mteb 2.7.3__py3-none-any.whl → 2.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (157) hide show
  1. mteb/abstasks/retrieval.py +1 -1
  2. mteb/benchmarks/benchmarks/__init__.py +2 -0
  3. mteb/benchmarks/benchmarks/benchmarks.py +41 -2
  4. mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
  5. mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
  6. mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
  7. mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
  8. mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
  9. mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
  10. mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
  11. mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
  12. mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
  13. mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
  14. mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
  15. mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
  16. mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
  17. mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
  18. mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
  19. mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
  20. mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
  21. mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
  22. mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
  23. mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
  24. mteb/models/model_implementations/align_models.py +1 -0
  25. mteb/models/model_implementations/amazon_models.py +1 -0
  26. mteb/models/model_implementations/andersborges.py +2 -0
  27. mteb/models/model_implementations/ara_models.py +1 -0
  28. mteb/models/model_implementations/arctic_models.py +8 -0
  29. mteb/models/model_implementations/b1ade_models.py +1 -0
  30. mteb/models/model_implementations/bedrock_models.py +4 -0
  31. mteb/models/model_implementations/bge_models.py +40 -1
  32. mteb/models/model_implementations/bica_model.py +1 -0
  33. mteb/models/model_implementations/blip2_models.py +2 -0
  34. mteb/models/model_implementations/blip_models.py +8 -0
  35. mteb/models/model_implementations/bm25.py +8 -5
  36. mteb/models/model_implementations/bmretriever_models.py +4 -0
  37. mteb/models/model_implementations/cadet_models.py +1 -0
  38. mteb/models/model_implementations/cde_models.py +2 -0
  39. mteb/models/model_implementations/clip_models.py +3 -0
  40. mteb/models/model_implementations/clips_models.py +3 -0
  41. mteb/models/model_implementations/codefuse_models.py +5 -0
  42. mteb/models/model_implementations/codesage_models.py +3 -0
  43. mteb/models/model_implementations/cohere_models.py +4 -0
  44. mteb/models/model_implementations/cohere_v.py +5 -0
  45. mteb/models/model_implementations/colpali_models.py +3 -0
  46. mteb/models/model_implementations/colqwen_models.py +7 -0
  47. mteb/models/model_implementations/colsmol_models.py +2 -0
  48. mteb/models/model_implementations/conan_models.py +1 -0
  49. mteb/models/model_implementations/dino_models.py +19 -0
  50. mteb/models/model_implementations/e5_instruct.py +4 -0
  51. mteb/models/model_implementations/e5_models.py +9 -0
  52. mteb/models/model_implementations/e5_v.py +1 -0
  53. mteb/models/model_implementations/eagerworks_models.py +1 -0
  54. mteb/models/model_implementations/emillykkejensen_models.py +3 -0
  55. mteb/models/model_implementations/en_code_retriever.py +1 -0
  56. mteb/models/model_implementations/euler_models.py +1 -0
  57. mteb/models/model_implementations/evaclip_models.py +4 -0
  58. mteb/models/model_implementations/fa_models.py +9 -0
  59. mteb/models/model_implementations/facebookai.py +2 -0
  60. mteb/models/model_implementations/geogpt_models.py +1 -0
  61. mteb/models/model_implementations/gme_v_models.py +2 -0
  62. mteb/models/model_implementations/google_models.py +5 -0
  63. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
  64. mteb/models/model_implementations/gritlm_models.py +2 -0
  65. mteb/models/model_implementations/gte_models.py +9 -0
  66. mteb/models/model_implementations/hinvec_models.py +1 -0
  67. mteb/models/model_implementations/human.py +1 -0
  68. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  69. mteb/models/model_implementations/inf_models.py +2 -0
  70. mteb/models/model_implementations/jasper_models.py +2 -0
  71. mteb/models/model_implementations/jina_clip.py +1 -0
  72. mteb/models/model_implementations/jina_models.py +7 -0
