mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/abstask.py +6 -6
- mteb/abstasks/aggregated_task.py +4 -10
- mteb/abstasks/clustering_legacy.py +3 -2
- mteb/abstasks/task_metadata.py +2 -3
- mteb/cache.py +7 -4
- mteb/cli/build_cli.py +10 -5
- mteb/cli/generate_model_card.py +4 -3
- mteb/deprecated_evaluator.py +4 -3
- mteb/evaluate.py +4 -1
- mteb/get_tasks.py +4 -3
- mteb/leaderboard/app.py +70 -3
- mteb/models/abs_encoder.py +5 -3
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +17 -0
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +3 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +9 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +8 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +6 -3
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -1
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +2 -1
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +49 -4
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
- mteb/models/search_wrappers.py +4 -2
- mteb/models/sentence_transformer_wrapper.py +10 -10
- mteb/results/benchmark_results.py +67 -43
- mteb/results/model_result.py +3 -1
- mteb/results/task_result.py +22 -17
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
|
@@ -106,6 +106,7 @@ dinov2_training_datasets = set(
|
|
|
106
106
|
dinov2_small = ModelMeta(
|
|
107
107
|
loader=DINOModel, # type: ignore
|
|
108
108
|
name="facebook/dinov2-small",
|
|
109
|
+
model_type=["dense"],
|
|
109
110
|
languages=["eng-Latn"],
|
|
110
111
|
revision="ed25f3a31f01632728cabb09d1542f84ab7b0056",
|
|
111
112
|
release_date="2023-07-18",
|
|
@@ -136,6 +137,7 @@ dinov2_small = ModelMeta(
|
|
|
136
137
|
dinov2_base = ModelMeta(
|
|
137
138
|
loader=DINOModel, # type: ignore
|
|
138
139
|
name="facebook/dinov2-base",
|
|
140
|
+
model_type=["dense"],
|
|
139
141
|
languages=["eng-Latn"],
|
|
140
142
|
revision="f9e44c814b77203eaa57a6bdbbd535f21ede1415",
|
|
141
143
|
release_date="2023-07-18",
|
|
@@ -166,6 +168,7 @@ dinov2_base = ModelMeta(
|
|
|
166
168
|
dinov2_large = ModelMeta(
|
|
167
169
|
loader=DINOModel, # type: ignore
|
|
168
170
|
name="facebook/dinov2-large",
|
|
171
|
+
model_type=["dense"],
|
|
169
172
|
languages=["eng-Latn"],
|
|
170
173
|
revision="47b73eefe95e8d44ec3623f8890bd894b6ea2d6c",
|
|
171
174
|
release_date="2023-07-18",
|
|
@@ -196,6 +199,7 @@ dinov2_large = ModelMeta(
|
|
|
196
199
|
dinov2_giant = ModelMeta(
|
|
197
200
|
loader=DINOModel, # type: ignore
|
|
198
201
|
name="facebook/dinov2-giant",
|
|
202
|
+
model_type=["dense"],
|
|
199
203
|
languages=["eng-Latn"],
|
|
200
204
|
revision="611a9d42f2335e0f921f1e313ad3c1b7178d206d",
|
|
201
205
|
release_date="2023-07-18",
|
|
@@ -230,6 +234,7 @@ webssl_dino_training_datasets = set(
|
|
|
230
234
|
webssl_dino300m_full2b = ModelMeta(
|
|
231
235
|
loader=DINOModel,
|
|
232
236
|
name="facebook/webssl-dino300m-full2b-224",
|
|
237
|
+
model_type=["dense"],
|
|
233
238
|
languages=["eng-Latn"],
|
|
234
239
|
revision="8529cdb3fb75014932af3b896455fc21c386168e",
|
|
235
240
|
release_date="2025-04-24",
|
|
@@ -260,6 +265,7 @@ webssl_dino300m_full2b = ModelMeta(
|
|
|
260
265
|
webssl_dino1b_full2b = ModelMeta(
|
|
261
266
|
loader=DINOModel,
|
|
262
267
|
name="facebook/webssl-dino1b-full2b-224",
|
|
268
|
+
model_type=["dense"],
|
|
263
269
|
languages=["eng-Latn"],
|
|
264
270
|
revision="d3bf033d9c8cc62ea9e73c40956642cad2ec568a",
|
|
265
271
|
release_date="2025-04-24",
|
|
@@ -290,6 +296,7 @@ webssl_dino1b_full2b = ModelMeta(
|
|
|
290
296
|
webssl_dino2b_full2b = ModelMeta(
|
|
291
297
|
loader=DINOModel,
|
|
292
298
|
name="facebook/webssl-dino2b-full2b-224",
|
|
299
|
+
model_type=["dense"],
|
|
293
300
|
languages=["eng-Latn"],
|
|
294
301
|
