mteb 2.7.3__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/retrieval.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +8 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/RECORD +157 -136
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -18,6 +18,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
|
18
18
|
release_date="2024-10-31",
|
|
19
19
|
languages=["eng-Latn"],
|
|
20
20
|
n_parameters=7110660096,
|
|
21
|
+
n_embedding_parameters=None,
|
|
21
22
|
memory_usage_mb=13563,
|
|
22
23
|
max_tokens=32768.0,
|
|
23
24
|
embed_dim=None,
|
|
@@ -47,6 +48,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
47
48
|
languages=[],
|
|
48
49
|
loader=sentence_transformers_loader,
|
|
49
50
|
n_parameters=278043648,
|
|
51
|
+
n_embedding_parameters=192_001_536,
|
|
50
52
|
memory_usage_mb=1061,
|
|
51
53
|
max_tokens=514.0,
|
|
52
54
|
embed_dim=768,
|
|
@@ -148,6 +150,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
|
148
150
|
languages=["eng-Latn"],
|
|
149
151
|
loader=sentence_transformers_loader,
|
|
150
152
|
n_parameters=None,
|
|
153
|
+
n_embedding_parameters=None,
|
|
151
154
|
memory_usage_mb=None,
|
|
152
155
|
max_tokens=None,
|
|
153
156
|
embed_dim=768,
|
|
@@ -215,6 +218,7 @@ Jaume__gemma_2b_embeddings = ModelMeta(
|
|
|
215
218
|
languages=[],
|
|
216
219
|
loader=sentence_transformers_loader,
|
|
217
220
|
n_parameters=2506172416,
|
|
221
|
+
n_embedding_parameters=None,
|
|
218
222
|
memory_usage_mb=9560,
|
|
219
223
|
max_tokens=8192.0,
|
|
220
224
|
embed_dim=2048,
|
|
@@ -250,6 +254,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
|
250
254
|
trust_remote_code=True,
|
|
251
255
|
),
|
|
252
256
|
n_parameters=278043648,
|
|
257
|
+
n_embedding_parameters=192_001_536,
|
|
253
258
|
memory_usage_mb=1061,
|
|
254
259
|
max_tokens=514.0,
|
|
255
260
|
embed_dim=768,
|
|
@@ -299,6 +304,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
|
299
304
|
trust_remote_code=True,
|
|
300
305
|
),
|
|
301
306
|
n_parameters=559890432,
|
|
307
|
+
n_embedding_parameters=256_002_048,
|
|
302
308
|
memory_usage_mb=2136,
|
|
303
309
|
max_tokens=514.0,
|
|
304
310
|
embed_dim=1024,
|
|
@@ -348,6 +354,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
|
348
354
|
trust_remote_code=True,
|
|
349
355
|
),
|
|
350
356
|
n_parameters=117653760,
|
|
357
|
+
n_embedding_parameters=96_014_208,
|
|
351
358
|
memory_usage_mb=449,
|
|
352
359
|
max_tokens=512.0,
|
|
353
360
|
embed_dim=384,
|
|
@@ -394,6 +401,7 @@ Mihaiii__Bulbasaur = ModelMeta(
|
|
|
394
401
|
languages=None,
|
|
395
402
|
loader=sentence_transformers_loader,
|
|
396
403
|
n_parameters=17389824,
|
|
404
|
+
n_embedding_parameters=11_720_448,
|
|
397
405
|
memory_usage_mb=66,
|
|
398
406
|
max_tokens=512.0,
|
|
399
407
|
embed_dim=384,
|
|
@@ -418,6 +426,7 @@ Mihaiii__Ivysaur = ModelMeta(
|
|
|
418
426
|
languages=None,
|
|
419
427
|
loader=sentence_transformers_loader,
|
|
420
428
|
n_parameters=22713216,
|
|
429
|
+
n_embedding_parameters=11_720_448,
|
|
421
430
|
memory_usage_mb=87,
|
|
422
431
|
max_tokens=512.0,
|
|
423
432
|
embed_dim=384,
|
|
@@ -442,6 +451,7 @@ Mihaiii__Squirtle = ModelMeta(
|
|
|
442
451
|
languages=None,
|
|
443
452
|
loader=sentence_transformers_loader,
|
|
444
453
|
n_parameters=15615360,
|
|
454
|
+
n_embedding_parameters=11_720_448,
|
|
445
455
|
memory_usage_mb=60,
|
|
446
456
|
max_tokens=512.0,
|
|
447
457
|
embed_dim=384,
|
|
@@ -466,6 +476,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
466
476
|
languages=None,
|
|
467
477
|
loader=sentence_transformers_loader,
|
|
468
478
|
n_parameters=15615360,
|
|
479
|
+
n_embedding_parameters=11_720_448,
|
|
469
480
|
memory_usage_mb=60,
|
|
470
481
|
max_tokens=512.0,
|
|
471
482
|
embed_dim=384,
|
|
@@ -490,6 +501,7 @@ Mihaiii__Wartortle = ModelMeta(
