multipers 2.2.3__cp312-cp312-win_amd64.whl → 2.3.1__cp312-cp312-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of multipers might be problematic. Click here for more details.

Files changed (182) hide show
  1. multipers/__init__.py +33 -31
  2. multipers/_signed_measure_meta.py +430 -430
  3. multipers/_slicer_meta.py +211 -212
  4. multipers/data/MOL2.py +458 -458
  5. multipers/data/UCR.py +18 -18
  6. multipers/data/graphs.py +466 -466
  7. multipers/data/immuno_regions.py +27 -27
  8. multipers/data/pytorch2simplextree.py +90 -90
  9. multipers/data/shape3d.py +101 -101
  10. multipers/data/synthetic.py +113 -111
  11. multipers/distances.py +198 -198
  12. multipers/filtration_conversions.pxd.tp +84 -84
  13. multipers/filtrations/__init__.py +18 -0
  14. multipers/{ml/convolutions.py → filtrations/density.py} +563 -520
  15. multipers/filtrations/filtrations.py +289 -0
  16. multipers/filtrations.pxd +224 -224
  17. multipers/function_rips.cp312-win_amd64.pyd +0 -0
  18. multipers/function_rips.pyx +105 -105
  19. multipers/grids.cp312-win_amd64.pyd +0 -0
  20. multipers/grids.pyx +350 -350
  21. multipers/gudhi/Persistence_slices_interface.h +132 -132
  22. multipers/gudhi/Simplex_tree_interface.h +239 -245
  23. multipers/gudhi/Simplex_tree_multi_interface.h +516 -561
  24. multipers/gudhi/cubical_to_boundary.h +59 -59
  25. multipers/gudhi/gudhi/Bitmap_cubical_complex.h +450 -450
  26. multipers/gudhi/gudhi/Bitmap_cubical_complex_base.h +1070 -1070
  27. multipers/gudhi/gudhi/Bitmap_cubical_complex_periodic_boundary_conditions_base.h +579 -579
  28. multipers/gudhi/gudhi/Debug_utils.h +45 -45
  29. multipers/gudhi/gudhi/Fields/Multi_field.h +484 -484
  30. multipers/gudhi/gudhi/Fields/Multi_field_operators.h +455 -455
  31. multipers/gudhi/gudhi/Fields/Multi_field_shared.h +450 -450
  32. multipers/gudhi/gudhi/Fields/Multi_field_small.h +531 -531
  33. multipers/gudhi/gudhi/Fields/Multi_field_small_operators.h +507 -507
  34. multipers/gudhi/gudhi/Fields/Multi_field_small_shared.h +531 -531
  35. multipers/gudhi/gudhi/Fields/Z2_field.h +355 -355
  36. multipers/gudhi/gudhi/Fields/Z2_field_operators.h +376 -376
  37. multipers/gudhi/gudhi/Fields/Zp_field.h +420 -420
  38. multipers/gudhi/gudhi/Fields/Zp_field_operators.h +400 -400
  39. multipers/gudhi/gudhi/Fields/Zp_field_shared.h +418 -418
  40. multipers/gudhi/gudhi/Flag_complex_edge_collapser.h +337 -337
  41. multipers/gudhi/gudhi/Matrix.h +2107 -2107
  42. multipers/gudhi/gudhi/Multi_critical_filtration.h +1038 -1038
  43. multipers/gudhi/gudhi/Multi_persistence/Box.h +171 -171
  44. multipers/gudhi/gudhi/Multi_persistence/Line.h +282 -282
  45. multipers/gudhi/gudhi/Off_reader.h +173 -173
  46. multipers/gudhi/gudhi/One_critical_filtration.h +1433 -1431
  47. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix.h +769 -769
  48. multipers/gudhi/gudhi/Persistence_matrix/Base_matrix_with_column_compression.h +686 -686
  49. multipers/gudhi/gudhi/Persistence_matrix/Boundary_matrix.h +842 -842
  50. multipers/gudhi/gudhi/Persistence_matrix/Chain_matrix.h +1350 -1350
  51. multipers/gudhi/gudhi/Persistence_matrix/Id_to_index_overlay.h +1105 -1105
  52. multipers/gudhi/gudhi/Persistence_matrix/Position_to_index_overlay.h +859 -859
  53. multipers/gudhi/gudhi/Persistence_matrix/RU_matrix.h +910 -910
  54. multipers/gudhi/gudhi/Persistence_matrix/allocators/entry_constructors.h +139 -139
  55. multipers/gudhi/gudhi/Persistence_matrix/base_pairing.h +230 -230
  56. multipers/gudhi/gudhi/Persistence_matrix/base_swap.h +211 -211
  57. multipers/gudhi/gudhi/Persistence_matrix/boundary_cell_position_to_id_mapper.h +60 -60
  58. multipers/gudhi/gudhi/Persistence_matrix/boundary_face_position_to_id_mapper.h +60 -60
  59. multipers/gudhi/gudhi/Persistence_matrix/chain_pairing.h +136 -136
  60. multipers/gudhi/gudhi/Persistence_matrix/chain_rep_cycles.h +190 -190
  61. multipers/gudhi/gudhi/Persistence_matrix/chain_vine_swap.h +616 -616
  62. multipers/gudhi/gudhi/Persistence_matrix/columns/chain_column_extra_properties.h +150 -150
  63. multipers/gudhi/gudhi/Persistence_matrix/columns/column_dimension_holder.h +106 -106
  64. multipers/gudhi/gudhi/Persistence_matrix/columns/column_utilities.h +219 -219
