mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/abstask.py +6 -6
- mteb/abstasks/aggregated_task.py +4 -10
- mteb/abstasks/clustering_legacy.py +3 -2
- mteb/abstasks/task_metadata.py +2 -3
- mteb/cache.py +7 -4
- mteb/cli/build_cli.py +10 -5
- mteb/cli/generate_model_card.py +4 -3
- mteb/deprecated_evaluator.py +4 -3
- mteb/evaluate.py +4 -1
- mteb/get_tasks.py +4 -3
- mteb/leaderboard/app.py +70 -3
- mteb/models/abs_encoder.py +5 -3
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +17 -0
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +3 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +9 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +8 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +6 -3
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -1
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +2 -1
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +49 -4
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
- mteb/models/search_wrappers.py +4 -2
- mteb/models/sentence_transformer_wrapper.py +10 -10
- mteb/results/benchmark_results.py +67 -43
- mteb/results/model_result.py +3 -1
- mteb/results/task_result.py +22 -17
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
|
@@ -319,6 +319,7 @@ bge_small_en_v1_5 = ModelMeta(
|
|
|
319
319
|
model_prompts=model_prompts,
|
|
320
320
|
),
|
|
321
321
|
name="BAAI/bge-small-en-v1.5",
|
|
322
|
+
model_type=["dense"],
|
|
322
323
|
languages=["eng-Latn"],
|
|
323
324
|
open_weights=True,
|
|
324
325
|
revision="5c38ec7c405ec4b44b94cc5a9bb96e735b38267a",
|
|
@@ -344,6 +345,7 @@ bge_base_en_v1_5 = ModelMeta(
|
|
|
344
345
|
model_prompts=model_prompts,
|
|
345
346
|
),
|
|
346
347
|
name="BAAI/bge-base-en-v1.5",
|
|
348
|
+
model_type=["dense"],
|
|
347
349
|
languages=["eng-Latn"],
|
|
348
350
|
open_weights=True,
|
|
349
351
|
revision="a5beb1e3e68b9ab74eb54cfd186867f64f240e1a",
|
|
@@ -369,6 +371,7 @@ bge_large_en_v1_5 = ModelMeta(
|
|
|
369
371
|
model_prompts=model_prompts,
|
|
370
372
|
),
|
|
371
373
|
name="BAAI/bge-large-en-v1.5",
|
|
374
|
+
model_type=["dense"],
|
|
372
375
|
languages=["eng-Latn"],
|
|
373
376
|
open_weights=True,
|
|
374
377
|
revision="d4aa6901d3a41ba39fb536a557fa166f842b0e09",
|
|
@@ -394,6 +397,7 @@ bge_small_zh = ModelMeta(
|
|
|
394
397
|
model_prompts=model_prompts_zh,
|
|
395
398
|
),
|
|
396
399
|
name="BAAI/bge-small-zh",
|
|
400
|
+
model_type=["dense"],
|
|
397
401
|
languages=["zho-Hans"],
|
|
398
402
|
open_weights=True,
|
|
399
403
|
revision="1d2363c5de6ce9ba9c890c8e23a4c72dce540ca8",
|
|
@@ -420,6 +424,7 @@ bge_base_zh = ModelMeta(
|
|
|
420
424
|
model_prompts=model_prompts_zh,
|
|
421
425
|
),
|
|
422
426
|
name="BAAI/bge-base-zh",
|
|
427
|
+
model_type=["dense"],
|
|
423
428
|
languages=["zho-Hans"],
|
|
424
429
|
open_weights=True,
|
|
425
430
|
revision="0e5f83d4895db7955e4cb9ed37ab73f7ded339b6",
|
|
@@ -446,6 +451,7 @@ bge_large_zh = ModelMeta(
|
|
|
446
451
|
model_prompts=model_prompts_zh,
|
|
447
452
|
),
|
|
448
453
|
name="BAAI/bge-large-zh",
|
|
454
|
+
model_type=["dense"],
|
|
449
455
|
languages=["zho-Hans"],
|
|
450
456
|
open_weights=True,
|
|
451