|
|
|
490
501
|
languages=None,
|
|
491
502
|
loader=sentence_transformers_loader,
|
|
492
503
|
n_parameters=17389824,
|
|
504
|
+
n_embedding_parameters=11_720_448,
|
|
493
505
|
memory_usage_mb=66,
|
|
494
506
|
max_tokens=512.0,
|
|
495
507
|
embed_dim=384,
|
|
@@ -514,6 +526,7 @@ Mihaiii__gte_micro = ModelMeta(
|
|
|
514
526
|
languages=None,
|
|
515
527
|
loader=sentence_transformers_loader,
|
|
516
528
|
n_parameters=17389824,
|
|
529
|
+
n_embedding_parameters=11_720_448,
|
|
517
530
|
memory_usage_mb=66,
|
|
518
531
|
max_tokens=512.0,
|
|
519
532
|
embed_dim=384,
|
|
@@ -537,6 +550,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
|
|
|
537
550
|
languages=None,
|
|
538
551
|
loader=sentence_transformers_loader,
|
|
539
552
|
n_parameters=19164288,
|
|
553
|
+
n_embedding_parameters=11_720_448,
|
|
540
554
|
memory_usage_mb=73,
|
|
541
555
|
max_tokens=512.0,
|
|
542
556
|
embed_dim=384,
|
|
@@ -560,6 +574,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
|
560
574
|
languages=["fra-Latn"],
|
|
561
575
|
loader=sentence_transformers_loader,
|
|
562
576
|
n_parameters=559890432,
|
|
577
|
+
n_embedding_parameters=256_002_048,
|
|
563
578
|
memory_usage_mb=2136,
|
|
564
579
|
max_tokens=514.0,
|
|
565
580
|
embed_dim=1024,
|
|
@@ -583,6 +598,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
583
598
|
languages=["ara-Arab"],
|
|
584
599
|
loader=sentence_transformers_loader,
|
|
585
600
|
n_parameters=135193344,
|
|
601
|
+
n_embedding_parameters=49_152_000,
|
|
586
602
|
memory_usage_mb=516,
|
|
587
603
|
max_tokens=512.0,
|
|
588
604
|
embed_dim=768,
|
|
@@ -615,6 +631,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
|
|
|
615
631
|
languages=["ara-Arab"],
|
|
616
632
|
loader=sentence_transformers_loader,
|
|
617
633
|
n_parameters=117653760,
|
|
634
|
+
n_embedding_parameters=96_014_208,
|
|
618
635
|
memory_usage_mb=449,
|
|
619
636
|
max_tokens=512.0,
|
|
620
637
|
embed_dim=384,
|
|
@@ -640,6 +657,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
640
657
|
languages=["ara-Arab"],
|
|
641
658
|
loader=sentence_transformers_loader,
|
|
642
659
|
n_parameters=278043648,
|
|
660
|
+
n_embedding_parameters=192_001_536,
|
|
643
661
|
memory_usage_mb=1061,
|
|
644
662
|
max_tokens=514.0,
|
|
645
663
|
embed_dim=768,
|
|
@@ -674,6 +692,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
|
674
692
|
languages=["ara-Arab"],
|
|
675
693
|
loader=sentence_transformers_loader,
|
|
676
694
|
n_parameters=470926848,
|
|
695
|
+
n_embedding_parameters=384_885_504,
|
|
677
696
|
memory_usage_mb=1796,
|
|
678
697
|
max_tokens=512.0,
|
|
679
698
|
embed_dim=768,
|
|
@@ -708,6 +727,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
|
708
727
|
languages=["ara-Arab"],
|
|
709
728
|
loader=sentence_transformers_loader,
|
|
710
729
|
n_parameters=109486464,
|
|
730
|
+
n_embedding_parameters=23_444_736,
|
|
711
731
|
memory_usage_mb=418,
|
|
712
732
|
max_tokens=514.0,
|
|
713
733
|
embed_dim=768,
|
|
@@ -742,6 +762,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
742
762
|
languages=["ara-Arab"],
|
|
743
763
|
loader=sentence_transformers_loader,
|
|
744
764
|
n_parameters=162841344,
|
|
765
|
+
n_embedding_parameters=76_800_000,
|
|
745
766
|
memory_usage_mb=621,
|
|
746
767
|
max_tokens=512.0,
|
|
747
768
|
embed_dim=768,
|
|
@@ -774,6 +795,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
|
774
795
|
languages=None,
|
|
775
796
|
loader=sentence_transformers_loader,
|
|
776
797
|
n_parameters=None,
|
|
798
|
+
n_embedding_parameters=31_254_528,
|
|
777
799
|
memory_usage_mb=None,
|
|
778
800
|
max_tokens=512.0,
|
|
779
801
|
embed_dim=1024,
|
|
@@ -797,6 +819,7 @@ consciousai__cai_stellaris_text_embeddings = ModelMeta(
|
|
|
797
819
|
languages=None,
|
|
798
820
|
