mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/abstask.py +6 -6
- mteb/abstasks/aggregated_task.py +4 -10
- mteb/abstasks/clustering_legacy.py +3 -2
- mteb/abstasks/task_metadata.py +2 -3
- mteb/cache.py +7 -4
- mteb/cli/build_cli.py +10 -5
- mteb/cli/generate_model_card.py +4 -3
- mteb/deprecated_evaluator.py +4 -3
- mteb/evaluate.py +4 -1
- mteb/get_tasks.py +4 -3
- mteb/leaderboard/app.py +70 -3
- mteb/models/abs_encoder.py +5 -3
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +17 -0
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +3 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +9 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +8 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +6 -3
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -1
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +2 -1
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +49 -4
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
- mteb/models/search_wrappers.py +4 -2
- mteb/models/sentence_transformer_wrapper.py +10 -10
- mteb/results/benchmark_results.py +67 -43
- mteb/results/model_result.py +3 -1
- mteb/results/task_result.py +22 -17
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
|
@@ -219,6 +219,7 @@ monobert_large = ModelMeta(
|
|
|
219
219
|
fp_options="float16",
|
|
220
220
|
),
|
|
221
221
|
name="castorini/monobert-large-msmarco",
|
|
222
|
+
model_type=["cross-encoder"],
|
|
222
223
|
languages=["eng-Latn"],
|
|
223
224
|
open_weights=True,
|
|
224
225
|
revision="0a97706f3827389da43b83348d5d18c9d53876fa",
|
|
@@ -234,7 +235,6 @@ monobert_large = ModelMeta(
|
|
|
234
235
|
use_instructions=None,
|
|
235
236
|
training_datasets=None,
|
|
236
237
|
framework=["Sentence Transformers", "PyTorch"],
|
|
237
|
-
is_cross_encoder=True,
|
|
238
238
|
)
|
|
239
239
|
|
|
240
240
|
# languages unclear: https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual/discussions/28
|
|
@@ -244,6 +244,7 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
244
244
|
fp_options="float16",
|
|
245
245
|
),
|
|
246
246
|
name="jinaai/jina-reranker-v2-base-multilingual",
|
|
247
|
+
model_type=["cross-encoder"],
|
|
247
248
|
languages=["eng-Latn"],
|
|
248
249
|
open_weights=True,
|
|
249
250
|
revision="126747772a932960028d9f4dc93bd5d9c4869be4",
|
|
@@ -259,7 +260,6 @@ jina_reranker_multilingual = ModelMeta(
|
|
|
259
260
|
use_instructions=None,
|
|
260
261
|
training_datasets=None,
|
|
261
262
|
framework=["Sentence Transformers", "PyTorch"],
|
|
262
|
-
is_cross_encoder=True,
|
|
263
263
|
)
|
|
264
264
|
|
|
265
265
|
bge_reranker_v2_m3 = ModelMeta(
|
|
@@ -268,6 +268,7 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
268
268
|
fp_options="float16",
|
|
269
269
|
),
|
|
270
270
|
name="BAAI/bge-reranker-v2-m3",
|
|
271
|
+
model_type=["cross-encoder"],
|
|
271
272
|
languages=[
|
|
272
273
|
"eng-Latn",
|
|
273
274
|
"ara-Arab",
|
|
@@ -316,7 +317,6 @@ bge_reranker_v2_m3 = ModelMeta(
|
|
|
316
317
|
use_instructions=None,
|
|
317
318
|
training_datasets=bge_m3_training_data,
|
|
318
319
|
framework=["Sentence Transformers", "PyTorch"],