457
|
revision="b5d9f5c027e87b6f0b6fa4b614f8f9cdc45ce0e8",
|
|
@@ -472,6 +478,7 @@ bge_small_en = ModelMeta(
|
|
|
472
478
|
model_prompts=model_prompts,
|
|
473
479
|
),
|
|
474
480
|
name="BAAI/bge-small-en",
|
|
481
|
+
model_type=["dense"],
|
|
475
482
|
languages=["eng-Latn"],
|
|
476
483
|
open_weights=True,
|
|
477
484
|
revision="4778d71a06863076696b03fd2777eb118712cad8",
|
|
@@ -498,6 +505,7 @@ bge_base_en = ModelMeta(
|
|
|
498
505
|
model_prompts=model_prompts,
|
|
499
506
|
),
|
|
500
507
|
name="BAAI/bge-base-en",
|
|
508
|
+
model_type=["dense"],
|
|
501
509
|
languages=["eng-Latn"],
|
|
502
510
|
open_weights=True,
|
|
503
511
|
revision="b737bf5dcc6ee8bdc530531266b4804a5d77b5d8",
|
|
@@ -524,6 +532,7 @@ bge_large_en = ModelMeta(
|
|
|
524
532
|
model_prompts=model_prompts,
|
|
525
533
|
),
|
|
526
534
|
name="BAAI/bge-large-en",
|
|
535
|
+
model_type=["dense"],
|
|
527
536
|
languages=["eng-Latn"],
|
|
528
537
|
open_weights=True,
|
|
529
538
|
revision="abe7d9d814b775ca171121fb03f394dc42974275",
|
|
@@ -551,6 +560,7 @@ bge_small_zh_v1_5 = ModelMeta(
|
|
|
551
560
|
model_prompts=model_prompts_zh,
|
|
552
561
|
),
|
|
553
562
|
name="BAAI/bge-small-zh-v1.5",
|
|
563
|
+
model_type=["dense"],
|
|
554
564
|
languages=["zho-Hans"],
|
|
555
565
|
open_weights=True,
|
|
556
566
|
revision="7999e1d3359715c523056ef9478215996d62a620",
|
|
@@ -576,6 +586,7 @@ bge_base_zh_v1_5 = ModelMeta(
|
|
|
576
586
|
model_prompts=model_prompts_zh,
|
|
577
587
|
),
|
|
578
588
|
name="BAAI/bge-base-zh-v1.5",
|
|
589
|
+
model_type=["dense"],
|
|
579
590
|
languages=["zho-Hans"],
|
|
580
591
|
open_weights=True,
|
|
581
592
|
revision="f03589ceff5aac7111bd60cfc7d497ca17ecac65",
|
|
@@ -601,6 +612,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
601
612
|
model_prompts=model_prompts_zh,
|
|
602
613
|
),
|
|
603
614
|
name="BAAI/bge-large-zh-v1.5",
|
|
615
|
+
model_type=["dense"],
|
|
604
616
|
languages=["zho-Hans"],
|
|
605
617
|
open_weights=True,
|
|
606
618
|
revision="79e7739b6ab944e86d6171e44d24c997fc1e0116",
|
|
@@ -623,6 +635,7 @@ bge_large_zh_v1_5 = ModelMeta(
|
|
|
623
635
|
bge_m3 = ModelMeta(
|
|
624
636
|
loader=sentence_transformers_loader,
|
|
625
637
|
name="BAAI/bge-m3",
|
|
638
|
+
model_type=["dense"],
|
|
626
639
|
languages=bgem3_languages,
|
|
627
640
|
open_weights=True,
|
|
628
641
|
revision="5617a9f61b028005a4858fdac845db406aefb181",
|
|
@@ -709,6 +722,7 @@ bge_full_data = {
|
|
|
709
722
|
bge_multilingual_gemma2 = ModelMeta(
|
|
710
723
|
loader=sentence_transformers_loader,
|
|
711
724
|
name="BAAI/bge-multilingual-gemma2",
|
|
725
|
+
model_type=["dense"],
|
|
712
726
|
languages=[
|
|
713
727
|
"eng-Latn",
|
|
714
728
|
"zho-Hans",
|
|
@@ -762,6 +776,7 @@ bge_multilingual_gemma2 = ModelMeta(
|
|
|
762
776
|
bge_en_icl = ModelMeta(
|
|
763
777
|
loader=sentence_transformers_loader,
|
|
764
778
|
name="BAAI/bge-en-icl",
|
|
779
|
+
model_type=["dense"],
|
|
765
780
|
languages=[
|
|
766
781
|
"eng-Latn",
|
|
767
782
|
],
|
|
@@ -797,6 +812,7 @@ bge_en_icl = ModelMeta(
|
|
|
797
812
|
bge_m3_unsupervised = ModelMeta(
|
|
798
813
|
loader=sentence_transformers_loader,