loader=sentence_transformers_loader,
|
|
799
821
|
n_parameters=None,
|
|
822
|
+
n_embedding_parameters=None,
|
|
800
823
|
memory_usage_mb=None,
|
|
801
824
|
max_tokens=514.0,
|
|
802
825
|
embed_dim=768,
|
|
@@ -829,6 +852,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
|
829
852
|
languages=None,
|
|
830
853
|
loader=sentence_transformers_loader,
|
|
831
854
|
n_parameters=1279887360,
|
|
855
|
+
n_embedding_parameters=65_536_000,
|
|
832
856
|
memory_usage_mb=2441,
|
|
833
857
|
max_tokens=2048.0,
|
|
834
858
|
embed_dim=2048,
|
|
@@ -852,6 +876,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
|
852
876
|
languages=None,
|
|
853
877
|
loader=sentence_transformers_loader,
|
|
854
878
|
n_parameters=1279887360,
|
|
879
|
+
n_embedding_parameters=65_536_000,
|
|
855
880
|
memory_usage_mb=2441,
|
|
856
881
|
max_tokens=2048.0,
|
|
857
882
|
embed_dim=2048,
|
|
@@ -875,6 +900,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
|
875
900
|
languages=["fra-Latn", "eng-Latn"],
|
|
876
901
|
loader=sentence_transformers_loader,
|
|
877
902
|
n_parameters=1279887360,
|
|
903
|
+
n_embedding_parameters=65_536_000,
|
|
878
904
|
memory_usage_mb=2441,
|
|
879
905
|
max_tokens=2048.0,
|
|
880
906
|
embed_dim=2048,
|
|
@@ -899,6 +925,7 @@ thenlper__gte_base = ModelMeta(
|
|
|
899
925
|
languages=["eng-Latn"],
|
|
900
926
|
loader=sentence_transformers_loader,
|
|
901
927
|
n_parameters=109482752,
|
|
928
|
+
n_embedding_parameters=23_440_896,
|
|
902
929
|
memory_usage_mb=209,
|
|
903
930
|
max_tokens=512.0,
|
|
904
931
|
embed_dim=768,
|
|
@@ -928,6 +955,7 @@ thenlper__gte_large = ModelMeta(
|
|
|
928
955
|
languages=["eng-Latn"],
|
|
929
956
|
loader=sentence_transformers_loader,
|
|
930
957
|
n_parameters=335142400,
|
|
958
|
+
n_embedding_parameters=31_254_528,
|
|
931
959
|
memory_usage_mb=639,
|
|
932
960
|
max_tokens=512.0,
|
|
933
961
|
embed_dim=1024,
|
|
@@ -957,6 +985,7 @@ thenlper__gte_small = ModelMeta(
|
|
|
957
985
|
languages=["eng-Latn"],
|
|
958
986
|
loader=sentence_transformers_loader,
|
|
959
987
|
n_parameters=33360512,
|
|
988
|
+
n_embedding_parameters=11_720_448,
|
|
960
989
|
memory_usage_mb=64,
|
|
961
990
|
max_tokens=512.0,
|
|
962
991
|
embed_dim=384,
|
|
@@ -986,6 +1015,7 @@ OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
|
986
1015
|
languages=["pol-Latn"],
|
|
987
1016
|
loader=sentence_transformers_loader,
|
|
988
1017
|
n_parameters=103705344,
|
|
1018
|
+
n_embedding_parameters=None,
|
|
989
1019
|
memory_usage_mb=396,
|
|
990
1020
|
max_tokens=512.0,
|
|
991
1021
|
embed_dim=768,
|
|
@@ -1009,6 +1039,7 @@ OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
|
1009
1039
|
languages=["pol-Latn"],
|
|
1010
1040
|
loader=sentence_transformers_loader,
|
|
1011
1041
|
n_parameters=None,
|
|
1042
|
+
n_embedding_parameters=None,
|
|
1012
1043
|
memory_usage_mb=None,
|
|
1013
1044
|
max_tokens=514.0,
|
|
1014
1045
|
embed_dim=768,
|
|
@@ -1032,6 +1063,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1032
1063
|
languages=["pol-Latn"],
|
|
1033
1064
|
loader=sentence_transformers_loader,
|
|
1034
1065
|
n_parameters=278043648,
|
|
1066
|
+
n_embedding_parameters=192_001_536,
|
|
1035
1067
|
memory_usage_mb=1061,
|
|
1036
1068
|
max_tokens=514.0,
|
|
1037
1069
|
embed_dim=768,
|
|
@@ -1063,6 +1095,7 @@ dwzhu__e5_base_4k = ModelMeta(
|
|
|
1063
1095
|
languages=["eng-Latn"],
|
|
1064
1096
|
loader=sentence_transformers_loader,
|
|
1065
1097
|
n_parameters=None,
|
|
1098
|
+
n_embedding_parameters=23_440_896,
|
|
1066
1099
|
memory_usage_mb=None,
|
|
1067
1100
|
max_tokens=4096.0,
|
|
1068
1101
|
embed_dim=None,
|
|
@@ -1092,6 +1125,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1092
1125
|
languages=["pol-Latn"],
|
|
1093
1126
|
loader=sentence_transformers_loader,
|
|
1094
1127
|