  65. multipers/gudhi/gudhi/Persistence_matrix/columns/entry_types.h +327 -327
  66. multipers/gudhi/gudhi/Persistence_matrix/columns/heap_column.h +1140 -1140
  67. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_list_column.h +934 -934
  68. multipers/gudhi/gudhi/Persistence_matrix/columns/intrusive_set_column.h +934 -934
  69. multipers/gudhi/gudhi/Persistence_matrix/columns/list_column.h +980 -980
  70. multipers/gudhi/gudhi/Persistence_matrix/columns/naive_vector_column.h +1092 -1092
  71. multipers/gudhi/gudhi/Persistence_matrix/columns/row_access.h +192 -192
  72. multipers/gudhi/gudhi/Persistence_matrix/columns/set_column.h +921 -921
  73. multipers/gudhi/gudhi/Persistence_matrix/columns/small_vector_column.h +1093 -1093
  74. multipers/gudhi/gudhi/Persistence_matrix/columns/unordered_set_column.h +1012 -1012
  75. multipers/gudhi/gudhi/Persistence_matrix/columns/vector_column.h +1244 -1244
  76. multipers/gudhi/gudhi/Persistence_matrix/matrix_dimension_holders.h +186 -186
  77. multipers/gudhi/gudhi/Persistence_matrix/matrix_row_access.h +164 -164
  78. multipers/gudhi/gudhi/Persistence_matrix/ru_pairing.h +156 -156
  79. multipers/gudhi/gudhi/Persistence_matrix/ru_rep_cycles.h +376 -376
  80. multipers/gudhi/gudhi/Persistence_matrix/ru_vine_swap.h +540 -540
  81. multipers/gudhi/gudhi/Persistent_cohomology/Field_Zp.h +118 -118
  82. multipers/gudhi/gudhi/Persistent_cohomology/Multi_field.h +173 -173
  83. multipers/gudhi/gudhi/Persistent_cohomology/Persistent_cohomology_column.h +128 -128
  84. multipers/gudhi/gudhi/Persistent_cohomology.h +745 -745
  85. multipers/gudhi/gudhi/Points_off_io.h +171 -171
  86. multipers/gudhi/gudhi/Simple_object_pool.h +69 -69
  87. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_iterators.h +463 -463
  88. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_node_explicit_storage.h +83 -83
  89. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_siblings.h +106 -106
  90. multipers/gudhi/gudhi/Simplex_tree/Simplex_tree_star_simplex_iterators.h +277 -277
  91. multipers/gudhi/gudhi/Simplex_tree/hooks_simplex_base.h +62 -62
  92. multipers/gudhi/gudhi/Simplex_tree/indexing_tag.h +27 -27
  93. multipers/gudhi/gudhi/Simplex_tree/serialization_utils.h +62 -62
  94. multipers/gudhi/gudhi/Simplex_tree/simplex_tree_options.h +157 -157
  95. multipers/gudhi/gudhi/Simplex_tree.h +2794 -2794
  96. multipers/gudhi/gudhi/Simplex_tree_multi.h +152 -163
  97. multipers/gudhi/gudhi/distance_functions.h +62 -62
  98. multipers/gudhi/gudhi/graph_simplicial_complex.h +104 -104
  99. multipers/gudhi/gudhi/persistence_interval.h +253 -253
  100. multipers/gudhi/gudhi/persistence_matrix_options.h +170 -170
  101. multipers/gudhi/gudhi/reader_utils.h +367 -367
  102. multipers/gudhi/mma_interface_coh.h +256 -255
  103. multipers/gudhi/mma_interface_h0.h +223 -231
  104. multipers/gudhi/mma_interface_matrix.h +291 -282
  105. multipers/gudhi/naive_merge_tree.h +536 -575
  106. multipers/gudhi/scc_io.h +310 -289
  107. multipers/gudhi/truc.h +957 -888
  108. multipers/io.cp312-win_amd64.pyd +0 -0
  109. multipers/io.pyx +714 -711
  110. multipers/ml/accuracies.py +90 -90
  111. multipers/ml/invariants_with_persistable.py +79 -79
  112. multipers/ml/kernels.py +176 -176
  113. multipers/ml/mma.py +713 -714
  114. multipers/ml/one.py +472 -472
  115. multipers/ml/point_clouds.py +352 -346
  116. multipers/ml/signed_measures.py +1589 -1589
  117. multipers/ml/sliced_wasserstein.py +461 -461
  118. multipers/ml/tools.py +113 -113
  119. multipers/mma_structures.cp312-win_amd64.pyd +0 -0
  120. multipers/mma_structures.pxd +127 -127
  121. multipers/mma_structures.pyx +4 -8
  122. multipers/mma_structures.pyx.tp +1083 -1085
  123. multipers/multi_parameter_rank_invariant/diff_helpers.h +84 -93
  124. multipers/multi_parameter_rank_invariant/euler_characteristic.h +97 -97
  125. multipers/multi_parameter_rank_invariant/function_rips.h +322 -322
  126. multipers/multi_parameter_rank_invariant/hilbert_function.h +769 -769
  127. multipers/multi_parameter_rank_invariant/persistence_slices.h +148 -148
  128. multipers/multi_parameter_rank_invariant/rank_invariant.h +369 -369
