mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mteb/abstasks/abstask.py +6 -6
- mteb/abstasks/aggregated_task.py +4 -10
- mteb/abstasks/clustering_legacy.py +3 -2
- mteb/abstasks/task_metadata.py +2 -3
- mteb/cache.py +7 -4
- mteb/cli/build_cli.py +10 -5
- mteb/cli/generate_model_card.py +4 -3
- mteb/deprecated_evaluator.py +4 -3
- mteb/evaluate.py +4 -1
- mteb/get_tasks.py +4 -3
- mteb/leaderboard/app.py +70 -3
- mteb/models/abs_encoder.py +5 -3
- mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
- mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
- mteb/models/model_implementations/align_models.py +1 -0
- mteb/models/model_implementations/amazon_models.py +1 -0
- mteb/models/model_implementations/andersborges.py +2 -0
- mteb/models/model_implementations/ara_models.py +1 -0
- mteb/models/model_implementations/arctic_models.py +8 -0
- mteb/models/model_implementations/b1ade_models.py +1 -0
- mteb/models/model_implementations/bedrock_models.py +4 -0
- mteb/models/model_implementations/bge_models.py +17 -0
- mteb/models/model_implementations/bica_model.py +1 -0
- mteb/models/model_implementations/blip2_models.py +2 -0
- mteb/models/model_implementations/blip_models.py +8 -0
- mteb/models/model_implementations/bm25.py +1 -0
- mteb/models/model_implementations/bmretriever_models.py +4 -0
- mteb/models/model_implementations/cadet_models.py +1 -0
- mteb/models/model_implementations/cde_models.py +2 -0
- mteb/models/model_implementations/clip_models.py +3 -0
- mteb/models/model_implementations/clips_models.py +3 -0
- mteb/models/model_implementations/codefuse_models.py +3 -0
- mteb/models/model_implementations/codesage_models.py +3 -0
- mteb/models/model_implementations/cohere_models.py +4 -0
- mteb/models/model_implementations/cohere_v.py +5 -0
- mteb/models/model_implementations/colpali_models.py +3 -0
- mteb/models/model_implementations/colqwen_models.py +9 -0
- mteb/models/model_implementations/colsmol_models.py +2 -0
- mteb/models/model_implementations/conan_models.py +1 -0
- mteb/models/model_implementations/dino_models.py +19 -0
- mteb/models/model_implementations/e5_instruct.py +4 -0
- mteb/models/model_implementations/e5_models.py +9 -0
- mteb/models/model_implementations/e5_v.py +1 -0
- mteb/models/model_implementations/eagerworks_models.py +1 -0
- mteb/models/model_implementations/emillykkejensen_models.py +3 -0
- mteb/models/model_implementations/en_code_retriever.py +1 -0
- mteb/models/model_implementations/euler_models.py +1 -0
- mteb/models/model_implementations/evaclip_models.py +4 -0
- mteb/models/model_implementations/fa_models.py +8 -0
- mteb/models/model_implementations/facebookai.py +2 -0
- mteb/models/model_implementations/geogpt_models.py +1 -0
- mteb/models/model_implementations/gme_v_models.py +6 -3
- mteb/models/model_implementations/google_models.py +5 -0
- mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
- mteb/models/model_implementations/gritlm_models.py +2 -0
- mteb/models/model_implementations/gte_models.py +9 -0
- mteb/models/model_implementations/hinvec_models.py +1 -0
- mteb/models/model_implementations/human.py +1 -0
- mteb/models/model_implementations/ibm_granite_models.py +6 -0
- mteb/models/model_implementations/inf_models.py +2 -0
- mteb/models/model_implementations/jasper_models.py +2 -0
- mteb/models/model_implementations/jina_clip.py +1 -0
- mteb/models/model_implementations/jina_models.py +7 -1
- mteb/models/model_implementations/kalm_models.py +6 -0
- mteb/models/model_implementations/kblab.py +1 -0
- mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