n_parameters=559890432,
|
|
1128
|
+
n_embedding_parameters=256_002_048,
|
|
1095
1129
|
memory_usage_mb=2136,
|
|
1096
1130
|
max_tokens=514.0,
|
|
1097
1131
|
embed_dim=1024,
|
|
@@ -1123,6 +1157,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1123
1157
|
languages=["pol-Latn"],
|
|
1124
1158
|
loader=sentence_transformers_loader,
|
|
1125
1159
|
n_parameters=117653760,
|
|
1160
|
+
n_embedding_parameters=96_014_208,
|
|
1126
1161
|
memory_usage_mb=449,
|
|
1127
1162
|
max_tokens=512.0,
|
|
1128
1163
|
embed_dim=384,
|
|
@@ -1154,6 +1189,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1154
1189
|
languages=["pol-Latn"],
|
|
1155
1190
|
loader=sentence_transformers_loader,
|
|
1156
1191
|
n_parameters=124442880,
|
|
1192
|
+
n_embedding_parameters=38_400_768,
|
|
1157
1193
|
memory_usage_mb=475,
|
|
1158
1194
|
max_tokens=514.0,
|
|
1159
1195
|
embed_dim=768,
|
|
@@ -1185,6 +1221,7 @@ sdadas__mmlw_roberta_large = ModelMeta(
|
|
|
1185
1221
|
languages=["pol-Latn"],
|
|
1186
1222
|
loader=sentence_transformers_loader,
|
|
1187
1223
|
n_parameters=434961408,
|
|
1224
|
+
n_embedding_parameters=131_073_024,
|
|
1188
1225
|
memory_usage_mb=1659,
|
|
1189
1226
|
max_tokens=514.0,
|
|
1190
1227
|
embed_dim=1024,
|
|
@@ -1271,6 +1308,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
|
|
|
1271
1308
|
languages=udever_languages,
|
|
1272
1309
|
loader=sentence_transformers_loader,
|
|
1273
1310
|
n_parameters=None,
|
|
1311
|
+
n_embedding_parameters=385_351_680,
|
|
1274
1312
|
memory_usage_mb=None,
|
|
1275
1313
|
max_tokens=None,
|
|
1276
1314
|
embed_dim=None,
|
|
@@ -1300,6 +1338,7 @@ izhx__udever_bloom_3b = ModelMeta(
|
|
|
1300
1338
|
languages=udever_languages,
|
|
1301
1339
|
loader=sentence_transformers_loader,
|
|
1302
1340
|
n_parameters=None,
|
|
1341
|
+
n_embedding_parameters=642_252_800,
|
|
1303
1342
|
memory_usage_mb=None,
|
|
1304
1343
|
max_tokens=None,
|
|
1305
1344
|
embed_dim=None,
|
|
@@ -1329,6 +1368,7 @@ izhx__udever_bloom_560m = ModelMeta(
|
|
|
1329
1368
|
languages=udever_languages,
|
|
1330
1369
|
loader=sentence_transformers_loader,
|
|
1331
1370
|
n_parameters=None,
|
|
1371
|
+
n_embedding_parameters=256_901_120,
|
|
1332
1372
|
memory_usage_mb=None,
|
|
1333
1373
|
max_tokens=None,
|
|
1334
1374
|
embed_dim=None,
|
|
@@ -1358,6 +1398,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
|
|
|
1358
1398
|
languages=udever_languages,
|
|
1359
1399
|
loader=sentence_transformers_loader,
|
|
1360
1400
|
n_parameters=None,
|
|
1401
|
+
n_embedding_parameters=1_027_604_480,
|
|
1361
1402
|
memory_usage_mb=None,
|
|
1362
1403
|
max_tokens=None,
|
|
1363
1404
|
embed_dim=None,
|
|
@@ -1387,6 +1428,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
|
1387
1428
|
languages=["eng-Latn"],
|
|
1388
1429
|
loader=sentence_transformers_loader,
|
|
1389
1430
|
n_parameters=109482240,
|
|
1431
|
+
n_embedding_parameters=23_440_896,
|
|
1390
1432
|
memory_usage_mb=418,
|
|
1391
1433
|
max_tokens=512.0,
|
|
1392
1434
|
embed_dim=768,
|
|
@@ -1437,6 +1479,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
|
1437
1479
|
languages=["eng-Latn"],
|
|
1438
1480
|
loader=sentence_transformers_loader,
|
|
1439
1481
|
n_parameters=22713216,
|
|
1482
|
+
n_embedding_parameters=11_720_448,
|
|
1440
1483
|
memory_usage_mb=87,
|
|
1441
1484
|
max_tokens=512.0,
|
|
1442
1485
|
embed_dim=384,
|
|
@@ -1487,6 +1530,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
|
1487
1530
|
languages=["eng-Latn"],
|
|
1488
1531
|
loader=sentence_transformers_loader,
|
|
1489
1532
|
n_parameters=335141888,
|
|
1533
|
+
n_embedding_parameters=31_254_528,
|
|
1490
1534
|
memory_usage_mb=1278,
|
|
1491
1535
|
max_tokens=512.0,
|
|
1492
1536
|
embed_dim=1024,
|
|
@@ -1537,6 +1581,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