revision="cd5893e3fd2e988eb716792049b3dd53b3f1b68b",
|
|
295
302
|
release_date="2025-04-24",
|
|
@@ -320,6 +327,7 @@ webssl_dino2b_full2b = ModelMeta(
|
|
|
320
327
|
webssl_dino3b_full2b = ModelMeta(
|
|
321
328
|
loader=DINOModel,
|
|
322
329
|
name="facebook/webssl-dino3b-full2b-224",
|
|
330
|
+
model_type=["dense"],
|
|
323
331
|
languages=["eng-Latn"],
|
|
324
332
|
revision="2d015c340b16bc47bc6557fcb4e6c83a9d4aa1d3",
|
|
325
333
|
release_date="2025-04-24",
|
|
@@ -350,6 +358,7 @@ webssl_dino3b_full2b = ModelMeta(
|
|
|
350
358
|
webssl_dino5b_full2b = ModelMeta(
|
|
351
359
|
loader=DINOModel,
|
|
352
360
|
name="facebook/webssl-dino5b-full2b-224",
|
|
361
|
+
model_type=["dense"],
|
|
353
362
|
languages=["eng-Latn"],
|
|
354
363
|
revision="88006b18b9af369f6c611db7a64d908bde3714e0",
|
|
355
364
|
release_date="2025-04-24",
|
|
@@ -380,6 +389,7 @@ webssl_dino5b_full2b = ModelMeta(
|
|
|
380
389
|
webssl_dino7b_full8b_224 = ModelMeta(
|
|
381
390
|
loader=DINOModel,
|
|
382
391
|
name="facebook/webssl-dino7b-full8b-224",
|
|
392
|
+
model_type=["dense"],
|
|
383
393
|
languages=["eng-Latn"],
|
|
384
394
|
revision="c6085463ea680043042a80c6d41db2c65e85f466",
|
|
385
395
|
release_date="2025-04-24",
|
|
@@ -410,6 +420,7 @@ webssl_dino7b_full8b_224 = ModelMeta(
|
|
|
410
420
|
webssl_dino7b_full8b_378 = ModelMeta(
|
|
411
421
|
loader=DINOModel,
|
|
412
422
|
name="facebook/webssl-dino7b-full8b-378",
|
|
423
|
+
model_type=["dense"],
|
|
413
424
|
languages=["eng-Latn"],
|
|
414
425
|
revision="53c8c5b43070bd2ddb3f66161140408ce832301f",
|
|
415
426
|
release_date="2025-04-24",
|
|
@@ -440,6 +451,7 @@ webssl_dino7b_full8b_378 = ModelMeta(
|
|
|
440
451
|
webssl_dino7b_full8b_518 = ModelMeta(
|
|
441
452
|
loader=DINOModel,
|
|
442
453
|
name="facebook/webssl-dino7b-full8b-518",
|
|
454
|
+
model_type=["dense"],
|
|
443
455
|
languages=["eng-Latn"],
|
|
444
456
|
revision="aee350d2c5e3e5fdb7ee6985291d808ea5eef431",
|
|
445
457
|
release_date="2025-04-24",
|
|
@@ -471,6 +483,7 @@ webssl_dino7b_full8b_518 = ModelMeta(
|
|
|
471
483
|
webssl_dino2b_light2b = ModelMeta(
|
|
472
484
|
loader=DINOModel,
|
|
473
485
|
name="facebook/webssl-dino2b-light2b-224",
|
|
486
|
+
model_type=["dense"],
|
|
474
487
|
languages=["eng-Latn"],
|
|
475
488
|
revision="633a663f304e63cc3cbec3f7f9ca2fbc94736128",
|
|
476
489
|
release_date="2025-04-24",
|
|
@@ -501,6 +514,7 @@ webssl_dino2b_light2b = ModelMeta(
|
|
|
501
514
|
webssl_dino2b_heavy2b = ModelMeta(
|
|
502
515
|
loader=DINOModel,
|
|
503
516
|
name="facebook/webssl-dino2b-heavy2b-224",
|
|
517
|
+
model_type=["dense"],
|
|
504
518
|
languages=["eng-Latn"],
|
|
505
519
|
revision="9f46eb0c0129656a1ef195fde072e3765abdb7c6",
|
|
506
520
|
release_date="2025-04-24",
|
|
@@ -531,6 +545,7 @@ webssl_dino2b_heavy2b = ModelMeta(
|
|
|
531
545
|
webssl_dino3b_light2b = ModelMeta(
|
|
532
546
|
loader=DINOModel,
|
|
533
547
|
name="facebook/webssl-dino3b-light2b-224",
|
|
548
|
+
model_type=["dense"],
|
|
534
549
|
languages=["eng-Latn"],
|
|
535
550
|
revision="4d0160f60673805431f4ad14983e712ed88be5b8",
|
|
536
551
|
release_date="2025-04-24",
|
|
@@ -561,6 +576,7 @@ webssl_dino3b_light2b = ModelMeta(
|
|
|
561
576
|
webssl_dino3b_heavy2b = ModelMeta(
|
|
562
577
|
loader=DINOModel,
|
|
563
578
|
name="facebook/webssl-dino3b-heavy2b-224",
|
|
579
|
+
model_type=["dense"],
|
|
564
580
|
languages=["eng-Latn"],
|
|
565
581
|
revision="dd39c2910747561b332285d96c4dce0bdb240775",
|
|
566
582
|
release_date="2025-04-24",
|
|
@@ -591,6 +607,7 @@ webssl_dino3b_heavy2b = ModelMeta(
|
|
|
591
607
|
webssl_mae300m_full2b = ModelMeta(
|
|
592
608
|
loader=DINOModel,
|
|
593
609
|
name="facebook/webssl-mae300m-full2b-224",
|
|
610
|
+
model_type=["dense"],
|
|
594
611
|