|
|
319
|
-
is_cross_encoder=True,
|
|
320
320
|
citation="""
|
|
321
321
|
@misc{li2023making,
|
|
322
322
|
title={Making Large Language Models A Better Foundation For Dense Retrieval},
|
|
@@ -315,6 +315,7 @@ monot5_small = ModelMeta(
|
|
|
315
315
|
fp_options="float16",
|
|
316
316
|
),
|
|
317
317
|
name="castorini/monot5-small-msmarco-10k",
|
|
318
|
+
model_type=["cross-encoder"],
|
|
318
319
|
languages=["eng-Latn"],
|
|
319
320
|
open_weights=True,
|
|
320
321
|
revision="77f8e3f7b1eb1afe353aa21a7c3a2fc8feca702e",
|
|
@@ -330,7 +331,6 @@ monot5_small = ModelMeta(
|
|
|
330
331
|
use_instructions=None,
|
|
331
332
|
training_datasets=None,
|
|
332
333
|
framework=["PyTorch"],
|
|
333
|
-
is_cross_encoder=True,
|
|
334
334
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
335
335
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
336
336
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -348,6 +348,7 @@ monot5_base = ModelMeta(
|
|
|
348
348
|
fp_options="float16",
|
|
349
349
|
),
|
|
350
350
|
name="castorini/monot5-base-msmarco-10k",
|
|
351
|
+
model_type=["cross-encoder"],
|
|
351
352
|
languages=["eng-Latn"],
|
|
352
353
|
open_weights=True,
|
|
353
354
|
revision="f15657ab3d2a5dd0b9a30c8c0b6a0a73c9cb5884",
|
|
@@ -372,7 +373,6 @@ monot5_base = ModelMeta(
|
|
|
372
373
|
use_instructions=None,
|
|
373
374
|
training_datasets=None,
|
|
374
375
|
framework=["PyTorch"],
|
|
375
|
-
is_cross_encoder=True,
|
|
376
376
|
)
|
|
377
377
|
|
|
378
378
|
monot5_large = ModelMeta(
|
|
@@ -381,6 +381,7 @@ monot5_large = ModelMeta(
|
|
|
381
381
|
fp_options="float16",
|
|
382
382
|
),
|
|
383
383
|
name="castorini/monot5-large-msmarco-10k",
|
|
384
|
+
model_type=["cross-encoder"],
|
|
384
385
|
languages=["eng-Latn"],
|
|
385
386
|
open_weights=True,
|
|
386
387
|
revision="48cfad1d8dd587670393f27ee8ec41fde63e3d98",
|
|
@@ -396,7 +397,6 @@ monot5_large = ModelMeta(
|
|
|
396
397
|
use_instructions=None,
|
|
397
398
|
training_datasets=None,
|
|
398
399
|
framework=["PyTorch"],
|
|
399
|
-
is_cross_encoder=True,
|
|
400
400
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
401
401
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
402
402
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -414,6 +414,7 @@ monot5_3b = ModelMeta(
|
|
|
414
414
|
fp_options="float16",
|
|
415
415
|
),
|
|
416
416
|
name="castorini/monot5-3b-msmarco-10k",
|
|
417
|
+
model_type=["cross-encoder"],
|
|
417
418
|
languages=["eng-Latn"],
|
|
418
419
|
open_weights=True,
|
|
419
420
|
revision="bc0c419a438c81f592f878ce32430a1823f5db6c",
|
|
@@ -429,7 +430,6 @@ monot5_3b = ModelMeta(
|
|
|
429
430
|
use_instructions=None,
|
|
430
431
|
training_datasets=None,
|
|
431
432
|
framework=["PyTorch"],
|
|
432
|
-
is_cross_encoder=True,
|
|
433
433
|
citation="""@misc{rosa2022parameterleftbehinddistillation,
|
|
434
434
|
title={No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval},
|
|
435
435
|
author={Guilherme Moraes Rosa and Luiz Bonifacio and Vitor Jeronymo and Hugo Abonizio and Marzieh Fadaee and Roberto Lotufo and Rodrigo Nogueira},
|