  73. mteb/models/model_implementations/kalm_models.py +6 -0
  74. mteb/models/model_implementations/kblab.py +1 -0
  75. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
  76. mteb/models/model_implementations/kfst.py +1 -0
  77. mteb/models/model_implementations/kowshik24_models.py +1 -0
  78. mteb/models/model_implementations/lens_models.py +2 -0
  79. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  80. mteb/models/model_implementations/linq_models.py +1 -0
  81. mteb/models/model_implementations/listconranker.py +1 -0
  82. mteb/models/model_implementations/llm2clip_models.py +3 -0
  83. mteb/models/model_implementations/llm2vec_models.py +8 -0
  84. mteb/models/model_implementations/mcinext_models.py +3 -0
  85. mteb/models/model_implementations/mdbr_models.py +2 -0
  86. mteb/models/model_implementations/misc_models.py +63 -0
  87. mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
  88. mteb/models/model_implementations/mme5_models.py +2 -1
  89. mteb/models/model_implementations/moco_models.py +2 -0
  90. mteb/models/model_implementations/mod_models.py +1 -0
  91. mteb/models/model_implementations/model2vec_models.py +13 -0
  92. mteb/models/model_implementations/moka_models.py +3 -0
  93. mteb/models/model_implementations/nbailab.py +3 -0
  94. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  95. mteb/models/model_implementations/nomic_models.py +6 -0
  96. mteb/models/model_implementations/nomic_models_vision.py +1 -0
  97. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
  98. mteb/models/model_implementations/nvidia_models.py +3 -0
  99. mteb/models/model_implementations/octen_models.py +2 -0
  100. mteb/models/model_implementations/openai_models.py +5 -0
  101. mteb/models/model_implementations/openclip_models.py +8 -0
  102. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  103. mteb/models/model_implementations/ops_moa_models.py +2 -0
  104. mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
  105. mteb/models/model_implementations/pawan_models.py +1 -0
  106. mteb/models/model_implementations/piccolo_models.py +2 -0
  107. mteb/models/model_implementations/promptriever_models.py +4 -0
  108. mteb/models/model_implementations/pylate_models.py +3 -0
  109. mteb/models/model_implementations/qodo_models.py +2 -0
  110. mteb/models/model_implementations/qtack_models.py +1 -0
  111. mteb/models/model_implementations/qwen3_models.py +3 -0
  112. mteb/models/model_implementations/qzhou_models.py +2 -0
  113. mteb/models/model_implementations/rasgaard_models.py +1 -0
  114. mteb/models/model_implementations/reasonir_model.py +65 -0
  115. mteb/models/model_implementations/repllama_models.py +2 -0
  116. mteb/models/model_implementations/rerankers_custom.py +3 -0
  117. mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
  118. mteb/models/model_implementations/richinfoai_models.py +1 -0
  119. mteb/models/model_implementations/ru_sentence_models.py +20 -0
  120. mteb/models/model_implementations/ruri_models.py +10 -0
  121. mteb/models/model_implementations/salesforce_models.py +3 -0
  122. mteb/models/model_implementations/samilpwc_models.py +1 -0
  123. mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
  124. mteb/models/model_implementations/searchmap_models.py +1 -0
  125. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
  126. mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
  127. mteb/models/model_implementations/seed_models.py +1 -0
  128. mteb/models/model_implementations/sentence_transformers_models.py +18 -0
  129. mteb/models/model_implementations/shuu_model.py +1 -0
  130. mteb/models/model_implementations/siglip_models.py +10 -0
  131. mteb/models/model_implementations/sonar_models.py +2 -1
  132. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
  133. mteb/models/model_implementations/stella_models.py +6 -0
  134. mteb/models/model_implementations/tarka_models.py +2 -0
  135. mteb/models/model_implementations/text2vec_models.py +3 -0
  136. mteb/models/model_implementations/ua_sentence_models.py +1 -0
  137. mteb/models/model_implementations/uae_models.py +1 -0
  138. mteb/models/model_implementations/vdr_models.py +1 -0
  139. mteb/models/model_implementations/vi_vn_models.py +6 -0
  140. mteb/models/model_implementations/vista_models.py +2 -0
  141. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  142. mteb/models/model_implementations/voyage_models.py +15 -0
  143. mteb/models/model_implementations/voyage_v.py +1 -0