  129. multipers/multiparameter_edge_collapse.py +41 -41
  130. multipers/multiparameter_module_approximation/approximation.h +2298 -2295
  131. multipers/multiparameter_module_approximation/combinatory.h +129 -129
  132. multipers/multiparameter_module_approximation/debug.h +107 -107
  133. multipers/multiparameter_module_approximation/format_python-cpp.h +286 -286
  134. multipers/multiparameter_module_approximation/heap_column.h +238 -238
  135. multipers/multiparameter_module_approximation/images.h +79 -79
  136. multipers/multiparameter_module_approximation/list_column.h +174 -174
  137. multipers/multiparameter_module_approximation/list_column_2.h +232 -232
  138. multipers/multiparameter_module_approximation/ru_matrix.h +347 -347
  139. multipers/multiparameter_module_approximation/set_column.h +135 -135
  140. multipers/multiparameter_module_approximation/structure_higher_dim_barcode.h +36 -36
  141. multipers/multiparameter_module_approximation/unordered_set_column.h +166 -166
  142. multipers/multiparameter_module_approximation/utilities.h +403 -419
  143. multipers/multiparameter_module_approximation/vector_column.h +223 -223
  144. multipers/multiparameter_module_approximation/vector_matrix.h +331 -331
  145. multipers/multiparameter_module_approximation/vineyards.h +464 -464
  146. multipers/multiparameter_module_approximation/vineyards_trajectories.h +649 -649
  147. multipers/multiparameter_module_approximation.cp312-win_amd64.pyd +0 -0
  148. multipers/multiparameter_module_approximation.pyx +218 -217
  149. multipers/pickle.py +90 -53
  150. multipers/plots.py +342 -334
  151. multipers/point_measure.cp312-win_amd64.pyd +0 -0
  152. multipers/point_measure.pyx +322 -320
  153. multipers/simplex_tree_multi.cp312-win_amd64.pyd +0 -0
  154. multipers/simplex_tree_multi.pxd +133 -133
  155. multipers/simplex_tree_multi.pyx +115 -48
  156. multipers/simplex_tree_multi.pyx.tp +1947 -1935
  157. multipers/slicer.cp312-win_amd64.pyd +0 -0
  158. multipers/slicer.pxd +281 -100
  159. multipers/slicer.pxd.tp +218 -214
  160. multipers/slicer.pyx +1570 -507
  161. multipers/slicer.pyx.tp +931 -914
  162. multipers/tensor/tensor.h +672 -672
  163. multipers/tensor.pxd +13 -13
  164. multipers/test.pyx +44 -44
  165. multipers/tests/__init__.py +57 -57
  166. multipers/torch/diff_grids.py +217 -217
  167. multipers/torch/rips_density.py +310 -304
  168. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/LICENSE +21 -21
  169. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/METADATA +21 -11
  170. multipers-2.3.1.dist-info/RECORD +182 -0
  171. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/WHEEL +1 -1
  172. multipers/tests/test_diff_helper.py +0 -73
  173. multipers/tests/test_hilbert_function.py +0 -82
  174. multipers/tests/test_mma.py +0 -83
  175. multipers/tests/test_point_clouds.py +0 -49
  176. multipers/tests/test_python-cpp_conversion.py +0 -82
  177. multipers/tests/test_signed_betti.py +0 -181
  178. multipers/tests/test_signed_measure.py +0 -89
  179. multipers/tests/test_simplextreemulti.py +0 -221
  180. multipers/tests/test_slicer.py +0 -221
  181. multipers-2.2.3.dist-info/RECORD +0 -189
  182. {multipers-2.2.3.dist-info → multipers-2.3.1.dist-info}/top_level.txt +0 -0
@@ -1,304 +1,310 @@
1
- from typing import Callable, Literal, Optional
2
-
3
- import numpy as np
4
- import torch
5
- from gudhi.rips_complex import RipsComplex
6
-
7
- import multipers as mp
8
- from multipers.ml.convolutions import DTM, KDE
9
- from multipers.simplex_tree_multi import _available_strategies
10
- from multipers.torch.diff_grids import get_grid
11
-
12
-
13
- def function_rips_signed_measure_old(
14
- x,
15
- theta: Optional[float] = None,
16
- function: Literal["dtm", "gaussian", "exponential"] | Callable = "dtm",
17
- threshold: float = np.inf,
18
- grid_strategy: _available_strategies = "regular_closest",
19
- resolution: int = 100,
20
- return_original: bool = False,
21
- return_st: bool = False,
22
- safe_conversion: bool = False,
23
- num_collapses: int = -1,
24
- expand_collapse: bool = False,
25
- dtype=torch.float32,
26
- **sm_kwargs,
27
- ):
28
- """
29
- Computes a torch-differentiable function-rips signed measure.
