mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. mteb/abstasks/abstask.py +6 -6
  2. mteb/abstasks/aggregated_task.py +4 -10
  3. mteb/abstasks/clustering_legacy.py +3 -2
  4. mteb/abstasks/task_metadata.py +2 -3
  5. mteb/cache.py +7 -4
  6. mteb/cli/build_cli.py +10 -5
  7. mteb/cli/generate_model_card.py +4 -3
  8. mteb/deprecated_evaluator.py +4 -3
  9. mteb/evaluate.py +4 -1
  10. mteb/get_tasks.py +4 -3
  11. mteb/leaderboard/app.py +70 -3
  12. mteb/models/abs_encoder.py +5 -3
  13. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
  14. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
  15. mteb/models/model_implementations/align_models.py +1 -0
  16. mteb/models/model_implementations/amazon_models.py +1 -0
  17. mteb/models/model_implementations/andersborges.py +2 -0
  18. mteb/models/model_implementations/ara_models.py +1 -0
  19. mteb/models/model_implementations/arctic_models.py +8 -0
  20. mteb/models/model_implementations/b1ade_models.py +1 -0
  21. mteb/models/model_implementations/bedrock_models.py +4 -0
  22. mteb/models/model_implementations/bge_models.py +17 -0
  23. mteb/models/model_implementations/bica_model.py +1 -0
  24. mteb/models/model_implementations/blip2_models.py +2 -0
  25. mteb/models/model_implementations/blip_models.py +8 -0
  26. mteb/models/model_implementations/bm25.py +1 -0
  27. mteb/models/model_implementations/bmretriever_models.py +4 -0
  28. mteb/models/model_implementations/cadet_models.py +1 -0
  29. mteb/models/model_implementations/cde_models.py +2 -0
  30. mteb/models/model_implementations/clip_models.py +3 -0
  31. mteb/models/model_implementations/clips_models.py +3 -0
  32. mteb/models/model_implementations/codefuse_models.py +3 -0
  33. mteb/models/model_implementations/codesage_models.py +3 -0
  34. mteb/models/model_implementations/cohere_models.py +4 -0
  35. mteb/models/model_implementations/cohere_v.py +5 -0
  36. mteb/models/model_implementations/colpali_models.py +3 -0
  37. mteb/models/model_implementations/colqwen_models.py +9 -0
  38. mteb/models/model_implementations/colsmol_models.py +2 -0
  39. mteb/models/model_implementations/conan_models.py +1 -0
  40. mteb/models/model_implementations/dino_models.py +19 -0
  41. mteb/models/model_implementations/e5_instruct.py +4 -0
  42. mteb/models/model_implementations/e5_models.py +9 -0
  43. mteb/models/model_implementations/e5_v.py +1 -0
  44. mteb/models/model_implementations/eagerworks_models.py +1 -0
  45. mteb/models/model_implementations/emillykkejensen_models.py +3 -0
  46. mteb/models/model_implementations/en_code_retriever.py +1 -0
  47. mteb/models/model_implementations/euler_models.py +1 -0
  48. mteb/models/model_implementations/evaclip_models.py +4 -0
  49. mteb/models/model_implementations/fa_models.py +8 -0
  50. mteb/models/model_implementations/facebookai.py +2 -0
  51. mteb/models/model_implementations/geogpt_models.py +1 -0
  52. mteb/models/model_implementations/gme_v_models.py +6 -3
  53. mteb/models/model_implementations/google_models.py +5 -0
  54. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
  55. mteb/models/model_implementations/gritlm_models.py +2 -0
  56. mteb/models/model_implementations/gte_models.py +9 -0
  57. mteb/models/model_implementations/hinvec_models.py +1 -0
  58. mteb/models/model_implementations/human.py +1 -0
  59. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  60. mteb/models/model_implementations/inf_models.py +2 -0
  61. mteb/models/model_implementations/jasper_models.py +2 -0
  62. mteb/models/model_implementations/jina_clip.py +1 -0
  63. mteb/models/model_implementations/jina_models.py +7 -1
  64. mteb/models/model_implementations/kalm_models.py +6 -0
  65. mteb/models/model_implementations/kblab.py +1 -0
  66. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
  67. mteb/models/model_implementations/kfst.py +1 -0
  68. mteb/models/model_implementations/kowshik24_models.py +1 -0
