mteb 2.7.3__py3-none-any.whl → 2.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (157) hide show
  1. mteb/abstasks/retrieval.py +1 -1
  2. mteb/benchmarks/benchmarks/__init__.py +2 -0
  3. mteb/benchmarks/benchmarks/benchmarks.py +41 -2
  4. mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
  5. mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
  6. mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
  7. mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
  8. mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
  9. mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
  10. mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
  11. mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
  12. mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
  13. mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
  14. mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
  15. mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
  16. mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
  17. mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
  18. mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
  19. mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
  20. mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
  21. mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
  22. mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
  23. mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
  24. mteb/models/model_implementations/align_models.py +1 -0
  25. mteb/models/model_implementations/amazon_models.py +1 -0
  26. mteb/models/model_implementations/andersborges.py +2 -0
  27. mteb/models/model_implementations/ara_models.py +1 -0
  28. mteb/models/model_implementations/arctic_models.py +8 -0
  29. mteb/models/model_implementations/b1ade_models.py +1 -0
  30. mteb/models/model_implementations/bedrock_models.py +4 -0
  31. mteb/models/model_implementations/bge_models.py +40 -1
  32. mteb/models/model_implementations/bica_model.py +1 -0
  33. mteb/models/model_implementations/blip2_models.py +2 -0
  34. mteb/models/model_implementations/blip_models.py +8 -0
  35. mteb/models/model_implementations/bm25.py +8 -5
  36. mteb/models/model_implementations/bmretriever_models.py +4 -0
  37. mteb/models/model_implementations/cadet_models.py +1 -0
  38. mteb/models/model_implementations/cde_models.py +2 -0
  39. mteb/models/model_implementations/clip_models.py +3 -0
  40. mteb/models/model_implementations/clips_models.py +3 -0
  41. mteb/models/model_implementations/codefuse_models.py +5 -0
  42. mteb/models/model_implementations/codesage_models.py +3 -0
  43. mteb/models/model_implementations/cohere_models.py +4 -0
  44. mteb/models/model_implementations/cohere_v.py +5 -0
  45. mteb/models/model_implementations/colpali_models.py +3 -0
  46. mteb/models/model_implementations/colqwen_models.py +7 -0
  47. mteb/models/model_implementations/colsmol_models.py +2 -0
  48. mteb/models/model_implementations/conan_models.py +1 -0
  49. mteb/models/model_implementations/dino_models.py +19 -0
  50. mteb/models/model_implementations/e5_instruct.py +4 -0
  51. mteb/models/model_implementations/e5_models.py +9 -0
  52. mteb/models/model_implementations/e5_v.py +1 -0
  53. mteb/models/model_implementations/eagerworks_models.py +1 -0
  54. mteb/models/model_implementations/emillykkejensen_models.py +3 -0
  55. mteb/models/model_implementations/en_code_retriever.py +1 -0
  56. mteb/models/model_implementations/euler_models.py +1 -0
  57. mteb/models/model_implementations/evaclip_models.py +4 -0
  58. mteb/models/model_implementations/fa_models.py +9 -0
  59. mteb/models/model_implementations/facebookai.py +2 -0
  60. mteb/models/model_implementations/geogpt_models.py +1 -0
  61. mteb/models/model_implementations/gme_v_models.py +2 -0
  62. mteb/models/model_implementations/google_models.py +5 -0
  63. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
  64. mteb/models/model_implementations/gritlm_models.py +2 -0