30
-
31
- Input
32
- -----
33
- - x (num_pts, dim) : The point cloud
34
- - theta: For density-like functions : the bandwidth
35
- - threshold : rips threshold
36
- - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
37
- Function to compute the second parameter.
38
- - grid_strategy: grid coarsenning strategy.
39
- - resolution : when coarsenning, the target resolution,
40
- - return_original : Also returns the non-differentiable signed measure.
41
- - safe_conversion : Activate this if you encounter crashes.
42
- - **kwargs : for the signed measure computation.
43
- """
44
- assert isinstance(x, torch.Tensor)
45
- if function == "dtm":
46
- assert theta is not None, "Provide a theta to compute DTM"
47
- codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
48
- elif function in ["gaussian", "exponential"]:
49
- assert theta is not None, "Provide a theta to compute density estimation"
50
- codensity = (
51
- -KDE(
52
- bandwidth=theta,
53
- kernel=function,
54
- return_log=True,
55
- )
56
- .fit(x)
57
- .score_samples(x)
58
- .type(dtype)
59
- )
60
- else:
61
- assert callable(function), "Function has to be callable"
62
- if theta is None:
63
- codensity = function(x).type(dtype)
64
- else:
65
- codensity = function(x, theta=theta).type(dtype)
66
-
67
- distance_matrix = torch.cdist(x, x).type(dtype)
68
- if threshold < np.inf:
69
- distance_matrix[distance_matrix > threshold] = np.inf
70
-
71
- st = RipsComplex(
72
- distance_matrix=distance_matrix.detach(), max_edge_length=threshold
73
- ).create_simplex_tree()
74
- # detach makes a new (reference) tensor, without tracking the gradient
75
- st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
76
- st.fill_lowerstar(
77
- codensity.detach(), parameter=1
78
- ) # fills the codensity in the second parameter of the simplextree
79
-
80
- # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
81
- st_copy = st.grid_squeeze(
82
- grid_strategy=grid_strategy, resolution=resolution, coordinate_values=True
83
- )
84
- if sm_kwargs.get("degree", None) is None and sm_kwargs.get("degrees", [None]) == [
85
- None
86
- ]:
87
- expansion_degree = st.num_vertices
88
- else:
89
- expansion_degree = (
90
- max(np.max(sm_kwargs.get("degrees", 1)), sm_kwargs.get("degree", 1)) + 1
91
- )
92
- st.collapse_edges(num=num_collapses)
93
- if not expand_collapse:
94
- st.expansion(expansion_degree) # edge collapse
95
- sms = mp.signed_measure(st, **sm_kwargs) # computes the signed measure
96
- del st
97
-
98
- simplices_list = tuple(
99
- s for s, _ in st_copy.get_simplices()
100
- ) # not optimal, we may want to do that in cython to get edges and nodes
101
- sms_diff = []
102
- for sm, weights in sms:
103
- indices, not_found_indices = st_copy.pts_to_indices(
104
- sm, simplices_dimensions=[1, 0]
105
- )
106
- if sm_kwargs.get("verbose", False):
107
- print(
108
- f"Found {(1-(indices == -1).mean()).round(2)} indices. \
109
- Out : {(indices == -1).sum()}, {len(not_found_indices)}"
110
- )
111
- sm_diff = torch.empty(sm.shape).type(dtype)
112
- # sim_dim = sm_diff.shape[1] // 2
113
-
114
- # fills the Rips-filtrations of the signed measure.