  69. mteb/models/model_implementations/lens_models.py +2 -0
  70. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  71. mteb/models/model_implementations/linq_models.py +1 -0
  72. mteb/models/model_implementations/listconranker.py +1 -1
  73. mteb/models/model_implementations/llm2clip_models.py +3 -0
  74. mteb/models/model_implementations/llm2vec_models.py +8 -0
  75. mteb/models/model_implementations/mcinext_models.py +7 -1
  76. mteb/models/model_implementations/mdbr_models.py +2 -0
  77. mteb/models/model_implementations/misc_models.py +63 -0
  78. mteb/models/model_implementations/mme5_models.py +1 -0
  79. mteb/models/model_implementations/moco_models.py +2 -0
  80. mteb/models/model_implementations/model2vec_models.py +13 -0
  81. mteb/models/model_implementations/moka_models.py +3 -0
  82. mteb/models/model_implementations/mxbai_models.py +3 -0
  83. mteb/models/model_implementations/nbailab.py +3 -0
  84. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  85. mteb/models/model_implementations/nomic_models.py +6 -0
  86. mteb/models/model_implementations/nomic_models_vision.py +1 -0
  87. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
  88. mteb/models/model_implementations/nvidia_models.py +3 -0
  89. mteb/models/model_implementations/octen_models.py +195 -0
  90. mteb/models/model_implementations/openai_models.py +5 -0
  91. mteb/models/model_implementations/openclip_models.py +8 -0
  92. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  93. mteb/models/model_implementations/ops_moa_models.py +2 -0
  94. mteb/models/model_implementations/pawan_models.py +1 -0
  95. mteb/models/model_implementations/piccolo_models.py +2 -0
  96. mteb/models/model_implementations/promptriever_models.py +4 -0
  97. mteb/models/model_implementations/pylate_models.py +3 -0
  98. mteb/models/model_implementations/qodo_models.py +2 -0
  99. mteb/models/model_implementations/qtack_models.py +1 -0
  100. mteb/models/model_implementations/qwen3_models.py +3 -0
  101. mteb/models/model_implementations/qzhou_models.py +2 -0
  102. mteb/models/model_implementations/random_baseline.py +2 -1
  103. mteb/models/model_implementations/rasgaard_models.py +1 -0
  104. mteb/models/model_implementations/reasonir_model.py +1 -0
  105. mteb/models/model_implementations/repllama_models.py +2 -0
  106. mteb/models/model_implementations/rerankers_custom.py +3 -3
  107. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  108. mteb/models/model_implementations/richinfoai_models.py +1 -0
  109. mteb/models/model_implementations/ru_sentence_models.py +20 -0
  110. mteb/models/model_implementations/ruri_models.py +10 -0
  111. mteb/models/model_implementations/salesforce_models.py +3 -0
  112. mteb/models/model_implementations/samilpwc_models.py +1 -0
  113. mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
  114. mteb/models/model_implementations/searchmap_models.py +1 -0
  115. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
  116. mteb/models/model_implementations/seed_models.py +1 -0
  117. mteb/models/model_implementations/sentence_transformers_models.py +18 -0
  118. mteb/models/model_implementations/shuu_model.py +32 -31
  119. mteb/models/model_implementations/siglip_models.py +10 -0
  120. mteb/models/model_implementations/sonar_models.py +1 -0
  121. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
  122. mteb/models/model_implementations/stella_models.py +6 -0
  123. mteb/models/model_implementations/tarka_models.py +2 -0
  124. mteb/models/model_implementations/ua_sentence_models.py +1 -0
  125. mteb/models/model_implementations/uae_models.py +1 -0
  126. mteb/models/model_implementations/vdr_models.py +1 -0
  127. mteb/models/model_implementations/vi_vn_models.py +6 -0
  128. mteb/models/model_implementations/vista_models.py +2 -0
  129. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  130. mteb/models/model_implementations/voyage_models.py +15 -0