  144. mteb/models/model_implementations/xyz_models.py +1 -0
  145. mteb/models/model_implementations/youtu_models.py +1 -0
  146. mteb/models/model_implementations/yuan_models.py +1 -0
  147. mteb/models/model_implementations/yuan_models_en.py +1 -0
  148. mteb/models/model_meta.py +35 -2
  149. mteb/tasks/retrieval/eng/__init__.py +42 -0
  150. mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
  151. mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
  152. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
  153. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/RECORD +157 -136
  154. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
  155. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
  156. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
  157. {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
@@ -242,7 +242,7 @@ class AbsTaskRetrieval(AbsTask):
242
242
  instructions,
243
243
  )
244
244
  )
245
- if hasattr(self, "top_ranked"):
245
+ if hasattr(self, "top_ranked") and self.top_ranked:
246
246
  self.dataset[subset][split]["top_ranked"] = self.top_ranked[
247
247
  split
248
248
  ].copy()
@@ -3,6 +3,7 @@ from mteb.benchmarks.benchmarks.benchmarks import (
3
3
  BEIR_NL,
4
4
  BRIGHT,
5
5
  BRIGHT_LONG,
6
+ BRIGHT_V1_1,
6
7
  BUILT_MTEB,
7
8
  C_MTEB,
8
9
  CHEMTEB,
@@ -69,6 +70,7 @@ __all__ = [
69
70
  "BEIR_NL",
70
71
  "BRIGHT",
71
72
  "BRIGHT_LONG",
73
+ "BRIGHT_V1_1",
72
74
  "BUILT_MTEB",
73
75
  "CHEMTEB",
74
76
  "CHEMTEB_V1_1",
@@ -1330,6 +1330,46 @@ This is the long version of the benchmark, which only filter longer documents.
1330
1330
  """,
1331
1331
  )
1332
1332
 
1333
+ BRIGHT_V1_1 = Benchmark(
1334
+ name="BRIGHT(v1.1)",
1335
+ display_name="Reasoning Retrieval",
1336
+ tasks=get_tasks(
1337
+ tasks=[
1338
+ "BrightBiologyRetrieval",
1339
+ "BrightEarthScienceRetrieval",
1340
+ "BrightEconomicsRetrieval",
1341
+ "BrightPsychologyRetrieval",
1342
+ "BrightRoboticsRetrieval",
1343
+ "BrightStackoverflowRetrieval",
1344
+ "BrightSustainableLivingRetrieval",
1345
+ "BrightPonyRetrieval",
1346
+ "BrightLeetcodeRetrieval",
1347
+ "BrightAopsRetrieval",
1348
+ "BrightTheoremQATheoremsRetrieval",
1349
+ "BrightTheoremQAQuestionsRetrieval",
1350
+ "BrightBiologyLongRetrieval",
1351
+ "BrightEarthScienceLongRetrieval",
1352
+ "BrightEconomicsLongRetrieval",
1353
+ "BrightPsychologyLongRetrieval",
1354
+ "BrightRoboticsLongRetrieval",
1355
+ "BrightStackoverflowLongRetrieval",
1356
+ "BrightSustainableLivingLongRetrieval",
1357
+ "BrightPonyLongRetrieval",
1358
+ ],
1359
+ ),
1360
+ description="v1.1 refactors the BRIGHT into a different tasks and added prompt to individual tasks.",
1361
+ reference="https://brightbenchmark.github.io/",
1362
+ citation=r"""
1363
+ @article{su2024bright,
1364
+ author = {Su, Hongjin and Yen, Howard and Xia, Mengzhou and Shi, Weijia and Muennighoff, Niklas and Wang, Han-yu and Liu, Haisu and Shi, Quan and Siegel, Zachary S and Tang, Michael and others},
1365
+ journal = {arXiv preprint arXiv:2407.12883},
1366
+ title = {Bright: A realistic and challenging benchmark for reasoning-intensive retrieval},
1367
+ year = {2024},
1368
+ }
1369
+ """,
1370
+ )
1371
+
1372
+
1333
1373
  CODE_RAG = Benchmark(
1334
1374
  name="CodeRAG",
1335
1375
  tasks=get_tasks(
@@ -1781,8 +1821,7 @@ BEIR_NL = Benchmark(
1781
1821
  "TRECCOVID-NL",
1782
1822
  ],
1783
1823
  ),
1784
- description="BEIR-NL is a Dutch adaptation of the publicly available BEIR benchmark, created through automated "
1785
- "translation.",
1824
+ description="BEIR-NL is a Dutch adaptation of the publicly available BEIR benchmark, created through automated translation.",
1786
1825
  reference="https://arxiv.org/abs/2412.08329",
1787
1826
  contacts=["nikolay-banar"],
1788
1827
  citation=r"""
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 188113,
4
+ "number_of_characters": 141769714,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 141734227,
7
+ "min_text_length": 58,
8
+ "average_text_length": 753.8974425803981,
9
+ "max_text_length": 7334,
10
+ "unique_texts": 176508
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 35487,
15
+ "min_text_length": 85,
16
+ "average_text_length": 319.7027027027027,
17
+ "max_text_length": 1167,
18
+ "unique_texts": 111
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 524,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 4.7207207207207205,
25
+ "max_relevant_docs_per_query": 8,
26
+ "unique_relevant_docs": 111