115
- # the loop is for the rank invariant
116
- for i in range(0, sm_diff.shape[1], 2):
117
- idxs = indices[:, i]
118
- if (idxs == -1).all():
119
- continue
120
- useful_idxs = idxs != -1
121
- # Retrieves the differentiable values from the distance_matrix
122
- if useful_idxs.size > 0:
123
- edges_filtrations = torch.cat(
124
- [
125
- distance_matrix[*simplices_list[idx], None]
126
- for idx in idxs[useful_idxs]
127
- ]
128
- )
129
- # fills theses values into the signed measure
130
- sm_diff[:, i][useful_idxs] = edges_filtrations
131
- # same for the other axis
132
- for i in range(1, sm_diff.shape[1], 2):
133
- idxs = indices[:, i]
134
- if (idxs == -1).all():
135
- continue
136
- useful_idxs = idxs != -1
137
- if useful_idxs.size > 0:
138
- nodes_filtrations = torch.cat(
139
- [codensity[simplices_list[idx]] for idx in idxs[useful_idxs]]
140
- )
141
- sm_diff[:, i][useful_idxs] = nodes_filtrations
142
-
143
- # fills not-found values as constants
144
- if len(not_found_indices) > 0:
145
- not_found_indices = indices == -1
146
- sm_diff[indices == -1] = torch.from_numpy(sm[indices == -1]).type(dtype)
147
-
148
- sms_diff.append((sm_diff, torch.from_numpy(weights)))
149
- flags = [True, return_original, return_st]
150
- if np.sum(flags) == 1:
151
- return sms_diff
152
- return tuple(stuff for stuff, flag in zip([sms_diff, sms, st_copy], flags) if flag)
153
-
154
-
155
- def function_rips_signed_measure(
156
- x,
157
- theta: Optional[float] = None,
158
- function: Literal["dtm", "gaussian", "exponential"] | Callable = "gaussian",
159
- threshold: Optional[float] = None,
160
- grid_strategy: Literal[
161
- "regular_closest", "exact", "quantile", "regular_left"
162
- ] = "exact",
163
- complex: Literal["rips", "delaunay", "weak_delaunay"] = "rips",
164
- resolution: int = 100,
165
- safe_conversion: bool = False,
166
- num_collapses: Optional[int] = None,
167
- expand_collapse: bool = False,
168
- dtype=torch.float32,
169
- plot=False,
170
- # return_st: bool = False,
171
- *,
172
- log_density: bool = True,
173
- vineyard: bool = False,
174
- pers_backend=None,
175
- **sm_kwargs,
176
- ):
177
- """
178
- Computes a torch-differentiable function-rips signed measure.
179
-
180
- Input
181
- -----
182
- - x (num_pts, dim) : The point cloud
183
- - theta: For density-like functions : the bandwidth
184
- - threshold : rips threshold
185
- - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
186
- Function to compute the second parameter.
187
- - grid_strategy: grid coarsenning strategy.
188
- - resolution : when coarsenning, the target resolution,
189
- - return_original : Also returns the non-differentiable signed measure.
190
- - safe_conversion : Activate this if you encounter crashes.
191
- - **kwargs : for the signed measure computation.
192
- """
193
- if num_collapses is None:
194
- num_collapses = -1 if complex == "rips" else None
195
- assert isinstance(x, torch.Tensor)
196
- if function == "dtm":
197
- assert theta is not None, "Provide a theta to compute DTM"
198
- codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
199
- elif function in ["gaussian", "exponential"]:
200
- assert theta is not None, "Provide a theta to compute density estimation"
201
- codensity = (
202
- -KDE(
203
- bandwidth=theta,
204
- kernel=function,
205
- return_log=log_density,
206
- )
207
- .fit(x)
208
- .score_samples(x)
209
- .type(dtype)
210
- )
211
- elif isinstance(function, torch.Tensor):
212
- assert (
213
- function.ndim == 1 and codensity.shape[0] == x.shape[0]
214
- ), """
215
- When function is a tensor, it is interpreted as the value of some function over x.
216
- """
217
- codensity = function
218
- else:
219
- assert callable(function), "Function has to be callable"
220
- if theta is None:
221
- codensity = function(x).type(dtype)
222
- else:
223
- codensity = function(x, theta=theta).type(dtype)
224
-
225
- distance_matrix = torch.cdist(x, x).type(dtype)
226
- distances = distance_matrix.ravel()
227
- if complex == "rips":
228
- threshold = (
229
- distance_matrix.max(axis=1).values.min() if threshold is None else threshold
230
- )
231
- distances = distances[distances <= threshold]
232
- elif complex in ["delaunay", "weak_delaunay"]:
233
- complex = "delaunay"
234
- distances /= 2
235
- else:
236
- raise ValueError(
237
- f"Unimplemented with complex {complex}. You can use rips or delaunay ftm."