  131. mteb/models/model_implementations/voyage_v.py +1 -0
  132. mteb/models/model_implementations/xyz_models.py +1 -0
  133. mteb/models/model_implementations/youtu_models.py +1 -0
  134. mteb/models/model_implementations/yuan_models.py +1 -0
  135. mteb/models/model_implementations/yuan_models_en.py +1 -0
  136. mteb/models/model_meta.py +49 -4
  137. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
  138. mteb/models/search_wrappers.py +4 -2
  139. mteb/models/sentence_transformer_wrapper.py +10 -10
  140. mteb/results/benchmark_results.py +67 -43
  141. mteb/results/model_result.py +3 -1
  142. mteb/results/task_result.py +22 -17
  143. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
  144. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
  145. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
  146. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
  147. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
  148. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
@@ -319,6 +319,7 @@ bge_small_en_v1_5 = ModelMeta(
319
319
  model_prompts=model_prompts,
320
320
  ),
321
321
  name="BAAI/bge-small-en-v1.5",
322
+ model_type=["dense"],
322
323
  languages=["eng-Latn"],
323
324
  open_weights=True,
324
325
  revision="5c38ec7c405ec4b44b94cc5a9bb96e735b38267a",
@@ -344,6 +345,7 @@ bge_base_en_v1_5 = ModelMeta(
344
345
  model_prompts=model_prompts,
345
346
  ),
346
347
  name="BAAI/bge-base-en-v1.5",
348
+ model_type=["dense"],
347
349
  languages=["eng-Latn"],
348
350
  open_weights=True,
349
351
  revision="a5beb1e3e68b9ab74eb54cfd186867f64f240e1a",
@@ -369,6 +371,7 @@ bge_large_en_v1_5 = ModelMeta(
369
371
  model_prompts=model_prompts,
370
372
  ),
371
373
  name="BAAI/bge-large-en-v1.5",
374
+ model_type=["dense"],
372
375
  languages=["eng-Latn"],
373
376
  open_weights=True,
374
377
  revision="d4aa6901d3a41ba39fb536a557fa166f842b0e09",
@@ -394,6 +397,7 @@ bge_small_zh = ModelMeta(
394
397
  model_prompts=model_prompts_zh,
395
398
  ),
396
399
  name="BAAI/bge-small-zh",
400
+ model_type=["dense"],
397
401
  languages=["zho-Hans"],
398
402
  open_weights=True,
399
403
  revision="1d2363c5de6ce9ba9c890c8e23a4c72dce540ca8",
@@ -420,6 +424,7 @@ bge_base_zh = ModelMeta(
420
424
  model_prompts=model_prompts_zh,
421
425
  ),
422
426
  name="BAAI/bge-base-zh",
427
+ model_type=["dense"],
423
428
  languages=["zho-Hans"],
424
429
  open_weights=True,
425
430
  revision="0e5f83d4895db7955e4cb9ed37ab73f7ded339b6",
@@ -446,6 +451,7 @@ bge_large_zh = ModelMeta(
446
451
  model_prompts=model_prompts_zh,
447
452
  ),
448
453
  name="BAAI/bge-large-zh",
454
+ model_type=["dense"],
449
455
  languages=["zho-Hans"],
450
456
  open_weights=True,
451
457
  revision="b5d9f5c027e87b6f0b6fa4b614f8f9cdc45ce0e8",
@@ -472,6 +478,7 @@ bge_small_en = ModelMeta(
472
478
  model_prompts=model_prompts,
473
479
  ),
474
480
  name="BAAI/bge-small-en",
481
+ model_type=["dense"],
475
482
  languages=["eng-Latn"],
476
483
  open_weights=True,
477
484
  revision="4778d71a06863076696b03fd2777eb118712cad8",
@@ -498,6 +505,7 @@ bge_base_en = ModelMeta(
498
505
  model_prompts=model_prompts,
499
506
  ),
500
507
  name="BAAI/bge-base-en",
508
+ model_type=["dense"],
501
509
  languages=["eng-Latn"],
502
510
  open_weights=True,
503
511
  revision="b737bf5dcc6ee8bdc530531266b4804a5d77b5d8",
@@ -524,6 +532,7 @@ bge_large_en = ModelMeta(
524
532
  model_prompts=model_prompts,
525
533
  ),
526
534
  name="BAAI/bge-large-en",
535
+ model_type=["dense"],
527
536
  languages=["eng-Latn"],
528
537
  open_weights=True,
529
538
  revision="abe7d9d814b775ca171121fb03f394dc42974275",
@@ -551,6 +560,7 @@ bge_small_zh_v1_5 = ModelMeta(
551
560
  model_prompts=model_prompts_zh,
552
561
  ),
553
562
  name="BAAI/bge-small-zh-v1.5",
563
+ model_type=["dense"],
554
564
  languages=["zho-Hans"],
555
565
  open_weights=True,
556
566
  revision="7999e1d3359715c523056ef9478215996d62a620",
@@ -576,6 +586,7 @@ bge_base_zh_v1_5 = ModelMeta(