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 20264921,
30
+ "min_top_ranked_per_query": 176954,
31
+ "average_top_ranked_per_query": 182566.85585585586,
32
+ "max_top_ranked_per_query": 186176
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 627,
4
+ "number_of_characters": 19398082,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 19344209,
7
+ "min_text_length": 142,
8
+ "average_text_length": 36916.42938931298,
9
+ "max_text_length": 1324201,
10
+ "unique_texts": 498
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 53873,
15
+ "min_text_length": 89,
16
+ "average_text_length": 523.0388349514564,
17
+ "max_text_length": 2195,
18
+ "unique_texts": 103
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 134,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.3009708737864079,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 134
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 53972,
30
+ "min_top_ranked_per_query": 524,
31
+ "average_top_ranked_per_query": 524.0,
32
+ "max_top_ranked_per_query": 524
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 57462,
4
+ "number_of_characters": 18936054,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 18882181,
7
+ "min_text_length": 1,
8
+ "average_text_length": 329.192994996426,
9
+ "max_text_length": 31130,
10
+ "unique_texts": 49434
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 53873,
15
+ "min_text_length": 89,
16
+ "average_text_length": 523.0388349514564,
17
+ "max_text_length": 2195,
18
+ "unique_texts": 103
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 374,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 3.6310679611650487,
25
+ "max_relevant_docs_per_query": 19,
26
+ "unique_relevant_docs": 374
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 5907977,
30
+ "min_top_ranked_per_query": 57359,
31
+ "average_top_ranked_per_query": 57359.0,
32
+ "max_top_ranked_per_query": 57359
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 717,
4
+ "number_of_characters": 41696684,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 41641374,
7
+ "min_text_length": 28,
8
+ "average_text_length": 69286.81198003328,
9
+ "max_text_length": 2627262,
10
+ "unique_texts": 587
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 55310,
15
+ "min_text_length": 83,
16
+ "average_text_length": 476.8103448275862,
17
+ "max_text_length": 1565,
18
+ "unique_texts": 116
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 187,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.6120689655172413,
25
+ "max_relevant_docs_per_query": 4,
26
+ "unique_relevant_docs": 187
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 69716,
30
+ "min_top_ranked_per_query": 601,
31
+ "average_top_ranked_per_query": 601.0,
32
+ "max_top_ranked_per_query": 601
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 121365,
4
+ "number_of_characters": 40478259,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 40422949,
7
+ "min_text_length": 1,
8
+ "average_text_length": 333.3878959826473,
9
+ "max_text_length": 233622,
10
+ "unique_texts": 117633
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 55310,
15
+ "min_text_length": 83,
16
+ "average_text_length": 476.8103448275862,
17
+ "max_text_length": 1565,
18
+ "unique_texts": 116
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 609,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 5.25,
25
+ "max_relevant_docs_per_query": 23,
26
+ "unique_relevant_docs": 609
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 14064884,
30
+ "min_top_ranked_per_query": 121249,
31
+ "average_top_ranked_per_query": 121249.0,
32
+ "max_top_ranked_per_query": 121249
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 619,
4
+ "number_of_characters": 19993261,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 19917079,
7
+ "min_text_length": 43,
8
+ "average_text_length": 38598.99031007752,
9
+ "max_text_length": 429507,
10
+ "unique_texts": 515
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 76182,
15
+ "min_text_length": 164,
16
+ "average_text_length": 739.6310679611651,
17
+ "max_text_length": 2223,
18
+ "unique_texts": 103
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 109,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.058252427184466,
25
+ "max_relevant_docs_per_query": 3,
26
+ "unique_relevant_docs": 109
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 53148,
30
+ "min_top_ranked_per_query": 516,
31
+ "average_top_ranked_per_query": 516.0,
32