  65. mteb/models/model_implementations/gte_models.py +9 -0
  66. mteb/models/model_implementations/hinvec_models.py +1 -0
  67. mteb/models/model_implementations/human.py +1 -0
  68. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  69. mteb/models/model_implementations/inf_models.py +2 -0
  70. mteb/models/model_implementations/jasper_models.py +2 -0
  71. mteb/models/model_implementations/jina_clip.py +1 -0
  72. mteb/models/model_implementations/jina_models.py +7 -0
  73. mteb/models/model_implementations/kalm_models.py +6 -0
  74. mteb/models/model_implementations/kblab.py +1 -0
  75. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
  76. mteb/models/model_implementations/kfst.py +1 -0
  77. mteb/models/model_implementations/kowshik24_models.py +1 -0
  78. mteb/models/model_implementations/lens_models.py +2 -0
  79. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  80. mteb/models/model_implementations/linq_models.py +1 -0
  81. mteb/models/model_implementations/listconranker.py +1 -0
  82. mteb/models/model_implementations/llm2clip_models.py +3 -0
  83. mteb/models/model_implementations/llm2vec_models.py +8 -0
  84. mteb/models/model_implementations/mcinext_models.py +3 -0
  85. mteb/models/model_implementations/mdbr_models.py +2 -0
  86. mteb/models/model_implementations/misc_models.py +63 -0
  87. mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
  88. mteb/models/model_implementations/mme5_models.py +2 -1
  89. mteb/models/model_implementations/moco_models.py +2 -0
  90. mteb/models/model_implementations/mod_models.py +1 -0
  91. mteb/models/model_implementations/model2vec_models.py +13 -0
  92. mteb/models/model_implementations/moka_models.py +3 -0
  93. mteb/models/model_implementations/nbailab.py +3 -0
  94. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  95. mteb/models/model_implementations/nomic_models.py +6 -0
  96. mteb/models/model_implementations/nomic_models_vision.py +1 -0
  97. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
  98. mteb/models/model_implementations/nvidia_models.py +3 -0
  99. mteb/models/model_implementations/octen_models.py +2 -0
  100. mteb/models/model_implementations/openai_models.py +5 -0
  101. mteb/models/model_implementations/openclip_models.py +8 -0
  102. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  103. mteb/models/model_implementations/ops_moa_models.py +2 -0
  104. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
  105. mteb/models/model_implementations/pawan_models.py +1 -0
  106. mteb/models/model_implementations/piccolo_models.py +2 -0
  107. mteb/models/model_implementations/promptriever_models.py +4 -0
  108. mteb/models/model_implementations/pylate_models.py +3 -0
  109. mteb/models/model_implementations/qodo_models.py +2 -0
  110. mteb/models/model_implementations/qtack_models.py +1 -0
  111. mteb/models/model_implementations/qwen3_models.py +3 -0
  112. mteb/models/model_implementations/qzhou_models.py +2 -0
  113. mteb/models/model_implementations/rasgaard_models.py +1 -0
  114. mteb/models/model_implementations/reasonir_model.py +65 -0
  115. mteb/models/model_implementations/repllama_models.py +2 -0
  116. mteb/models/model_implementations/rerankers_custom.py +3 -0
  117. mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
  118. mteb/models/model_implementations/richinfoai_models.py +1 -0
  119. mteb/models/model_implementations/ru_sentence_models.py +20 -0
  120. mteb/models/model_implementations/ruri_models.py +10 -0
  121. mteb/models/model_implementations/salesforce_models.py +3 -0
  122. mteb/models/model_implementations/samilpwc_models.py +1 -0
  123. mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
  124. mteb/models/model_implementations/searchmap_models.py +1 -0
  125. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
  126. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
  127. mteb/models/model_implementations/seed_models.py +1 -0
  128. mteb/models/model_implementations/sentence_transformers_models.py +18 -0