576
586
  model_prompts=model_prompts_zh,
577
587
  ),
578
588
  name="BAAI/bge-base-zh-v1.5",
589
+ model_type=["dense"],
579
590
  languages=["zho-Hans"],
580
591
  open_weights=True,
581
592
  revision="f03589ceff5aac7111bd60cfc7d497ca17ecac65",
@@ -601,6 +612,7 @@ bge_large_zh_v1_5 = ModelMeta(
601
612
  model_prompts=model_prompts_zh,
602
613
  ),
603
614
  name="BAAI/bge-large-zh-v1.5",
615
+ model_type=["dense"],
604
616
  languages=["zho-Hans"],
605
617
  open_weights=True,
606
618
  revision="79e7739b6ab944e86d6171e44d24c997fc1e0116",
@@ -623,6 +635,7 @@ bge_large_zh_v1_5 = ModelMeta(
623
635
  bge_m3 = ModelMeta(
624
636
  loader=sentence_transformers_loader,
625
637
  name="BAAI/bge-m3",
638
+ model_type=["dense"],
626
639
  languages=bgem3_languages,
627
640
  open_weights=True,
628
641
  revision="5617a9f61b028005a4858fdac845db406aefb181",
@@ -709,6 +722,7 @@ bge_full_data = {
709
722
  bge_multilingual_gemma2 = ModelMeta(
710
723
  loader=sentence_transformers_loader,
711
724
  name="BAAI/bge-multilingual-gemma2",
725
+ model_type=["dense"],
712
726
  languages=[
713
727
  "eng-Latn",
714
728
  "zho-Hans",
@@ -762,6 +776,7 @@ bge_multilingual_gemma2 = ModelMeta(
762
776
  bge_en_icl = ModelMeta(
763
777
  loader=sentence_transformers_loader,
764
778
  name="BAAI/bge-en-icl",
779
+ model_type=["dense"],
765
780
  languages=[
766
781
  "eng-Latn",
767
782
  ],
@@ -797,6 +812,7 @@ bge_en_icl = ModelMeta(
797
812
  bge_m3_unsupervised = ModelMeta(
798
813
  loader=sentence_transformers_loader,
799
814
  name="BAAI/bge-m3-unsupervised",
815
+ model_type=["dense"],
800
816
  languages=bgem3_languages,
801
817
  open_weights=True,
802
818
  revision="46f03bc86361cf88102b0b517b36c8259f2946b1",
@@ -825,6 +841,7 @@ bge_m3_unsupervised = ModelMeta(
825
841
 
826
842
  manu__bge_m3_custom_fr = ModelMeta(
827
843
  name="manu/bge-m3-custom-fr",
844
+ model_type=["dense"],
828
845
  revision="ed3ef88678ba83ddf4c0fab71a93cb90d89a9078",
829
846
  release_date="2024-04-11",
830
847
  languages=None,
@@ -2,6 +2,7 @@ from mteb.models import ModelMeta, sentence_transformers_loader
2
2
 
3
3
  bica_base = ModelMeta(
4
4
  name="bisectgroup/BiCA-base",
5
+ model_type=["dense"],
5
6
  loader=sentence_transformers_loader,
6
7
  languages=["eng-Latn"],
7
8
  open_weights=True,
@@ -166,6 +166,7 @@ blip2_training_datasets = set(
166
166
  blip2_opt_2_7b = ModelMeta(
167
167
  loader=blip2_loader,
168
168
  name="Salesforce/blip2-opt-2.7b",
169
+ model_type=["dense"],
169
170
  languages=["eng-Latn"],
170
171
  revision="51572668da0eb669e01a189dc22abe6088589a24",
171
172
  release_date="2024-03-22",
@@ -189,6 +190,7 @@ blip2_opt_2_7b = ModelMeta(
189
190
  blip2_opt_6_7b_coco = ModelMeta(
190
191
  loader=blip2_loader,
191
192
  name="Salesforce/blip2-opt-6.7b-coco",
193
+ model_type=["dense"],
192
194
  languages=["eng-Latn"],
193
195
  revision="0d580de59320a25a4d2c386387bcef310d5f286e",
194
196
  release_date="2024-03-31",
@@ -130,6 +130,7 @@ class BLIPModel(AbsEncoder):
130
130
  blip_image_captioning_large = ModelMeta(
131
131
  loader=BLIPModel, # type: ignore
132
132
  name="Salesforce/blip-image-captioning-large",
133
+ model_type=["dense"],
133
134
  languages=["eng-Latn"],
134
135
  revision="2227ac38c9f16105cb0412e7cab4759978a8fd90",
135
136
  release_date="2023-12-07",
@@ -157,6 +158,7 @@ blip_image_captioning_large = ModelMeta(
157
158
  blip_image_captioning_base = ModelMeta(
158
159
  loader=BLIPModel, # type: ignore
159
160
  name="Salesforce/blip-image-captioning-base",
161
+ model_type=["dense"],
160
162
  languages=["eng-Latn"],
161
163
  revision="89b09ea1789f7addf2f6d6f0dfc4ce10ab58ef84",
162
164
  release_date="2023-08-01",
@@ -185,6 +187,7 @@ blip_image_captioning_base = ModelMeta(
185
187
  blip_vqa_base = ModelMeta(
186
188
  loader=BLIPModel, # type: ignore
187
189
  name="Salesforce/blip-vqa-base",
190
+ model_type=["dense"],
188
191
