, MultiFiltration, dtype, index_type>(
301
+ slicer, out, I, J, grid_shape, degrees, flip_death, ignore_inf);
302
+ if constexpr (verbose) std::cout << "Done!" << std::endl;
303
+ });
304
+ });
305
+ }
306
+
307
+ template <class PersBackend,
308
+ class Structure,
309
+ class MultiFiltration = Gudhi::multi_filtration::One_critical_filtration<float>,
310
+ typename dtype,
311
+ typename indices_type>
312
+ void compute_rank_invariant_python(truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
313
+ dtype *data_ptr,
314
+ const std::vector<indices_type> grid_shape,
315
+ const std::vector<indices_type> degrees,
316
+ indices_type n_jobs,
317
+ const bool ignore_inf) {
318
+ if (degrees.size() == 0) return;
319
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
320
+ if constexpr (false){
321
+ std::cout << "ignore_inf " << ignore_inf << std::endl;
322
+ }
323
+
324
+ oneapi::tbb::task_arena arena(PersBackend::is_vine ? 1 : n_jobs); // limits the number of threads
325
+ arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, false, ignore_inf); });
326
+
327
+ return;
328
+ }
329
+
330
+ template <typename PersBackend,
331
+ typename Structure,
332
+ typename MultiFiltration,
333
+ typename dtype = int,
334
+ typename indices_type = int>
335
+ std::pair<std::vector<std::vector<indices_type>>, std::vector<dtype>> compute_rank_signed_measure(
336
+ truc_interface::Truc<PersBackend, Structure, MultiFiltration> slicer,
337
+ dtype *data_ptr,
338
+ const std::vector<indices_type> grid_shape,
339
+ const std::vector<indices_type> degrees,
340
+ indices_type n_jobs,
341
+ bool verbose,
342
+ const bool ignore_inf) {
343
+ if (degrees.size() == 0) return {{}, {}};
344
+ tensor::static_tensor_view<dtype, indices_type> container(data_ptr, grid_shape); // assumes its a zero tensor
345
+ oneapi::tbb::task_arena arena(n_jobs); // limits the number of threads
346
+ constexpr bool flip_death = true;
347
+ arena.execute([&] { compute_2d_rank_invariant(slicer, container, grid_shape, degrees, flip_death, ignore_inf); });
348
+
349
+ if (verbose) {
350
+ std::cout << "Done.\n";
351
+ std::cout << "Computing mobius inversion ..." << std::flush;
352
+ }
353
+
354
+ // for (indices_type axis :
355
+ // std::views::iota(2,st_multi.get_number_of_parameters()+1)) // +1 for the
356
+ // degree in axis 0
357
+ for (std::size_t axis = 0u; axis < slicer.num_parameters() + 1; axis++) container.differentiate(axis);
358
+ if (verbose) {
359
+ std::cout << "Done.\n";
360
+ std::cout << "Sparsifying the measure ..." << std::flush;
361
+ }
362
+ auto raw_signed_measure = container.sparsify({false, false, true, true});
363
+ if (verbose) {
364
+ std::cout << "Done.\n";
365
+ }
366
+ return raw_signed_measure;
367
+ }
368
+
369
+ }}} // namespace Gudhi::multiparameter::rank_invariant