languages=["eng-Latn"],
|
|
595
612
|
revision="4655a0ac1726c206ba14d5ccb26758c62a4d03b0",
|
|
596
613
|
release_date="2025-04-24",
|
|
@@ -621,6 +638,7 @@ webssl_mae300m_full2b = ModelMeta(
|
|
|
621
638
|
webssl_mae700m_full2b = ModelMeta(
|
|
622
639
|
loader=DINOModel,
|
|
623
640
|
name="facebook/webssl-mae700m-full2b-224",
|
|
641
|
+
model_type=["dense"],
|
|
624
642
|
languages=["eng-Latn"],
|
|
625
643
|
revision="c32be382e757d73a178de1ead62c27391d4b4280",
|
|
626
644
|
release_date="2025-04-24",
|
|
@@ -651,6 +669,7 @@ webssl_mae700m_full2b = ModelMeta(
|
|
|
651
669
|
webssl_mae1b_full2b = ModelMeta(
|
|
652
670
|
loader=DINOModel,
|
|
653
671
|
name="facebook/webssl-mae1b-full2b-224",
|
|
672
|
+
model_type=["dense"],
|
|
654
673
|
languages=["eng-Latn"],
|
|
655
674
|
revision="5880aefedbad8db0f44d27358f6f08e8576f70fc",
|
|
656
675
|
release_date="2025-04-24",
|
|
@@ -40,6 +40,7 @@ e5_instruct = ModelMeta(
|
|
|
40
40
|
normalized=True,
|
|
41
41
|
),
|
|
42
42
|
name="intfloat/multilingual-e5-large-instruct",
|
|
43
|
+
model_type=["dense"],
|
|
43
44
|
languages=XLMR_LANGUAGES,
|
|
44
45
|
open_weights=True,
|
|
45
46
|
revision="baa7be480a7de1539afce709c8f13f833a510e0a",
|
|
@@ -78,6 +79,7 @@ e5_mistral = ModelMeta(
|
|
|
78
79
|
normalized=True,
|
|
79
80
|
),
|
|
80
81
|
name="intfloat/e5-mistral-7b-instruct",
|
|
82
|
+
model_type=["dense"],
|
|
81
83
|
languages=MISTRAL_LANGUAGES,
|
|
82
84
|
open_weights=True,
|
|
83
85
|
revision="07163b72af1488142a360786df853f237b1a3ca1",
|
|
@@ -125,6 +127,7 @@ zeta_alpha_ai__zeta_alpha_e5_mistral = ModelMeta(
|
|
|
125
127
|
normalized=True,
|
|
126
128
|
),
|
|
127
129
|
name="zeta-alpha-ai/Zeta-Alpha-E5-Mistral",
|
|
130
|
+
model_type=["dense"],
|
|
128
131
|
revision="c791d37474fa6a5c72eb3a2522be346bc21fbfc3",
|
|
129
132
|
release_date="2024-08-30",
|
|
130
133
|
languages=["eng-Latn"],
|
|
@@ -201,6 +204,7 @@ BeastyZ__e5_R_mistral_7b = ModelMeta(
|
|
|
201
204
|
tokenizer_kwargs={"pad_token": "</s>"},
|
|
202
205
|
),
|
|
203
206
|
name="BeastyZ/e5-R-mistral-7b",
|
|
207
|
+
model_type=["dense"],
|
|
204
208
|
revision="3f810a6a7fd220369ad248e3705cf13d71803602",
|
|
205
209
|
release_date="2024-06-28",
|
|
206
210
|
languages=["eng-Latn"],
|
|
@@ -70,6 +70,7 @@ e5_mult_small = ModelMeta(
|
|
|
70
70
|
model_prompts=model_prompts,
|
|
71
71
|
),
|
|
72
72
|
name="intfloat/multilingual-e5-small",
|
|
73
|
+
model_type=["dense"],
|
|
73
74
|
languages=XLMR_LANGUAGES,
|
|
74
75
|
open_weights=True,
|
|
75
76
|
revision="fd1525a9fd15316a2d503bf26ab031a61d056e98",
|
|
@@ -96,6 +97,7 @@ e5_mult_base = ModelMeta(
|
|
|
96
97
|
model_prompts=model_prompts,
|
|
97
98
|
),
|
|
98
99
|
name="intfloat/multilingual-e5-base",
|
|
100
|
+
model_type=["dense"],
|
|
99
101
|
languages=XLMR_LANGUAGES,
|
|
100
102
|
open_weights=True,
|
|
101
103
|
revision="d13f1b27baf31030b7fd040960d60d909913633f",
|
|
@@ -122,6 +124,7 @@ e5_mult_large = ModelMeta(
|
|
|
122
124
|
model_prompts=model_prompts,
|
|
123
125
|
),
|
|
124
126
|
name="intfloat/multilingual-e5-large",
|
|
127
|
+
model_type=["dense"],
|
|
125
128
|
languages=XLMR_LANGUAGES,
|
|
126
129
|
open_weights=True,
|
|
127
130
|
revision="ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb",
|
|
@@ -148,6 +151,7 @@ e5_eng_small_v2 = ModelMeta(
|
|
|
148
151
|
model_prompts=model_prompts,
|
|
149
152
|
),
|
|
150
153
|
name="intfloat/e5-small-v2",
|
|
154
|
+
model_type=["dense"],
|
|
151
155
|
languages=["eng-Latn"],
|
|
152
156
|
open_weights=True,
|
|
153
157
|
revision="dca8b1a9dae0d4575df2bf423a5edb485a431236",
|
|
@@ -174,6 +178,7 @@ e5_eng_small = ModelMeta(
|
|
|
174
178
|
model_prompts=model_prompts,
|
|
175
179
|
),
|
|
176
180
|
name="intfloat/e5-small",
|
|
181
|
+
