mteb 2.7.3__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/retrieval.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +8 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/RECORD +157 -136
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -16,6 +16,7 @@ greennode_embedding_large_vn_v1 = ModelMeta(
|
|
|
16
16
|
loader=sentence_transformers_loader,
|
|
17
17
|
open_weights=True,
|
|
18
18
|
n_parameters=568_000_000,
|
|
19
|
+
n_embedding_parameters=256_002_048,
|
|
19
20
|
memory_usage_mb=2167,
|
|
20
21
|
embed_dim=1024,
|
|
21
22
|
license="cc-by-4.0",
|
|
@@ -41,6 +42,7 @@ greennode_embedding_large_vn_mixed_v1 = ModelMeta(
|
|
|
41
42
|
loader=sentence_transformers_loader,
|
|
42
43
|
open_weights=True,
|
|
43
44
|
n_parameters=568_000_000,
|
|
45
|
+
n_embedding_parameters=256_002_048,
|
|
44
46
|
memory_usage_mb=2167,
|
|
45
47
|
embed_dim=1024,
|
|
46
48
|
license="cc-by-4.0",
|
|
@@ -66,6 +68,7 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
|
|
|
66
68
|
loader=sentence_transformers_loader,
|
|
67
69
|
open_weights=True,
|
|
68
70
|
n_parameters=568_000_000,
|
|
71
|
+
n_embedding_parameters=256_002_048,
|
|
69
72
|
memory_usage_mb=2166,
|
|
70
73
|
embed_dim=1024,
|
|
71
74
|
license="cc-by-4.0",
|
|
@@ -98,6 +101,7 @@ hiieu_halong_embedding = ModelMeta(
|
|
|
98
101
|
use_instructions=False,
|
|
99
102
|
open_weights=True,
|
|
100
103
|
n_parameters=278_000_000,
|
|
104
|
+
n_embedding_parameters=192_001_536,
|
|
101
105
|
memory_usage_mb=1061,
|
|
102
106
|
embed_dim=768,
|
|
103
107
|
license="apache-2.0",
|
|
@@ -129,6 +133,7 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
|
|
|
129
133
|
use_instructions=False,
|
|
130
134
|
open_weights=True,
|
|
131
135
|
n_parameters=135_000_000,
|
|
136
|
+
n_embedding_parameters=49_152_768,
|
|
132
137
|
memory_usage_mb=517,
|
|
133
138
|
max_tokens=256,
|
|
134
139
|
embed_dim=768,
|
|
@@ -167,6 +172,7 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
|
|
|
167
172
|
use_instructions=False,
|
|
168
173
|
open_weights=True,
|
|
169
174
|
n_parameters=135_000_000,
|
|
175
|
+
n_embedding_parameters=49_152_768,
|
|
170
176
|
memory_usage_mb=515,
|
|
171
177
|
max_tokens=256,
|
|
172
178
|
embed_dim=768,
|
|
@@ -258,6 +258,7 @@ visualized_bge_base = ModelMeta(
|
|
|
258
258
|
release_date="2024-06-06",
|
|
259
259
|
modalities=["image", "text"],
|
|
260
260
|
n_parameters=196_000_000,
|
|
261
|
+
n_embedding_parameters=None,
|
|
261
262
|
memory_usage_mb=1631,
|
|
262
263
|
max_tokens=512,
|
|
263
264
|
embed_dim=768,
|
|
@@ -286,6 +287,7 @@ visualized_bge_m3 = ModelMeta(
|
|
|
286
287
|
release_date="2024-06-06",
|
|
287
288
|
modalities=["image", "text"],
|
|
288
289
|
n_parameters=872_909_505,
|
|
290
|
+
n_embedding_parameters=None,
|
|
289
291
|
memory_usage_mb=4263,
|
|
290
292
|
max_tokens=8192,
|
|
291
293
|
embed_dim=1024,
|
|
@@ -280,6 +280,7 @@ vlm2vec_lora = ModelMeta(
|
|
|
280
280
|
release_date="2024-10-08",
|
|
281
281
|
modalities=["image", "text"],
|
|
282
282
|
n_parameters=None,
|
|
283
|
+
n_embedding_parameters=None,
|
|
283
284
|
memory_usage_mb=None,
|
|
284
285
|
max_tokens=131072,
|
|
285
286
|
embed_dim=3072,
|
|
@@ -304,6 +305,7 @@ vlm2vec_full = ModelMeta(
