mteb 2.7.3__py3-none-any.whl → 2.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/retrieval.py +1 -1
- mteb/benchmarks/benchmarks/__init__.py +2 -0
- mteb/benchmarks/benchmarks/benchmarks.py +41 -2
- mteb/descriptive_stats/Retrieval/BrightAopsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightBiologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEarthScienceRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightEconomicsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightLeetcodeRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPonyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightPsychologyRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightRoboticsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightStackoverflowRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingLongRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightSustainableLivingRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQAQuestionsRetrieval.json +35 -0
- mteb/descriptive_stats/Retrieval/BrightTheoremQATheoremsRetrieval.json +35 -0
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +40 -1
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +8 -5
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +5 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +7 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +9 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +2 -0
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -0
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -0
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +3 -0
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mixedbread_ai_models.py +3 -0
- mteb/models/model_implementations/mme5_models.py +2 -1
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/mod_models.py +1 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +2 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/ordalietech_solon_embeddings_mini_beta_1_1.py +1 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +65 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -0
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -0
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models_1215.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +1 -0
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +2 -1
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/text2vec_models.py +3 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +35 -2
- mteb/tasks/retrieval/eng/__init__.py +42 -0
- mteb/tasks/retrieval/eng/bright_retrieval.py +9 -1
- mteb/tasks/retrieval/eng/bright_v1_1_retrieval.py +968 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/METADATA +1 -1
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/RECORD +157 -136
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/WHEEL +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/entry_points.txt +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.7.3.dist-info → mteb-2.7.4.dist-info}/top_level.txt +0 -0
|
@@ -215,6 +215,7 @@ nomic_embed_v1_5 = ModelMeta(
|
|
|
215
215
|
release_date="2024-02-10", # first commit
|
|
216
216
|
citation=NOMIC_CITATION,
|
|
217
217
|
n_parameters=137_000_000,
|
|
218
|
+
n_embedding_parameters=None,
|
|
218
219
|
memory_usage_mb=522,
|
|
219
220
|
max_tokens=8192,
|
|
220
221
|
embed_dim=768,
|
|
@@ -249,6 +250,7 @@ nomic_embed_v1 = ModelMeta(
|
|
|
249
250
|
revision="0759316f275aa0cb93a5b830973843ca66babcf5",
|
|
250
251
|
release_date="2024-01-31", # first commit
|
|
251
252
|
n_parameters=None,
|
|
253
|
+
n_embedding_parameters=None,
|
|
252
254
|
memory_usage_mb=522,
|
|
253
255
|
max_tokens=8192,
|
|
254
256
|
embed_dim=768,
|
|
@@ -284,6 +286,7 @@ nomic_embed_v1_ablated = ModelMeta(
|
|
|
284
286
|
revision="7d948905c5d5d3874fa55a925d68e49dbf411e5f",
|
|
285
287
|
release_date="2024-01-15", # first commit
|
|
286
288
|
n_parameters=None,
|
|
289
|
+
n_embedding_parameters=None,
|
|
287
290
|
memory_usage_mb=None,
|
|
288
291
|
max_tokens=8192,
|
|
289
292
|
embed_dim=768,
|
|
@@ -312,6 +315,7 @@ nomic_embed_v1_unsupervised = ModelMeta(
|
|
|
312
315
|
revision="b53d557b15ae63852847c222d336c1609eced93c",
|
|
313
316
|
release_date="2024-01-15", # first commit
|
|
314
317
|
n_parameters=None,
|
|
318
|
+
n_embedding_parameters=None,
|
|
315
319
|
memory_usage_mb=None,
|
|
316
320
|
max_tokens=8192,
|
|
317
321
|
embed_dim=768,
|
|
@@ -340,6 +344,7 @@ nomic_modern_bert_embed = ModelMeta(
|
|
|
340
344
|
revision="5960f1566fb7cb1adf1eb6e816639cf4646d9b12",
|
|
341
345
|
release_date="2024-12-29",
|
|
342
346
|
n_parameters=149_000_000,
|
|
347
|
+
n_embedding_parameters=None,
|
|
343
348
|
memory_usage_mb=568,
|
|
344
349
|
max_tokens=8192,
|
|
345
350
|
embed_dim=768,
|
|
@@ -479,6 +484,7 @@ nomic_embed_text_v2_moe = ModelMeta(
|
|
|
479
484
|
revision="1066b6599d099fbb93dfcb64f9c37a7c9e503e85",
|
|
480
485
|
release_date="2025-02-07",
|
|
481
486
|
n_parameters=475292928,
|
|
487
|
+
n_embedding_parameters=None,
|
|
482
488
|
memory_usage_mb=1813,
|
|
483
489
|
max_tokens=512,
|
|
484
490
|
embed_dim=768,
|
|
@@ -162,6 +162,7 @@ llama_nemoretriever_colembed_1b_v1 = ModelMeta(
|
|
|
162
162
|
release_date="2025-06-27",
|
|
163
163
|
modalities=["image", "text"],
|
|
164
164
|
n_parameters=2_418_000_000,
|
|
165
|
+
n_embedding_parameters=None,
|
|
165
166
|
memory_usage_mb=4610,
|
|
166
167
|
max_tokens=8192,
|
|
167
168
|
embed_dim=2048,
|
|
@@ -189,6 +190,7 @@ llama_nemoretriever_colembed_3b_v1 = ModelMeta(
|
|
|
189
190
|
release_date="2025-06-27",
|
|
190
191
|
modalities=["image", "text"],
|
|
191
192
|
n_parameters=4_407_000_000,
|
|
193
|
+
n_embedding_parameters=None,
|
|
192
194
|
memory_usage_mb=8403,
|
|
193
195
|
max_tokens=8192,
|
|
194
196
|
embed_dim=3072,
|
|
@@ -204,6 +204,7 @@ NV_embed_v2 = ModelMeta(
|
|
|
204
204
|
revision="7604d305b621f14095a1aa23d351674c2859553a",
|
|
205
205
|
release_date="2024-09-09", # initial commit of hf model.