model_type=["dense"],
|
|
177
182
|
languages=["eng-Latn"],
|
|
178
183
|
open_weights=True,
|
|
179
184
|
revision="e272f3049e853b47cb5ca3952268c6662abda68f",
|
|
@@ -200,6 +205,7 @@ e5_eng_base_v2 = ModelMeta(
|
|
|
200
205
|
model_prompts=model_prompts,
|
|
201
206
|
),
|
|
202
207
|
name="intfloat/e5-base-v2",
|
|
208
|
+
model_type=["dense"],
|
|
203
209
|
languages=["eng-Latn"],
|
|
204
210
|
open_weights=True,
|
|
205
211
|
revision="1c644c92ad3ba1efdad3f1451a637716616a20e8",
|
|
@@ -227,6 +233,7 @@ e5_eng_large_v2 = ModelMeta(
|
|
|
227
233
|
model_prompts=model_prompts,
|
|
228
234
|
),
|
|
229
235
|
name="intfloat/e5-large-v2",
|
|
236
|
+
model_type=["dense"],
|
|
230
237
|
languages=["eng-Latn"],
|
|
231
238
|
open_weights=True,
|
|
232
239
|
revision="b322e09026e4ea05f42beadf4d661fb4e101d311",
|
|
@@ -254,6 +261,7 @@ e5_large = ModelMeta(
|
|
|
254
261
|
model_prompts=model_prompts,
|
|
255
262
|
),
|
|
256
263
|
name="intfloat/e5-large",
|
|
264
|
+
model_type=["dense"],
|
|
257
265
|
languages=["eng-Latn"],
|
|
258
266
|
open_weights=True,
|
|
259
267
|
revision="4dc6d853a804b9c8886ede6dda8a073b7dc08a81",
|
|
@@ -281,6 +289,7 @@ e5_base = ModelMeta(
|
|
|
281
289
|
model_prompts=model_prompts,
|
|
282
290
|
),
|
|
283
291
|
name="intfloat/e5-base",
|
|
292
|
+
model_type=["dense"],
|
|
284
293
|
languages=["eng-Latn"],
|
|
285
294
|
open_weights=True,
|
|
286
295
|
revision="b533fe4636f4a2507c08ddab40644d20b0006d6a",
|
|
@@ -141,6 +141,7 @@ Eager_Embed_V1 = ModelMeta(
|
|
|
141
141
|
image_size=784,
|
|
142
142
|
),
|
|
143
143
|
name="eagerworks/eager-embed-v1",
|
|
144
|
+
model_type=["dense"],
|
|
144
145
|
languages=["fra-Latn", "spa-Latn", "eng-Latn", "deu-Latn"],
|
|
145
146
|
revision="a6bec272729c5056e2c26618ce085205c82a3b3c",
|
|
146
147
|
release_date="2025-11-20",
|
|
@@ -4,6 +4,7 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
4
4
|
embedding_gemma_300m_scandi = ModelMeta(
|
|
5
5
|
loader=sentence_transformers_loader, # type: ignore
|
|
6
6
|
name="emillykkejensen/EmbeddingGemma-Scandi-300m",
|
|
7
|
+
model_type=["dense"],
|
|
7
8
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
8
9
|
open_weights=True,
|
|
9
10
|
revision="9f3307b9f601db564a9190cb475324d128dcfe86",
|
|
@@ -36,6 +37,7 @@ embedding_gemma_300m_scandi = ModelMeta(
|
|
|
36
37
|
qwen_scandi = ModelMeta(
|
|
37
38
|
loader=sentence_transformers_loader, # type: ignore
|
|
38
39
|
name="emillykkejensen/Qwen3-Embedding-Scandi-0.6B",
|
|
40
|
+
model_type=["dense"],
|
|
39
41
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
40
42
|
open_weights=True,
|
|
41
43
|
revision="cf1e7ba36ebd3d605549d8f02930a18e17b54513",
|
|
@@ -59,6 +61,7 @@ qwen_scandi = ModelMeta(
|
|
|
59
61
|
mmbert_scandi = ModelMeta(
|
|
60
62
|
loader=sentence_transformers_loader, # type: ignore
|
|
61
63
|
name="emillykkejensen/mmBERTscandi-base-embedding",
|
|
64
|
+
model_type=["dense"],
|
|
62
65
|
languages=["dan-Latn", "swe-Latn", "nor-Latn", "nob-Latn", "nno-Latn"],
|
|
63
66
|
open_weights=True,
|
|
64
67
|
revision="82d74c7a5d8e1ddf31b132865df2d16b2b0294ee",
|
|
@@ -4,6 +4,7 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
4
4
|
Euler_Legal_Embedding_V1 = ModelMeta(
|
|
5
5
|
loader=sentence_transformers_loader,
|
|
6
6
|
name="Mira190/Euler-Legal-Embedding-V1",
|
|
7
|
+
model_type=["dense"],
|
|
7
8
|
revision="df607ed9e25e569514a99c27cdaaab16e76b6dd4",
|
|
8
9
|
release_date="2025-11-06",
|
|
9
10
|
languages=["eng-Latn"],
|
|
@@ -138,6 +138,7 @@ laion_2b = set(
|
|
|
138
138
|
EVA02_CLIP_B_16 = ModelMeta(
|
|
139
139
|
loader=evaclip_loader,
|
|
140
140
|
name="QuanSun/EVA02-CLIP-B-16",
|
|
141
|
+
model_type=["dense"],
|
|
141
142
|
languages=["eng-Latn"],
|
|
142
143
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