|
@@ -447,6 +447,7 @@ flant5_base = ModelMeta(
|
|
|
447
447
|
fp_options="float16",
|
|
448
448
|
),
|
|
449
449
|
name="google/flan-t5-base",
|
|
450
|
+
model_type=["cross-encoder"],
|
|
450
451
|
languages=["eng-Latn"],
|
|
451
452
|
open_weights=True,
|
|
452
453
|
revision="7bcac572ce56db69c1ea7c8af255c5d7c9672fc2",
|
|
@@ -484,7 +485,6 @@ flant5_base = ModelMeta(
|
|
|
484
485
|
similarity_fn_name=None,
|
|
485
486
|
use_instructions=None,
|
|
486
487
|
framework=["PyTorch"],
|
|
487
|
-
is_cross_encoder=True,
|
|
488
488
|
)
|
|
489
489
|
|
|
490
490
|
flant5_large = ModelMeta(
|
|
@@ -493,6 +493,7 @@ flant5_large = ModelMeta(
|
|
|
493
493
|
fp_options="float16",
|
|
494
494
|
),
|
|
495
495
|
name="google/flan-t5-large",
|
|
496
|
+
model_type=["cross-encoder"],
|
|
496
497
|
languages=["eng-Latn"],
|
|
497
498
|
open_weights=True,
|
|
498
499
|
revision="0613663d0d48ea86ba8cb3d7a44f0f65dc596a2a",
|
|
@@ -530,7 +531,6 @@ flant5_large = ModelMeta(
|
|
|
530
531
|
similarity_fn_name=None,
|
|
531
532
|
use_instructions=None,
|
|
532
533
|
framework=["PyTorch"],
|
|
533
|
-
is_cross_encoder=True,
|
|
534
534
|
)
|
|
535
535
|
|
|
536
536
|
flant5_xl = ModelMeta(
|
|
@@ -539,6 +539,7 @@ flant5_xl = ModelMeta(
|
|
|
539
539
|
fp_options="float16",
|
|
540
540
|
),
|
|
541
541
|
name="google/flan-t5-xl",
|
|
542
|
+
model_type=["cross-encoder"],
|
|
542
543
|
languages=["eng-Latn"],
|
|
543
544
|
open_weights=True,
|
|
544
545
|
revision="7d6315df2c2fb742f0f5b556879d730926ca9001",
|
|
@@ -576,7 +577,6 @@ flant5_xl = ModelMeta(
|
|
|
576
577
|
similarity_fn_name=None,
|
|
577
578
|
use_instructions=None,
|
|
578
579
|
framework=["PyTorch"],
|
|
579
|
-
is_cross_encoder=True,
|
|
580
580
|
)
|
|
581
581
|
|
|
582
582
|
flant5_xxl = ModelMeta(
|
|
@@ -585,6 +585,7 @@ flant5_xxl = ModelMeta(
|
|
|
585
585
|
fp_options="float16",
|
|
586
586
|
),
|
|
587
587
|
name="google/flan-t5-xxl",
|
|
588
|
+
model_type=["cross-encoder"],
|
|
588
589
|
languages=["eng-Latn"],
|
|
589
590
|
open_weights=True,
|
|
590
591
|
revision="ae7c9136adc7555eeccc78cdd960dfd60fb346ce",
|
|
@@ -622,7 +623,6 @@ flant5_xxl = ModelMeta(
|
|
|
622
623
|
similarity_fn_name=None,
|
|
623
624
|
use_instructions=None,
|
|
624
625
|
framework=["PyTorch"],
|
|
625
|
-
is_cross_encoder=True,
|
|
626
626
|
)
|
|
627
627
|
|
|
628
628
|
|
|
@@ -632,6 +632,7 @@ llama2_7b = ModelMeta(
|
|
|
632
632
|
fp_options="float16",
|
|
633
633
|
),
|
|
634
634
|
name="meta-llama/Llama-2-7b-hf",
|
|
635
|
+
model_type=["cross-encoder"],
|
|
635
636
|
languages=["eng-Latn"],
|
|
636
637
|
open_weights=True,
|
|
637
638
|
revision="01c7f73d771dfac7d292323805ebc428287df4f9",
|
|
@@ -656,7 +657,6 @@ llama2_7b = ModelMeta(
|
|
|
656
657
|
primaryClass={cs.CL},
|
|
657
658
|
url={https://arxiv.org/abs/2307.09288},
|
|
658
659
|
}""",
|
|
659
|
-
is_cross_encoder=True,
|
|
660
660
|
)
|
|
661
661
|
|
|
662
662
|
llama2_7b_chat = ModelMeta(
|
|
@@ -665,6 +665,7 @@ llama2_7b_chat = ModelMeta(
|
|
|
665
665
|
fp_options="float16",
|
|
666
666
|
),
|
|
667
667
|
name="meta-llama/Llama-2-7b-chat-hf",
|
|
668
|