- mteb/models/model_implementations/kfst.py +1 -0
- mteb/models/model_implementations/kowshik24_models.py +1 -0
- mteb/models/model_implementations/lens_models.py +2 -0
- mteb/models/model_implementations/lgai_embedding_models.py +1 -0
- mteb/models/model_implementations/linq_models.py +1 -0
- mteb/models/model_implementations/listconranker.py +1 -1
- mteb/models/model_implementations/llm2clip_models.py +3 -0
- mteb/models/model_implementations/llm2vec_models.py +8 -0
- mteb/models/model_implementations/mcinext_models.py +7 -1
- mteb/models/model_implementations/mdbr_models.py +2 -0
- mteb/models/model_implementations/misc_models.py +63 -0
- mteb/models/model_implementations/mme5_models.py +1 -0
- mteb/models/model_implementations/moco_models.py +2 -0
- mteb/models/model_implementations/model2vec_models.py +13 -0
- mteb/models/model_implementations/moka_models.py +3 -0
- mteb/models/model_implementations/mxbai_models.py +3 -0
- mteb/models/model_implementations/nbailab.py +3 -0
- mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
- mteb/models/model_implementations/nomic_models.py +6 -0
- mteb/models/model_implementations/nomic_models_vision.py +1 -0
- mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
- mteb/models/model_implementations/nvidia_models.py +3 -0
- mteb/models/model_implementations/octen_models.py +195 -0
- mteb/models/model_implementations/openai_models.py +5 -0
- mteb/models/model_implementations/openclip_models.py +8 -0
- mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
- mteb/models/model_implementations/ops_moa_models.py +2 -0
- mteb/models/model_implementations/pawan_models.py +1 -0
- mteb/models/model_implementations/piccolo_models.py +2 -0
- mteb/models/model_implementations/promptriever_models.py +4 -0
- mteb/models/model_implementations/pylate_models.py +3 -0
- mteb/models/model_implementations/qodo_models.py +2 -0
- mteb/models/model_implementations/qtack_models.py +1 -0
- mteb/models/model_implementations/qwen3_models.py +3 -0
- mteb/models/model_implementations/qzhou_models.py +2 -0
- mteb/models/model_implementations/random_baseline.py +2 -1
- mteb/models/model_implementations/rasgaard_models.py +1 -0
- mteb/models/model_implementations/reasonir_model.py +1 -0
- mteb/models/model_implementations/repllama_models.py +2 -0
- mteb/models/model_implementations/rerankers_custom.py +3 -3
- mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
- mteb/models/model_implementations/richinfoai_models.py +1 -0
- mteb/models/model_implementations/ru_sentence_models.py +20 -0
- mteb/models/model_implementations/ruri_models.py +10 -0
- mteb/models/model_implementations/salesforce_models.py +3 -0
- mteb/models/model_implementations/samilpwc_models.py +1 -0
- mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
- mteb/models/model_implementations/searchmap_models.py +1 -0
- mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
- mteb/models/model_implementations/seed_models.py +1 -0
- mteb/models/model_implementations/sentence_transformers_models.py +18 -0
- mteb/models/model_implementations/shuu_model.py +32 -31
- mteb/models/model_implementations/siglip_models.py +10 -0
- mteb/models/model_implementations/sonar_models.py +1 -0
- mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
- mteb/models/model_implementations/stella_models.py +6 -0
- mteb/models/model_implementations/tarka_models.py +2 -0
- mteb/models/model_implementations/ua_sentence_models.py +1 -0
- mteb/models/model_implementations/uae_models.py +1 -0
- mteb/models/model_implementations/vdr_models.py +1 -0
- mteb/models/model_implementations/vi_vn_models.py +6 -0