|
|
206
206
|
n_parameters=7_850_000_000,
|
|
207
|
+
n_embedding_parameters=None,
|
|
207
208
|
memory_usage_mb=14975,
|
|
208
209
|
embed_dim=4096,
|
|
209
210
|
license="cc-by-nc-4.0",
|
|
@@ -235,6 +236,7 @@ NV_embed_v1 = ModelMeta(
|
|
|
235
236
|
revision="570834afd5fef5bf3a3c2311a2b6e0a66f6f4f2c",
|
|
236
237
|
release_date="2024-09-13", # initial commit of hf model.
|
|
237
238
|
n_parameters=7_850_000_000,
|
|
239
|
+
n_embedding_parameters=None,
|
|
238
240
|
memory_usage_mb=14975,
|
|
239
241
|
embed_dim=4096,
|
|
240
242
|
license="cc-by-nc-4.0",
|
|
@@ -624,6 +626,7 @@ llama_embed_nemotron_8b = ModelMeta(
|
|
|
624
626
|
revision="84a375593d27d3528beb4e104822515659e093b4",
|
|
625
627
|
release_date="2025-10-23",
|
|
626
628
|
n_parameters=7_504_924_672,
|
|
629
|
+
n_embedding_parameters=None,
|
|
627
630
|
memory_usage_mb=28629,
|
|
628
631
|
embed_dim=4096,
|
|
629
632
|
license="https://huggingface.co/nvidia/llama-embed-nemotron-8b/blob/main/LICENSE",
|
|
@@ -208,6 +208,7 @@ Octen_Embedding_4B = ModelMeta(
|
|
|
208
208
|
revision="6e188e3b072c3e3678b235ad84e6e97bcbb71e8f",
|
|
209
209
|
release_date="2025-12-30",
|
|
210
210
|
n_parameters=4021774336,
|
|
211
|
+
n_embedding_parameters=None,
|
|
211
212
|
memory_usage_mb=7671,
|
|
212
213
|
embed_dim=2560,
|
|
213
214
|
max_tokens=32768,
|
|
@@ -238,6 +239,7 @@ Octen_Embedding_8B = ModelMeta(
|
|
|
238
239
|
revision="f7db178d5a82fb841f606a6a67c423cead2fdbba",
|
|
239
240
|
release_date="2025-12-23",
|
|
240
241
|
n_parameters=7567295488,
|
|
242
|
+
n_embedding_parameters=None,
|
|
241
243
|
memory_usage_mb=14433,
|
|
242
244
|
embed_dim=4096,
|
|
243
245
|
max_tokens=32768,
|
|
@@ -185,6 +185,7 @@ text_embedding_3_small = ModelMeta(
|
|
|
185
185
|
embed_dim=1536,
|
|
186
186
|
open_weights=False,
|
|
187
187
|
n_parameters=None,
|
|
188
|
+
n_embedding_parameters=None,
|
|
188
189
|
memory_usage_mb=None,
|
|
189
190
|
license=None,
|
|
190
191
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -213,6 +214,7 @@ text_embedding_3_large = ModelMeta(
|
|
|
213
214
|
framework=["API"],
|
|
214
215
|
use_instructions=False,
|
|
215
216
|
n_parameters=None,
|
|
217
|
+
n_embedding_parameters=None,
|
|
216
218
|
memory_usage_mb=None,
|
|
217
219
|
public_training_code=None,
|
|
218
220
|
public_training_data=None, # assumed
|
|
@@ -238,6 +240,7 @@ text_embedding_ada_002 = ModelMeta(
|
|
|
238
240
|
framework=["API"],
|
|
239
241
|
use_instructions=False,
|
|
240
242
|
n_parameters=None,
|
|
243
|
+
n_embedding_parameters=None,
|
|
241
244
|
memory_usage_mb=None,
|
|
242
245
|
public_training_code=None,
|
|
243
246
|
public_training_data=None, # assumed
|
|
@@ -262,6 +265,7 @@ text_embedding_3_small_512 = ModelMeta(
|
|
|
262
265
|
embed_dim=512,
|
|
263
266
|
open_weights=False,
|
|
264
267
|
n_parameters=None,
|
|
268
|
+
n_embedding_parameters=None,
|
|
265
269
|
memory_usage_mb=None,
|
|
266
270
|
license=None,
|
|
267
271
|
reference="https://openai.com/index/new-embedding-models-and-api-updates/",
|
|
@@ -292,6 +296,7 @@ text_embedding_3_large_512 = ModelMeta(
|
|
|
292
296
|
framework=["API"],
|
|
293
297
|
use_instructions=False,
|
|
294
298
|
n_parameters=None,
|
|
299
|
+
n_embedding_parameters=None,
|
|
295
300
|
memory_usage_mb=None,
|
|
296
301
|
public_training_code=None,
|
|
297
302
|
public_training_data=None, # assumed
|
|
@@ -133,6 +133,7 @@ CLIP_ViT_L_14_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
133
133
|
release_date="2023-04-26",
|
|
134
134
|