+
model_type=["cross-encoder"],
|
|
668
669
|
languages=["eng-Latn"],
|
|
669
670
|
open_weights=True,
|
|
670
671
|
revision="f5db02db724555f92da89c216ac04704f23d4590",
|
|
@@ -689,7 +690,6 @@ llama2_7b_chat = ModelMeta(
|
|
|
689
690
|
use_instructions=None,
|
|
690
691
|
training_datasets=None,
|
|
691
692
|
framework=["PyTorch"],
|
|
692
|
-
is_cross_encoder=True,
|
|
693
693
|
)
|
|
694
694
|
|
|
695
695
|
mistral_7b = ModelMeta(
|
|
@@ -698,6 +698,7 @@ mistral_7b = ModelMeta(
|
|
|
698
698
|
fp_options="float16",
|
|
699
699
|
),
|
|
700
700
|
name="mistralai/Mistral-7B-Instruct-v0.2",
|
|
701
|
+
model_type=["cross-encoder"],
|
|
701
702
|
languages=["eng-Latn"],
|
|
702
703
|
open_weights=True,
|
|
703
704
|
revision="3ad372fc79158a2148299e3318516c786aeded6c",
|
|
@@ -722,7 +723,6 @@ mistral_7b = ModelMeta(
|
|
|
722
723
|
primaryClass={cs.CL},
|
|
723
724
|
url={https://arxiv.org/abs/2310.06825},
|
|
724
725
|
}""",
|
|
725
|
-
is_cross_encoder=True,
|
|
726
726
|
)
|
|
727
727
|
|
|
728
728
|
followir_7b = ModelMeta(
|
|
@@ -731,6 +731,7 @@ followir_7b = ModelMeta(
|
|
|
731
731
|
fp_options="float16",
|
|
732
732
|
),
|
|
733
733
|
name="jhu-clsp/FollowIR-7B",
|
|
734
|
+
model_type=["cross-encoder"],
|
|
734
735
|
languages=["eng-Latn"],
|
|
735
736
|
open_weights=True,
|
|
736
737
|
revision="4d25d437e38b510c01852070c0731e8f6e1875d1",
|
|
@@ -758,7 +759,6 @@ followir_7b = ModelMeta(
|
|
|
758
759
|
primaryClass={cs.IR}
|
|
759
760
|
}
|
|
760
761
|
""",
|
|
761
|
-
is_cross_encoder=True,
|
|
762
762
|
)
|
|
763
763
|
|
|
764
764
|
|
|
@@ -874,6 +874,7 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
874
874
|
fp_options="float16",
|
|
875
875
|
),
|
|
876
876
|
name="unicamp-dl/mt5-base-mmarco-v2",
|
|
877
|
+
model_type=["cross-encoder"],
|
|
877
878
|
languages=mt5_languages,
|
|
878
879
|
open_weights=True,
|
|
879
880
|
revision="cc0a949b9f21efcaba45c8cabb998ad02ce8d4e7",
|
|
@@ -898,7 +899,6 @@ mt5_base_mmarco_v2 = ModelMeta(
|
|
|
898
899
|
similarity_fn_name=None,
|
|
899
900
|
use_instructions=None,
|
|
900
901
|
framework=["PyTorch"],
|
|
901
|
-
is_cross_encoder=True,
|
|
902
902
|
)
|
|
903
903
|
|
|
904
904
|
mt5_13b_mmarco_100k = ModelMeta(
|
|
@@ -907,6 +907,7 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
907
907
|
fp_options="float16",
|
|
908
908
|
),
|
|
909
909
|
name="unicamp-dl/mt5-13b-mmarco-100k",
|
|
910
|
+
model_type=["cross-encoder"],
|
|
910
911
|
languages=mt5_languages,
|
|
911
912
|
open_weights=True,
|
|
912
913
|
revision="e1a4317e102a525ea9e16745ad21394a4f1bffbc",
|
|
@@ -922,5 +923,4 @@ mt5_13b_mmarco_100k = ModelMeta(
|
|
|
922
923
|
use_instructions=None,
|
|
923
924
|
training_datasets=None,
|
|
924
925
|
framework=["PyTorch"],
|
|
925
|
-
is_cross_encoder=True,
|
|
926
926
|
)
|
|
@@ -9,6 +9,7 @@ from .stella_models import stella_zh_datasets
|
|
|
9
9
|
ritrieve_zh_v1 = ModelMeta(
|
|
10
10
|
loader=SentenceTransformerEncoderWrapper,
|
|
11
11
|
name="richinfoai/ritrieve_zh_v1",
|
|
12
|
+
model_type=["dense"],
|
|
12
13
|
languages=["zho-Hans"],
|
|
13
14
|
open_weights=True,
|
|
14
15