- mteb/models/model_implementations/vista_models.py +2 -0
- mteb/models/model_implementations/vlm2vec_models.py +2 -0
- mteb/models/model_implementations/voyage_models.py +15 -0
- mteb/models/model_implementations/voyage_v.py +1 -0
- mteb/models/model_implementations/xyz_models.py +1 -0
- mteb/models/model_implementations/youtu_models.py +1 -0
- mteb/models/model_implementations/yuan_models.py +1 -0
- mteb/models/model_implementations/yuan_models_en.py +1 -0
- mteb/models/model_meta.py +49 -4
- mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
- mteb/models/search_wrappers.py +4 -2
- mteb/models/sentence_transformer_wrapper.py +10 -10
- mteb/results/benchmark_results.py +67 -43
- mteb/results/model_result.py +3 -1
- mteb/results/task_result.py +22 -17
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
- {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
|
@@ -13,6 +13,7 @@ from .sentence_transformers_models import sent_trf_training_dataset
|
|
|
13
13
|
Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
14
14
|
loader=sentence_transformers_loader,
|
|
15
15
|
name="Haon-Chen/speed-embedding-7b-instruct",
|
|
16
|
+
model_type=["dense"],
|
|
16
17
|
revision="c167e9a8144b397622ce47b85d9edcdeecef3d3f",
|
|
17
18
|
release_date="2024-10-31",
|
|
18
19
|
languages=["eng-Latn"],
|
|
@@ -40,6 +41,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
|
|
|
40
41
|
)
|
|
41
42
|
Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
42
43
|
name="Gameselo/STS-multilingual-mpnet-base-v2",
|
|
44
|
+
model_type=["dense"],
|
|
43
45
|
revision="449f917af30f590fc31f9ffb226c94f21a2f47b8",
|
|
44
46
|
release_date="2024-06-07",
|
|
45
47
|
languages=[],
|
|
@@ -140,6 +142,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
|
|
|
140
142
|
|
|
141
143
|
Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
142
144
|
name="Hum-Works/lodestone-base-4096-v1",
|
|
145
|
+
model_type=["dense"],
|
|
143
146
|
revision="9bbc2d0b57dd2198aea029404b0f976712a7d966",
|
|
144
147
|
release_date="2023-08-25",
|
|
145
148
|
languages=["eng-Latn"],
|
|
@@ -206,6 +209,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
|
|
|
206
209
|
)
|
|
207
210
|
Jaume__gemma_2b_embeddings = ModelMeta(
|
|
208
211
|
name="Jaume/gemma-2b-embeddings",
|
|
212
|
+
model_type=["dense"],
|
|
209
213
|
revision="86431f65d7c3f66b2af096c61e614a2958f191f1",
|
|
210
214
|
release_date="2024-06-29",
|
|
211
215
|
languages=[],
|
|
@@ -237,6 +241,7 @@ bilingual_embedding_training_data = {
|
|
|
237
241
|
|
|
238
242
|
Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
239
243
|
name="Lajavaness/bilingual-embedding-base",
|
|
244
|
+
model_type=["dense"],
|
|
240
245
|
revision="0bfc54bb2aa2666dd84715289c7ef58a95eb4d8d",
|
|
241
246
|
release_date="2024-06-26",
|
|
242
247
|
languages=None,
|
|
@@ -285,6 +290,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
|
|
|
285
290
|
)
|
|
286
291
|
Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
287
292
|
name="Lajavaness/bilingual-embedding-large",
|
|
293
|
+
model_type=["dense"],
|
|
288
294
|
revision="e83179d7a66e8aed1b3015e98bb5ae234ed89598",
|
|
289
295
|
release_date="2024-06-24",
|
|
290
296
|
languages=["fra-Latn", "eng-Latn"],
|
|
@@ -333,6 +339,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
|
|
|
333
339
|
)
|
|
334
340
|
Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
335
341
|
name="Lajavaness/bilingual-embedding-small",
|
|
342
|
+
model_type=["dense"],
|
|
336
343
|
revision="ed4a1dd814de0db81d4a4e287c296a03194463e3",
|
|
337
344
|
release_date="2024-07-17",
|
|
338