238
- )
239
-
240
- # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
241
- reduced_grid = get_grid(strategy=grid_strategy)((distances, codensity), resolution)
242
-
243
- degrees = sm_kwargs.pop("degrees", [])
244
- if sm_kwargs.get("degree", None) is not None:
245
- degrees = [sm_kwargs.pop("degree", None)] + degrees
246
- if complex == "rips":
247
- st = RipsComplex(
248
- distance_matrix=distance_matrix.detach(), max_edge_length=threshold
249
- ).create_simplex_tree()
250
- # detach makes a new (reference) tensor, without tracking the gradient
251
- st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
252
- st.fill_lowerstar(
253
- codensity.detach(), parameter=1
254
- ) # fills the codensity in the second parameter of the simplextree
255
- st = st.grid_squeeze(reduced_grid)
256
- st.filtration_grid = []
257
- if None in degrees:
258
- expansion_degree = st.num_vertices
259
- else:
260
- expansion_degree = max(degrees) + 1
261
- st.collapse_edges(num=num_collapses)
262
- if not expand_collapse:
263
- st.expansion(expansion_degree) # edge collapse
264
-
265
- s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend)
266
- elif complex == "delaunay":
267
- s = mp.slicer.from_function_delaunay(
268
- x.detach().numpy(), codensity.detach().numpy()
269
- )
270
- st = mp.slicer.to_simplextree(s)
271
- st.flagify(2)
272
- s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend).grid_squeeze(
273
- reduced_grid
274
- )
275
-
276
- s.filtration_grid = [] ## To enforce minpres to be reasonable
277
- if None not in degrees:
278
- s = s.minpres(degrees=degrees)
279
- else:
280
- from joblib import Parallel, delayed
281
-
282
- s = tuple(
283
- Parallel(n_jobs=-1, backend="threading")(
284
- delayed(lambda d: s if d is None else s.minpres(degree=d))(d)
285
- for d in degrees
286
- )
287
- )
288
- ## fix previous hack
289
- for stuff in s:
290
- # stuff.filtration_grid = reduced_grid ## not necessary
291
- stuff.filtration_grid = [[1]] * stuff.num_parameters
292
-
293
- sms = tuple(
294
- sm
295
- for slicer_of_degree, degree in zip(s, degrees)
296
- for sm in mp.signed_measure(
297
- slicer_of_degree, grid=reduced_grid, degree=degree, **sm_kwargs
298
- )
299
- ) # computes the signed measure
300
- if plot:
301
- mp.plots.plot_signed_measures(
302
- tuple((sm.detach().numpy(), w.detach().numpy()) for sm, w in sms)
303
- )
304
- return sms
1
+ from typing import Callable, Literal, Optional
2
+
3
+ import numpy as np
4
+ import torch
5
+ import gudhi as gd
6
+
7
+ import multipers as mp
8
+ from multipers.filtrations.density import DTM, KDE
9
+ from multipers.simplex_tree_multi import _available_strategies
10
+ from multipers.torch.diff_grids import get_grid
11
+
12
+
13
+ def function_rips_signed_measure_old(
14
+ x,
15
+ theta: Optional[float] = None,
16
+ function: Literal["dtm", "gaussian", "exponential"] | Callable = "dtm",
17
+ threshold: float = np.inf,
18
+ grid_strategy: _available_strategies = "regular_closest",
19
+ resolution: int = 100,
20
+ return_original: bool = False,
21
+ return_st: bool = False,
22
+ safe_conversion: bool = False,
23
+ num_collapses: int = -1,
24
+ expand_collapse: bool = False,
25
+ dtype=torch.float32,
26
+ **sm_kwargs,
27
+ ):
28
+ """
29
+ Computes a torch-differentiable function-rips signed measure.
30
+
31
+ Input
32
+ -----
33
+ - x (num_pts, dim) : The point cloud
34
+ - theta: For density-like functions : the bandwidth
35
+ - threshold : rips threshold
36
+ - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
37
+ Function to compute the second parameter.
38
+ - grid_strategy: grid coarsenning strategy.
39
+ - resolution : when coarsenning, the target resolution,
40
+ - return_original : Also returns the non-differentiable signed measure.
41
+ - safe_conversion : Activate this if you encounter crashes.
42
+ - **kwargs : for the signed measure computation.
43
+ """
44
+ assert isinstance(x, torch.Tensor)
45
+ if function == "dtm":
46
+ assert theta is not None, "Provide a theta to compute DTM"
47
+ codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
48
+ elif function in ["gaussian", "exponential"]:
49
+ assert theta is not None, "Provide a theta to compute density estimation"
50
+ codensity = (
51
+ -KDE(
52
+ bandwidth=theta,
53
+ kernel=function,
54
+ return_log=True,
55
+ )
56
+ .fit(x)
57
+ .score_samples(x)
58
+ .type(dtype)
59
+ )
60
+ else:
61
+ assert callable(function), "Function has to be callable"
62
+ if theta is None:
63
+ codensity = function(x).type(dtype)
64
+ else:
65
+ codensity = function(x, theta=theta).type(dtype)
66
+
67
+ distance_matrix = torch.cdist(x, x).type(dtype)
68
+ if threshold < np.inf:
69
+ distance_matrix[distance_matrix > threshold] = np.inf
70
+
71
+ # st = RipsComplex(
72
+ # distance_matrix=distance_matrix.detach(), max_edge_length=threshold
73
+ # ).create_simplex_tree()
74
+ st = gd.SimplexTree.create_from_array(
75
+ distance_matrix.detach(), max_filtration=threshold
76
+ )
77
+ # detach makes a new (reference) tensor, without tracking the gradient
78
+ st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
79
+ st.fill_lowerstar(
80
+ codensity.detach(), parameter=1
81
+ ) # fills the codensity in the second parameter of the simplextree
82
+
83
+ # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
84
+ st_copy = st.grid_squeeze(
85
+ grid_strategy=grid_strategy, resolution=resolution, coordinate_values=True
86
+ )
87
+ if sm_kwargs.get("degree", None) is None and sm_kwargs.get("degrees", [None]) == [
88
+ None
89
+ ]:
90
+ expansion_degree = st.num_vertices
91
+ else:
92
+ expansion_degree = (
93
+ max(np.max(sm_kwargs.get("degrees", 1)), sm_kwargs.get("degree", 1)) + 1
94
+ )
95
+ st.collapse_edges(num=num_collapses)
96
+ if not expand_collapse:
97
+ st.expansion(expansion_degree) # edge collapse
98
+ sms = mp.signed_measure(st, **sm_kwargs) # computes the signed measure
99
+ del st
100
+
101
+ simplices_list = tuple(
102
+ s for s, _ in st_copy.get_simplices()
103
+ ) # not optimal, we may want to do that in cython to get edges and nodes
104
+ sms_diff = []
105
+ for sm, weights in sms:
106
+ indices, not_found_indices = st_copy.pts_to_indices(
107
+ sm, simplices_dimensions=[1, 0]
108
+ )
109
+ if sm_kwargs.get("verbose", False):
110
+ print(
111
+ f"Found {(1-(indices == -1).mean()).round(2)} indices. \
112
+ Out : {(indices == -1).sum()}, {len(not_found_indices)}"
113
+ )
114
+ sm_diff = torch.empty(sm.shape).type(dtype)
115
+ # sim_dim = sm_diff.shape[1] // 2
116
+
117
+ # fills the Rips-filtrations of the signed measure.