  129. mteb/models/model_implementations/shuu_model.py +1 -0
  130. mteb/models/model_implementations/siglip_models.py +10 -0
  131. mteb/models/model_implementations/sonar_models.py +2 -1
  132. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
  133. mteb/models/model_implementations/stella_models.py +6 -0
  134. mteb/models/model_implementations/tarka_models.py +2 -0
  135. mteb/models/model_implementations/text2vec_models.py +3 -0
  136. mteb/models/model_implementations/ua_sentence_models.py +1 -0
  137. mteb/models/model_implementations/uae_models.py +1 -0
  138. mteb/models/model_implementations/vdr_models.py +1 -0
  139. mteb/models/model_implementations/vi_vn_models.py +6 -0
  140. mteb/models/model_implementations/vista_models.py +2 -0
  141. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  142. mteb/models/model_implementations/voyage_models.py +15 -0
  143. mteb/models/model_implementations/voyage_v.py +1 -0
  144. mteb/models/model_implementations/xyz_models.py +1 -0
  145. mteb/models/model_implementations/youtu_models.py +1 -0
  146. mteb/models/model_implementations/yuan_models.py +1 -0
  147. mteb/models/model_implementations/yuan_models_en.py +1 -0
  148. mteb/models/model_meta.py +35 -2
  149. mteb/tasks/retrieval/eng/__init__.py +42 -0
  150. mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
  151. mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
  152. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
  153. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/RECORD +157 -136
  154. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
  155. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
  156. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
  157. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
@@ -38,6 +38,7 @@ vdr_2b_multi_v1 = ModelMeta(
38
38
  release_date="2024-01-08",
39
39
  modalities=["text"], # TODO: integrate with image
40
40
  n_parameters=2_000_000_000,
41
+ n_embedding_parameters=233_373_696,
41
42
  memory_usage_mb=4213,
42
43
  max_tokens=32768,
43
44
  embed_dim=1536,
@@ -16,6 +16,7 @@ greennode_embedding_large_vn_v1 = ModelMeta(
16
16
  loader=sentence_transformers_loader,
17
17
  open_weights=True,
18
18
  n_parameters=568_000_000,
19
+ n_embedding_parameters=256_002_048,
19
20
  memory_usage_mb=2167,
20
21
  embed_dim=1024,
21
22
  license="cc-by-4.0",
@@ -41,6 +42,7 @@ greennode_embedding_large_vn_mixed_v1 = ModelMeta(
41
42
  loader=sentence_transformers_loader,
42
43
  open_weights=True,
43
44
  n_parameters=568_000_000,
45
+ n_embedding_parameters=256_002_048,
44
46
  memory_usage_mb=2167,
45
47
  embed_dim=1024,
46
48
  license="cc-by-4.0",
@@ -66,6 +68,7 @@ aiteamvn_vietnamese_embeddings = ModelMeta(
66
68
  loader=sentence_transformers_loader,
67
69
  open_weights=True,
68
70
  n_parameters=568_000_000,
71
+ n_embedding_parameters=256_002_048,
69
72
  memory_usage_mb=2166,
70
73
  embed_dim=1024,
71
74
  license="cc-by-4.0",
@@ -98,6 +101,7 @@ hiieu_halong_embedding = ModelMeta(
98
101
  use_instructions=False,
99
102
  open_weights=True,
100
103
  n_parameters=278_000_000,
104
+ n_embedding_parameters=192_001_536,
101
105
  memory_usage_mb=1061,
102
106
  embed_dim=768,
103
107
  license="apache-2.0",
@@ -129,6 +133,7 @@ sup_simcse_vietnamese_phobert_base_ = ModelMeta(
129
133
  use_instructions=False,
130
134
  open_weights=True,
131
135
  n_parameters=135_000_000,
136
+ n_embedding_parameters=49_152_768,
132
137
  memory_usage_mb=517,
133
138
  max_tokens=256,
134
139
  embed_dim=768,
@@ -167,6 +172,7 @@ bkai_foundation_models_vietnamese_bi_encoder = ModelMeta(
167
172
  use_instructions=False,
168
173
  open_weights=True,
169
174
  n_parameters=135_000_000,
175
+ n_embedding_parameters=49_152_768,
170
176
  memory_usage_mb=515,
171
177
  max_tokens=256,
172
178
  embed_dim=768,
@@ -258,6 +258,7 @@ visualized_bge_base = ModelMeta(
258
258
  release_date="2024-06-06",
259
259
  modalities=["image", "text"],
260
260