143
144
|
release_date="2023-04-26",
|
|
@@ -161,6 +162,7 @@ EVA02_CLIP_B_16 = ModelMeta(
|
|
|
161
162
|
EVA02_CLIP_L_14 = ModelMeta(
|
|
162
163
|
loader=evaclip_loader,
|
|
163
164
|
name="QuanSun/EVA02-CLIP-L-14",
|
|
165
|
+
model_type=["dense"],
|
|
164
166
|
languages=["eng-Latn"],
|
|
165
167
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
166
168
|
release_date="2023-04-26",
|
|
@@ -184,6 +186,7 @@ EVA02_CLIP_L_14 = ModelMeta(
|
|
|
184
186
|
EVA02_CLIP_bigE_14 = ModelMeta(
|
|
185
187
|
loader=evaclip_loader,
|
|
186
188
|
name="QuanSun/EVA02-CLIP-bigE-14",
|
|
189
|
+
model_type=["dense"],
|
|
187
190
|
languages=["eng-Latn"],
|
|
188
191
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
189
192
|
release_date="2023-04-26",
|
|
@@ -208,6 +211,7 @@ EVA02_CLIP_bigE_14 = ModelMeta(
|
|
|
208
211
|
EVA02_CLIP_bigE_14_plus = ModelMeta(
|
|
209
212
|
loader=evaclip_loader,
|
|
210
213
|
name="QuanSun/EVA02-CLIP-bigE-14-plus",
|
|
214
|
+
model_type=["dense"],
|
|
211
215
|
languages=["eng-Latn"],
|
|
212
216
|
revision="11afd202f2ae80869d6cef18b1ec775e79bd8d12",
|
|
213
217
|
release_date="2023-04-26",
|
|
@@ -6,6 +6,7 @@ from mteb.models.sentence_transformer_wrapper import sentence_transformers_loade
|
|
|
6
6
|
parsbert = ModelMeta(
|
|
7
7
|
loader=sentence_transformers_loader,
|
|
8
8
|
name="HooshvareLab/bert-base-parsbert-uncased",
|
|
9
|
+
model_type=["dense"],
|
|
9
10
|
languages=["fas-Arab"],
|
|
10
11
|
open_weights=True,
|
|
11
12
|
revision="d73a0e2c7492c33bd5819bcdb23eba207404dd19",
|
|
@@ -41,6 +42,7 @@ parsbert = ModelMeta(
|
|
|
41
42
|
bert_zwnj = ModelMeta(
|
|
42
43
|
loader=sentence_transformers_loader,
|
|
43
44
|
name="m3hrdadfi/bert-zwnj-wnli-mean-tokens",
|
|
45
|
+
model_type=["dense"],
|
|
44
46
|
languages=["fas-Arab"],
|
|
45
47
|
open_weights=True,
|
|
46
48
|
revision="b9506ddc579ac8c398ae6dae680401ae0a1a5b23",
|
|
@@ -66,6 +68,7 @@ bert_zwnj = ModelMeta(
|
|
|
66
68
|
roberta_zwnj = ModelMeta(
|
|
67
69
|
loader=sentence_transformers_loader,
|
|
68
70
|
name="m3hrdadfi/roberta-zwnj-wnli-mean-tokens",
|
|
71
|
+
model_type=["dense"],
|
|
69
72
|
languages=["fas-Arab"],
|
|
70
73
|
open_weights=True,
|
|
71
74
|
revision="36f912ac44e22250aee16ea533a4ff8cd848c1a1",
|
|
@@ -90,6 +93,7 @@ roberta_zwnj = ModelMeta(
|
|
|
90
93
|
sentence_transformer_parsbert = ModelMeta(
|
|
91
94
|
loader=sentence_transformers_loader,
|
|
92
95
|
name="myrkur/sentence-transformer-parsbert-fa",
|
|
96
|
+
model_type=["dense"],
|
|
93
97
|
languages=["fas-Arab"],
|
|
94
98
|
open_weights=True,
|
|
95
99
|
revision="72bd0a3557622f0ae08a092f4643609e0b950cdd",
|
|
@@ -140,6 +144,7 @@ tooka_bert_base = ModelMeta(
|
|
|
140
144
|
tooka_sbert = ModelMeta(
|
|
141
145
|
loader=sentence_transformers_loader,
|
|
142
146
|
name="PartAI/Tooka-SBERT",
|
|
147
|
+
model_type=["dense"],
|
|
143
148
|
languages=["fas-Arab"],
|
|
144
149
|
open_weights=True,
|
|
145
150
|
revision="5d07f0c543aca654373b931ae07cd197769110fd",
|
|
@@ -170,6 +175,7 @@ tooka_sbert = ModelMeta(
|
|
|
170
175
|
fa_bert = ModelMeta(
|
|
171
176
|
loader=sentence_transformers_loader,
|
|
172
177
|
name="sbunlp/fabert",
|
|
178
|
+
model_type=["dense"],
|
|
173
179
|
languages=["fas-Arab"],
|
|
174
180
|
open_weights=True,
|
|
175
181
|
revision="a0e3973064c97768e121b9b95f21adc94e0ca3fb",
|
|
@@ -217,6 +223,7 @@ fa_bert = ModelMeta(
|
|
|
217
223
|
tooka_sbert_v2_small = ModelMeta(
|
|
218
224
|
loader=sentence_transformers_loader,
|
|
219
225
|
name="PartAI/Tooka-SBERT-V2-Small",
|
|
226
|
+
model_type=["dense"],
|
|
220
227
|
languages=["fas-Arab"],
|
|
221
228
|
open_weights=True,
|
|
222
229
|
revision="8bbed87e36669387f71437c061430ba56d1b496f",
|
|