345
|
languages=["fra-Latn", "eng-Latn"],
|
|
@@ -381,6 +388,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
|
|
|
381
388
|
)
|
|
382
389
|
Mihaiii__Bulbasaur = ModelMeta(
|
|
383
390
|
name="Mihaiii/Bulbasaur",
|
|
391
|
+
model_type=["dense"],
|
|
384
392
|
revision="6876f839e18ae36224049a41194a431953f08747",
|
|
385
393
|
release_date="2024-04-27",
|
|
386
394
|
languages=None,
|
|
@@ -404,6 +412,7 @@ Mihaiii__Bulbasaur = ModelMeta(
|
|
|
404
412
|
)
|
|
405
413
|
Mihaiii__Ivysaur = ModelMeta(
|
|
406
414
|
name="Mihaiii/Ivysaur",
|
|
415
|
+
model_type=["dense"],
|
|
407
416
|
revision="65914d976f45beb4bda7485c39d88865b4ce6554",
|
|
408
417
|
release_date="2024-04-27",
|
|
409
418
|
languages=None,
|
|
@@ -427,6 +436,7 @@ Mihaiii__Ivysaur = ModelMeta(
|
|
|
427
436
|
)
|
|
428
437
|
Mihaiii__Squirtle = ModelMeta(
|
|
429
438
|
name="Mihaiii/Squirtle",
|
|
439
|
+
model_type=["dense"],
|
|
430
440
|
revision="5b991da48a9286637a256d4a35aab87a1a57b78a",
|
|
431
441
|
release_date="2024-04-30",
|
|
432
442
|
languages=None,
|
|
@@ -450,6 +460,7 @@ Mihaiii__Squirtle = ModelMeta(
|
|
|
450
460
|
)
|
|
451
461
|
Mihaiii__Venusaur = ModelMeta(
|
|
452
462
|
name="Mihaiii/Venusaur",
|
|
463
|
+
model_type=["dense"],
|
|
453
464
|
revision="0dc817f0addbb7bab8feeeeaded538f9ffeb3419",
|
|
454
465
|
release_date="2024-04-29",
|
|
455
466
|
languages=None,
|
|
@@ -473,6 +484,7 @@ Mihaiii__Venusaur = ModelMeta(
|
|
|
473
484
|
)
|
|
474
485
|
Mihaiii__Wartortle = ModelMeta(
|
|
475
486
|
name="Mihaiii/Wartortle",
|
|
487
|
+
model_type=["dense"],
|
|
476
488
|
revision="14caca5253414d38a7d28b62d1b7c30ef3293a87",
|
|
477
489
|
release_date="2024-04-30",
|
|
478
490
|
languages=None,
|
|
@@ -496,6 +508,7 @@ Mihaiii__Wartortle = ModelMeta(
|
|
|
496
508
|
)
|
|
497
509
|
Mihaiii__gte_micro = ModelMeta(
|
|
498
510
|
name="Mihaiii/gte-micro",
|
|
511
|
+
model_type=["dense"],
|
|
499
512
|
revision="6fd2397cb9dfa7c901aedf9a2a44d3c888ccafdd",
|
|
500
513
|
release_date="2024-04-21",
|
|
501
514
|
languages=None,
|
|
@@ -518,6 +531,7 @@ Mihaiii__gte_micro = ModelMeta(
|
|
|
518
531
|
)
|
|
519
532
|
Mihaiii__gte_micro_v4 = ModelMeta(
|
|
520
533
|
name="Mihaiii/gte-micro-v4",
|
|
534
|
+
model_type=["dense"],
|
|
521
535
|
revision="78e1a4b348f8524c3ab2e3e3475788f5adb8c98f",
|
|
522
536
|
release_date="2024-04-22",
|
|
523
537
|
languages=None,
|
|
@@ -540,6 +554,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
|
|
|
540
554
|
)
|
|
541
555
|
OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
542
556
|
name="OrdalieTech/Solon-embeddings-large-0.1",
|
|
557
|
+
model_type=["dense"],
|
|
543
558
|
revision="9f6465f6ea2f6d10c6294bc15d84edf87d47cdef",
|
|
544
559
|
release_date="2023-12-09",
|
|
545
560
|
languages=["fra-Latn"],
|
|
@@ -562,6 +577,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
|
|
|
562
577
|
)
|
|
563
578
|
Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
564
579
|
name="Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
|
|
580
|
+
model_type=["dense"],
|
|
565
581
|
revision="d0361a36f6fe69febfc8550d0918abab174f6f30",
|
|
566
582
|
release_date="2024-06-16",
|
|
567
583
|
languages=["ara-Arab"],
|
|
@@ -593,6 +609,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
593
609
|
)
|
|
594
610
|
Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMeta(
|
|
595
611
|
name="Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
|
|
612
|
+
model_type=["dense"],
|
|
596
613
|
revision="6916465c43b984e955aa6dc72851474f0128f428",
|
|
597
614
|
release_date="2024-06-25",
|
|
598
615
|
languages=["ara-Arab"],