+ "max_top_ranked_per_query": 516
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 50323,
4
+ "number_of_characters": 19882579,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 19806397,
7
+ "min_text_length": 1,
8
+ "average_text_length": 394.3926125049781,
9
+ "max_text_length": 39672,
10
+ "unique_texts": 40594
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 76182,
15
+ "min_text_length": 164,
16
+ "average_text_length": 739.6310679611651,
17
+ "max_text_length": 2223,
18
+ "unique_texts": 103
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 823,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 7.990291262135922,
25
+ "max_relevant_docs_per_query": 85,
26
+ "unique_relevant_docs": 823
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 5172660,
30
+ "min_top_ranked_per_query": 50220,
31
+ "average_top_ranked_per_query": 50220.0,
32
+ "max_top_ranked_per_query": 50220
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 414074,
4
+ "number_of_characters": 438348000,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 438140779,
7
+ "min_text_length": 75,
8
+ "average_text_length": 1058.4849178125876,
9
+ "max_text_length": 103665,
10
+ "unique_texts": 413932
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 207221,
15
+ "min_text_length": 422,
16
+ "average_text_length": 1459.3028169014085,
17
+ "max_text_length": 3964,
18
+ "unique_texts": 142
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 262,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.8450704225352113,
25
+ "max_relevant_docs_per_query": 5,
26
+ "unique_relevant_docs": 216
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 58744859,
30
+ "min_top_ranked_per_query": 412813,
31
+ "average_top_ranked_per_query": 413696.1901408451,
32
+ "max_top_ranked_per_query": 413923
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 689,
4
+ "number_of_characters": 2093720,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2050155,
7
+ "min_text_length": 28,
8
+ "average_text_length": 3553.1282495667247,
9
+ "max_text_length": 108885,
10
+ "unique_texts": 577
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 43565,
15
+ "min_text_length": 182,
16
+ "average_text_length": 388.9732142857143,
17
+ "max_text_length": 946,
18
+ "unique_texts": 112
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 769,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 6.866071428571429,
25
+ "max_relevant_docs_per_query": 12,
26
+ "unique_relevant_docs": 17
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 64624,
30
+ "min_top_ranked_per_query": 577,
31
+ "average_top_ranked_per_query": 577.0,
32
+ "max_top_ranked_per_query": 577
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 8006,
4
+ "number_of_characters": 2082980,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 2039415,
7
+ "min_text_length": 5,
8
+ "average_text_length": 258.350012667849,
9
+ "max_text_length": 2583,
10
+ "unique_texts": 6183
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 43565,
15
+ "min_text_length": 182,
16
+ "average_text_length": 388.9732142857143,
17
+ "max_text_length": 946,
18
+ "unique_texts": 112
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 2519,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 22.491071428571427,
25
+ "max_relevant_docs_per_query": 32,
26
+ "unique_relevant_docs": 47
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 884128,
30
+ "min_top_ranked_per_query": 7894,
31
+ "average_top_ranked_per_query": 7894.0,
32
+ "max_top_ranked_per_query": 7894
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 613,
4
+ "number_of_characters": 20489389,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 20419376,
7
+ "min_text_length": 23,
8
+ "average_text_length": 39881.59375,
9
+ "max_text_length": 669575,
10
+ "unique_texts": 509
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 70013,
15
+ "min_text_length": 166,
16
+ "average_text_length": 693.1980198019802,
17
+ "max_text_length": 2334,
18
+ "unique_texts": 101
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 116,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.1485148514851484,
25
+ "max_relevant_docs_per_query": 5,
26
+ "unique_relevant_docs": 113
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 51712,
30
+ "min_top_ranked_per_query": 512,
31
+ "average_top_ranked_per_query": 512.0,
32
+ "max_top_ranked_per_query": 512
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 52936,
4