|
1537
1581
|
languages=["eng-Latn"],
|
|
1538
1582
|
loader=sentence_transformers_loader,
|
|
1539
1583
|
n_parameters=33360000,
|
|
1584
|
+
n_embedding_parameters=11_720_448,
|
|
1540
1585
|
memory_usage_mb=127,
|
|
1541
1586
|
max_tokens=512.0,
|
|
1542
1587
|
embed_dim=384,
|
|
@@ -1587,6 +1632,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
|
1587
1632
|
languages=None,
|
|
1588
1633
|
loader=sentence_transformers_loader,
|
|
1589
1634
|
n_parameters=None,
|
|
1635
|
+
n_embedding_parameters=1_026_793_472,
|
|
1590
1636
|
memory_usage_mb=None,
|
|
1591
1637
|
max_tokens=None,
|
|
1592
1638
|
embed_dim=4096,
|
|
@@ -1616,6 +1662,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
|
1616
1662
|
languages=["deu-Latn"],
|
|
1617
1663
|
loader=sentence_transformers_loader,
|
|
1618
1664
|
n_parameters=335736320,
|
|
1665
|
+
n_embedding_parameters=31_848_448,
|
|
1619
1666
|
memory_usage_mb=1281,
|
|
1620
1667
|
max_tokens=512.0,
|
|
1621
1668
|
embed_dim=1024,
|
|
@@ -1640,6 +1687,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
|
|
|
1640
1687
|
languages=["eng-Latn"],
|
|
1641
1688
|
loader=sentence_transformers_loader,
|
|
1642
1689
|
n_parameters=33360000,
|
|
1690
|
+
n_embedding_parameters=11_720_448,
|
|
1643
1691
|
memory_usage_mb=127,
|
|
1644
1692
|
max_tokens=512.0,
|
|
1645
1693
|
embed_dim=384,
|
|
@@ -1678,6 +1726,7 @@ avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
|
|
|
1678
1726
|
languages=["eng-Latn"],
|
|
1679
1727
|
loader=sentence_transformers_loader,
|
|
1680
1728
|
n_parameters=33360000,
|
|
1729
|
+
n_embedding_parameters=11720448,
|
|
1681
1730
|
memory_usage_mb=127,
|
|
1682
1731
|
max_tokens=512.0,
|
|
1683
1732
|
embed_dim=384,
|
|
@@ -1701,6 +1750,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
|
|
|
1701
1750
|
languages=["eng-Latn"],
|
|
1702
1751
|
loader=sentence_transformers_loader,
|
|
1703
1752
|
n_parameters=22713216,
|
|
1753
|
+
n_embedding_parameters=11_720_448,
|
|
1704
1754
|
memory_usage_mb=87,
|
|
1705
1755
|
max_tokens=512.0,
|
|
1706
1756
|
embed_dim=384,
|
|
@@ -1724,6 +1774,7 @@ deepfile__embedder_100p = ModelMeta(
|
|
|
1724
1774
|
languages=None,
|
|
1725
1775
|
loader=sentence_transformers_loader,
|
|
1726
1776
|
n_parameters=None,
|
|
1777
|
+
n_embedding_parameters=192_001_536,
|
|
1727
1778
|
memory_usage_mb=1061,
|
|
1728
1779
|
max_tokens=514.0,
|
|
1729
1780
|
embed_dim=768,
|
|
@@ -1747,6 +1798,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
|
|
|
1747
1798
|
languages=["eng-Latn"],
|
|
1748
1799
|
loader=sentence_transformers_loader,
|
|
1749
1800
|
n_parameters=None,
|
|
1801
|
+
n_embedding_parameters=23_440_896,
|
|
1750
1802
|
memory_usage_mb=None,
|
|
1751
1803
|
max_tokens=512.0,
|
|
1752
1804
|
embed_dim=None,
|
|
@@ -1770,6 +1822,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
|
|
|
1770
1822
|
languages=None,
|
|
1771
1823
|
loader=sentence_transformers_loader,
|
|
1772
1824
|
n_parameters=98688000,
|
|
1825
|
+
n_embedding_parameters=None,
|
|
1773
1826
|
memory_usage_mb=158,
|
|
1774
1827
|
max_tokens=512.0,
|
|
1775
1828
|
embed_dim=1024,
|
|
@@ -1793,6 +1846,7 @@ omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
|
|
|
1793
1846
|
languages=["ara-Arab", "eng-Latn"],
|
|
1794
1847
|
loader=sentence_transformers_loader,
|
|
1795
1848
|
n_parameters=559890432,
|
|
1849
|
+
n_embedding_parameters=256_002_048,
|
|
1796
1850
|
memory_usage_mb=2136,
|
|
1797
1851
|
max_tokens=514.0,
|
|
1798
1852
|
embed_dim=1024,
|
|
@@ -1833,6 +1887,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1833
1887
|
release_date="2024-09-04",
|
|
1834
1888
|
languages=["zho-Hans", "eng-Latn"],
|
|
1835
1889
|
n_parameters=2724880896,
|
|
1890
|
+
n_embedding_parameters=282_822_912,
|
|
1836
1891
|
memory_usage_mb=5197,