|
|
799
814
|
name="BAAI/bge-m3-unsupervised",
|
|
815
|
+
model_type=["dense"],
|
|
800
816
|
languages=bgem3_languages,
|
|
801
817
|
open_weights=True,
|
|
802
818
|
revision="46f03bc86361cf88102b0b517b36c8259f2946b1",
|
|
@@ -825,6 +841,7 @@ bge_m3_unsupervised = ModelMeta(
|
|
|
825
841
|
|
|
826
842
|
manu__bge_m3_custom_fr = ModelMeta(
|
|
827
843
|
name="manu/bge-m3-custom-fr",
|
|
844
|
+
model_type=["dense"],
|
|
828
845
|
revision="ed3ef88678ba83ddf4c0fab71a93cb90d89a9078",
|
|
829
846
|
release_date="2024-04-11",
|
|
830
847
|
languages=None,
|
|
@@ -166,6 +166,7 @@ blip2_training_datasets = set(
|
|
|
166
166
|
blip2_opt_2_7b = ModelMeta(
|
|
167
167
|
loader=blip2_loader,
|
|
168
168
|
name="Salesforce/blip2-opt-2.7b",
|
|
169
|
+
model_type=["dense"],
|
|
169
170
|
languages=["eng-Latn"],
|
|
170
171
|
revision="51572668da0eb669e01a189dc22abe6088589a24",
|
|
171
172
|
release_date="2024-03-22",
|
|
@@ -189,6 +190,7 @@ blip2_opt_2_7b = ModelMeta(
|
|
|
189
190
|
blip2_opt_6_7b_coco = ModelMeta(
|
|
190
191
|
loader=blip2_loader,
|
|
191
192
|
name="Salesforce/blip2-opt-6.7b-coco",
|
|
193
|
+
model_type=["dense"],
|
|
192
194
|
languages=["eng-Latn"],
|
|
193
195
|
revision="0d580de59320a25a4d2c386387bcef310d5f286e",
|
|
194
196
|
release_date="2024-03-31",
|
|
@@ -130,6 +130,7 @@ class BLIPModel(AbsEncoder):
|
|
|
130
130
|
blip_image_captioning_large = ModelMeta(
|
|
131
131
|
loader=BLIPModel, # type: ignore
|
|
132
132
|
name="Salesforce/blip-image-captioning-large",
|
|
133
|
+
model_type=["dense"],
|
|
133
134
|
languages=["eng-Latn"],
|
|
134
135
|
revision="2227ac38c9f16105cb0412e7cab4759978a8fd90",
|
|
135
136
|
release_date="2023-12-07",
|
|
@@ -157,6 +158,7 @@ blip_image_captioning_large = ModelMeta(
|
|
|
157
158
|
blip_image_captioning_base = ModelMeta(
|
|
158
159
|
loader=BLIPModel, # type: ignore
|
|
159
160
|
name="Salesforce/blip-image-captioning-base",
|
|
161
|
+
model_type=["dense"],
|
|
160
162
|
languages=["eng-Latn"],
|
|
161
163
|
revision="89b09ea1789f7addf2f6d6f0dfc4ce10ab58ef84",
|
|
162
164
|
release_date="2023-08-01",
|
|
@@ -185,6 +187,7 @@ blip_image_captioning_base = ModelMeta(
|
|
|
185
187
|
blip_vqa_base = ModelMeta(
|
|
186
188
|
loader=BLIPModel, # type: ignore
|
|
187
189
|
name="Salesforce/blip-vqa-base",
|
|
190
|
+
model_type=["dense"],
|
|
188
191
|
languages=["eng-Latn"],
|
|
189
192
|
revision="c7df8e7cd7aa2ee9af18f56e2b29e59a92651b64",
|
|
190
193
|
release_date="2023-12-07",
|
|
@@ -211,6 +214,7 @@ blip_vqa_base = ModelMeta(
|
|
|
211
214
|
blip_vqa_capfilt_large = ModelMeta(
|
|
212
215
|
loader=BLIPModel, # type: ignore
|
|
213
216
|
name="Salesforce/blip-vqa-capfilt-large",
|
|
217
|
+
model_type=["dense"],
|
|
214
218
|
languages=["eng-Latn"],
|
|
215
219
|
revision="e53f95265aeab69013fabb5380500ab984adbbb4",
|
|
216
220
|
release_date="2023-01-22",
|
|
@@ -237,6 +241,7 @@ blip_vqa_capfilt_large = ModelMeta(
|
|
|
237
241
|
blip_itm_base_coco = ModelMeta(
|
|
238
242
|
loader=BLIPModel, # type: ignore
|
|
239
243
|
name="Salesforce/blip-itm-base-coco",
|
|
244
|
+
model_type=["dense"],
|
|
240
245
|
languages=["eng-Latn"],