|
revision="f8d5a707656c55705027678e311f9202c8ced12c",
|
|
@@ -238,6 +238,7 @@ GIGA_task_prompts = {
|
|
|
238
238
|
rubert_tiny = ModelMeta(
|
|
239
239
|
loader=sentence_transformers_loader,
|
|
240
240
|
name="cointegrated/rubert-tiny",
|
|
241
|
+
model_type=["dense"],
|
|
241
242
|
languages=["rus-Cyrl"],
|
|
242
243
|
open_weights=True,
|
|
243
244
|
revision="5441c5ea8026d4f6d7505ec004845409f1259fb1",
|
|
@@ -263,6 +264,7 @@ rubert_tiny = ModelMeta(
|
|
|
263
264
|
rubert_tiny2 = ModelMeta(
|
|
264
265
|
loader=sentence_transformers_loader,
|
|
265
266
|
name="cointegrated/rubert-tiny2",
|
|
267
|
+
model_type=["dense"],
|
|
266
268
|
languages=["rus-Cyrl"],
|
|
267
269
|
open_weights=True,
|
|
268
270
|
revision="dad72b8f77c5eef6995dd3e4691b758ba56b90c3",
|
|
@@ -289,6 +291,7 @@ rubert_tiny2 = ModelMeta(
|
|
|
289
291
|
sbert_large_nlu_ru = ModelMeta(
|
|
290
292
|
loader=sentence_transformers_loader,
|
|
291
293
|
name="ai-forever/sbert_large_nlu_ru",
|
|
294
|
+
model_type=["dense"],
|
|
292
295
|
languages=["rus-Cyrl"],
|
|
293
296
|
open_weights=True,
|
|
294
297
|
revision="af977d5dfa46a3635e29bf0ef383f2df2a08d47a",
|
|
@@ -314,6 +317,7 @@ sbert_large_nlu_ru = ModelMeta(
|
|
|
314
317
|
sbert_large_mt_nlu_ru = ModelMeta(
|
|
315
318
|
loader=sentence_transformers_loader,
|
|
316
319
|
name="ai-forever/sbert_large_mt_nlu_ru",
|
|
320
|
+
model_type=["dense"],
|
|
317
321
|
languages=["rus-Cyrl"],
|
|
318
322
|
open_weights=True,
|
|
319
323
|
revision="05300876c2b83f46d3ddd422a7f17e45cf633bb0",
|
|
@@ -341,6 +345,7 @@ user_base_ru = ModelMeta(
|
|
|
341
345
|
model_prompts={"query": "query: ", "document": "passage: "},
|
|
342
346
|
),
|
|
343
347
|
name="deepvk/USER-base",
|
|
348
|
+
model_type=["dense"],
|
|
344
349
|
languages=["rus-Cyrl"],
|
|
345
350
|
open_weights=True,
|
|
346
351
|
revision="436a489a2087d61aa670b3496a9915f84e46c861",
|
|
@@ -401,6 +406,7 @@ user_base_ru = ModelMeta(
|
|
|
401
406
|
user_bge_m3 = ModelMeta(
|
|
402
407
|
loader=sentence_transformers_loader,
|
|
403
408
|
name="deepvk/USER-bge-m3",
|
|
409
|
+
model_type=["dense"],
|
|
404
410
|
languages=["rus-Cyrl"],
|
|
405
411
|
open_weights=True,
|
|
406
412
|
revision="0cc6cfe48e260fb0474c753087a69369e88709ae",
|
|
@@ -451,6 +457,7 @@ user_bge_m3 = ModelMeta(
|
|
|
451
457
|
deberta_v1_ru = ModelMeta(
|
|
452
458
|
loader=sentence_transformers_loader,
|
|
453
459
|
name="deepvk/deberta-v1-base",
|
|
460
|
+
model_type=["dense"],
|
|
454
461
|
languages=["rus-Cyrl"],
|
|
455
462
|
open_weights=True,
|
|
456
463
|
revision="bdd30b0e19757e6940c92c7aff19e8fc0a60dff4",
|
|
@@ -481,6 +488,7 @@ deberta_v1_ru = ModelMeta(
|
|
|
481
488
|
rubert_base_cased = ModelMeta(
|
|
482
489
|
loader=sentence_transformers_loader,
|
|
483
490
|
name="DeepPavlov/rubert-base-cased",
|
|
491
|
+
model_type=["dense"],
|
|
484
492
|
languages=["rus-Cyrl"],
|
|
485
493
|
open_weights=True,
|
|
486
494
|
revision="4036cab694767a299f2b9e6492909664d9414229",
|
|
@@ -516,6 +524,7 @@ rubert_base_cased = ModelMeta(
|
|
|
516
524
|
distilrubert_small_cased_conversational = ModelMeta(
|
|
517