118
+ # the loop is for the rank invariant
119
+ for i in range(0, sm_diff.shape[1], 2):
120
+ idxs = indices[:, i]
121
+ if (idxs == -1).all():
122
+ continue
123
+ useful_idxs = idxs != -1
124
+ # Retrieves the differentiable values from the distance_matrix
125
+ if useful_idxs.size > 0:
126
+ edges_filtrations = torch.cat(
127
+ [
128
+ distance_matrix[*simplices_list[idx], None]
129
+ for idx in idxs[useful_idxs]
130
+ ]
131
+ )
132
+ # fills theses values into the signed measure
133
+ sm_diff[:, i][useful_idxs] = edges_filtrations
134
+ # same for the other axis
135
+ for i in range(1, sm_diff.shape[1], 2):
136
+ idxs = indices[:, i]
137
+ if (idxs == -1).all():
138
+ continue
139
+ useful_idxs = idxs != -1
140
+ if useful_idxs.size > 0:
141
+ nodes_filtrations = torch.cat(
142
+ [codensity[simplices_list[idx]] for idx in idxs[useful_idxs]]
143
+ )
144
+ sm_diff[:, i][useful_idxs] = nodes_filtrations
145
+
146
+ # fills not-found values as constants
147
+ if len(not_found_indices) > 0:
148
+ not_found_indices = indices == -1
149
+ sm_diff[indices == -1] = torch.from_numpy(sm[indices == -1]).type(dtype)
150
+
151
+ sms_diff.append((sm_diff, torch.from_numpy(weights)))
152
+ flags = [True, return_original, return_st]
153
+ if np.sum(flags) == 1:
154
+ return sms_diff
155
+ return tuple(stuff for stuff, flag in zip([sms_diff, sms, st_copy], flags) if flag)
156
+
157
+
158
+ def function_rips_signed_measure(
159
+ x,
160
+ theta: Optional[float] = None,
161
+ function: Literal["dtm", "gaussian", "exponential"] | Callable = "gaussian",
162
+ threshold: Optional[float] = None,
163
+ grid_strategy: Literal[
164
+ "regular_closest", "exact", "quantile", "regular_left"
165
+ ] = "exact",
166
+ complex: Literal["rips", "delaunay", "weak_delaunay"] = "rips",
167
+ resolution: int = 100,
168
+ safe_conversion: bool = False,
169
+ num_collapses: Optional[int] = None,
170
+ expand_collapse: bool = False,
171
+ dtype=torch.float32,
172
+ plot=False,
173
+ # return_st: bool = False,
174
+ *,
175
+ log_density: bool = True,
176
+ vineyard: bool = False,
177
+ pers_backend=None,
178
+ **sm_kwargs,
179
+ ):
180
+ """
181
+ Computes a torch-differentiable function-rips signed measure.
182
+
183
+ Input
184
+ -----
185
+ - x (num_pts, dim) : The point cloud
186
+ - theta: For density-like functions : the bandwidth
187
+ - threshold : rips threshold
188
+ - function : Either "dtm", "gaussian", or "exponenetial" or Callable.
189
+ Function to compute the second parameter.
190
+ - grid_strategy: grid coarsenning strategy.
191
+ - resolution : when coarsenning, the target resolution,
192
+ - return_original : Also returns the non-differentiable signed measure.
193
+ - safe_conversion : Activate this if you encounter crashes.
194
+ - **kwargs : for the signed measure computation.