  languages=["eng-Latn"],
189
192
  revision="c7df8e7cd7aa2ee9af18f56e2b29e59a92651b64",
190
193
  release_date="2023-12-07",
@@ -211,6 +214,7 @@ blip_vqa_base = ModelMeta(
211
214
  blip_vqa_capfilt_large = ModelMeta(
212
215
  loader=BLIPModel, # type: ignore
213
216
  name="Salesforce/blip-vqa-capfilt-large",
217
+ model_type=["dense"],
214
218
  languages=["eng-Latn"],
215
219
  revision="e53f95265aeab69013fabb5380500ab984adbbb4",
216
220
  release_date="2023-01-22",
@@ -237,6 +241,7 @@ blip_vqa_capfilt_large = ModelMeta(
237
241
  blip_itm_base_coco = ModelMeta(
238
242
  loader=BLIPModel, # type: ignore
239
243
  name="Salesforce/blip-itm-base-coco",
244
+ model_type=["dense"],
240
245
  languages=["eng-Latn"],
241
246
  revision="7eaa90c11850c0b17fc38c6a11e7d88bd6ac231f",
242
247
  release_date="2023-08-01",
@@ -263,6 +268,7 @@ blip_itm_base_coco = ModelMeta(
263
268
  blip_itm_large_coco = ModelMeta(
264
269
  loader=BLIPModel, # type: ignore
265
270
  name="Salesforce/blip-itm-large-coco",
271
+ model_type=["dense"],
266
272
  languages=["eng-Latn"],
267
273
  revision="fef05cafc05298067cbbca00b125749394a77a6f",
268
274
  release_date="2023-08-01",
@@ -290,6 +296,7 @@ blip_itm_large_coco = ModelMeta(
290
296
  blip_itm_base_flickr = ModelMeta(
291
297
  loader=BLIPModel, # type: ignore
292
298
  name="Salesforce/blip-itm-base-flickr",
299
+ model_type=["dense"],
293
300
  languages=["eng-Latn"],
294
301
  revision="1de29e660d91ae1786c1876212ea805a22eab251",
295
302
  release_date="2023-08-01",
@@ -317,6 +324,7 @@ blip_itm_base_flickr = ModelMeta(
317
324
  blip_itm_large_flickr = ModelMeta(
318
325
  loader=BLIPModel, # type: ignore
319
326
  name="Salesforce/blip-itm-large-flickr",
327
+ model_type=["dense"],
320
328
  languages=["eng-Latn"],
321
329
  revision="bda12e6506758f54261b5ab174b2c55a3ba143fb",
322
330
  release_date="2023-08-01",
@@ -121,6 +121,7 @@ def bm25_loader(model_name, **kwargs) -> SearchProtocol:
121
121
  bm25_s = ModelMeta(
122
122
  loader=bm25_loader,
123
123
  name="bm25s",
124
+ model_type=["dense"],
124
125
  languages=["eng-Latn"],
125
126
  open_weights=True,
126
127
  revision="0_1_10",
@@ -90,6 +90,7 @@ BMRetriever_410M = ModelMeta(
90
90
  apply_instruction_to_passages=True,
91
91
  ),
92
92
  name="BMRetriever/BMRetriever-410M",
93
+ model_type=["dense"],
93
94
  languages=["eng-Latn"],
94
95
  open_weights=True,
95
96
  revision="e3569bfbcfe3a1bc48c142e11a7b0f38e86065a3",
@@ -119,6 +120,7 @@ BMRetriever_1B = ModelMeta(
119
120
  apply_instruction_to_passages=True,
120
121
  ),
121
122
  name="BMRetriever/BMRetriever-1B",
123
+ model_type=["dense"],
122
124
  languages=["eng-Latn"],
123
125
  open_weights=True,
124
126
  revision="1b758c5f4d3af48ef6035cc4088bdbcd7df43ca6",
@@ -148,6 +150,7 @@ BMRetriever_2B = ModelMeta(
148
150
  apply_instruction_to_passages=True,
149
151
  ),
150
152
  name="BMRetriever/BMRetriever-2B",
153
+ model_type=["dense"],
151
154
  languages=["eng-Latn"],
152
155
  open_weights=True,
153
156
  revision="718179afd57926369c347f46eee616db81084941",
@@ -177,6 +180,7 @@ BMRetriever_7B = ModelMeta(
177
180
  apply_instruction_to_passages=True,
178
181
  ),
179
182
  name="BMRetriever/BMRetriever-7B",
183
+ model_type=["dense"],
180
184
  languages=["eng-Latn"],
181
185
  open_weights=True,
182
186
  revision="13e6adb9273c5f254e037987d6b44e9e4b005b9a",
@@ -35,6 +35,7 @@ cadet_embed = ModelMeta(
35
35
  },
36
36
  ),
37
37
  name="manveertamber/cadet-embed-base-v1",
38
+ model_type=["dense"],
38
39
  languages=["eng-Latn"],
39
40
  revision="8056d118be37a566f20972a5f35cda815f6bc47e",
40
41
  open_weights=True,
@@ -209,6 +209,7 @@ cde_small_v1 = ModelMeta(
209
209
  trust_remote_code=True,
210
210
  ),
211
211
  name="jxm/cde-small-v1",
212
+ model_type=["dense"],
212
213
  languages=["eng-Latn"],
213
214
  open_weights=True,
214
215
  revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