525
|
loader=sentence_transformers_loader,
|
|
518
526
|
name="DeepPavlov/distilrubert-small-cased-conversational",
|
|
527
|
+
model_type=["dense"],
|
|
519
528
|
languages=["rus-Cyrl"],
|
|
520
529
|
open_weights=True,
|
|
521
530
|
revision="e348066b4a7279b97138038299bddc6580a9169a",
|
|
@@ -550,6 +559,7 @@ distilrubert_small_cased_conversational = ModelMeta(
|
|
|
550
559
|
rubert_base_cased_sentence = ModelMeta(
|
|
551
560
|
loader=sentence_transformers_loader,
|
|
552
561
|
name="DeepPavlov/rubert-base-cased-sentence",
|
|
562
|
+
model_type=["dense"],
|
|
553
563
|
languages=["rus-Cyrl"],
|
|
554
564
|
open_weights=True,
|
|
555
565
|
revision="78b5122d6365337dd4114281b0d08cd1edbb3bc8",
|
|
@@ -574,6 +584,7 @@ rubert_base_cased_sentence = ModelMeta(
|
|
|
574
584
|
labse_en_ru = ModelMeta(
|
|
575
585
|
loader=sentence_transformers_loader,
|
|
576
586
|
name="cointegrated/LaBSE-en-ru",
|
|
587
|
+
model_type=["dense"],
|
|
577
588
|
languages=["rus-Cyrl"],
|
|
578
589
|
open_weights=True,
|
|
579
590
|
revision="cf0714e606d4af551e14ad69a7929cd6b0da7f7e",
|
|
@@ -601,6 +612,7 @@ turbo_models_datasets = set(
|
|
|
601
612
|
rubert_tiny_turbo = ModelMeta(
|
|
602
613
|
loader=sentence_transformers_loader,
|
|
603
614
|
name="sergeyzh/rubert-tiny-turbo",
|
|
615
|
+
model_type=["dense"],
|
|
604
616
|
languages=["rus-Cyrl"],
|
|
605
617
|
open_weights=True,
|
|
606
618
|
revision="8ce0cf757446ce9bb2d5f5a4ac8103c7a1049054",
|
|
@@ -623,6 +635,7 @@ rubert_tiny_turbo = ModelMeta(
|
|
|
623
635
|
rubert_mini_frida = ModelMeta(
|
|
624
636
|
loader=sentence_transformers_loader,
|
|
625
637
|
name="sergeyzh/rubert-mini-frida",
|
|
638
|
+
model_type=["dense"],
|
|
626
639
|
languages=["rus-Cyrl"],
|
|
627
640
|
open_weights=True,
|
|
628
641
|
revision="19b279b78afd945b5ccae78f63e284909814adc2",
|
|
@@ -650,6 +663,7 @@ rubert_mini_frida = ModelMeta(
|
|
|
650
663
|
labse_ru_turbo = ModelMeta(
|
|
651
664
|
loader=sentence_transformers_loader,
|
|
652
665
|
name="sergeyzh/LaBSE-ru-turbo",
|
|
666
|
+
model_type=["dense"],
|
|
653
667
|
languages=["rus-Cyrl"],
|
|
654
668
|
open_weights=True,
|
|
655
669
|
revision="1940b046c6b5e125df11722b899130329d0a46da",
|
|
@@ -698,6 +712,7 @@ rosberta_ru_en = ModelMeta(
|
|
|
698
712
|
model_prompts=rosberta_prompts,
|
|
699
713
|
),
|
|
700
714
|
name="ai-forever/ru-en-RoSBERTa",
|
|
715
|
+
model_type=["dense"],
|
|
701
716
|
languages=["rus-Cyrl"],
|
|
702
717
|
open_weights=True,
|
|
703
718
|
revision="89fb1651989adbb1cfcfdedafd7d102951ad0555",
|
|
@@ -863,6 +878,7 @@ frida = ModelMeta(
|
|
|
863
878
|
model_prompts=frida_prompts,
|
|
864
879
|
),
|
|
865
880
|
name="ai-forever/FRIDA",
|
|
881
|
+
model_type=["dense"],
|
|
866
882
|
languages=["rus-Cyrl"],
|
|
867
883
|
open_weights=True,
|
|
868
884
|
revision="7292217af9a9e6dbf07048f76b434ad1e2aa8b76",
|
|
@@ -896,6 +912,7 @@ giga_embeddings = ModelMeta(
|
|
|
896
912
|
},
|
|
897
913
|
),
|
|
898
914
|
name="ai-sage/Giga-Embeddings-instruct",
|
|
915
|
+
model_type=["dense"],
|
|
899
916
|
languages=["eng-Latn", "rus-Cyrl"],
|
|
900
917
|
open_weights=True,