|
|
241
246
|
revision="7eaa90c11850c0b17fc38c6a11e7d88bd6ac231f",
|
|
242
247
|
release_date="2023-08-01",
|
|
@@ -263,6 +268,7 @@ blip_itm_base_coco = ModelMeta(
|
|
|
263
268
|
blip_itm_large_coco = ModelMeta(
|
|
264
269
|
loader=BLIPModel, # type: ignore
|
|
265
270
|
name="Salesforce/blip-itm-large-coco",
|
|
271
|
+
model_type=["dense"],
|
|
266
272
|
languages=["eng-Latn"],
|
|
267
273
|
revision="fef05cafc05298067cbbca00b125749394a77a6f",
|
|
268
274
|
release_date="2023-08-01",
|
|
@@ -290,6 +296,7 @@ blip_itm_large_coco = ModelMeta(
|
|
|
290
296
|
blip_itm_base_flickr = ModelMeta(
|
|
291
297
|
loader=BLIPModel, # type: ignore
|
|
292
298
|
name="Salesforce/blip-itm-base-flickr",
|
|
299
|
+
model_type=["dense"],
|
|
293
300
|
languages=["eng-Latn"],
|
|
294
301
|
revision="1de29e660d91ae1786c1876212ea805a22eab251",
|
|
295
302
|
release_date="2023-08-01",
|
|
@@ -317,6 +324,7 @@ blip_itm_base_flickr = ModelMeta(
|
|
|
317
324
|
blip_itm_large_flickr = ModelMeta(
|
|
318
325
|
loader=BLIPModel, # type: ignore
|
|
319
326
|
name="Salesforce/blip-itm-large-flickr",
|
|
327
|
+
model_type=["dense"],
|
|
320
328
|
languages=["eng-Latn"],
|
|
321
329
|
revision="bda12e6506758f54261b5ab174b2c55a3ba143fb",
|
|
322
330
|
release_date="2023-08-01",
|
|
@@ -90,6 +90,7 @@ BMRetriever_410M = ModelMeta(
|
|
|
90
90
|
apply_instruction_to_passages=True,
|
|
91
91
|
),
|
|
92
92
|
name="BMRetriever/BMRetriever-410M",
|
|
93
|
+
model_type=["dense"],
|
|
93
94
|
languages=["eng-Latn"],
|
|
94
95
|
open_weights=True,
|
|
95
96
|
revision="e3569bfbcfe3a1bc48c142e11a7b0f38e86065a3",
|
|
@@ -119,6 +120,7 @@ BMRetriever_1B = ModelMeta(
|
|
|
119
120
|
apply_instruction_to_passages=True,
|
|
120
121
|
),
|
|
121
122
|
name="BMRetriever/BMRetriever-1B",
|
|
123
|
+
model_type=["dense"],
|
|
122
124
|
languages=["eng-Latn"],
|
|
123
125
|
open_weights=True,
|
|
124
126
|
revision="1b758c5f4d3af48ef6035cc4088bdbcd7df43ca6",
|
|
@@ -148,6 +150,7 @@ BMRetriever_2B = ModelMeta(
|
|
|
148
150
|
apply_instruction_to_passages=True,
|
|
149
151
|
),
|
|
150
152
|
name="BMRetriever/BMRetriever-2B",
|
|
153
|
+
model_type=["dense"],
|
|
151
154
|
languages=["eng-Latn"],
|
|
152
155
|
open_weights=True,
|
|
153
156
|
revision="718179afd57926369c347f46eee616db81084941",
|
|
@@ -177,6 +180,7 @@ BMRetriever_7B = ModelMeta(
|
|
|
177
180
|
apply_instruction_to_passages=True,
|
|
178
181
|
),
|
|
179
182
|
name="BMRetriever/BMRetriever-7B",
|
|
183
|
+
model_type=["dense"],
|
|
180
184
|
languages=["eng-Latn"],
|
|
181
185
|
open_weights=True,
|
|
182
186
|
revision="13e6adb9273c5f254e037987d6b44e9e4b005b9a",
|
|
@@ -209,6 +209,7 @@ cde_small_v1 = ModelMeta(
|
|
|
209
209
|
trust_remote_code=True,
|
|
210
210
|
),
|
|
211
211
|
name="jxm/cde-small-v1",
|
|
212
|
+
model_type=["dense"],
|
|
212
213
|
languages=["eng-Latn"],
|
|
213
214
|
open_weights=True,
|
|
214
215
|
revision="e151df18af0d7f1d1c37b074fee58406ececf19f",
|
|
@@ -237,6 +238,7 @@ cde_small_v2 = ModelMeta(
|
|
|
237
238
|
trust_remote_code=True,
|
|
238
239
|
),
|
|
239
240
|
name="jxm/cde-small-v2",
|
|
241
|
+
model_type=["dense"],
|
|
240
242
|