@@ -247,6 +254,7 @@ tooka_sbert_v2_small = ModelMeta(
|
|
|
247
254
|
tooka_sbert_v2_large = ModelMeta(
|
|
248
255
|
loader=sentence_transformers_loader,
|
|
249
256
|
name="PartAI/Tooka-SBERT-V2-Large",
|
|
257
|
+
model_type=["dense"],
|
|
250
258
|
languages=["fas-Arab"],
|
|
251
259
|
open_weights=True,
|
|
252
260
|
revision="b59682efa961122cc0e4408296d5852870c82eae",
|
|
@@ -107,6 +107,7 @@ XLMR_LANGUAGES = [
|
|
|
107
107
|
xlmr_base = ModelMeta(
|
|
108
108
|
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
109
109
|
name="FacebookAI/xlm-roberta-base",
|
|
110
|
+
model_type=["dense"],
|
|
110
111
|
languages=XLMR_LANGUAGES,
|
|
111
112
|
open_weights=True,
|
|
112
113
|
revision="e73636d4f797dec63c3081bb6ed5c7b0bb3f2089",
|
|
@@ -150,6 +151,7 @@ xlmr_base = ModelMeta(
|
|
|
150
151
|
xlmr_large = ModelMeta(
|
|
151
152
|
loader=sentence_transformers_loader, # type: ignore[arg-type]
|
|
152
153
|
name="FacebookAI/xlm-roberta-large",
|
|
154
|
+
model_type=["dense"],
|
|
153
155
|
languages=XLMR_LANGUAGES,
|
|
154
156
|
open_weights=True,
|
|
155
157
|
revision="c23d21b0620b635a76227c604d44e43a9f0ee389",
|
|
@@ -2,6 +2,7 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
import logging
|
|
4
4
|
import math
|
|
5
|
+
import warnings
|
|
5
6
|
from typing import TYPE_CHECKING, Any
|
|
6
7
|
|
|
7
8
|
import torch
|
|
@@ -261,9 +262,9 @@ def smart_resize(
|
|
|
261
262
|
w_bar = ceil_by_factor(width * beta, factor)
|
|
262
263
|
|
|
263
264
|
if max(h_bar, w_bar) / min(h_bar, w_bar) > MAX_RATIO:
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
)
|
|
265
|
+
msg = f"Absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(h_bar, w_bar) / min(h_bar, w_bar)}"
|
|
266
|
+
logger.warning(msg)
|
|
267
|
+
warnings.warn(msg)
|
|
267
268
|
if h_bar > w_bar:
|
|
268
269
|
h_bar = w_bar * MAX_RATIO
|
|
269
270
|
else:
|
|
@@ -346,6 +347,7 @@ training_data = {
|
|
|
346
347
|
gme_qwen2vl_2b = ModelMeta(
|
|
347
348
|
loader=GmeQwen2VL,
|
|
348
349
|
name="Alibaba-NLP/gme-Qwen2-VL-2B-Instruct",
|
|
350
|
+
model_type=["dense"],
|
|
349
351
|
languages=["eng-Latn", "cmn-Hans"],
|
|
350
352
|
open_weights=True,
|
|
351
353
|
revision="ce765ae71b8cdb208203cd8fb64a170b1b84293a",
|
|
@@ -369,6 +371,7 @@ gme_qwen2vl_2b = ModelMeta(
|
|
|
369
371
|
gme_qwen2vl_7b = ModelMeta(
|
|
370
372
|
loader=GmeQwen2VL,
|
|
371
373
|
name="Alibaba-NLP/gme-Qwen2-VL-7B-Instruct",
|
|
374
|
+
model_type=["dense"],
|
|
372
375
|
languages=["eng-Latn", "cmn-Hans"],
|
|
373
376
|
open_weights=True,
|
|
374
377
|
revision="477027a6480f8630363be77751f169cc3434b673",
|
|
@@ -150,6 +150,7 @@ google_text_emb_004 = ModelMeta(
|
|
|
150
150
|
model_prompts=MODEL_PROMPTS,
|
|
151
151
|
),
|
|
152
152
|
name="google/text-embedding-004",
|
|
153
|
+
model_type=["dense"],
|
|
153
154
|
languages=["eng-Latn"],
|
|
154
155
|
open_weights=False,
|
|
155
156
|
revision="1", # revision is intended for implementation
|
|
@@ -174,6 +175,7 @@ google_text_emb_005 = ModelMeta(
|
|
|
174
175
|
model_prompts=MODEL_PROMPTS,
|
|
175
176
|
),
|
|
176
177
|
name="google/text-embedding-005",
|
|
178
|
+
model_type=["dense"],
|
|
177
179
|
languages=["eng-Latn"],
|
|
178
180
|
open_weights=False,
|
|
179
181
|
revision="1", # revision is intended for implementation
|
|
@@ -198,6 +200,7 @@ google_text_multilingual_emb_002 = ModelMeta(
|
|
|
198
200
|
model_prompts=MODEL_PROMPTS,
|
|
199
201
|
),
|
|
200
202
|
name="google/text-multilingual-embedding-002",
|
|
203
|
+
model_type=["dense"],
|
|
201
204
|
languages=MULTILINGUAL_EVALUATED_LANGUAGES, # From the list of evaluated languages in https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/text-embeddings-api#supported_text_languages
|
|
202
205
|
open_weights=False,
|
|
203
206
|