@@ -237,6 +238,7 @@ cde_small_v2 = ModelMeta(
237
238
  trust_remote_code=True,
238
239
  ),
239
240
  name="jxm/cde-small-v2",
241
+ model_type=["dense"],
240
242
  languages=["eng-Latn"],
241
243
  open_weights=True,
242
244
  revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
@@ -117,6 +117,7 @@ CLIP_CITATION = """
117
117
  clip_vit_large_patch14 = ModelMeta(
118
118
  loader=CLIPModel, # type: ignore
119
119
  name="openai/clip-vit-large-patch14",
120
+ model_type=["dense"],
120
121
  languages=["eng-Latn"],
121
122
  revision="32bd64288804d66eefd0ccbe215aa642df71cc41",
122
123
  release_date="2021-02-26",
@@ -140,6 +141,7 @@ clip_vit_large_patch14 = ModelMeta(
140
141
  clip_vit_base_patch32 = ModelMeta(
141
142
  loader=CLIPModel, # type: ignore
142
143
  name="openai/clip-vit-base-patch32",
144
+ model_type=["dense"],
143
145
  languages=["eng-Latn"],
144
146
  revision="3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268",
145
147
  release_date="2021-02-26",
@@ -163,6 +165,7 @@ clip_vit_base_patch32 = ModelMeta(
163
165
  clip_vit_base_patch16 = ModelMeta(
164
166
  loader=CLIPModel, # type: ignore
165
167
  name="openai/clip-vit-base-patch16",
168
+ model_type=["dense"],
166
169
  languages=["eng-Latn"],
167
170
  revision="57c216476eefef5ab752ec549e440a49ae4ae5f3",
168
171
  release_date="2021-02-26",
@@ -24,6 +24,7 @@ e5_nl_small = ModelMeta(
24
24
  model_prompts=model_prompts,
25
25
  ),
26
26
  name="clips/e5-small-trm-nl",
27
+ model_type=["dense"],
27
28
  languages=["nld-Latn"],
28
29
  open_weights=True,
29
30
  revision="0243664a6c5e12eef854b091eb283e51833c3e9f",
@@ -50,6 +51,7 @@ e5_nl_base = ModelMeta(
50
51
  model_prompts=model_prompts,
51
52
  ),
52
53
  name="clips/e5-base-trm-nl",
54
+ model_type=["dense"],
53
55
  languages=["nld-Latn"],
54
56
  open_weights=True,
55
57
  revision="6bd5722f236da48b4b8bcb28cc1fc478f7089956",
@@ -76,6 +78,7 @@ e5_nl_large = ModelMeta(
76
78
  model_prompts=model_prompts,
77
79
  ),
78
80
  name="clips/e5-large-trm-nl",
81
+ model_type=["dense"],
79
82
  languages=["nld-Latn"],
80
83
  open_weights=True,
81
84
  revision="683333f86ed9eb3699b5567f0fdabeb958d412b0",
@@ -230,6 +230,7 @@ F2LLM_0B6 = ModelMeta(
230
230
  max_seq_length=8192,
231
231
  ),
232
232
  name="codefuse-ai/F2LLM-0.6B",
233
+ model_type=["dense"],
233
234
  languages=["eng-Latn"],
234
235
  open_weights=True,
235
236
  revision="36416618b83d4bd84a8ca30c2ee01ed518f9f2e7",
@@ -259,6 +260,7 @@ F2LLM_1B7 = ModelMeta(
259
260
  max_seq_length=8192,
260
261
  ),
261
262
  name="codefuse-ai/F2LLM-1.7B",
263
+ model_type=["dense"],
262
264
  languages=["eng-Latn"],
263
265
  open_weights=True,
264
266
  revision="fdce0e09655f42cea26f7f66f5a70cd4507ea45c",
@@ -288,6 +290,7 @@ F2LLM_4B = ModelMeta(
288
290
  max_seq_length=8192,
289
291
  ),
290
292
  name="codefuse-ai/F2LLM-4B",
293
+ model_type=["dense"],
291
294
  languages=["eng-Latn"],
292
295
  open_weights=True,
293
296
  revision="9fe95901ed2b6b59dd7673d6e93c9d76766a1e25",
@@ -22,6 +22,7 @@ codesage_languages = [
22
22
  codesage_large = ModelMeta(
23
23
  loader=sentence_transformers_loader,
24
24
  name="codesage/codesage-large-v2",
25
+ model_type=["dense"],
25
26
  languages=codesage_languages,
26
27
  revision="6e5d6dc15db3e310c37c6dbac072409f95ffa5c5",
27
28
  release_date="2024-02-03",
@@ -48,6 +49,7 @@ codesage_large = ModelMeta(
48
49
  codesage_base = ModelMeta(
49
50
  loader=sentence_transformers_loader,
50
51
  name="codesage/codesage-base-v2",
52
+ model_type=["dense"],
51
53
  languages=codesage_languages,
52
54
  revision="92eac4f44c8674638f039f1b0d8280f2539cb4c7",
53
55
  release_date="2024-02-03",
@@ -74,6 +76,7 @@ codesage_base = ModelMeta(
74
76
  codesage_small = ModelMeta(
75
77
  loader=sentence_transformers_loader,
76
78
  name="codesage/codesage-small-v2",
79
+ model_type=["dense"],
77
80
  languages=codesage_languages,
78
81
  revision="4844c2f24b25e181aa43ca058cc73dd2622565c1",