languages=["eng-Latn"],
|
|
241
243
|
open_weights=True,
|
|
242
244
|
revision="4e1d021a6c3fd7ce8aa0a7204057eee5ae61d390",
|
|
@@ -117,6 +117,7 @@ CLIP_CITATION = """
|
|
|
117
117
|
clip_vit_large_patch14 = ModelMeta(
|
|
118
118
|
loader=CLIPModel, # type: ignore
|
|
119
119
|
name="openai/clip-vit-large-patch14",
|
|
120
|
+
model_type=["dense"],
|
|
120
121
|
languages=["eng-Latn"],
|
|
121
122
|
revision="32bd64288804d66eefd0ccbe215aa642df71cc41",
|
|
122
123
|
release_date="2021-02-26",
|
|
@@ -140,6 +141,7 @@ clip_vit_large_patch14 = ModelMeta(
|
|
|
140
141
|
clip_vit_base_patch32 = ModelMeta(
|
|
141
142
|
loader=CLIPModel, # type: ignore
|
|
142
143
|
name="openai/clip-vit-base-patch32",
|
|
144
|
+
model_type=["dense"],
|
|
143
145
|
languages=["eng-Latn"],
|
|
144
146
|
revision="3d74acf9a28c67741b2f4f2ea7635f0aaf6f0268",
|
|
145
147
|
release_date="2021-02-26",
|
|
@@ -163,6 +165,7 @@ clip_vit_base_patch32 = ModelMeta(
|
|
|
163
165
|
clip_vit_base_patch16 = ModelMeta(
|
|
164
166
|
loader=CLIPModel, # type: ignore
|
|
165
167
|
name="openai/clip-vit-base-patch16",
|
|
168
|
+
model_type=["dense"],
|
|
166
169
|
languages=["eng-Latn"],
|
|
167
170
|
revision="57c216476eefef5ab752ec549e440a49ae4ae5f3",
|
|
168
171
|
release_date="2021-02-26",
|
|
@@ -24,6 +24,7 @@ e5_nl_small = ModelMeta(
|
|
|
24
24
|
model_prompts=model_prompts,
|
|
25
25
|
),
|
|
26
26
|
name="clips/e5-small-trm-nl",
|
|
27
|
+
model_type=["dense"],
|
|
27
28
|
languages=["nld-Latn"],
|
|
28
29
|
open_weights=True,
|
|
29
30
|
revision="0243664a6c5e12eef854b091eb283e51833c3e9f",
|
|
@@ -50,6 +51,7 @@ e5_nl_base = ModelMeta(
|
|
|
50
51
|
model_prompts=model_prompts,
|
|
51
52
|
),
|
|
52
53
|
name="clips/e5-base-trm-nl",
|
|
54
|
+
model_type=["dense"],
|
|
53
55
|
languages=["nld-Latn"],
|
|
54
56
|
open_weights=True,
|
|
55
57
|
revision="6bd5722f236da48b4b8bcb28cc1fc478f7089956",
|
|
@@ -76,6 +78,7 @@ e5_nl_large = ModelMeta(
|
|
|
76
78
|
model_prompts=model_prompts,
|
|
77
79
|
),
|
|
78
80
|
name="clips/e5-large-trm-nl",
|
|
81
|
+
model_type=["dense"],
|
|
79
82
|
languages=["nld-Latn"],
|
|
80
83
|
open_weights=True,
|
|
81
84
|
revision="683333f86ed9eb3699b5567f0fdabeb958d412b0",
|
|
@@ -230,6 +230,7 @@ F2LLM_0B6 = ModelMeta(
|
|
|
230
230
|
max_seq_length=8192,
|
|
231
231
|
),
|
|
232
232
|
name="codefuse-ai/F2LLM-0.6B",
|
|
233
|
+
model_type=["dense"],
|
|
233
234
|
languages=["eng-Latn"],
|
|
234
235
|
open_weights=True,
|
|
235
236
|
revision="36416618b83d4bd84a8ca30c2ee01ed518f9f2e7",
|
|
@@ -259,6 +260,7 @@ F2LLM_1B7 = ModelMeta(
|
|
|
259
260
|
max_seq_length=8192,
|
|
260
261
|
),
|
|
261
262
|
name="codefuse-ai/F2LLM-1.7B",
|
|
263
|
+
model_type=["dense"],
|
|
262
264
|
languages=["eng-Latn"],
|
|
263
265
|
open_weights=True,
|
|
264
266
|
revision="fdce0e09655f42cea26f7f66f5a70cd4507ea45c",
|
|
@@ -288,6 +290,7 @@ F2LLM_4B = ModelMeta(
|
|
|
288
290
|
max_seq_length=8192,
|
|
289
291
|
),
|
|
290
292
|
name="codefuse-ai/F2LLM-4B",
|
|
293
|
+
model_type=["dense"],
|
|
291
294
|
languages=["eng-Latn"],
|
|
292
295
|
open_weights=True,
|
|
293
296
|
revision="9fe95901ed2b6b59dd7673d6e93c9d76766a1e25",