revision="1",
|
|
@@ -222,6 +225,7 @@ google_gemini_embedding_001 = ModelMeta(
|
|
|
222
225
|
model_prompts=MODEL_PROMPTS,
|
|
223
226
|
),
|
|
224
227
|
name="google/gemini-embedding-001",
|
|
228
|
+
model_type=["dense"],
|
|
225
229
|
languages=MULTILINGUAL_EVALUATED_LANGUAGES,
|
|
226
230
|
open_weights=False,
|
|
227
231
|
revision="1",
|
|
@@ -256,6 +260,7 @@ def gemma_embedding_loader(model_name: str, revision: str, **kwargs):
|
|
|
256
260
|
embedding_gemma_300m = ModelMeta(
|
|
257
261
|
loader=gemma_embedding_loader,
|
|
258
262
|
name="google/embeddinggemma-300m",
|
|
263
|
+
model_type=["dense"],
|
|
259
264
|
languages=MULTILINGUAL_EVALUATED_LANGUAGES,
|
|
260
265
|
open_weights=True,
|
|
261
266
|
revision="64614b0b8b64f0c6c1e52b07e4e9a4e8fe4d2da2",
|
|
@@ -166,6 +166,7 @@ granite_vision_embedding = ModelMeta(
|
|
|
166
166
|
torch_dtype=torch.float16,
|
|
167
167
|
),
|
|
168
168
|
name="ibm-granite/granite-vision-3.3-2b-embedding",
|
|
169
|
+
model_type=["dense"],
|
|
169
170
|
languages=["eng-Latn"],
|
|
170
171
|
revision="cee615db64d89d1552a4ee39c50f25c0fc5c66ca",
|
|
171
172
|
release_date="2025-06-11",
|
|
@@ -38,6 +38,7 @@ gritlm7b = ModelMeta(
|
|
|
38
38
|
torch_dtype="auto",
|
|
39
39
|
),
|
|
40
40
|
name="GritLM/GritLM-7B",
|
|
41
|
+
model_type=["dense"],
|
|
41
42
|
languages=["eng-Latn", "fra-Latn", "deu-Latn", "ita-Latn", "spa-Latn"],
|
|
42
43
|
open_weights=True,
|
|
43
44
|
revision="13f00a0e36500c80ce12870ea513846a066004af",
|
|
@@ -66,6 +67,7 @@ gritlm8x7b = ModelMeta(
|
|
|
66
67
|
torch_dtype="auto",
|
|
67
68
|
),
|
|
68
69
|
name="GritLM/GritLM-8x7B",
|
|
70
|
+
model_type=["dense"],
|
|
69
71
|
languages=["eng-Latn", "fra-Latn", "deu-Latn", "ita-Latn", "spa-Latn"],
|
|
70
72
|
open_weights=True,
|
|
71
73
|
revision="7f089b13e3345510281733ca1e6ff871b5b4bc76",
|
|
@@ -42,6 +42,7 @@ gte_qwen2_7b_instruct = ModelMeta(
|
|
|
42
42
|
embed_eos="<|endoftext|>",
|
|
43
43
|
),
|
|
44
44
|
name="Alibaba-NLP/gte-Qwen2-7B-instruct",
|
|
45
|
+
model_type=["dense"],
|
|
45
46
|
languages=None,
|
|
46
47
|
open_weights=True,
|
|
47
48
|
revision="e26182b2122f4435e8b3ebecbf363990f409b45b",
|
|
@@ -73,6 +74,7 @@ gte_qwen1_5_7b_instruct = ModelMeta(
|
|
|
73
74
|
embed_eos="<|endoftext|>",
|
|
74
75
|
),
|
|
75
76
|
name="Alibaba-NLP/gte-Qwen1.5-7B-instruct",
|
|
77
|
+
model_type=["dense"],
|
|
76
78
|
languages=["eng-Latn"],
|
|
77
79
|
open_weights=True,
|
|
78
80
|
revision="07d27e5226328010336563bc1b564a5e3436a298",
|
|
@@ -109,6 +111,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
109
111
|
embed_eos="<|endoftext|>",
|
|
110
112
|
),
|
|
111
113
|
name="Alibaba-NLP/gte-Qwen2-1.5B-instruct",
|
|
114
|
+
model_type=["dense"],
|
|
112
115
|
languages=["eng-Latn"],
|
|
113
116
|
open_weights=True,
|
|
114
117
|
revision="c6c1b92f4a3e1b92b326ad29dd3c8433457df8dd",
|
|
@@ -136,6 +139,7 @@ gte_qwen2_1_5b_instruct = ModelMeta(
|
|
|
136
139
|
gte_small_zh = ModelMeta(
|
|
137
140
|
loader=sentence_transformers_loader,
|
|
138
141
|
name="thenlper/gte-small-zh",
|
|
142
|
+
model_type=["dense"],
|
|
139
143
|
languages=["zho-Hans"],
|
|
140
144
|
open_weights=True,
|
|
141
145
|
revision="af7bd46fbb00b3a6963c8dd7f1786ddfbfbe973a",
|
|
@@ -163,6 +167,7 @@ gte_small_zh = ModelMeta(
|
|
|
163
167
|
gte_base_zh = ModelMeta(
|
|
164
168
|
loader=sentence_transformers_loader,
|
|
165
169
|
name="thenlper/gte-base-zh",
|
|
170
|
+
model_type=["dense"],
|
|
166
171
|
languages=["zho-Hans"],
|
|
167
172
|
open_weights=True,
|
|
168
173
|
revision="71ab7947d6fac5b64aa299e6e40e6c2b2e85976c",
|
|
@@ -190,6 +195,7 @@ gte_base_zh = ModelMeta(
|
|
|
190
195
|
gte_large_zh = ModelMeta(
|
|
191
196
|
loader=sentence_transformers_loader,
|
|
192
197
|
name="thenlper/gte-large-zh",