modalities=["image", "text"],
|
|
135
135
|
n_parameters=428_000_000,
|
|
136
|
+
n_embedding_parameters=None,
|
|
136
137
|
memory_usage_mb=1633,
|
|
137
138
|
max_tokens=77,
|
|
138
139
|
embed_dim=768,
|
|
@@ -159,6 +160,7 @@ CLIP_ViT_B_32_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
159
160
|
release_date="2023-04-26",
|
|
160
161
|
modalities=["image", "text"],
|
|
161
162
|
n_parameters=151_000_000,
|
|
163
|
+
n_embedding_parameters=None,
|
|
162
164
|
memory_usage_mb=576,
|
|
163
165
|
max_tokens=77,
|
|
164
166
|
embed_dim=512,
|
|
@@ -185,6 +187,7 @@ CLIP_ViT_B_16_DataComp_XL_s13B_b90K = ModelMeta(
|
|
|
185
187
|
release_date="2023-04-26",
|
|
186
188
|
modalities=["image", "text"],
|
|
187
189
|
n_parameters=150_000_000,
|
|
190
|
+
n_embedding_parameters=None,
|
|
188
191
|
memory_usage_mb=572,
|
|
189
192
|
max_tokens=77,
|
|
190
193
|
embed_dim=512,
|
|
@@ -211,6 +214,7 @@ CLIP_ViT_bigG_14_laion2B_39B_b160k = ModelMeta(
|
|
|
211
214
|
release_date="2023-01-23",
|
|
212
215
|
modalities=["image", "text"],
|
|
213
216
|
n_parameters=2_540_000_000,
|
|
217
|
+
n_embedding_parameters=None,
|
|
214
218
|
memory_usage_mb=9689,
|
|
215
219
|
max_tokens=77,
|
|
216
220
|
embed_dim=1280,
|
|
@@ -237,6 +241,7 @@ CLIP_ViT_g_14_laion2B_s34B_b88K = ModelMeta(
|
|
|
237
241
|
release_date="2023-03-06",
|
|
238
242
|
modalities=["image", "text"],
|
|
239
243
|
n_parameters=1_367_000_000,
|
|
244
|
+
n_embedding_parameters=None,
|
|
240
245
|
memory_usage_mb=5215,
|
|
241
246
|
max_tokens=77,
|
|
242
247
|
embed_dim=1024,
|
|
@@ -263,6 +268,7 @@ CLIP_ViT_H_14_laion2B_s32B_b79K = ModelMeta(
|
|
|
263
268
|
release_date="2022-09-15",
|
|
264
269
|
modalities=["image", "text"],
|
|
265
270
|
n_parameters=986_000_000,
|
|
271
|
+
n_embedding_parameters=None,
|
|
266
272
|
memory_usage_mb=3762,
|
|
267
273
|
max_tokens=77,
|
|
268
274
|
embed_dim=1024,
|
|
@@ -289,6 +295,7 @@ CLIP_ViT_L_14_laion2B_s32B_b82K = ModelMeta(
|
|
|
289
295
|
release_date="2022-09-15",
|
|
290
296
|
modalities=["image", "text"],
|
|
291
297
|
n_parameters=428_000_000,
|
|
298
|
+
n_embedding_parameters=None,
|
|
292
299
|
memory_usage_mb=1631,
|
|
293
300
|
max_tokens=77,
|
|
294
301
|
embed_dim=768,
|
|
@@ -315,6 +322,7 @@ CLIP_ViT_B_32_laion2B_s34B_b79K = ModelMeta(
|
|
|
315
322
|
release_date="2022-09-15",
|
|
316
323
|
modalities=["image", "text"],
|
|
317
324
|
n_parameters=151_000_000,
|
|
325
|
+
n_embedding_parameters=None,
|
|
318
326
|
memory_usage_mb=577,
|
|
319
327
|
max_tokens=77,
|
|
320
328
|
embed_dim=512,
|
|
@@ -140,6 +140,7 @@ opensearch_neural_sparse_encoding_doc_v3_gte = ModelMeta(
|
|
|
140
140
|
revision="a8abaa916125ee512a7a8f4d706d07eb0128a8e6",
|
|
141
141
|
release_date="2025-06-18",
|
|
142
142
|
n_parameters=137_394_234,
|
|
143
|
+
n_embedding_parameters=23_440_896,
|
|
143
144
|
memory_usage_mb=549,
|
|
144
145
|
embed_dim=30522,
|
|
145
146
|
license="apache-2.0",
|
|
@@ -166,6 +167,7 @@ opensearch_neural_sparse_encoding_doc_v3_distill = ModelMeta(
|
|
|
166
167
|
revision="babf71f3c48695e2e53a978208e8aba48335e3c0",
|
|
167
168
|
release_date="2025-03-28",
|
|
168
169
|
n_parameters=66_985_530,
|
|
170
|
+
n_embedding_parameters=23_440_896,
|
|
169
171
|
memory_usage_mb=267,
|
|
170
172
|
embed_dim=30522,
|
|
171
173
|
license="apache-2.0",
|
|
@@ -188,6 +190,7 @@ opensearch_neural_sparse_encoding_doc_v2_distill = ModelMeta(
|
|
|
188
190
|
revision="8921a26c78b8559d6604eb1f5c0b74c079bee38f",
|
|
189
191
|
release_date="2024-07-17",
|
|
190
192
|