  n_parameters=196_000_000,
261
+ n_embedding_parameters=None,
261
262
  memory_usage_mb=1631,
262
263
  max_tokens=512,
263
264
  embed_dim=768,
@@ -286,6 +287,7 @@ visualized_bge_m3 = ModelMeta(
286
287
  release_date="2024-06-06",
287
288
  modalities=["image", "text"],
288
289
  n_parameters=872_909_505,
290
+ n_embedding_parameters=None,
289
291
  memory_usage_mb=4263,
290
292
  max_tokens=8192,
291
293
  embed_dim=1024,
@@ -280,6 +280,7 @@ vlm2vec_lora = ModelMeta(
280
280
  release_date="2024-10-08",
281
281
  modalities=["image", "text"],
282
282
  n_parameters=None,
283
+ n_embedding_parameters=None,
283
284
  memory_usage_mb=None,
284
285
  max_tokens=131072,
285
286
  embed_dim=3072,
@@ -304,6 +305,7 @@ vlm2vec_full = ModelMeta(
304
305
  release_date="2024-10-08",
305
306
  modalities=["image", "text"],
306
307
  n_parameters=4_150_000_000,
308
+ n_embedding_parameters=None,
307
309
  memory_usage_mb=7909,
308
310
  max_tokens=131072,
309
311
  embed_dim=3072,
@@ -308,6 +308,7 @@ voyage_3_large = ModelMeta(
308
308
  embed_dim=1024,
309
309
  open_weights=False,
310
310
  n_parameters=None,
311
+ n_embedding_parameters=None,
311
312
  memory_usage_mb=None,
312
313
  license=None,
313
314
  reference="https://blog.voyageai.com/2025/01/07/voyage-3-large/",
@@ -336,6 +337,7 @@ voyage_3_5 = ModelMeta(
336
337
  embed_dim=1024,
337
338
  open_weights=False,
338
339
  n_parameters=None,
340
+ n_embedding_parameters=None,
339
341
  memory_usage_mb=None,
340
342
  license=None,
341
343
  reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
@@ -363,6 +365,7 @@ voyage_3_5_int8 = ModelMeta(
363
365
  embed_dim=1024,
364
366
  open_weights=False,
365
367
  n_parameters=None,
368
+ n_embedding_parameters=None,
366
369
  memory_usage_mb=None,
367
370
  license=None,
368
371
  reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
@@ -390,6 +393,7 @@ voyage_3_5_binary = ModelMeta(
390
393
  embed_dim=1024, # Same as original after unpacking from bits
391
394
  open_weights=False,
392
395
  n_parameters=None,
396
+ n_embedding_parameters=None,
393
397
  memory_usage_mb=None,
394
398
  license=None,
395
399
  reference="https://blog.voyageai.com/2025/05/20/voyage-3-5/",
@@ -417,6 +421,7 @@ voyage_large_2_instruct = ModelMeta(
417
421
  embed_dim=1024,
418
422
  open_weights=False,
419
423
  n_parameters=None,
424
+ n_embedding_parameters=None,
420
425
  memory_usage_mb=None,
421
426
  license=None,
422
427
  reference="https://blog.voyageai.com/2024/05/05/voyage-large-2-instruct-instruction-tuned-and-rank-1-on-mteb/",
@@ -443,6 +448,7 @@ voyage_finance_2 = ModelMeta(
443
448
  embed_dim=1024,
444
449
  open_weights=False,
445
450
  n_parameters=None,
451
+ n_embedding_parameters=None,
446
452
  memory_usage_mb=None,
447
453
  license=None,
448
454
  reference="https://blog.voyageai.com/2024/06/03/domain-specific-embeddings-finance-edition-voyage-finance-2/",
@@ -469,6 +475,7 @@ voyage_law_2 = ModelMeta(
469
475
  embed_dim=1024,
470
476
  open_weights=False,
471
477
  n_parameters=None,
478
+ n_embedding_parameters=None,
472
479
  memory_usage_mb=None,
473
480
  license=None,
474
481
  reference="https://blog.voyageai.com/2024/04/15/domain-specific-embeddings-and-retrieval-legal-edition-voyage-law-2/",
@@ -495,6 +502,7 @@ voyage_code_2 = ModelMeta(
495
502
  embed_dim=1536,
496
503
  open_weights=False,
497
504
  n_parameters=None,
505
+ n_embedding_parameters=None,
498
506
  memory_usage_mb=None,
499
507
  license=None,
500
508
  reference="https://blog.voyageai.com/2024/01/23/voyage-code-2-elevate-your-code-retrieval/",
@@ -521,6 +529,7 @@ voyage_code_3 = ModelMeta(
521
529
  embed_dim=1024,
522
530
  open_weights=False,
523
531
  n_parameters=None,
532
+ n_embedding_parameters=None,
524
533
  memory_usage_mb=None,
525
534
  license=None,
526
535
  reference="https://blog.voyageai.com/2024/12/04/voyage-code-3/",
@@ -548,6 +557,7 @@ voyage_large_2 = ModelMeta(
548
557
  embed_dim=1536,
549
558
  open_weights=False,
550
559