|
|
@@ -22,6 +22,7 @@ codesage_languages = [
|
|
|
22
22
|
codesage_large = ModelMeta(
|
|
23
23
|
loader=sentence_transformers_loader,
|
|
24
24
|
name="codesage/codesage-large-v2",
|
|
25
|
+
model_type=["dense"],
|
|
25
26
|
languages=codesage_languages,
|
|
26
27
|
revision="6e5d6dc15db3e310c37c6dbac072409f95ffa5c5",
|
|
27
28
|
release_date="2024-02-03",
|
|
@@ -48,6 +49,7 @@ codesage_large = ModelMeta(
|
|
|
48
49
|
codesage_base = ModelMeta(
|
|
49
50
|
loader=sentence_transformers_loader,
|
|
50
51
|
name="codesage/codesage-base-v2",
|
|
52
|
+
model_type=["dense"],
|
|
51
53
|
languages=codesage_languages,
|
|
52
54
|
revision="92eac4f44c8674638f039f1b0d8280f2539cb4c7",
|
|
53
55
|
release_date="2024-02-03",
|
|
@@ -74,6 +76,7 @@ codesage_base = ModelMeta(
|
|
|
74
76
|
codesage_small = ModelMeta(
|
|
75
77
|
loader=sentence_transformers_loader,
|
|
76
78
|
name="codesage/codesage-small-v2",
|
|
79
|
+
model_type=["dense"],
|
|
77
80
|
languages=codesage_languages,
|
|
78
81
|
revision="4844c2f24b25e181aa43ca058cc73dd2622565c1",
|
|
79
82
|
release_date="2024-02-03",
|
|
@@ -380,6 +380,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
380
380
|
model_prompts=model_prompts,
|
|
381
381
|
),
|
|
382
382
|
name="Cohere/Cohere-embed-multilingual-v3.0",
|
|
383
|
+
model_type=["dense"],
|
|
383
384
|
languages=supported_languages,
|
|
384
385
|
open_weights=False,
|
|
385
386
|
revision="1",
|
|
@@ -404,6 +405,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
404
405
|
model_prompts=model_prompts,
|
|
405
406
|
),
|
|
406
407
|
name="Cohere/Cohere-embed-english-v3.0",
|
|
408
|
+
model_type=["dense"],
|
|
407
409
|
languages=["eng-Latn"],
|
|
408
410
|
open_weights=False,
|
|
409
411
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -428,6 +430,7 @@ cohere_mult_light_3 = ModelMeta(
|
|
|
428
430
|
model_prompts=model_prompts,
|
|
429
431
|
),
|
|
430
432
|
name="Cohere/Cohere-embed-multilingual-light-v3.0",
|
|
433
|
+
model_type=["dense"],
|
|
431
434
|
languages=supported_languages,
|
|
432
435
|
open_weights=False,
|
|
433
436
|
revision="1",
|
|
@@ -452,6 +455,7 @@ cohere_eng_light_3 = ModelMeta(
|
|
|
452
455
|
model_prompts=model_prompts,
|
|
453
456
|
),
|
|
454
457
|
name="Cohere/Cohere-embed-english-light-v3.0",
|
|
458
|
+
model_type=["dense"],
|
|
455
459
|
languages=["eng-Latn"],
|
|
456
460
|
open_weights=False,
|
|
457
461
|
reference="https://cohere.com/blog/introducing-embed-v3",
|
|
@@ -381,6 +381,7 @@ cohere_mult_3 = ModelMeta(
|
|
|
381
381
|
loader=cohere_v_loader, # type: ignore
|
|
382
382
|
loader_kwargs={"model_name": "embed-multilingual-v3.0"},
|
|
383
383
|
name="cohere/embed-multilingual-v3.0",
|
|
384
|
+
model_type=["dense"],
|
|
384
385
|
languages=[], # Unknown, but support >100 languages
|
|
385
386
|
revision="1",
|
|
386
387
|
release_date="2024-10-24",
|
|
@@ -404,6 +405,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
404
405
|
loader=cohere_v_loader, # type: ignore
|
|
405
406
|
loader_kwargs={"model_name": "embed-english-v3.0"},
|
|
406
407
|
name="cohere/embed-english-v3.0",
|
|
408
|
+
model_type=["dense"],
|
|
407