n_parameters=66_985_530,
|
|
193
|
+
n_embedding_parameters=23_440_896,
|
|
191
194
|
memory_usage_mb=267,
|
|
192
195
|
embed_dim=30522,
|
|
193
196
|
license="apache-2.0",
|
|
@@ -211,6 +214,7 @@ opensearch_neural_sparse_encoding_doc_v2_mini = ModelMeta(
|
|
|
211
214
|
revision="4af867a426867dfdd744097531046f4289a32fdd",
|
|
212
215
|
release_date="2024-07-18",
|
|
213
216
|
n_parameters=22_744_506,
|
|
217
|
+
n_embedding_parameters=11_720_448,
|
|
214
218
|
memory_usage_mb=86,
|
|
215
219
|
embed_dim=30522,
|
|
216
220
|
license="apache-2.0",
|
|
@@ -233,6 +237,7 @@ opensearch_neural_sparse_encoding_doc_v1 = ModelMeta(
|
|
|
233
237
|
revision="98cdcbd72867c547f72f2b7b7bed9cdf9f09922d",
|
|
234
238
|
release_date="2024-03-07",
|
|
235
239
|
n_parameters=132_955_194,
|
|
240
|
+
n_embedding_parameters=23_440_896,
|
|
236
241
|
memory_usage_mb=507,
|
|
237
242
|
embed_dim=30522,
|
|
238
243
|
license="apache-2.0",
|
|
@@ -33,6 +33,7 @@ ops_moa_conan_embedding = ModelMeta(
|
|
|
33
33
|
languages=["zho-Hans"],
|
|
34
34
|
loader=OPSWrapper,
|
|
35
35
|
n_parameters=int(343 * 1e6),
|
|
36
|
+
n_embedding_parameters=21_635_072,
|
|
36
37
|
memory_usage_mb=1308,
|
|
37
38
|
max_tokens=512,
|
|
38
39
|
embed_dim=1536,
|
|
@@ -65,6 +66,7 @@ ops_moa_yuan_embedding = ModelMeta(
|
|
|
65
66
|
languages=["zho-Hans"],
|
|
66
67
|
loader=OPSWrapper,
|
|
67
68
|
n_parameters=int(343 * 1e6),
|
|
69
|
+
n_embedding_parameters=21_635_072,
|
|
68
70
|
memory_usage_mb=1242,
|
|
69
71
|
max_tokens=512,
|
|
70
72
|
embed_dim=1536,
|
|
@@ -12,6 +12,7 @@ piccolo_base_zh = ModelMeta(
|
|
|
12
12
|
revision="47c0a63b8f667c3482e05b2fd45577bb19252196",
|
|
13
13
|
release_date="2023-09-04", # first commit
|
|
14
14
|
n_parameters=None,
|
|
15
|
+
n_embedding_parameters=16_226_304,
|
|
15
16
|
memory_usage_mb=None, # can't see on model card
|
|
16
17
|
embed_dim=768,
|
|
17
18
|
license="mit",
|
|
@@ -37,6 +38,7 @@ piccolo_large_zh_v2 = ModelMeta(
|
|
|
37
38
|
revision="05948c1d889355936bdf9db7d30df57dd78d25a3",
|
|
38
39
|
release_date="2024-04-22", # first commit
|
|
39
40
|
n_parameters=None,
|
|
41
|
+
n_embedding_parameters=None,
|
|
40
42
|
memory_usage_mb=None, # we don't know because they removed the model
|
|
41
43
|
embed_dim=1024,
|
|
42
44
|
license="not specified",
|
|
@@ -87,6 +87,7 @@ promptriever_llama2 = ModelMeta(
|
|
|
87
87
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-30b14e3813c0fa45facfd01a594580c3fe5ecf23", # base-peft revision
|
|
88
88
|
release_date="2024-09-15",
|
|
89
89
|
n_parameters=7_000_000_000,
|
|
90
|
+
n_embedding_parameters=None,
|
|
90
91
|
memory_usage_mb=26703,
|
|
91
92
|
max_tokens=4096,
|
|
92
93
|
embed_dim=4096,
|
|
@@ -123,6 +124,7 @@ promptriever_llama3 = ModelMeta(
|
|
|
123
124
|
},
|
|
124
125
|
release_date="2024-09-15",
|
|
125
126
|
n_parameters=8_000_000_000,
|
|
127
|
+
n_embedding_parameters=None,
|
|
126
128
|
memory_usage_mb=30518,
|
|
127
129
|
max_tokens=8192,
|
|
128
130
|
embed_dim=4096,
|
|
@@ -152,6 +154,7 @@ promptriever_llama3_instruct = ModelMeta(
|
|
|
152
154
|
revision="5206a32e0bd3067aef1ce90f5528ade7d866253f-8b677258615625122c2eb7329292b8c402612c21", # base-peft revision
|
|
153
155
|
release_date="2024-09-15",
|
|
154
156
|
n_parameters=8_000_000_000,
|
|
157
|
+
n_embedding_parameters=None,
|
|
155
158
|
memory_usage_mb=30518,
|
|
156
159
|
max_tokens=8192,
|
|
157
160
|
embed_dim=4096,
|
|
@@ -185,6 +188,7 @@ promptriever_mistral_v1 = ModelMeta(
|
|
|
185
188
|