  n_parameters=None,
560
+ n_embedding_parameters=None,
551
561
  memory_usage_mb=None,
552
562
  license=None,
553
563
  reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
@@ -574,6 +584,7 @@ voyage_2 = ModelMeta(
574
584
  embed_dim=1024,
575
585
  open_weights=False,
576
586
  n_parameters=None,
587
+ n_embedding_parameters=None,
577
588
  memory_usage_mb=None,
578
589
  license=None,
579
590
  reference="https://blog.voyageai.com/2023/10/29/voyage-embeddings/",
@@ -599,6 +610,7 @@ voyage_multilingual_2 = ModelMeta(
599
610
  embed_dim=1024,
600
611
  open_weights=False,
601
612
  n_parameters=None,
613
+ n_embedding_parameters=None,
602
614
  memory_usage_mb=None,
603
615
  license=None,
604
616
  reference="https://blog.voyageai.com/2024/06/10/voyage-multilingual-2-multilingual-embedding-model/",
@@ -625,6 +637,7 @@ voyage_3 = ModelMeta(
625
637
  embed_dim=1024,
626
638
  open_weights=False,
627
639
  n_parameters=None,
640
+ n_embedding_parameters=None,
628
641
  memory_usage_mb=None,
629
642
  license=None,
630
643
  reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
@@ -651,6 +664,7 @@ voyage_3_lite = ModelMeta(
651
664
  embed_dim=512,
652
665
  open_weights=False,
653
666
  n_parameters=None,
667
+ n_embedding_parameters=None,
654
668
  memory_usage_mb=None,
655
669
  license=None,
656
670
  reference="https://blog.voyageai.com/2024/09/18/voyage-3/",
@@ -679,6 +693,7 @@ voyage_3_exp = ModelMeta(
679
693
  open_weights=False,
680
694
  # from their card https://huggingface.co/voyageai/voyage-3-m-exp#model-information
681
695
  n_parameters=int(6918 * 1e6),
696
+ n_embedding_parameters=None,
682
697
  memory_usage_mb=None,
683
698
  license=None,
684
699
  reference="https://huggingface.co/voyageai/voyage-3-m-exp",
@@ -215,6 +215,7 @@ voyage_v = ModelMeta(
215
215
  revision="1",
216
216
  release_date="2024-11-10",
217
217
  n_parameters=None,
218
+ n_embedding_parameters=None,
218
219
  memory_usage_mb=None,
219
220
  max_tokens=32768,
220
221
  embed_dim=1024,
@@ -31,6 +31,7 @@ xyz_embedding = ModelMeta(
31
31
  revision="4004120220b99baea764a1d3508427248ac3bccf",
32
32
  release_date="2024-09-13",
33
33
  n_parameters=326000000,
34
+ n_embedding_parameters=21_635_072,
34
35
  memory_usage_mb=1242,
35
36
  max_tokens=512,
36
37
  embed_dim=768,
@@ -121,6 +121,7 @@ Youtu_Embedding_V1 = ModelMeta(
121
121
  release_date="2025-09-28",
122
122
  open_weights=True,
123
123
  n_parameters=2672957440,
124
+ n_embedding_parameters=None,
124
125
  memory_usage_mb=None,
125
126
  embed_dim=2048,
126
127
  license="apache-2.0",
@@ -20,6 +20,7 @@ yuan_embedding_2_zh = ModelMeta(
20
20
  revision="b5ebcace6f4fc6e5a4d1852557eb2dc2d1040cee",
21
21
  release_date="2025-11-24",
22
22
  n_parameters=326000000,
23
+ n_embedding_parameters=21_635_072,
23
24
  memory_usage_mb=1242,
24
25
  embed_dim=1792,
25
26
  license="apache-2.0",
@@ -43,6 +43,7 @@ yuan_embedding_2_en = ModelMeta(
43
43
  revision="b2fd15da3bcae3473c8529593825c15068f09fce",
44
44
  release_date="2025-11-27",
45
45
  n_parameters=595776512,
46
+ n_embedding_parameters=None,
46
47
  memory_usage_mb=2272,
47
48
  embed_dim=1024,
48
49
  max_tokens=2048,
mteb/models/model_meta.py CHANGED
@@ -10,6 +10,7 @@ from functools import partial
10
10
  from pathlib import Path
11
11
  from typing import TYPE_CHECKING, Any, Literal, cast
12
12
 
13
+ import numpy as np
13
14
  from huggingface_hub import (
14
15
  ModelCard,
15
16
  get_safetensors_metadata,
@@ -27,6 +28,8 @@ from huggingface_hub.errors import (
27
28
  SafetensorsParsingError,
28
29
  )
29
30
  from pydantic import BaseModel, ConfigDict, field_validator, model_validator
31
+ from sentence_transformers.models import Transformer
32
+ from torch import nn
30
33
  from transformers import AutoConfig
31
34
 
32
35
  from mteb._helpful_enum import HelpfulStrEnum
@@ -99,8 +102,9 @@ class ModelMeta(BaseModel):
99
102
  loader: The function that loads the model. If None it assumes that the model is not implemented.