|
|
1837
1892
|
max_tokens=512.0,
|
|
1838
1893
|
embed_dim=2304,
|
|
@@ -1857,6 +1912,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
|
1857
1912
|
languages=["ara-Arab", "eng-Latn"],
|
|
1858
1913
|
loader=sentence_transformers_loader,
|
|
1859
1914
|
n_parameters=135193344,
|
|
1915
|
+
n_embedding_parameters=49_152_000,
|
|
1860
1916
|
memory_usage_mb=516,
|
|
1861
1917
|
max_tokens=512.0,
|
|
1862
1918
|
embed_dim=768,
|
|
@@ -1888,6 +1944,7 @@ sbert_chinese_general_v1 = ModelMeta(
|
|
|
1888
1944
|
languages=["zho-Hans"],
|
|
1889
1945
|
loader=sentence_transformers_loader,
|
|
1890
1946
|
n_parameters=None,
|
|
1947
|
+
n_embedding_parameters=16_226_304,
|
|
1891
1948
|
memory_usage_mb=None, # Not visible on repo
|
|
1892
1949
|
max_tokens=512,
|
|
1893
1950
|
embed_dim=128,
|
|
@@ -1916,6 +1973,7 @@ dmeta_embedding_zh_small = ModelMeta(
|
|
|
1916
1973
|
languages=["zho-Hans"],
|
|
1917
1974
|
loader=sentence_transformers_loader,
|
|
1918
1975
|
n_parameters=int(74.2 * 1e6),
|
|
1976
|
+
n_embedding_parameters=16_226_304,
|
|
1919
1977
|
memory_usage_mb=283,
|
|
1920
1978
|
max_tokens=1024,
|
|
1921
1979
|
embed_dim=768,
|
|
@@ -1939,6 +1997,7 @@ xiaobu_embedding = ModelMeta(
|
|
|
1939
1997
|
languages=["zho-Hans"],
|
|
1940
1998
|
loader=sentence_transformers_loader,
|
|
1941
1999
|
n_parameters=int(326 * 1e6),
|
|
2000
|
+
n_embedding_parameters=21_635_072,
|
|
1942
2001
|
memory_usage_mb=1244,
|
|
1943
2002
|
max_tokens=512,
|
|
1944
2003
|
embed_dim=1024,
|
|
@@ -1963,6 +2022,7 @@ xiaobu_embedding_v2 = ModelMeta(
|
|
|
1963
2022
|
languages=["zho-Hans"],
|
|
1964
2023
|
loader=sentence_transformers_loader,
|
|
1965
2024
|
n_parameters=int(326 * 1e6),
|
|
2025
|
+
n_embedding_parameters=21_635_072,
|
|
1966
2026
|
memory_usage_mb=1242,
|
|
1967
2027
|
max_tokens=512,
|
|
1968
2028
|
embed_dim=768,
|
|
@@ -1987,6 +2047,7 @@ yinka_embedding = ModelMeta(
|
|
|
1987
2047
|
languages=["zho-Hans"],
|
|
1988
2048
|
loader=sentence_transformers_loader,
|
|
1989
2049
|
n_parameters=int(326 * 1e6),
|
|
2050
|
+
n_embedding_parameters=21_635_072,
|
|
1990
2051
|
memory_usage_mb=1244,
|
|
1991
2052
|
max_tokens=512,
|
|
1992
2053
|
embed_dim=1024,
|
|
@@ -2010,6 +2071,7 @@ conan_embedding = ModelMeta(
|
|
|
2010
2071
|
languages=["zho-Hans"],
|
|
2011
2072
|
loader=sentence_transformers_loader,
|
|
2012
2073
|
n_parameters=int(326 * 1e6),
|
|
2074
|
+
n_embedding_parameters=21_635_072,
|
|
2013
2075
|
memory_usage_mb=1242,
|
|
2014
2076
|
max_tokens=512,
|
|
2015
2077
|
embed_dim=768,
|
|
@@ -2043,6 +2105,7 @@ ember_v1 = ModelMeta(
|
|
|
2043
2105
|
release_date="2023-10-10",
|
|
2044
2106
|
languages=["eng-Latn"],
|
|
2045
2107
|
n_parameters=int(335 * 1e6),
|
|
2108
|
+
n_embedding_parameters=31_254_528,
|
|
2046
2109
|
memory_usage_mb=1278,
|
|
2047
2110
|
max_tokens=512,
|
|
2048
2111
|
embed_dim=1024,
|
|
@@ -31,6 +31,7 @@ mxbai_embed_large_v1 = ModelMeta(
|
|
|
31
31
|
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
32
32
|
release_date="2024-03-07", # initial commit of hf model.
|
|
33
33
|
n_parameters=335_000_000,
|
|
34
|
+
n_embedding_parameters=31_254_528,
|
|
34
35
|
memory_usage_mb=639,
|
|
35
36
|
max_tokens=512,
|
|
36
37
|
embed_dim=1024,
|
|
@@ -75,6 +76,7 @@ mxbai_embed_2d_large_v1 = ModelMeta(
|
|
|
75
76
|
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
76
77
|
release_date="2024-03-04", # initial commit of hf model.
|
|
77
78
|
n_parameters=335_000_000,
|
|
79
|
+
n_embedding_parameters=31_254_528,
|
|
78
80
|
memory_usage_mb=None,
|
|
79
81
|
max_tokens=512,
|
|
80
82
|
embed_dim=768,
|
|
@@ -106,6 +108,7 @@ mxbai_embed_xsmall_v1 = ModelMeta(
|
|
|
106
108
|
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
107
109
|
release_date="2024-08-13", # initial commit of hf model.