|
|
|
304
305
|
release_date="2024-10-08",
|
|
305
306
|
modalities=["image", "text"],
|
|
306
307
|
n_parameters=4_150_000_000,
|
|
308
|
+
n_embedding_parameters=None,
|
|
307
309
|
memory_usage_mb=7909,
|
|
308
310
|
max_tokens=131072,
|
|
309
311
|
embed_dim=3072,
|
|
@@ -308,6 +308,7 @@ voyage_3_large = ModelMeta(
|
|
|
308
308
|
embed_dim=1024,
|
|
309
309
|
open_weights=False,
|
|
310
310
|
n_parameters=None,
|
|
311
|
+
n_embedding_parameters=None,
|
|
311
312
|
memory_usage_mb=None,
|
|
312
313
|
license=None,
|
|
313
314
|
reference="https://blog.voyageai.com/2025/01/07/voyage-3-large/",
|
|
@@ -336,6 +337,7 @@ voyage_3_5 = ModelMeta(
|
|
|
336
337
|
embed_dim=1024,
|
|
337
338
|
open_weights=False,
|
|
338
339
|
n_parameters=None,
|
|
340
|
+
n_embedding_parameters=None,
|
|
339
341
|
memory_usage_mb=None,
|
|
340
342
|
license=None,
|
|
341
343
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -363,6 +365,7 @@ voyage_3_5_int8 = ModelMeta(
|
|
|
363
365
|
embed_dim=1024,
|
|
364
366
|
open_weights=False,
|
|
365
367
|
n_parameters=None,
|
|
368
|
+
n_embedding_parameters=None,
|
|
366
369
|
memory_usage_mb=None,
|
|
367
370
|
license=None,
|
|
368
371
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -390,6 +393,7 @@ voyage_3_5_binary = ModelMeta(
|
|
|
390
393
|
embed_dim=1024, # Same as original after unpacking from bits
|
|
391
394
|
open_weights=False,
|
|
392
395
|
n_parameters=None,
|
|
396
|
+
n_embedding_parameters=None,
|
|
393
397
|
memory_usage_mb=None,
|
|
394
398
|
license=None,
|
|
395
399
|
reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
|
|
@@ -417,6 +421,7 @@ voyage_large_2_instruct = ModelMeta(
|
|
|
417
421
|
embed_dim=1024,
|
|
418
422
|
open_weights=False,
|
|
419
423
|
n_parameters=None,
|
|
424
|
+
n_embedding_parameters=None,
|
|
420
425
|
memory_usage_mb=None,
|
|
421
426
|
license=None,
|
|
422
427
|
reference="https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-instruction-tuned-and-rank-1-on-mteb/",
|
|
@@ -443,6 +448,7 @@ voyage_finance_2 = ModelMeta(
|
|
|
443
448
|
embed_dim=1024,
|
|
444
449
|
open_weights=False,
|
|
445
450
|
n_parameters=None,
|
|
451
|
+
n_embedding_parameters=None,
|
|
446
452
|
memory_usage_mb=None,
|
|
447
453
|
license=None,
|
|
448
454
|
reference="https://blog.voyageai.com/2024/06/03/domain-specific-embeddings-finance-edition-voyage-finance-2/",
|
|
@@ -469,6 +475,7 @@ voyage_law_2 = ModelMeta(
|
|
|
469
475
|
embed_dim=1024,
|
|
470
476
|
open_weights=False,
|
|
471
477
|
n_parameters=None,
|
|
478
|
+
n_embedding_parameters=None,
|
|
472
479
|
memory_usage_mb=None,
|
|
473
480
|
license=None,
|
|
474
481
|
reference="https://blog.voyageai.com/2024/04/15/domain-specific-embeddings-and-retrieval-legal-edition-voyage-law-2/",
|
|
@@ -495,6 +502,7 @@ voyage_code_2 = ModelMeta(
|
|
|
495
502
|
embed_dim=1536,
|
|
496
503
|
open_weights=False,
|
|
497
504
|
n_parameters=None,
|
|
505
|
+
n_embedding_parameters=None,
|
|
498
506
|
memory_usage_mb=None,
|
|
499
507
|
license=None,
|
|
500
508
|
reference="https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/",
|
|
@@ -521,6 +529,7 @@ voyage_code_3 = ModelMeta(
|
|
|
521
529
|
embed_dim=1024,
|
|
522
530
|