100
103
  loader_kwargs: The keyword arguments to pass to the loader function.
101
104
  name: The name of the model, ideally the name on huggingface. It should be in the format "organization/model_name".
102
- n_parameters: The number of parameters in the model, e.g. 7_000_000 for a 7M parameter model. Can be None if the number of parameters is not known (e.g. for proprietary models) or
103
- if the loader returns a SentenceTransformer model from which it can be derived.
105
+ n_parameters: The total number of parameters in the model, e.g. `7_000_000` for a 7M parameter model. Can be none in case the number of parameters is unknown.
106
+ n_embedding_parameters: The number of parameters used for the embedding layer. Can be None if the number of embedding parameters is not known (e.g. for proprietary models).
107
+ n_active_parameters_override: The number of active parameters used bu model. Should be used **only** for Mixture of Experts models.
104
108
  memory_usage_mb: The memory usage of the model in MB. Can be None if the memory usage is not known (e.g. for proprietary models). To calculate it use the `calculate_memory_usage_mb` method.
105
109
  max_tokens: The maximum number of tokens the model can handle. Can be None if the maximum number of tokens is not known (e.g. for proprietary
106
110
  models).
@@ -139,6 +143,8 @@ class ModelMeta(BaseModel):
139
143
  release_date: StrDate | None
140
144
  languages: list[ISOLanguageScript] | None
141
145
  n_parameters: int | None
146
+ n_active_parameters_override: int | None = None
147
+ n_embedding_parameters: int | None = None
142
148
  memory_usage_mb: float | None
143
149
  max_tokens: float | None
144
150
  embed_dim: int | None
@@ -197,6 +203,16 @@ class ModelMeta(BaseModel):
197
203
  """
198
204
  return "cross-encoder" in self.model_type
199
205
 
206
+ @property
207
+ def n_active_parameters(self):
208
+ """Number of active parameters. Assumed to be `n_parameters - n_embedding_parameters`. Can be overwritten using `n_active_parameters_override` e.g. for MoE models."""
209
+ if self.n_active_parameters_override is not None:
210
+ return self.n_active_parameters_override
211
+
212
+ if self.n_parameters is not None and self.n_embedding_parameters is not None:
213
+ return self.n_parameters - self.n_embedding_parameters
214
+ return None
215
+
200
216
  @field_validator("similarity_fn_name", mode="before")
201
217
  @classmethod
202
218
  def _validate_similarity_fn_name(cls, value: str) -> ScoringFunction | None:
@@ -389,6 +405,14 @@ class ModelMeta(BaseModel):
389
405
  else model.model_card_data.base_model
390
406
  )
391
407
  meta = cls._from_hub(name, revision, compute_metadata)
408
+ try:
409
+ first = model[0]
410
+
411
+ if isinstance(first, Transformer):
412
+ emb = first.auto_model.get_input_embeddings()
413
+ meta.n_embedding_parameters = int(np.prod(emb.weight.shape))
414
+ except Exception as e:
415
+ logger.warning(f"Could not calculate embedding parameters for {name}: {e}")
392
416
  meta.revision = model.model_card_data.base_model_revision or meta.revision
393
417
  meta.max_tokens = model.max_seq_length
394
418
  meta.embed_dim = model.get_sentence_embedding_dimension()
@@ -460,6 +484,15 @@ class ModelMeta(BaseModel):
460
484
  from mteb.models import CrossEncoderWrapper
461
485
 
462
486
  meta = cls._from_hub(model.model.name_or_path, revision, compute_metadata)
487
+ try:
488
+ emb = model.model.get_input_embeddings()
489
+
490
+ if isinstance(emb, nn.Embedding):
491
+ meta.n_embedding_parameters = int(np.prod(emb.weight.shape))
492
+ except Exception as e:
493
+ logger.warning(
494
+ f"Could not calculate embedding parameters for {model.model.name_or_path}: {e}"