409
|
languages=["eng-Latn"],
|
|
408
410
|
revision="1",
|
|
409
411
|
release_date="2024-10-24",
|
|
@@ -426,6 +428,7 @@ cohere_eng_3 = ModelMeta(
|
|
|
426
428
|
cohere_embed_v4_multimodal = ModelMeta(
|
|
427
429
|
loader=cohere_v_loader,
|
|
428
430
|
loader_kwargs=dict(model_name="embed-v4.0"),
|
|
431
|
+
model_type=["dense"],
|
|
429
432
|
name="Cohere/Cohere-embed-v4.0",
|
|
430
433
|
languages=all_languages,
|
|
431
434
|
revision="1",
|
|
@@ -450,6 +453,7 @@ cohere_embed_v4_multimodal_binary = ModelMeta(
|
|
|
450
453
|
loader=cohere_v_loader,
|
|
451
454
|
loader_kwargs=dict(embedding_type="binary"),
|
|
452
455
|
name="Cohere/Cohere-embed-v4.0 (output_dtype=binary)",
|
|
456
|
+
model_type=["dense"],
|
|
453
457
|
languages=all_languages,
|
|
454
458
|
revision="1",
|
|
455
459
|
release_date="2024-12-01",
|
|
@@ -474,6 +478,7 @@ cohere_embed_v4_multimodal_int8 = ModelMeta(
|
|
|
474
478
|
loader=cohere_v_loader,
|
|
475
479
|
loader_kwargs=dict(embedding_type="int8"),
|
|
476
480
|
name="Cohere/Cohere-embed-v4.0 (output_dtype=int8)",
|
|
481
|
+
model_type=["dense"],
|
|
477
482
|
languages=all_languages,
|
|
478
483
|
revision="1",
|
|
479
484
|
release_date="2024-12-01",
|
|
@@ -213,6 +213,7 @@ colpali_v1_1 = ModelMeta(
|
|
|
213
213
|
torch_dtype=torch.float16,
|
|
214
214
|
),
|
|
215
215
|
name="vidore/colpali-v1.1",
|
|
216
|
+
model_type=["late-interaction"],
|
|
216
217
|
languages=["eng-Latn"],
|
|
217
218
|
revision="a0f15e3bcf97110e7ac1bb4be4bcd30eeb31992a",
|
|
218
219
|
release_date="2024-08-21",
|
|
@@ -239,6 +240,7 @@ colpali_v1_2 = ModelMeta(
|
|
|
239
240
|
torch_dtype=torch.float16,
|
|
240
241
|
),
|
|
241
242
|
name="vidore/colpali-v1.2",
|
|
243
|
+
model_type=["late-interaction"],
|
|
242
244
|
languages=["eng-Latn"],
|
|
243
245
|
revision="6b89bc63c16809af4d111bfe412e2ac6bc3c9451",
|
|
244
246
|
release_date="2024-08-26",
|
|
@@ -265,6 +267,7 @@ colpali_v1_3 = ModelMeta(
|
|
|
265
267
|
torch_dtype=torch.float16,
|
|
266
268
|
),
|
|
267
269
|
name="vidore/colpali-v1.3",
|
|
270
|
+
model_type=["late-interaction"],
|
|
268
271
|
languages=["eng-Latn"],
|
|
269
272
|
revision="1b5c8929330df1a66de441a9b5409a878f0de5b0",
|
|
270
273
|
release_date="2024-11-01",
|
|
@@ -213,6 +213,7 @@ colqwen2 = ModelMeta(
|
|
|
213
213
|
torch_dtype=torch.float16,
|
|
214
214
|
),
|
|
215
215
|
name="vidore/colqwen2-v1.0",
|
|
216
|
+
model_type=["late-interaction"],
|
|
216
217
|
languages=["eng-Latn"],
|
|
217
218
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
218
219
|
release_date="2025-11-03",
|
|
@@ -239,6 +240,7 @@ colqwen2_5 = ModelMeta(
|
|
|
239
240
|
torch_dtype=torch.float16,
|
|
240
241
|
),
|
|
241
242
|
name="vidore/colqwen2.5-v0.2",
|
|
243
|
+
model_type=["late-interaction"],
|
|
242
244
|
languages=["eng-Latn"],
|
|
243
245
|
revision="6f6fcdfd1a114dfe365f529701b33d66b9349014",
|
|
244
246
|
release_date="2025-01-31",
|
|
@@ -282,6 +284,7 @@ TOMORO_CITATION = """
|
|
|
282
284
|
colqwen3_8b = ModelMeta(
|
|
283
285
|
loader=ColQwen3Wrapper,
|
|
284
286
|
name="TomoroAI/tomoro-colqwen3-embed-8b",
|
|
287
|
+
model_type=["late-interaction"],
|
|