|
|
108
110
|
n_parameters=24_100_000,
|
|
111
|
+
n_embedding_parameters=11_720_448,
|
|
109
112
|
memory_usage_mb=None,
|
|
110
113
|
max_tokens=512,
|
|
111
114
|
embed_dim=384,
|
|
@@ -16,7 +16,8 @@ mme5_mllama = ModelMeta(
|
|
|
16
16
|
revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
|
|
17
17
|
release_date="2025-02-12",
|
|
18
18
|
languages=["eng-Latn"],
|
|
19
|
-
n_parameters=10_600_000_000,
|
|
19
|
+
n_parameters=10_600_000_000,
|
|
20
|
+
n_embedding_parameters=None, # 10.6B
|
|
20
21
|
memory_usage_mb=20300,
|
|
21
22
|
max_tokens=128_000,
|
|
22
23
|
embed_dim=4096,
|
|
@@ -130,6 +130,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
130
130
|
release_date="2024-06-03",
|
|
131
131
|
modalities=["image"],
|
|
132
132
|
n_parameters=86_600_000,
|
|
133
|
+
n_embedding_parameters=None,
|
|
133
134
|
memory_usage_mb=330,
|
|
134
135
|
max_tokens=None,
|
|
135
136
|
embed_dim=768,
|
|
@@ -154,6 +155,7 @@ mocov3_vit_large = ModelMeta(
|
|
|
154
155
|
release_date="2024-06-03",
|
|
155
156
|
modalities=["image"],
|
|
156
157
|
n_parameters=304_000_000,
|
|
158
|
+
n_embedding_parameters=None,
|
|
157
159
|
memory_usage_mb=1161,
|
|
158
160
|
max_tokens=None,
|
|
159
161
|
embed_dim=1024,
|
|
@@ -173,6 +173,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
173
173
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
174
174
|
release_date="2024-09-21",
|
|
175
175
|
n_parameters=int(103 * 1e6),
|
|
176
|
+
n_embedding_parameters=int(103 * 1e6),
|
|
176
177
|
memory_usage_mb=391,
|
|
177
178
|
max_tokens=np.inf, # Theoretically infinite
|
|
178
179
|
embed_dim=256,
|
|
@@ -199,6 +200,7 @@ m2v_base_glove = ModelMeta(
|
|
|
199
200
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
200
201
|
release_date="2024-09-21",
|
|
201
202
|
n_parameters=int(102 * 1e6),
|
|
203
|
+
n_embedding_parameters=int(102 * 1e6),
|
|
202
204
|
memory_usage_mb=391,
|
|
203
205
|
max_tokens=np.inf,
|
|
204
206
|
embed_dim=256,
|
|
@@ -224,6 +226,7 @@ m2v_base_output = ModelMeta(
|
|
|
224
226
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
225
227
|
release_date="2024-09-21",
|
|
226
228
|
n_parameters=int(7.56 * 1e6),
|
|
229
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
227
230
|
memory_usage_mb=29,
|
|
228
231
|
max_tokens=np.inf,
|
|
229
232
|
embed_dim=256,
|
|
@@ -249,6 +252,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
249
252
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
250
253
|
release_date="2024-09-21",
|
|
251
254
|
n_parameters=int(128 * 1e6),
|
|
255
|
+
n_embedding_parameters=int(128 * 1e6),
|
|
252
256
|
memory_usage_mb=489,
|
|
253
257
|
max_tokens=np.inf,
|
|
254
258
|
embed_dim=256,
|
|
@@ -274,6 +278,7 @@ potion_base_2m = ModelMeta(
|
|
|
274
278
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
275
279
|
release_date="2024-10-29",
|
|
276
280
|
n_parameters=int(2 * 1e6),
|
|
281
|
+
n_embedding_parameters=int(2 * 1e6),
|
|
277
282
|
memory_usage_mb=7,
|
|
278
283
|
max_tokens=np.inf,
|
|
279
284
|
embed_dim=64,
|
|
@@ -299,6 +304,7 @@ potion_base_4m = ModelMeta(
|
|
|
299
304
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
300
305
|
release_date="2024-10-29",
|
|
301
306
|
n_parameters=int(3.78 * 1e6),
|
|
307
|
+
n_embedding_parameters=int(3.78 * 1e6),
|
|
302
308
|
memory_usage_mb=14,
|
|
303
309
|
max_tokens=np.inf,
|
|
304
310
|
embed_dim=128,
|
|
@@ -324,6 +330,7 @@ potion_base_8m = ModelMeta(
|
|
|
324
330
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
325
331
|
release_date="2024-10-29",
|
|
326
332
|
n_parameters=int(7.56 * 1e6),
|
|
333
|
+
n_embedding_parameters=int(7.56 * 1e6),
|
|
327
334
|
memory_usage_mb=29,
|
|
328
335
|
max_tokens=np.inf,
|
|
329
336
|
embed_dim=256,
|
|
@@ -349,6 +356,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
349
356
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
350
357
|
release_date="2025-05-23",
|
|
351
358
|
n_parameters=128 * 1e6,
|
|
359
|
+
n_embedding_parameters=128 * 1e6,
|
|
352
360
|
memory_usage_mb=489,
|
|
353
361
|
max_tokens=np.inf,
|
|
354
362
|
embed_dim=256,
|
|
@@ -374,6 +382,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
374
382
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