revision="7231864981174d9bee8c7687c24c8344414eae6b-876d63e49b6115ecb6839893a56298fadee7e8f5", # base-peft revision
|
|
186
189
|
release_date="2024-09-15",
|
|
187
190
|
n_parameters=7_000_000_000,
|
|
191
|
+
n_embedding_parameters=131_072_000,
|
|
188
192
|
memory_usage_mb=26703,
|
|
189
193
|
training_datasets={
|
|
190
194
|
# "samaya-ai/msmarco-w-instructions",
|
|
@@ -352,6 +352,7 @@ colbert_v2 = ModelMeta(
|
|
|
352
352
|
public_training_data=None,
|
|
353
353
|
release_date="2024-09-21",
|
|
354
354
|
n_parameters=int(110 * 1e6),
|
|
355
|
+
n_embedding_parameters=23_440_896,
|
|
355
356
|
memory_usage_mb=418,
|
|
356
357
|
max_tokens=180,
|
|
357
358
|
embed_dim=None,
|
|
@@ -408,6 +409,7 @@ jina_colbert_v2 = ModelMeta(
|
|
|
408
409
|
public_training_data=None,
|
|
409
410
|
release_date="2024-08-16",
|
|
410
411
|
n_parameters=int(559 * 1e6),
|
|
412
|
+
n_embedding_parameters=None,
|
|
411
413
|
memory_usage_mb=1067,
|
|
412
414
|
max_tokens=8192,
|
|
413
415
|
embed_dim=None,
|
|
@@ -464,6 +466,7 @@ lightonai__gte_moderncolbert_v1 = ModelMeta(
|
|
|
464
466
|
public_training_data="https://huggingface.co/datasets/lightonai/ms-marco-en-bge-gemma",
|
|
465
467
|
release_date="2025-04-30",
|
|
466
468
|
n_parameters=int(149 * 1e6),
|
|
469
|
+
n_embedding_parameters=None,
|
|
467
470
|
memory_usage_mb=None,
|
|
468
471
|
max_tokens=8192,
|
|
469
472
|
embed_dim=None,
|
|
@@ -36,6 +36,7 @@ Qodo_Embed_1_1_5B = ModelMeta(
|
|
|
36
36
|
revision="84bbef079b32e8823ec226d4e9e92902706b0eb6",
|
|
37
37
|
release_date="2025-02-19",
|
|
38
38
|
n_parameters=1_780_000_000,
|
|
39
|
+
n_embedding_parameters=232_928_256,
|
|
39
40
|
memory_usage_mb=6776,
|
|
40
41
|
embed_dim=1536,
|
|
41
42
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -59,6 +60,7 @@ Qodo_Embed_1_7B = ModelMeta(
|
|
|
59
60
|
revision="f9edd9bf7f687c0e832424058e265120f603cd81",
|
|
60
61
|
release_date="2025-02-24",
|
|
61
62
|
n_parameters=7_613_000_000,
|
|
63
|
+
n_embedding_parameters=None,
|
|
62
64
|
memory_usage_mb=29040,
|
|
63
65
|
embed_dim=3584,
|
|
64
66
|
license="https://huggingface.co/Qodo/Qodo-Embed-1-1.5B/blob/main/LICENSE",
|
|
@@ -147,6 +147,7 @@ Qwen3_Embedding_0B6 = ModelMeta(
|
|
|
147
147
|
revision="b22da495047858cce924d27d76261e96be6febc0", # Commit of @tomaarsen
|
|
148
148
|
release_date="2025-06-05",
|
|
149
149
|
n_parameters=595776512,
|
|
150
|
+
n_embedding_parameters=None,
|
|
150
151
|
memory_usage_mb=1136,
|
|
151
152
|
embed_dim=1024,
|
|
152
153
|
max_tokens=32768,
|
|
@@ -170,6 +171,7 @@ Qwen3_Embedding_4B = ModelMeta(
|
|
|
170
171
|
revision="636cd9bf47d976946cdbb2b0c3ca0cb2f8eea5ff", # Commit of @tomaarsen
|
|
171
172
|
release_date="2025-06-05",
|
|
172
173
|
n_parameters=4021774336,
|
|
174
|
+
n_embedding_parameters=None,
|
|
173
175
|
memory_usage_mb=7671,
|
|
174
176
|
embed_dim=2560,
|
|
175
177
|
max_tokens=32768,
|
|
@@ -193,6 +195,7 @@ Qwen3_Embedding_8B = ModelMeta(
|
|
|
193
195
|
revision="4e423935c619ae4df87b646a3ce949610c66241c", # Commit of @tomaarsen
|
|
194
196
|
release_date="2025-06-05",
|
|
195
197
|
n_parameters=7567295488,
|
|
198
|
+
n_embedding_parameters=None,
|
|
196
199
|
memory_usage_mb=14433,
|
|
197
200
|
embed_dim=4096,
|
|
198
201
|
max_tokens=32768,
|
|
@@ -64,6 +64,7 @@ QZhou_Embedding = ModelMeta(
|
|
|
64
64
|
revision="f1e6c03ee3882e7b9fa5cec91217715272e433b8",
|
|
65
65
|
release_date="2025-08-24",
|
|
66
66
|
n_parameters=7_070_619_136,
|
|
67
|
+
n_embedding_parameters=None,
|
|
67
68
|
memory_usage_mb=14436,
|
|
68
69
|