open_weights=False,
|
|
523
531
|
n_parameters=None,
|
|
532
|
+
n_embedding_parameters=None,
|
|
524
533
|
memory_usage_mb=None,
|
|
525
534
|
license=None,
|
|
526
535
|
reference="https://blog.voyageai.com/2024/12/04/voyage-code-3/",
|
|
@@ -548,6 +557,7 @@ voyage_large_2 = ModelMeta(
|
|
|
548
557
|
embed_dim=1536,
|
|
549
558
|
open_weights=False,
|
|
550
559
|
n_parameters=None,
|
|
560
|
+
n_embedding_parameters=None,
|
|
551
561
|
memory_usage_mb=None,
|
|
552
562
|
license=None,
|
|
553
563
|
reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
|
|
@@ -574,6 +584,7 @@ voyage_2 = ModelMeta(
|
|
|
574
584
|
embed_dim=1024,
|
|
575
585
|
open_weights=False,
|
|
576
586
|
n_parameters=None,
|
|
587
|
+
n_embedding_parameters=None,
|
|
577
588
|
memory_usage_mb=None,
|
|
578
589
|
license=None,
|
|
579
590
|
reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
|
|
@@ -599,6 +610,7 @@ voyage_multilingual_2 = ModelMeta(
|
|
|
599
610
|
embed_dim=1024,
|
|
600
611
|
open_weights=False,
|
|
601
612
|
n_parameters=None,
|
|
613
|
+
n_embedding_parameters=None,
|
|
602
614
|
memory_usage_mb=None,
|
|
603
615
|
license=None,
|
|
604
616
|
reference="https://blog.voyageai.com/2024/06/10/voyage-multilingual-2-multilingual-embedding-model/",
|
|
@@ -625,6 +637,7 @@ voyage_3 = ModelMeta(
|
|
|
625
637
|
embed_dim=1024,
|
|
626
638
|
open_weights=False,
|
|
627
639
|
n_parameters=None,
|
|
640
|
+
n_embedding_parameters=None,
|
|
628
641
|
memory_usage_mb=None,
|
|
629
642
|
license=None,
|
|
630
643
|
reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
|
|
@@ -651,6 +664,7 @@ voyage_3_lite = ModelMeta(
|
|
|
651
664
|
embed_dim=512,
|
|
652
665
|
open_weights=False,
|
|
653
666
|
n_parameters=None,
|
|
667
|
+
n_embedding_parameters=None,
|
|
654
668
|
memory_usage_mb=None,
|
|
655
669
|
license=None,
|
|
656
670
|
reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
|
|
@@ -679,6 +693,7 @@ voyage_3_exp = ModelMeta(
|
|
|
679
693
|
open_weights=False,
|
|
680
694
|
# from their card https://huggingface.co/voyageai/voyage-3-m-exp#model-information
|
|
681
695
|
n_parameters=int(6918 * 1e6),
|
|
696
|
+
n_embedding_parameters=None,
|
|
682
697
|
memory_usage_mb=None,
|
|
683
698
|
license=None,
|
|
684
699
|
reference="https://huggingface.co/voyageai/voyage-3-m-exp",
|
mteb/models/model_meta.py
CHANGED
|
@@ -10,6 +10,7 @@ from functools import partial
|
|
|
10
10
|
from pathlib import Path
|
|
11
11
|
from typing import TYPE_CHECKING, Any, Literal, cast
|
|
12
12
|
|
|
13
|
+
import numpy as np
|
|
13
14
|
from huggingface_hub import (
|
|
14
15
|
ModelCard,
|
|
15
16
|
get_safetensors_metadata,
|
|
@@ -27,6 +28,8 @@ from huggingface_hub.errors import (
|
|
|
27
28
|
SafetensorsParsingError,
|
|
28
29
|
)
|
|
29
30
|
from pydantic import BaseModel, ConfigDict, field_validator, model_validator
|
|
31
|
+
from sentence_transformers.models import Transformer
|
|
32
|
+
from torch import nn
|
|
30
33
|
from transformers import AutoConfig
|
|
31
34
|
|
|
32
35
|
from mteb._helpful_enum import HelpfulStrEnum
|
|
@@ -99,8 +102,9 @@ class ModelMeta(BaseModel):
|
|
|
99
102
|
loader: The function that loads the model. If None it assumes that the model is not implemented.