79
82
  release_date="2024-02-03",
@@ -380,6 +380,7 @@ cohere_mult_3 = ModelMeta(
380
380
  model_prompts=model_prompts,
381
381
  ),
382
382
  name="Cohere/Cohere-embed-multilingual-v3.0",
383
+ model_type=["dense"],
383
384
  languages=supported_languages,
384
385
  open_weights=False,
385
386
  revision="1",
@@ -404,6 +405,7 @@ cohere_eng_3 = ModelMeta(
404
405
  model_prompts=model_prompts,
405
406
  ),
406
407
  name="Cohere/Cohere-embed-english-v3.0",
408
+ model_type=["dense"],
407
409
  languages=["eng-Latn"],
408
410
  open_weights=False,
409
411
  reference="https://cohere.com/blog/introducing-embed-v3",
@@ -428,6 +430,7 @@ cohere_mult_light_3 = ModelMeta(
428
430
  model_prompts=model_prompts,
429
431
  ),
430
432
  name="Cohere/Cohere-embed-multilingual-light-v3.0",
433
+ model_type=["dense"],
431
434
  languages=supported_languages,
432
435
  open_weights=False,
433
436
  revision="1",
@@ -452,6 +455,7 @@ cohere_eng_light_3 = ModelMeta(
452
455
  model_prompts=model_prompts,
453
456
  ),
454
457
  name="Cohere/Cohere-embed-english-light-v3.0",
458
+ model_type=["dense"],
455
459
  languages=["eng-Latn"],
456
460
  open_weights=False,
457
461
  reference="https://cohere.com/blog/introducing-embed-v3",
@@ -381,6 +381,7 @@ cohere_mult_3 = ModelMeta(
381
381
  loader=cohere_v_loader, # type: ignore
382
382
  loader_kwargs={"model_name": "embed-multilingual-v3.0"},
383
383
  name="cohere/embed-multilingual-v3.0",
384
+ model_type=["dense"],
384
385
  languages=[], # Unknown, but support >100 languages
385
386
  revision="1",
386
387
  release_date="2024-10-24",
@@ -404,6 +405,7 @@ cohere_eng_3 = ModelMeta(
404
405
  loader=cohere_v_loader, # type: ignore
405
406
  loader_kwargs={"model_name": "embed-english-v3.0"},
406
407
  name="cohere/embed-english-v3.0",
408
+ model_type=["dense"],
407
409
  languages=["eng-Latn"],
408
410
  revision="1",
409
411
  release_date="2024-10-24",
@@ -426,6 +428,7 @@ cohere_eng_3 = ModelMeta(
426
428
  cohere_embed_v4_multimodal = ModelMeta(
427
429
  loader=cohere_v_loader,
428
430
  loader_kwargs=dict(model_name="embed-v4.0"),
431
+ model_type=["dense"],
429
432
  name="Cohere/Cohere-embed-v4.0",
430
433
  languages=all_languages,
431
434
  revision="1",
@@ -450,6 +453,7 @@ cohere_embed_v4_multimodal_binary = ModelMeta(
450
453
  loader=cohere_v_loader,
451
454
  loader_kwargs=dict(embedding_type="binary"),
452
455
  name="Cohere/Cohere-embed-v4.0 (output_dtype=binary)",
456
+ model_type=["dense"],
453
457
  languages=all_languages,
454
458
  revision="1",
455
459
  release_date="2024-12-01",
@@ -474,6 +478,7 @@ cohere_embed_v4_multimodal_int8 = ModelMeta(
474
478
  loader=cohere_v_loader,
475
479
  loader_kwargs=dict(embedding_type="int8"),
476
480
  name="Cohere/Cohere-embed-v4.0 (output_dtype=int8)",
481
+ model_type=["dense"],
477
482
  languages=all_languages,
478
483
  revision="1",
479
484
  release_date="2024-12-01",
@@ -213,6 +213,7 @@ colpali_v1_1 = ModelMeta(
213
213
  torch_dtype=torch.float16,
214
214
  ),
215
215
  name="vidore/colpali-v1.1",
216
+ model_type=["late-interaction"],
216
217
  languages=["eng-Latn"],
217
218
  revision="a0f15e3bcf97110e7ac1bb4be4bcd30eeb31992a",
218
219
  release_date="2024-08-21",
@@ -239,6 +240,7 @@ colpali_v1_2 = ModelMeta(
239
240
  torch_dtype=torch.float16,
240
241
  ),
241
242
  name="vidore/colpali-v1.2",
243
+ model_type=["late-interaction"],
242
244
  languages=["eng-Latn"],
243
245
  revision="6b89bc63c16809af4d111bfe412e2ac6bc3c9451",
244
246
  release_date="2024-08-26",
@@ -265,6 +267,7 @@ colpali_v1_3 = ModelMeta(
265
267
  torch_dtype=torch.float16,
266
268
  ),
267
269
  name="vidore/colpali-v1.3",
270
+ model_type=["late-interaction"],
268
271
  languages=["eng-Latn"],
269
272
  revision="1b5c8929330df1a66de441a9b5409a878f0de5b0",
270
273
  release_date="2024-11-01",
@@ -213,6 +213,7 @@ colqwen2 = ModelMeta(
213
213
  torch_dtype=torch.float16,
214
214
  ),
215
215