+ "number_of_characters": 20372421,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 20302408,
7
+ "min_text_length": 3,
8
+ "average_text_length": 384.26058483959497,
9
+ "max_text_length": 226941,
10
+ "unique_texts": 43756
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 70013,
15
+ "min_text_length": 166,
16
+ "average_text_length": 693.1980198019802,
17
+ "max_text_length": 2334,
18
+ "unique_texts": 101
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 742,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 7.346534653465347,
25
+ "max_relevant_docs_per_query": 59,
26
+ "unique_relevant_docs": 738
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 5336335,
30
+ "min_top_ranked_per_query": 52835,
31
+ "average_top_ranked_per_query": 52835.0,
32
+ "max_top_ranked_per_query": 52835
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 609,
4
+ "number_of_characters": 18386897,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 18166762,
7
+ "min_text_length": 117,
8
+ "average_text_length": 35761.34251968504,
9
+ "max_text_length": 3589928,
10
+ "unique_texts": 505
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 220135,
15
+ "min_text_length": 165,
16
+ "average_text_length": 2179.5544554455446,
17
+ "max_text_length": 19341,
18
+ "unique_texts": 101
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 106,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.0495049504950495,
25
+ "max_relevant_docs_per_query": 2,
26
+ "unique_relevant_docs": 106
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 51308,
30
+ "min_top_ranked_per_query": 508,
31
+ "average_top_ranked_per_query": 508.0,
32
+ "max_top_ranked_per_query": 508
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 62062,
4
+ "number_of_characters": 18167360,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 17947225,
7
+ "min_text_length": 1,
8
+ "average_text_length": 289.6535724084505,
9
+ "max_text_length": 28637,
10
+ "unique_texts": 40431
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 220135,
15
+ "min_text_length": 165,
16
+ "average_text_length": 2179.5544554455446,
17
+ "max_text_length": 19341,
18
+ "unique_texts": 101
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 553,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 5.475247524752476,
25
+ "max_relevant_docs_per_query": 36,
26
+ "unique_relevant_docs": 553
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 6258061,
30
+ "min_top_ranked_per_query": 61961,
31
+ "average_top_ranked_per_query": 61961.0,
32
+ "max_top_ranked_per_query": 61961
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "long": {
3
+ "num_samples": 1975,
4
+ "number_of_characters": 184326754,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 184175475,
7
+ "min_text_length": 41,
8
+ "average_text_length": 99125.65931108719,
9
+ "max_text_length": 9182738,
10
+ "unique_texts": 1846
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 151279,
15
+ "min_text_length": 185,
16
+ "average_text_length": 1292.982905982906,
17
+ "max_text_length": 12432,
18
+ "unique_texts": 117
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 129,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 1.1025641025641026,
25
+ "max_relevant_docs_per_query": 2,
26
+ "unique_relevant_docs": 125
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 217386,
30
+ "min_top_ranked_per_query": 1858,
31
+ "average_top_ranked_per_query": 1858.0,
32
+ "max_top_ranked_per_query": 1858
33
+ }
34
+ }
35
+ }
@@ -0,0 +1,35 @@
1
+ {
2
+ "standard": {
3
+ "num_samples": 107198,
4
+ "number_of_characters": 183652816,
5
+ "documents_text_statistics": {
6
+ "total_text_length": 183501537,
7
+ "min_text_length": 1,
8
+ "average_text_length": 1713.6703710275399,
9
+ "max_text_length": 4000,
10
+ "unique_texts": 66270
11
+ },
12
+ "documents_image_statistics": null,
13
+ "queries_text_statistics": {
14
+ "total_text_length": 151279,
15
+ "min_text_length": 185,
16
+ "average_text_length": 1292.982905982906,
17
+ "max_text_length": 12432,
18
+ "unique_texts": 117
19
+ },
20
+ "queries_image_statistics": null,
21
+ "relevant_docs_statistics": {
22
+ "num_relevant_docs": 819,
23
+ "min_relevant_docs_per_query": 1,
24
+ "average_relevant_docs_per_query": 7.0,
25
+ "max_relevant_docs_per_query": 59,
26
+ "unique_relevant_docs": 816
27
+ },
28
+ "top_ranked_statistics": {
29
+ "num_top_ranked": 12528477,
30
+ "min_top_ranked_per_query": 107081,
31
+ "average_top_ranked_per_query": 107081.0,
32
+ "max_top_ranked_per_query": 107081
33
+ }
34
+ }
35
+ }