|
|
100
103
|
loader_kwargs: The keyword arguments to pass to the loader function.
|
|
101
104
|
name: The name of the model, ideally the name on huggingface. It should be in the format "organization/model_name".
|
|
102
|
-
n_parameters: The number of parameters in the model, e.g. 7_000_000 for a 7M parameter model. Can be
|
|
103
|
-
|
|
105
|
+
n_parameters: The total number of parameters in the model, e.g. `7_000_000` for a 7M parameter model. Can be none in case the number of parameters is unknown.
|
|
106
|
+
n_embedding_parameters: The number of parameters used for the embedding layer. Can be None if the number of embedding parameters is not known (e.g. for proprietary models).
|
|
107
|
+
n_active_parameters_override: The number of active parameters used bu model. Should be used **only** for Mixture of Experts models.
|
|
104
108
|
memory_usage_mb: The memory usage of the model in MB. Can be None if the memory usage is not known (e.g. for proprietary models). To calculate it use the `calculate_memory_usage_mb` method.
|
|
105
109
|
max_tokens: The maximum number of tokens the model can handle. Can be None if the maximum number of tokens is not known (e.g. for proprietary
|
|
106
110
|
models).
|
|
@@ -139,6 +143,8 @@ class ModelMeta(BaseModel):
|
|
|
139
143
|
release_date: StrDate | None
|
|
140
144
|
languages: list[ISOLanguageScript] | None
|
|
141
145
|
n_parameters: int | None
|
|
146
|
+
n_active_parameters_override: int | None = None
|
|
147
|
+
n_embedding_parameters: int | None = None
|
|
142
148
|
memory_usage_mb: float | None
|
|
143
149
|
max_tokens: float | None
|
|
144
150
|
embed_dim: int | None
|
|
@@ -197,6 +203,16 @@ class ModelMeta(BaseModel):
|
|
|
197
203
|
"""
|
|
198
204
|
return "cross-encoder" in self.model_type
|
|
199
205
|
|
|
206
|
+
@property
|
|
207
|
+
def n_active_parameters(self):
|
|
208
|
+
"""Number of active parameters. Assumed to be `n_parameters - n_embedding_parameters`. Can be overwritten using `n_active_parameters_override` e.g. for MoE models."""