  name="vidore/colqwen2-v1.0",
216
+ model_type=["late-interaction"],
216
217
  languages=["eng-Latn"],
217
218
  revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
218
219
  release_date="2025-11-03",
@@ -239,6 +240,7 @@ colqwen2_5 = ModelMeta(
239
240
  torch_dtype=torch.float16,
240
241
  ),
241
242
  name="vidore/colqwen2.5-v0.2",
243
+ model_type=["late-interaction"],
242
244
  languages=["eng-Latn"],
243
245
  revision="6f6fcdfd1a114dfe365f529701b33d66b9349014",
244
246
  release_date="2025-01-31",
@@ -282,6 +284,7 @@ TOMORO_CITATION = """
282
284
  colqwen3_8b = ModelMeta(
283
285
  loader=ColQwen3Wrapper,
284
286
  name="TomoroAI/tomoro-colqwen3-embed-8b",
287
+ model_type=["late-interaction"],
285
288
  languages=["eng-Latn"],
286
289
  revision="0b9fe28142910e209bbac15b1efe85507c27644f",
287
290
  release_date="2025-11-26",
@@ -305,6 +308,7 @@ colqwen3_8b = ModelMeta(
305
308
  colqwen3_4b = ModelMeta(
306
309
  loader=ColQwen3Wrapper,
307
310
  name="TomoroAI/tomoro-colqwen3-embed-4b",
311
+ model_type=["late-interaction"],
308
312
  languages=["eng-Latn"],
309
313
  revision="6a32fb68598730bf5620fbf18d832c784235c59c",
310
314
  release_date="2025-11-26",
@@ -331,6 +335,7 @@ colnomic_7b = ModelMeta(
331
335
  torch_dtype=torch.float16,
332
336
  ),
333
337
  name="nomic-ai/colnomic-embed-multimodal-7b",
338
+ model_type=["late-interaction"],
334
339
  languages=["eng-Latn"],
335
340
  revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
336
341
  release_date="2025-03-31",
@@ -375,6 +380,7 @@ colnomic_3b = ModelMeta(
375
380
  torch_dtype=torch.float16, attn_implementation="flash_attention_2"
376
381
  ),
377
382
  name="nomic-ai/colnomic-embed-multimodal-3b",
383
+ model_type=["late-interaction"],
378
384
  languages=COLNOMIC_LANGUAGES,
379
385
  revision="86627b4a9b0cade577851a70afa469084f9863a4",
380
386
  release_date="2025-03-31",
@@ -401,6 +407,7 @@ colnomic_7b = ModelMeta(
401
407
  torch_dtype=torch.float16,
402
408
  ),
403
409
  name="nomic-ai/colnomic-embed-multimodal-7b",
410
+ model_type=["late-interaction"],
404
411
  languages=COLNOMIC_LANGUAGES,
405
412
  revision="09dbc9502b66605d5be56d2226019b49c9fd3293",
406
413
  release_date="2025-03-31",
@@ -438,6 +445,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
438
445
  torch_dtype=torch.float16, attn_implementation="flash_attention_2"
439
446
  ),
440
447
  name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
448
+ model_type=["late-interaction"],
441
449
  languages=["eng-Latn"],
442
450
  revision="aeacaa2775f2758d82721eb1cf2f5daf1a392da9",
443
451
  release_date="2025-11-04",
@@ -463,6 +471,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
463
471
  torch_dtype=torch.float16, attn_implementation="flash_attention_2"
464
472
  ),
465
473
  name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
474
+ model_type=["late-interaction"],
466
475
  languages=["eng-Latn"],
467
476
  revision="8952ac6ee0e7de2e9211b165921518caf9202110",
468
477
  release_date="2025-11-04",
@@ -54,6 +54,7 @@ colsmol_256m = ModelMeta(
54
54
  torch_dtype=torch.float16,
55
55
  ),
56
56
  name="vidore/colSmol-256M",
57
+ model_type=["late-interaction"],
57
58
  languages=["eng-Latn"],
58
59
  revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
59
60
  release_date="2025-01-22",
@@ -80,6 +81,7 @@ colsmol_500m = ModelMeta(
80
81
  torch_dtype=torch.float16, attn_implementation="flash_attention_2"
81
82
  ),
82
83
  name="vidore/colSmol-500M",
84
+ model_type=["late-interaction"],
83
85
  languages=["eng-Latn"],
84
86
  revision="1aa9325cba7ed2b3b9b97ede4d55026322504902",
85
87
  release_date="2025-01-22",
@@ -190,6 +190,7 @@ class ConanWrapper(AbsEncoder):
190
190
 
191
191
  Conan_embedding_v2 = ModelMeta(
192
192
  name="TencentBAC/Conan-embedding-v2",
193
+ model_type=["dense"],
193
194
  revision="e5c87c63889630bca87486f6a2645ed97c5ddb17",
194
195
  release_date="2025-04-10",
195
196
  languages=[