285
288
|
languages=["eng-Latn"],
|
|
286
289
|
revision="0b9fe28142910e209bbac15b1efe85507c27644f",
|
|
287
290
|
release_date="2025-11-26",
|
|
@@ -305,6 +308,7 @@ colqwen3_8b = ModelMeta(
|
|
|
305
308
|
colqwen3_4b = ModelMeta(
|
|
306
309
|
loader=ColQwen3Wrapper,
|
|
307
310
|
name="TomoroAI/tomoro-colqwen3-embed-4b",
|
|
311
|
+
model_type=["late-interaction"],
|
|
308
312
|
languages=["eng-Latn"],
|
|
309
313
|
revision="6a32fb68598730bf5620fbf18d832c784235c59c",
|
|
310
314
|
release_date="2025-11-26",
|
|
@@ -331,6 +335,7 @@ colnomic_7b = ModelMeta(
|
|
|
331
335
|
torch_dtype=torch.float16,
|
|
332
336
|
),
|
|
333
337
|
name="nomic-ai/colnomic-embed-multimodal-7b",
|
|
338
|
+
model_type=["late-interaction"],
|
|
334
339
|
languages=["eng-Latn"],
|
|
335
340
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
336
341
|
release_date="2025-03-31",
|
|
@@ -375,6 +380,7 @@ colnomic_3b = ModelMeta(
|
|
|
375
380
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
376
381
|
),
|
|
377
382
|
name="nomic-ai/colnomic-embed-multimodal-3b",
|
|
383
|
+
model_type=["late-interaction"],
|
|
378
384
|
languages=COLNOMIC_LANGUAGES,
|
|
379
385
|
revision="86627b4a9b0cade577851a70afa469084f9863a4",
|
|
380
386
|
release_date="2025-03-31",
|
|
@@ -401,6 +407,7 @@ colnomic_7b = ModelMeta(
|
|
|
401
407
|
torch_dtype=torch.float16,
|
|
402
408
|
),
|
|
403
409
|
name="nomic-ai/colnomic-embed-multimodal-7b",
|
|
410
|
+
model_type=["late-interaction"],
|
|
404
411
|
languages=COLNOMIC_LANGUAGES,
|
|
405
412
|
revision="09dbc9502b66605d5be56d2226019b49c9fd3293",
|
|
406
413
|
release_date="2025-03-31",
|
|
@@ -438,6 +445,7 @@ evoqwen25_vl_retriever_3b_v1 = ModelMeta(
|
|
|
438
445
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
439
446
|
),
|
|
440
447
|
name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-3B-v1",
|
|
448
|
+
model_type=["late-interaction"],
|
|
441
449
|
languages=["eng-Latn"],
|
|
442
450
|
revision="aeacaa2775f2758d82721eb1cf2f5daf1a392da9",
|
|
443
451
|
release_date="2025-11-04",
|
|
@@ -463,6 +471,7 @@ evoqwen25_vl_retriever_7b_v1 = ModelMeta(
|
|
|
463
471
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
464
472
|
),
|
|
465
473
|
name="ApsaraStackMaaS/EvoQwen2.5-VL-Retriever-7B-v1",
|
|
474
|
+
model_type=["late-interaction"],
|
|
466
475
|
languages=["eng-Latn"],
|
|
467
476
|
revision="8952ac6ee0e7de2e9211b165921518caf9202110",
|
|
468
477
|
release_date="2025-11-04",
|
|
@@ -54,6 +54,7 @@ colsmol_256m = ModelMeta(
|
|
|
54
54
|
torch_dtype=torch.float16,
|
|
55
55
|
),
|
|
56
56
|
name="vidore/colSmol-256M",
|
|
57
|
+
model_type=["late-interaction"],
|
|
57
58
|
languages=["eng-Latn"],
|
|
58
59
|
revision="530094e83a40ca4edcb5c9e5ddfa61a4b5ea0d2f",
|
|
59
60
|
release_date="2025-01-22",
|
|
@@ -80,6 +81,7 @@ colsmol_500m = ModelMeta(
|
|
|
80
81
|
torch_dtype=torch.float16, attn_implementation="flash_attention_2"
|
|
81
82
|
),
|
|
82
83
|
name="vidore/colSmol-500M",
|
|
84
|
+
model_type=["late-interaction"],
|
|
83
85
|
languages=["eng-Latn"],
|
|
84
86
|
revision="1aa9325cba7ed2b3b9b97ede4d55026322504902",
|
|
85
87
|
release_date="2025-01-22",
|