375
383
|
release_date="2025-01-03",
|
|
376
384
|
n_parameters=1 * 1e5,
|
|
385
|
+
n_embedding_parameters=1 * 1e5,
|
|
377
386
|
memory_usage_mb=0,
|
|
378
387
|
max_tokens=np.inf,
|
|
379
388
|
embed_dim=64,
|
|
@@ -398,6 +407,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
398
407
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
399
408
|
release_date="2025-01-03",
|
|
400
409
|
n_parameters=5 * 1e5,
|
|
410
|
+
n_embedding_parameters=5 * 1e5,
|
|
401
411
|
memory_usage_mb=2,
|
|
402
412
|
max_tokens=np.inf,
|
|
403
413
|
embed_dim=64,
|
|
@@ -422,6 +432,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
422
432
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
423
433
|
release_date="2025-01-03",
|
|
424
434
|
n_parameters=1 * 1e6,
|
|
435
|
+
n_embedding_parameters=1 * 1e6,
|
|
425
436
|
memory_usage_mb=2,
|
|
426
437
|
max_tokens=np.inf,
|
|
427
438
|
embed_dim=64,
|
|
@@ -446,6 +457,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
446
457
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
447
458
|
release_date="2025-01-03",
|
|
448
459
|
n_parameters=1.95 * 1e6,
|
|
460
|
+
n_embedding_parameters=1.95 * 1e6,
|
|
449
461
|
memory_usage_mb=7,
|
|
450
462
|
max_tokens=np.inf,
|
|
451
463
|
embed_dim=64,
|
|
@@ -470,6 +482,7 @@ pubmed_bert_8m = ModelMeta(
|
|
|
470
482
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
471
483
|
release_date="2025-01-03",
|
|
472
484
|
n_parameters=7.81 * 1e6,
|
|
485
|
+
n_embedding_parameters=7.81 * 1e6,
|
|
473
486
|
memory_usage_mb=30,
|
|
474
487
|
max_tokens=np.inf,
|
|
475
488
|
embed_dim=256,
|
|
@@ -97,6 +97,7 @@ m3e_base = ModelMeta(
|
|
|
97
97
|
revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
|
|
98
98
|
release_date="2023-06-06", # first commit
|
|
99
99
|
n_parameters=int(102 * 1e6),
|
|
100
|
+
n_embedding_parameters=16_226_304,
|
|
100
101
|
memory_usage_mb=390,
|
|
101
102
|
embed_dim=768,
|
|
102
103
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -123,6 +124,7 @@ m3e_small = ModelMeta(
|
|
|
123
124
|
revision="44c696631b2a8c200220aaaad5f987f096e986df",
|
|
124
125
|
release_date="2023-06-02", # first commit
|
|
125
126
|
n_parameters=None,
|
|
127
|
+
n_embedding_parameters=10_817_536,
|
|
126
128
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
127
129
|
embed_dim=512,
|
|
128
130
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -149,6 +151,7 @@ m3e_large = ModelMeta(
|
|
|
149
151
|
revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
|
|
150
152
|
release_date="2023-06-21", # first commit
|
|
151
153
|
n_parameters=None,
|
|
154
|
+
n_embedding_parameters=21_635_072,
|
|
152
155
|
memory_usage_mb=None, # Can't be seen on HF page
|
|
153
156
|
embed_dim=768,
|
|
154
157
|
# They don't give a specific license but commercial use is not allowed
|
|
@@ -12,6 +12,7 @@ nb_sbert = ModelMeta(
|
|
|
12
12
|
revision="b95656350a076aeafd2d23763660f80655408cc6",
|
|
13
13
|
release_date="2022-11-23",
|
|
14
14
|
n_parameters=1_780_000_000,
|
|
15
|
+
n_embedding_parameters=91_812_096,
|
|
15
16
|
memory_usage_mb=678,
|
|
16
17
|
embed_dim=4096,
|
|
17
18
|
license="apache-2.0",
|
|
@@ -34,6 +35,7 @@ nb_bert_large = ModelMeta(
|
|
|
34
35
|
revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
|
|
35
36
|
release_date="2021-04-29",
|
|
36
37
|
n_parameters=355087360,
|
|
38
|
+
n_embedding_parameters=51_200_000,
|
|
37
39
|
memory_usage_mb=1359,
|
|
38
40
|
embed_dim=1024,
|
|
39
41
|
license="cc-by-4.0",
|
|
@@ -56,6 +58,7 @@ nb_bert_base = ModelMeta(
|
|
|
56
58
|
revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
|
|
57
59
|
release_date="2021-01-13",
|
|
58
60
|
n_parameters=177853440,
|
|
61
|
+
n_embedding_parameters=91_812_096,
|
|
59
62
|
memory_usage_mb=681,
|
|
60
63
|
embed_dim=768,
|
|
61
64
|
license="cc-by-4.0",
|
|
@@ -110,6 +110,7 @@ no_instruct_small_v0 = ModelMeta(
|
|
|
110
110
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|
|
111
111
|
release_date="2024-05-01", # first commit
|
|
112
112
|
n_parameters=33_400_000,
|
|
113
|
+
n_embedding_parameters=11_720_448,
|
|
113
114
|
memory_usage_mb=127,
|
|
114
115
|
max_tokens=512,
|
|
115
116
|
embed_dim=384,
|