195
+ """
196
+ if num_collapses is None:
197
+ num_collapses = -1 if complex == "rips" else None
198
+ assert isinstance(x, torch.Tensor)
199
+ if function == "dtm":
200
+ assert theta is not None, "Provide a theta to compute DTM"
201
+ codensity = DTM(masses=[theta]).fit(x).score_samples_diff(x)[0].type(dtype)
202
+ elif function in ["gaussian", "exponential"]:
203
+ assert theta is not None, "Provide a theta to compute density estimation"
204
+ codensity = (
205
+ -KDE(
206
+ bandwidth=theta,
207
+ kernel=function,
208
+ return_log=log_density,
209
+ )
210
+ .fit(x)
211
+ .score_samples(x)
212
+ .type(dtype)
213
+ )
214
+ elif isinstance(function, torch.Tensor):
215
+ assert (
216
+ function.ndim == 1 and codensity.shape[0] == x.shape[0]
217
+ ), """
218
+ When function is a tensor, it is interpreted as the value of some function over x.
219
+ """
220
+ codensity = function
221
+ else:
222
+ assert callable(function), "Function has to be callable"
223
+ if theta is None:
224
+ codensity = function(x).type(dtype)
225
+ else:
226
+ codensity = function(x, theta=theta).type(dtype)
227
+
228
+ distance_matrix = torch.cdist(x, x).type(dtype)
229
+ distances = distance_matrix.ravel()
230
+ if complex == "rips":
231
+ threshold = (
232
+ distance_matrix.max(axis=1).values.min() if threshold is None else threshold
233
+ )
234
+ distances = distances[distances <= threshold]
235
+ elif complex in ["delaunay", "weak_delaunay"]:
236
+ complex = "delaunay"
237
+ distances /= 2
238
+ else:
239
+ raise ValueError(
240
+ f"Unimplemented with complex {complex}. You can use rips or delaunay ftm."
241
+ )
242
+
243
+ # simplificates the simplextree for computation, the signed measure will be recovered from the copy afterward
244
+ reduced_grid = get_grid(strategy=grid_strategy)((distances, codensity), resolution)
245
+
246
+ degrees = sm_kwargs.pop("degrees", [])
247
+ if sm_kwargs.get("degree", None) is not None:
248
+ degrees = [sm_kwargs.pop("degree", None)] + degrees
249
+ if complex == "rips":
250
+ # st = RipsComplex(
251
+ # distance_matrix=distance_matrix.detach(), max_edge_length=threshold
252
+ # ).create_simplex_tree()
253
+ st = gd.SimplexTree.create_from_array(
254
+ distance_matrix.detach(), max_filtration=threshold
255
+ )
256
+ # detach makes a new (reference) tensor, without tracking the gradient
257
+ st = mp.SimplexTreeMulti(st, num_parameters=2, safe_conversion=safe_conversion)
258
+ st.fill_lowerstar(
259
+ codensity.detach(), parameter=1
260
+ ) # fills the codensity in the second parameter of the simplextree
261
+ st = st.grid_squeeze(reduced_grid)
262
+ st.filtration_grid = []
263
+ if None in degrees:
264
+ expansion_degree = st.num_vertices
265
+ else:
266
+ expansion_degree = max(degrees) + 1
267
+ st.collapse_edges(num=num_collapses)
268
+ if not expand_collapse:
269
+ st.expansion(expansion_degree) # edge collapse
270
+
271
+ s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend)
272
+ elif complex == "delaunay":
273
+ s = mp.slicer.from_function_delaunay(
274
+ x.detach().numpy(), codensity.detach().numpy()
275
+ )
276
+ st = mp.slicer.to_simplextree(s)
277
+ st.flagify(2)
278
+ s = mp.Slicer(st, vineyard=vineyard, backend=pers_backend).grid_squeeze(
279
+ reduced_grid
280
+ )
281
+
282
+ s.filtration_grid = [] ## To enforce minpres to be reasonable
283
+ if None not in degrees:
284
+ s = s.minpres(degrees=degrees)
285
+ else:
286
+ from joblib import Parallel, delayed
287
+
288
+ s = tuple(
289
+ Parallel(n_jobs=-1, backend="threading")(
290
+ delayed(lambda d: s if d is None else s.minpres(degree=d))(d)
291
+ for d in degrees
292
+ )
293
+ )
294
+ ## fix previous hack
295
+ for stuff in s:
296
+ # stuff.filtration_grid = reduced_grid ## not necessary
297
+ stuff.filtration_grid = [[1]] * stuff.num_parameters
298
+
299
+ sms = tuple(
300
+ sm
301
+ for slicer_of_degree, degree in zip(s, degrees)
302
+ for sm in mp.signed_measure(
303
+ slicer_of_degree, grid=reduced_grid, degree=degree, **sm_kwargs
304
+ )
305
+ ) # computes the signed measure
306
+ if plot:
307
+ mp.plots.plot_signed_measures(
308
+ tuple((sm.detach().numpy(), w.detach().numpy()) for sm, w in sms)
309
+ )
310
+ return sms