embed_dim=3584,
|
|
69
70
|
license="apache-2.0",
|
|
@@ -98,6 +99,7 @@ QZhou_Embedding_Zh = ModelMeta(
|
|
|
98
99
|
revision="0321ccb126413d1e49c5ce908e802b63d35f18e2",
|
|
99
100
|
release_date="2025-09-28",
|
|
100
101
|
n_parameters=7_575_747_328,
|
|
102
|
+
n_embedding_parameters=None,
|
|
101
103
|
memory_usage_mb=29431,
|
|
102
104
|
embed_dim=1792,
|
|
103
105
|
license="apache-2.0",
|
|
@@ -36,12 +36,76 @@ REASONIR_TRAINING_DATA = {
|
|
|
36
36
|
"DuRetrieval",
|
|
37
37
|
"QuoraRetrieval",
|
|
38
38
|
}
|
|
39
|
+
_prompts_dict = {
|
|
40
|
+
"BrightBiologyRetrieval": {
|
|
41
|
+
"query": "Given a Biology post, retrieve relevant passages that help answer the post"
|
|
42
|
+
},
|
|
43
|
+
"BrightEarthScienceRetrieval": {
|
|
44
|
+
"query": "Given a Earth Science post, retrieve relevant passages that help answer the post"
|
|
45
|
+
},
|
|
46
|
+
"BrightEconomicsRetrieval": {
|
|
47
|
+
"query": "Given a Economics post, retrieve relevant passages that help answer the post"
|
|
48
|
+
},
|
|
49
|
+
"BrightPsychologyRetrieval": {
|
|
50
|
+
"query": "Given a Psychology post, retrieve relevant passages that help answer the post"
|
|
51
|
+
},
|
|
52
|
+
"BrightRoboticsRetrieval": {
|
|
53
|
+
"query": "Given a Robotics post, retrieve relevant passages that help answer the post"
|
|
54
|
+
},
|
|
55
|
+
"BrightStackoverflowRetrieval": {
|
|
56
|
+
"query": "Given a Stackoverflow post, retrieve relevant passages that help answer the post"
|
|
57
|
+
},
|
|
58
|
+
"BrightSustainableLivingRetrieval": {
|
|
59
|
+
"query": "Given a Sustainable Living post, retrieve relevant passages that help answer the post"
|
|
60
|
+
},
|
|
61
|
+
"BrightPonyRetrieval": {
|
|
62
|
+
"query": "Given a Pony question, retrieve relevant passages that help answer the question"
|
|
63
|
+
},
|
|
64
|
+
"BrightLeetcodeRetrieval": {
|
|
65
|
+
"query": "Given a coding problem, retrieve relevant examples that help answer the problem",
|
|
66
|
+
},
|
|
67
|
+
"BrightAopsRetrieval": {
|
|
68
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem"
|
|
69
|
+
},
|
|
70
|
+
"BrightTheoremQATheoremsRetrieval": {
|
|
71
|
+
"query": "Given a Math problem, retrieve relevant theorems that help answer the problem",
|
|
72
|
+
},
|
|
73
|
+
"BrightTheoremQAQuestionsRetrieval": {
|
|
74
|
+
"query": "Given a Math problem, retrieve relevant examples that help answer the problem",
|
|
75
|
+
},
|
|
76
|
+
"BrightBiologyLongRetrieval": {
|
|
77
|
+
"query": "Given a Biology post, retrieve relevant documents that help answer the post"
|
|
78
|
+
},
|
|
79
|
+
"BrightEarthScienceLongRetrieval": {
|
|
80
|
+
"query": "Given a Earth Science post, retrieve relevant documents that help answer the post"
|
|
81
|
+
},
|
|
82
|
+
"BrightEconomicsLongRetrieval": {
|
|
83
|
+
"query": "Given a Economics post, retrieve relevant documents that help answer the post"
|
|
84
|
+
},
|
|
85
|
+
"BrightPsychologyLongRetrieval": {
|
|
86
|
+
"query": "Given a Psychology post, retrieve relevant documents that help answer the post"
|
|
87
|
+
},
|
|
88
|
+
"BrightRoboticsLongRetrieval": {
|
|
89
|
+
"query": "Given a Robotics post, retrieve relevant documents that help answer the post"
|
|
90
|
+
},
|
|
91
|
+
"BrightStackoverflowLongRetrieval": {
|
|
92
|
+
"query": "Given a Stackoverflow post, retrieve relevant documents that help answer the post"
|
|
93
|
+
},
|
|
94
|
+
"BrightSustainableLivingLongRetrieval": {
|
|
95
|
+
"query": "Given a Sustainable Living post, retrieve relevant documents that help answer the post"