|
|
198
|
+
model_type=["dense"],
|
|
193
199
|
languages=["zho-Hans"],
|
|
194
200
|
open_weights=True,
|
|
195
201
|
revision="64c364e579de308104a9b2c170ca009502f4f545",
|
|
@@ -318,6 +324,7 @@ gte_multi_training_data = {
|
|
|
318
324
|
gte_multilingual_base = ModelMeta(
|
|
319
325
|
loader=sentence_transformers_loader,
|
|
320
326
|
name="Alibaba-NLP/gte-multilingual-base",
|
|
327
|
+
model_type=["dense"],
|
|
321
328
|
languages=gte_multilingual_langs,
|
|
322
329
|
open_weights=True,
|
|
323
330
|
revision="ca1791e0bcc104f6db161f27de1340241b13c5a4",
|
|
@@ -346,6 +353,7 @@ gte_multilingual_base = ModelMeta(
|
|
|
346
353
|
gte_modernbert_base = ModelMeta(
|
|
347
354
|
loader=sentence_transformers_loader,
|
|
348
355
|
name="Alibaba-NLP/gte-modernbert-base",
|
|
356
|
+
model_type=["dense"],
|
|
349
357
|
languages=["eng-Latn"],
|
|
350
358
|
open_weights=True,
|
|
351
359
|
revision="7ca8b4ca700621b67618669f5378fe5f5820b8e4",
|
|
@@ -382,6 +390,7 @@ gte_modernbert_base = ModelMeta(
|
|
|
382
390
|
gte_base_en_v15 = ModelMeta(
|
|
383
391
|
loader=sentence_transformers_loader,
|
|
384
392
|
name="Alibaba-NLP/gte-base-en-v1.5",
|
|
393
|
+
model_type=["dense"],
|
|
385
394
|
languages=["eng-Latn"],
|
|
386
395
|
open_weights=True,
|
|
387
396
|
revision="a829fd0e060bb84554da0dfd354d0de0f7712b7f", # can be any
|
|
@@ -94,6 +94,7 @@ granite_training_data = {
|
|
|
94
94
|
granite_107m_multilingual = ModelMeta(
|
|
95
95
|
loader=sentence_transformers_loader,
|
|
96
96
|
name="ibm-granite/granite-embedding-107m-multilingual",
|
|
97
|
+
model_type=["dense"],
|
|
97
98
|
languages=GRANITE_LANGUAGES,
|
|
98
99
|
open_weights=True,
|
|
99
100
|
revision="47db56afe692f731540413c67dd818ff492277e7",
|
|
@@ -118,6 +119,7 @@ granite_107m_multilingual = ModelMeta(
|
|
|
118
119
|
granite_278m_multilingual = ModelMeta(
|
|
119
120
|
loader=sentence_transformers_loader,
|
|
120
121
|
name="ibm-granite/granite-embedding-278m-multilingual",
|
|
122
|
+
model_type=["dense"],
|
|
121
123
|
languages=GRANITE_LANGUAGES,
|
|
122
124
|
open_weights=True,
|
|
123
125
|
revision="84e3546b88b0cb69f8078608a1df558020bcbf1f",
|
|
@@ -142,6 +144,7 @@ granite_278m_multilingual = ModelMeta(
|
|
|
142
144
|
granite_30m_english = ModelMeta(
|
|
143
145
|
loader=sentence_transformers_loader,
|
|
144
146
|
name="ibm-granite/granite-embedding-30m-english",
|
|
147
|
+
model_type=["dense"],
|
|
145
148
|
languages=["eng-Latn"],
|
|
146
149
|
open_weights=True,
|
|
147
150
|
revision="eddbb57470f896b5f8e2bfcb823d8f0e2d2024a5",
|
|
@@ -166,6 +169,7 @@ granite_30m_english = ModelMeta(
|
|
|
166
169
|
granite_125m_english = ModelMeta(
|
|
167
170
|
loader=sentence_transformers_loader,
|
|
168
171
|
name="ibm-granite/granite-embedding-125m-english",
|
|
172
|
+
model_type=["dense"],
|
|
169
173
|
languages=["eng-Latn"],
|
|
170
174
|
open_weights=True,
|
|
171
175
|
revision="e48d3a5b47eaa18e3fe07d4676e187fd80f32730",
|
|
@@ -191,6 +195,7 @@ granite_125m_english = ModelMeta(
|
|
|
191
195
|
granite_english_r2 = ModelMeta(
|
|
192
196
|
loader=sentence_transformers_loader,
|
|
193
197
|
name="ibm-granite/granite-embedding-english-r2",
|
|
198
|
+
model_type=["dense"],
|
|
194
199
|
languages=["eng-Latn"],
|
|
195
200
|
open_weights=True,
|
|
196
201
|
revision="6e7b8ce0e76270394ac4669ba4bbd7133b60b7f9",
|
|
@@ -215,6 +220,7 @@ granite_english_r2 = ModelMeta(
|
|
|
215
220
|
granite_small_english_r2 = ModelMeta(
|
|
216
221
|
loader=sentence_transformers_loader,
|
|
217
222
|
name="ibm-granite/granite-embedding-small-english-r2",
|
|
223
|
+
model_type=["dense"],
|
|
218
224
|
languages=["eng-Latn"],
|
|
219
225
|
open_weights=True,
|
|
220
226
|
revision="54a8d2616a0844355a5164432d3f6dafb37b17a3",
|