|
|
901
918
|
revision="0ad5b29bfecd806cecc9d66b927d828a736594dc",
|
|
@@ -927,6 +944,7 @@ berta_training_datasets = (
|
|
|
927
944
|
berta = ModelMeta(
|
|
928
945
|
loader=sentence_transformers_loader,
|
|
929
946
|
name="sergeyzh/BERTA",
|
|
947
|
+
model_type=["dense"],
|
|
930
948
|
languages=["rus-Cyrl"],
|
|
931
949
|
open_weights=True,
|
|
932
950
|
revision="914c8c8aed14042ed890fc2c662d5e9e66b2faa7",
|
|
@@ -999,6 +1017,7 @@ user2_small = ModelMeta(
|
|
|
999
1017
|
model_prompts=user2_prompts,
|
|
1000
1018
|
),
|
|
1001
1019
|
name="deepvk/USER2-small",
|
|
1020
|
+
model_type=["dense"],
|
|
1002
1021
|
languages=["rus-Cyrl"],
|
|
1003
1022
|
open_weights=True,
|
|
1004
1023
|
revision="23f65b34cf7632032061f5cc66c14714e6d4cee4",
|
|
@@ -1031,6 +1050,7 @@ user2_base = ModelMeta(
|
|
|
1031
1050
|
model_prompts=user2_prompts,
|
|
1032
1051
|
),
|
|
1033
1052
|
name="deepvk/USER2-base",
|
|
1053
|
+
model_type=["dense"],
|
|
1034
1054
|
languages=["rus-Cyrl"],
|
|
1035
1055
|
open_weights=True,
|
|
1036
1056
|
revision="0942cf96909b6d52e61f79a01e2d30c7be640b27",
|
|
@@ -32,6 +32,7 @@ cl_nagoya_ruri_v3_30m = ModelMeta(
|
|
|
32
32
|
model_prompts=RURI_V3_PROMPTS,
|
|
33
33
|
),
|
|
34
34
|
name="cl-nagoya/ruri-v3-30m",
|
|
35
|
+
model_type=["dense"],
|
|
35
36
|
languages=["jpn-Jpan"],
|
|
36
37
|
open_weights=True,
|
|
37
38
|
revision="24899e5de370b56d179604a007c0d727bf144504",
|
|
@@ -62,6 +63,7 @@ cl_nagoya_ruri_v3_70m = ModelMeta(
|
|
|
62
63
|
model_prompts=RURI_V3_PROMPTS,
|
|
63
64
|
),
|
|
64
65
|
name="cl-nagoya/ruri-v3-70m",
|
|
66
|
+
model_type=["dense"],
|
|
65
67
|
languages=["jpn-Jpan"],
|
|
66
68
|
open_weights=True,
|
|
67
69
|
revision="07a8b0aba47d29d2ca21f89b915c1efe2c23d1cc",
|
|
@@ -90,6 +92,7 @@ cl_nagoya_ruri_v3_130m = ModelMeta(
|
|
|
90
92
|
model_prompts=RURI_V3_PROMPTS,
|
|
91
93
|
),
|
|
92
94
|
name="cl-nagoya/ruri-v3-130m",
|
|
95
|
+
model_type=["dense"],
|
|
93
96
|
languages=["jpn-Jpan"],
|
|
94
97
|
open_weights=True,
|
|
95
98
|
revision="e3114c6ee10dbab8b4b235fbc6dcf9dd4d5ac1a6",
|
|
@@ -118,6 +121,7 @@ cl_nagoya_ruri_v3_310m = ModelMeta(
|
|
|
118
121
|
model_prompts=RURI_V3_PROMPTS,
|
|
119
122
|
),
|
|
120
123
|
name="cl-nagoya/ruri-v3-310m",
|
|
124
|
+
model_type=["dense"],
|
|
121
125
|
languages=["jpn-Jpan"],
|
|
122
126
|
open_weights=True,
|
|
123
127
|
revision="18b60fb8c2b9df296fb4212bb7d23ef94e579cd3",
|
|
@@ -147,6 +151,7 @@ cl_nagoya_ruri_small_v2 = ModelMeta(
|
|
|
147
151
|
trust_remote_code=True,
|
|
148
152
|
),
|
|
149
153
|
name="cl-nagoya/ruri-small-v2",
|
|
154
|
+
model_type=["dense"],
|
|
150
155
|
languages=["jpn-Jpan"],
|
|
151
156
|
open_weights=True,
|
|
152
157
|
revision="db18646e673b713cd0518a5bb0fefdce21e77cd9",
|
|
@@ -175,6 +180,7 @@ cl_nagoya_ruri_base_v2 = ModelMeta(
|
|
|
175
180
|
model_prompts=RURI_V1_V2_PROMPTS,
|
|
176
181
|
),
|
|
177
182
|
name="cl-nagoya/ruri-base-v2",
|
|
183
|
+
model_type=["dense"],
|
|
178
184
|
languages=["jpn-Jpan"],
|
|
179
185
|
open_weights=True,
|
|
180
186
|
revision="8ce03882903668a01c83ca3b8111ac025a3bc734",
|
|