495
+ )
463
496
  meta.revision = model.config._commit_hash or meta.revision
464
497
  meta.loader = CrossEncoderWrapper
465
498
  meta.embed_dim = None
@@ -14,6 +14,28 @@ from .birco_whats_that_book_reranking import BIRCOWhatsThatBookReranking
14
14
  from .blink_it2i_retrieval import BLINKIT2IRetrieval
15
15
  from .blink_it2t_retrieval import BLINKIT2TRetrieval
16
16
  from .bright_retrieval import BrightLongRetrieval, BrightRetrieval
17
+ from .bright_v1_1_retrieval import (
18
+ BrightAopsRetrieval,
19
+ BrightBiologyLongRetrieval,
20
+ BrightBiologyRetrieval,
21
+ BrightEarthScienceLongRetrieval,
22
+ BrightEarthScienceRetrieval,
23
+ BrightEconomicsLongRetrieval,
24
+ BrightEconomicsRetrieval,
25
+ BrightLeetcodeRetrieval,
26
+ BrightPonyLongRetrieval,
27
+ BrightPonyRetrieval,
28
+ BrightPsychologyLongRetrieval,
29
+ BrightPsychologyRetrieval,
30
+ BrightRoboticsLongRetrieval,
31
+ BrightRoboticsRetrieval,
32
+ BrightStackoverflowLongRetrieval,
33
+ BrightStackoverflowRetrieval,
34
+ BrightSustainableLivingLongRetrieval,
35
+ BrightSustainableLivingRetrieval,
36
+ BrightTheoremQAQuestionsRetrieval,
37
+ BrightTheoremQATheoremsRetrieval,
38
+ )
17
39
  from .built_bench_retrieval import BuiltBenchRetrieval
18
40
  from .chat_doctor_retrieval import ChatDoctorRetrieval
19
41
  from .chem_hotpot_qa_retrieval import ChemHotpotQARetrieval
@@ -236,8 +258,28 @@ __all__ = [
236
258
  "BarExamQARetrieval",
237
259
  "BillSumCARetrieval",
238
260
  "BillSumUSRetrieval",
261
+ "BrightAopsRetrieval",
262
+ "BrightBiologyLongRetrieval",
263
+ "BrightBiologyRetrieval",
264
+ "BrightEarthScienceLongRetrieval",
265
+ "BrightEarthScienceRetrieval",
266
+ "BrightEconomicsLongRetrieval",
267
+ "BrightEconomicsRetrieval",
268
+ "BrightLeetcodeRetrieval",
239
269
  "BrightLongRetrieval",
270
+ "BrightPonyLongRetrieval",
271
+ "BrightPonyRetrieval",
272
+ "BrightPsychologyLongRetrieval",
273
+ "BrightPsychologyRetrieval",
240
274
  "BrightRetrieval",
275
+ "BrightRoboticsLongRetrieval",
276
+ "BrightRoboticsRetrieval",
277
+ "BrightStackoverflowLongRetrieval",
278
+ "BrightStackoverflowRetrieval",
279
+ "BrightSustainableLivingLongRetrieval",
280
+ "BrightSustainableLivingRetrieval",
281
+ "BrightTheoremQAQuestionsRetrieval",
282
+ "BrightTheoremQATheoremsRetrieval",
241
283
  "BuiltBenchRetrieval",
242
284
  "CIRRIT2IRetrieval",
243
285
  "CQADupstackAndroidRetrieval",
@@ -1,3 +1,4 @@
1
+ import warnings
1
2
  from collections import defaultdict
2
3
 
3
4
  import datasets
@@ -86,6 +87,12 @@ def load_data(self) -> None:
86
87
  if self.data_loaded:
87
88
  return
88
89
 
90
+ warnings.warn(
91
+ "This task contains wrong prompts in the metadata. "
92
+ "Please use BRIGHT(v1.1) benchmark instead.",
93
+ category=DeprecationWarning,
94
+ )
95
+
89
96
  self.corpus, self.queries, self.relevant_docs = self.load_bright_data(
90
97
  path=self.metadata.dataset["path"],
91
98
  domains=list(self.metadata.eval_langs.keys()),
@@ -104,7 +111,7 @@ class BrightRetrieval(AbsTaskRetrieval):
104
111
  "revision": "a75a0eb483f6a5233a6efc2d63d71540a4443dfb",
105
112
  },
106
113
  reference="https://huggingface.co/datasets/xlangai/BRIGHT",
107
- description="Bright retrieval dataset.",
114
+ description="BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval",
108
115
  type="Retrieval",
109
116
  category="t2t",
110
117
  eval_splits=["standard"],
@@ -129,6 +136,7 @@ class BrightRetrieval(AbsTaskRetrieval):
129
136
  year = {2024},
130
137
  }
131
138
  """,
139
+ superseded_by="BrightBiologyRetrieval",
132
140
  )
133
141
  load_bright_data = load_bright_data
134
142
  load_data = load_data