|
|
209
|
+
if self.n_active_parameters_override is not None:
|
|
210
|
+
return self.n_active_parameters_override
|
|
211
|
+
|
|
212
|
+
if self.n_parameters is not None and self.n_embedding_parameters is not None:
|
|
213
|
+
return self.n_parameters - self.n_embedding_parameters
|
|
214
|
+
return None
|
|
215
|
+
|
|
200
216
|
@field_validator("similarity_fn_name", mode="before")
|
|
201
217
|
@classmethod
|
|
202
218
|
def _validate_similarity_fn_name(cls, value: str) -> ScoringFunction | None:
|
|
@@ -389,6 +405,14 @@ class ModelMeta(BaseModel):
|
|
|
389
405
|
else model.model_card_data.base_model
|
|
390
406
|
)
|
|
391
407
|
meta = cls._from_hub(name, revision, compute_metadata)
|
|
408
|
+
try:
|
|
409
|
+
first = model[0]
|
|
410
|
+
|
|
411
|
+
if isinstance(first, Transformer):
|
|
412
|
+
emb = first.auto_model.get_input_embeddings()
|
|
413
|
+
meta.n_embedding_parameters = int(np.prod(emb.weight.shape))
|
|
414
|
+
except Exception as e:
|
|
415
|
+
logger.warning(f"Could not calculate embedding parameters for {name}: {e}")
|
|
392
416
|
meta.revision = model.model_card_data.base_model_revision or meta.revision
|
|
393
417
|
meta.max_tokens = model.max_seq_length
|
|
394
418
|
meta.embed_dim = model.get_sentence_embedding_dimension()
|
|
@@ -460,6 +484,15 @@ class ModelMeta(BaseModel):
|
|
|
460
484
|
from mteb.models import CrossEncoderWrapper
|
|
461
485
|
|
|
462
486
|
meta = cls._from_hub(model.model.name_or_path, revision, compute_metadata)
|
|
487
|
+
try:
|
|
488
|
+
emb = model.model.get_input_embeddings()
|
|
489
|
+
|
|
490
|
+
if isinstance(emb, nn.Embedding):
|
|
491
|
+
meta.n_embedding_parameters = int(np.prod(emb.weight.shape))
|
|
492
|
+
except Exception as e:
|
|
493
|
+
logger.warning(
|
|
494
|
+
f"Could not calculate embedding parameters for {model.model.name_or_path}: {e}"
|
|
495
|
+
)
|
|
463
496
|
meta.revision = model.config._commit_hash or meta.revision
|
|
464
497
|
meta.loader = CrossEncoderWrapper
|
|
465
498
|
meta.embed_dim = None
|
|
@@ -14,6 +14,28 @@ from .birco_whats_that_book_reranking import BIRCOWhatsThatBookReranking
|
|
|
14
14
|
from .blink_it2i_retrieval import BLINKIT2IRetrieval
|
|
15
15
|
from .blink_it2t_retrieval import BLINKIT2TRetrieval
|
|
16
16
|
from .bright_retrieval import BrightLongRetrieval, BrightRetrieval
|
|
17
|
+
from .bright_v1_1_retrieval import (
|
|
18
|
+
BrightAopsRetrieval,
|
|
19
|
+
BrightBiologyLongRetrieval,
|
|
20
|
+
BrightBiologyRetrieval,
|
|
21
|
+
BrightEarthScienceLongRetrieval,
|
|
22
|
+
BrightEarthScienceRetrieval,
|
|
23
|
+
BrightEconomicsLongRetrieval,
|
|
24
|
+
BrightEconomicsRetrieval,
|
|
25
|
+
BrightLeetcodeRetrieval,
|
|
26
|
+
BrightPonyLongRetrieval,
|
|
27
|
+
BrightPonyRetrieval,
|
|
28
|
+
BrightPsychologyLongRetrieval,
|
|
29
|
+
BrightPsychologyRetrieval,
|
|
30
|
+
BrightRoboticsLongRetrieval,
|
|
31
|
+
BrightRoboticsRetrieval,
|
|
32
|
+
BrightStackoverflowLongRetrieval,
|
|
33
|
+
BrightStackoverflowRetrieval,
|
|