@@ -203,6 +209,7 @@ cl_nagoya_ruri_large_v2 = ModelMeta(
|
|
|
203
209
|
model_prompts=RURI_V1_V2_PROMPTS,
|
|
204
210
|
),
|
|
205
211
|
name="cl-nagoya/ruri-large-v2",
|
|
212
|
+
model_type=["dense"],
|
|
206
213
|
languages=["jpn-Jpan"],
|
|
207
214
|
open_weights=True,
|
|
208
215
|
revision="42898ef34a5574977380ebf0dfd28cbfbd36438b",
|
|
@@ -232,6 +239,7 @@ cl_nagoya_ruri_small_v1 = ModelMeta(
|
|
|
232
239
|
trust_remote_code=True,
|
|
233
240
|
),
|
|
234
241
|
name="cl-nagoya/ruri-small",
|
|
242
|
+
model_type=["dense"],
|
|
235
243
|
languages=["jpn-Jpan"],
|
|
236
244
|
open_weights=True,
|
|
237
245
|
revision="bc56ce90cd7a979f6eb199fc52dfe700bfd94bc3",
|
|
@@ -260,6 +268,7 @@ cl_nagoya_ruri_base_v1 = ModelMeta(
|
|
|
260
268
|
model_prompts=RURI_V1_V2_PROMPTS,
|
|
261
269
|
),
|
|
262
270
|
name="cl-nagoya/ruri-base",
|
|
271
|
+
model_type=["dense"],
|
|
263
272
|
languages=["jpn-Jpan"],
|
|
264
273
|
open_weights=True,
|
|
265
274
|
revision="1ae40b8b6c78518a499425086bab8fc16c2e4b0e",
|
|
@@ -289,6 +298,7 @@ cl_nagoya_ruri_large_v1 = ModelMeta(
|
|
|
289
298
|
model_prompts=RURI_V1_V2_PROMPTS,
|
|
290
299
|
),
|
|
291
300
|
name="cl-nagoya/ruri-large",
|
|
301
|
+
model_type=["dense"],
|
|
292
302
|
languages=["jpn-Jpan"],
|
|
293
303
|
open_weights=True,
|
|
294
304
|
revision="a011c39b13e8bc137ee13c6bc82191ece46c414c",
|
|
@@ -46,6 +46,7 @@ SFR_Embedding_2_R = ModelMeta(
|
|
|
46
46
|
normalized=True,
|
|
47
47
|
),
|
|
48
48
|
name="Salesforce/SFR-Embedding-2_R",
|
|
49
|
+
model_type=["dense"],
|
|
49
50
|
languages=["eng-Latn"],
|
|
50
51
|
open_weights=True,
|
|
51
52
|
revision="91762139d94ed4371a9fa31db5551272e0b83818",
|
|
@@ -83,6 +84,7 @@ SFR_Embedding_Code_2B_R = ModelMeta(
|
|
|
83
84
|
normalized=True,
|
|
84
85
|
),
|
|
85
86
|
name="Salesforce/SFR-Embedding-Code-2B_R",
|
|
87
|
+
model_type=["dense"],
|
|
86
88
|
languages=["eng-Latn"],
|
|
87
89
|
open_weights=True,
|
|
88
90
|
revision="c73d8631a005876ed5abde34db514b1fb6566973",
|
|
@@ -120,6 +122,7 @@ SFR_Embedding_Mistral = ModelMeta(
|
|
|
120
122
|
normalized=True,
|
|
121
123
|
),
|
|
122
124
|
name="Salesforce/SFR-Embedding-Mistral",
|
|
125
|
+
model_type=["dense"],
|
|
123
126
|
languages=["eng-Latn"],
|
|
124
127
|
open_weights=True,
|
|
125
128
|
revision="938c560d1c236aa563b2dbdf084f28ab28bccb11",
|
|
@@ -118,6 +118,7 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
|
118
118
|
max_seq_length=8192,
|
|
119
119
|
),
|
|
120
120
|
name="sbintuitions/sarashina-embedding-v2-1b",
|
|
121
|
+
model_type=["dense"],
|
|
121
122
|
languages=["jpn-Jpan"],
|
|
122
123
|
open_weights=True,
|
|
123
124
|
revision="1f3408afaa7b617e3445d891310a9c26dd0c68a5",
|
|
@@ -143,6 +144,7 @@ sbintuitions_sarashina_embedding_v2_1b = ModelMeta(
|
|
|
143
144
|
sbintuitions_sarashina_embedding_v1_1b = ModelMeta(
|
|
144
145
|
loader=sentence_transformers_loader,
|
|
145
146
|
name="sbintuitions/sarashina-embedding-v1-1b",
|
|
147
|
+
model_type=["dense"],
|
|
146
148
|
languages=["jpn-Jpan"],
|
|
147
149
|
open_weights=True,
|
|
148
150
|
revision="d060fcd8984075071e7fad81baff035cbb3b6c7e",
|