|
|
96
|
+
},
|
|
97
|
+
"BrightPonyLongRetrieval": {
|
|
98
|
+
"query": "Given a Pony question, retrieve relevant documents that help answer the question"
|
|
99
|
+
},
|
|
100
|
+
}
|
|
101
|
+
|
|
39
102
|
|
|
40
103
|
ReasonIR_8B = ModelMeta(
|
|
41
104
|
loader=InstructSentenceTransformerModel,
|
|
42
105
|
loader_kwargs=dict(
|
|
43
106
|
instruction_template=instruction_template,
|
|
44
107
|
trust_remote_code=True,
|
|
108
|
+
prompts_dict=_prompts_dict,
|
|
45
109
|
),
|
|
46
110
|
name="ReasonIR/ReasonIR-8B",
|
|
47
111
|
model_type=["dense"],
|
|
@@ -50,6 +114,7 @@ ReasonIR_8B = ModelMeta(
|
|
|
50
114
|
revision="c3d0690370ff4a8c3d3882d8dfa85c43650034fa",
|
|
51
115
|
release_date="2025-04-29",
|
|
52
116
|
n_parameters=7_500_000_000,
|
|
117
|
+
n_embedding_parameters=None,
|
|
53
118
|
memory_usage_mb=None,
|
|
54
119
|
embed_dim=4096,
|
|
55
120
|
license="cc-by-nc-4.0",
|
|
@@ -179,6 +179,7 @@ repllama_llama2_original = ModelMeta(
|
|
|
179
179
|
"mMARCO-NL", # translation not trained on
|
|
180
180
|
},
|
|
181
181
|
n_parameters=7_000_000,
|
|
182
|
+
n_embedding_parameters=131_072_000,
|
|
182
183
|
memory_usage_mb=27,
|
|
183
184
|
max_tokens=4096,
|
|
184
185
|
embed_dim=4096,
|
|
@@ -208,6 +209,7 @@ repllama_llama2_reproduced = ModelMeta(
|
|
|
208
209
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9-ad5c1d0938a1e02954bcafb4d811ba2f34052e71", # base-peft revision
|
|
209
210
|
release_date="2024-09-15",
|
|
210
211
|
n_parameters=7_000_000,
|
|
212
|
+
n_embedding_parameters=None,
|
|
211
213
|
memory_usage_mb=27,
|
|
212
214
|
max_tokens=4096,
|
|
213
215
|
embed_dim=4096,
|
|
@@ -231,6 +231,7 @@ monobert_large = ModelMeta(
|
|
|
231
231
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
232
232
|
release_date="2020-05-28",
|
|
233
233
|
n_parameters=None,
|
|
234
|
+
n_embedding_parameters=31_254_528,
|
|
234
235
|
memory_usage_mb=None,
|
|
235
236
|
max_tokens=None,
|
|
236
237
|
embed_dim=None,
|
|
@@ -256,6 +257,7 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
256
257
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
257
258
|
release_date="2024-09-26",
|
|
258
259
|
n_parameters=None,
|
|
260
|
+
n_embedding_parameters=None,
|
|
259
261
|
memory_usage_mb=531,
|
|
260
262
|
max_tokens=None,
|
|
261
263
|
embed_dim=None,
|
|
@@ -319,6 +321,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
319
321
|
revision="953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e",
|
|
320
322
|
release_date="2024-06-24",
|
|
321
323
|
n_parameters=None,
|
|
324
|
+
n_embedding_parameters=256_002_048,
|
|
322
325
|
memory_usage_mb=2166,
|
|
323
326
|
max_tokens=None,
|
|
324
327
|
embed_dim=None,
|
|
@@ -327,6 +327,7 @@ monot5_small = ModelMeta(
|
|
|
327
327
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
328
328
|
release_date="2022-03-28",
|
|
329
329
|
n_parameters=None,
|
|
330
|
+
n_embedding_parameters=16_449_536,
|
|
330
331
|
memory_usage_mb=None,
|
|
331
332
|
max_tokens=None,
|
|
332
333
|
embed_dim=None,
|
|
@@ -369,6 +370,7 @@ monot5_base = ModelMeta(
|
|
|
369
370
|
url={https://arxiv.org/abs/2206.02873},
|
|
370
371
|
}""",
|
|
371
372
|
n_parameters=None,
|
|
373
|
+
n_embedding_parameters=24_674_304,
|
|
372
374
|
memory_usage_mb=None,
|
|
373
375
|
max_tokens=None,
|
|
374
376
|
embed_dim=None,
|
|
@@ -393,6 +395,7 @@ monot5_large = ModelMeta(
|
|
|
393
395
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
394
396
|
release_date="2022-03-28",
|
|
395
397
|
n_parameters=None,