34
|
+
BrightSustainableLivingLongRetrieval,
|
|
35
|
+
BrightSustainableLivingRetrieval,
|
|
36
|
+
BrightTheoremQAQuestionsRetrieval,
|
|
37
|
+
BrightTheoremQATheoremsRetrieval,
|
|
38
|
+
)
|
|
17
39
|
from .built_bench_retrieval import BuiltBenchRetrieval
|
|
18
40
|
from .chat_doctor_retrieval import ChatDoctorRetrieval
|
|
19
41
|
from .chem_hotpot_qa_retrieval import ChemHotpotQARetrieval
|
|
@@ -236,8 +258,28 @@ __all__ = [
|
|
|
236
258
|
"BarExamQARetrieval",
|
|
237
259
|
"BillSumCARetrieval",
|
|
238
260
|
"BillSumUSRetrieval",
|
|
261
|
+
"BrightAopsRetrieval",
|
|
262
|
+
"BrightBiologyLongRetrieval",
|
|
263
|
+
"BrightBiologyRetrieval",
|
|
264
|
+
"BrightEarthScienceLongRetrieval",
|
|
265
|
+
"BrightEarthScienceRetrieval",
|
|
266
|
+
"BrightEconomicsLongRetrieval",
|
|
267
|
+
"BrightEconomicsRetrieval",
|
|
268
|
+
"BrightLeetcodeRetrieval",
|
|
239
269
|
"BrightLongRetrieval",
|
|
270
|
+
"BrightPonyLongRetrieval",
|
|
271
|
+
"BrightPonyRetrieval",
|
|
272
|
+
"BrightPsychologyLongRetrieval",
|
|
273
|
+
"BrightPsychologyRetrieval",
|
|
240
274
|
"BrightRetrieval",
|
|
275
|
+
"BrightRoboticsLongRetrieval",
|
|
276
|
+
"BrightRoboticsRetrieval",
|
|
277
|
+
"BrightStackoverflowLongRetrieval",
|
|
278
|
+
"BrightStackoverflowRetrieval",
|
|
279
|
+
"BrightSustainableLivingLongRetrieval",
|
|
280
|
+
"BrightSustainableLivingRetrieval",
|
|
281
|
+
"BrightTheoremQAQuestionsRetrieval",
|
|
282
|
+
"BrightTheoremQATheoremsRetrieval",
|
|
241
283
|
"BuiltBenchRetrieval",
|
|
242
284
|
"CIRRIT2IRetrieval",
|
|
243
285
|
"CQADupstackAndroidRetrieval",
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import warnings
|
|
1
2
|
from collections import defaultdict
|
|
2
3
|
|
|
3
4
|
import datasets
|
|
@@ -86,6 +87,12 @@ def load_data(self) -> None:
|
|
|
86
87
|
if self.data_loaded:
|
|
87
88
|
return
|
|
88
89
|
|
|
90
|
+
warnings.warn(
|
|
91
|
+
"This task contains wrong prompts in the metadata. "
|
|
92
|
+
"Please use BRIGHT(v1.1) benchmark instead.",
|
|
93
|
+
category=DeprecationWarning,
|
|
94
|
+
)
|
|
95
|
+
|
|
89
96
|
self.corpus, self.queries, self.relevant_docs = self.load_bright_data(
|
|
90
97
|
path=self.metadata.dataset["path"],
|
|
91
98
|
domains=list(self.metadata.eval_langs.keys()),
|
|
@@ -104,7 +111,7 @@ class BrightRetrieval(AbsTaskRetrieval):
|
|
|
104
111
|
"revision": "a75a0eb483f6a5233a6efc2d63d71540a4443dfb",
|
|
105
112
|
},
|
|
106
113
|
reference="https://huggingface.co/datasets/xlangai/BRIGHT",
|
|
107
|
-
description="
|
|
114
|
+
description="BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval",
|
|
108
115
|
type="Retrieval",
|
|
109
116
|
category="t2t",
|
|
110
117
|
eval_splits=["standard"],
|
|
@@ -129,6 +136,7 @@ class BrightRetrieval(AbsTaskRetrieval):
|
|
|
129
136
|
year = {2024},
|
|
130
137
|
}
|
|
131
138
|
""",
|
|
139
|
+
superseded_by="BrightBiologyRetrieval",
|
|
132
140
|
)
|
|
133
141
|
load_bright_data = load_bright_data
|
|
134
142
|
load_data = load_data
|