|
|
398
|
+
n_embedding_parameters=32_899_072,
|
|
396
399
|
memory_usage_mb=None,
|
|
397
400
|
max_tokens=None,
|
|
398
401
|
embed_dim=None,
|
|
@@ -426,6 +429,7 @@ monot5_3b = ModelMeta(
|
|
|
426
429
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
427
430
|
release_date="2022-03-28",
|
|
428
431
|
n_parameters=None,
|
|
432
|
+
n_embedding_parameters=32_899_072,
|
|
429
433
|
memory_usage_mb=None,
|
|
430
434
|
max_tokens=None,
|
|
431
435
|
embed_dim=None,
|
|
@@ -482,6 +486,7 @@ flant5_base = ModelMeta(
|
|
|
482
486
|
# "qed": ["train"],
|
|
483
487
|
),
|
|
484
488
|
n_parameters=None,
|
|
489
|
+
n_embedding_parameters=24_674_304,
|
|
485
490
|
memory_usage_mb=944,
|
|
486
491
|
max_tokens=None,
|
|
487
492
|
embed_dim=None,
|
|
@@ -528,6 +533,7 @@ flant5_large = ModelMeta(
|
|
|
528
533
|
# "qed": ["train"],
|
|
529
534
|
),
|
|
530
535
|
n_parameters=None,
|
|
536
|
+
n_embedding_parameters=32_899_072,
|
|
531
537
|
memory_usage_mb=2987,
|
|
532
538
|
max_tokens=None,
|
|
533
539
|
embed_dim=None,
|
|
@@ -574,6 +580,7 @@ flant5_xl = ModelMeta(
|
|
|
574
580
|
# "qed": ["train"],
|
|
575
581
|
),
|
|
576
582
|
n_parameters=None,
|
|
583
|
+
n_embedding_parameters=65_798_144,
|
|
577
584
|
memory_usage_mb=10871,
|
|
578
585
|
max_tokens=None,
|
|
579
586
|
embed_dim=None,
|
|
@@ -620,6 +627,7 @@ flant5_xxl = ModelMeta(
|
|
|
620
627
|
# "qed": ["train"],
|
|
621
628
|
),
|
|
622
629
|
n_parameters=None,
|
|
630
|
+
n_embedding_parameters=131_596_288,
|
|
623
631
|
memory_usage_mb=42980,
|
|
624
632
|
max_tokens=None,
|
|
625
633
|
embed_dim=None,
|
|
@@ -644,6 +652,7 @@ llama2_7b = ModelMeta(
|
|
|
644
652
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
645
653
|
release_date="2023-07-18",
|
|
646
654
|
n_parameters=None,
|
|
655
|
+
n_embedding_parameters=131_072_000,
|
|
647
656
|
memory_usage_mb=None,
|
|
648
657
|
max_tokens=None,
|
|
649
658
|
embed_dim=None,
|
|
@@ -686,6 +695,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
686
695
|
url={https://arxiv.org/abs/2307.09288},
|
|
687
696
|
}""",
|
|
688
697
|
n_parameters=None,
|
|
698
|
+
n_embedding_parameters=131_072_000,
|
|
689
699
|
memory_usage_mb=None,
|
|
690
700
|
max_tokens=None,
|
|
691
701
|
embed_dim=None,
|
|
@@ -710,6 +720,7 @@ mistral_7b = ModelMeta(
|
|
|
710
720
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
711
721
|
release_date="2023-12-11",
|
|
712
722
|
n_parameters=None,
|
|
723
|
+
n_embedding_parameters=None,
|
|
713
724
|
memory_usage_mb=None,
|
|
714
725
|
max_tokens=None,
|
|
715
726
|
embed_dim=None,
|
|
@@ -746,6 +757,7 @@ followir_7b = ModelMeta(
|
|
|
746
757
|
# "jhu-clsp/FollowIR-train"
|
|
747
758
|
),
|
|
748
759
|
n_parameters=None,
|
|
760
|
+
n_embedding_parameters=None,
|
|
749
761
|
memory_usage_mb=13813,
|
|
750
762
|
max_tokens=None,
|
|
751
763
|
embed_dim=None,
|
|
@@ -896,6 +908,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
896
908
|
""",
|
|
897
909
|
training_datasets={"MSMARCO"},
|
|
898
910
|
n_parameters=None,
|
|
911
|
+
n_embedding_parameters=192_086_016,
|
|
899
912
|
memory_usage_mb=None,
|
|
900
913
|
max_tokens=None,
|
|
901
914
|
embed_dim=None,
|
|
@@ -919,6 +932,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
919
932
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
920
933
|
release_date="2022-11-04",
|
|
921
934
|
n_parameters=None,
|
|
935
|
+
n_embedding_parameters=1_024_458_752,
|
|
922
936
|
memory_usage_mb=None,
|
|
923
937
|
max_tokens=None,
|
|
924
938
|
embed_dim=None,
|