|
|
@@ -617,6 +634,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
|
|
|
617
634
|
)
|
|
618
635
|
Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
619
636
|
name="Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
|
|
637
|
+
model_type=["dense"],
|
|
620
638
|
revision="1ca467cc576bd76666a4d21b24ee43afa914dd10",
|
|
621
639
|
release_date="2024-06-14",
|
|
622
640
|
languages=["ara-Arab"],
|
|
@@ -650,6 +668,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
650
668
|
)
|
|
651
669
|
Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
652
670
|
name="Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
|
|
671
|
+
model_type=["dense"],
|
|
653
672
|
revision="ee6d5e33c78ed582ade47fd452a74ea52aa5bfe2",
|
|
654
673
|
release_date="2024-06-16",
|
|
655
674
|
languages=["ara-Arab"],
|
|
@@ -683,6 +702,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
|
|
|
683
702
|
)
|
|
684
703
|
Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
685
704
|
name="Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
|
|
705
|
+
model_type=["dense"],
|
|
686
706
|
revision="2628cb641e040f44328195fadcdfb58e6d5cffa7",
|
|
687
707
|
release_date="2024-06-15",
|
|
688
708
|
languages=["ara-Arab"],
|
|
@@ -716,6 +736,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
|
|
|
716
736
|
)
|
|
717
737
|
Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
718
738
|
name="Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka",
|
|
739
|
+
model_type=["dense"],
|
|
719
740
|
revision="ecf3274e164f057c4a3dd70691cae0265d87a9d0",
|
|
720
741
|
release_date="2024-06-17",
|
|
721
742
|
languages=["ara-Arab"],
|
|
@@ -747,6 +768,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
|
|
|
747
768
|
)
|
|
748
769
|
consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
749
770
|
name="consciousAI/cai-lunaris-text-embeddings",
|
|
771
|
+
model_type=["dense"],
|
|
750
772
|
revision="8332c464d13505968ff7a6e2213f36fd8730b4c7",
|
|
751
773
|
release_date="2023-06-22",
|
|
752
774
|
languages=None,
|
|
@@ -769,6 +791,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
|
|
|
769
791
|
)
|
|
770
792
|
consciousai__cai_stellaris_text_embeddings = ModelMeta(
|
|
771
793
|
name="consciousAI/cai-stellaris-text-embeddings",
|
|
794
|
+
model_type=["dense"],
|
|
772
795
|
revision="c000ec4b29588daf0f4a0b2ad4e72ee807d8efc0",
|
|
773
796
|
release_date="2023-06-23",
|
|
774
797
|
languages=None,
|
|
@@ -800,6 +823,7 @@ SENTENCE_CROISSANT_TRAINING_DATA = {
|
|
|
800
823
|
}
|
|
801
824
|
manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
802
825
|
name="manu/sentence_croissant_alpha_v0.2",
|
|
826
|
+
model_type=["dense"],
|
|
803
827
|
revision="4610b8cea65d7dd59e0b04af50753933fe5b29b2",
|
|
804
828
|
release_date="2024-03-15",
|
|
805
829
|
languages=None,
|
|
@@ -822,6 +846,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
|
|
|
822
846
|
)
|
|
823
847
|
manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
824
848
|
name="manu/sentence_croissant_alpha_v0.3",
|
|
849
|
+
model_type=["dense"],
|
|
825
850
|
revision="4ac16754f3d81aba76cc32955dc9ee4122df96eb",
|
|
826
851
|
release_date="2024-04-26",
|
|
827
852
|
languages=None,
|
|
@@ -844,6 +869,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
|
|
|
844
869
|
)
|
|
845
870
|
manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
846
871
|
name="manu/sentence_croissant_alpha_v0.4",
|
|
872
|
+
model_type=["dense"],
|
|
847
873
|
revision="0ce6372e6a3c21134dcf26dcde13cca869c767fc",
|
|
848
874
|
release_date="2024-04-27",
|
|
849
875
|
languages=["fra-Latn", "eng-Latn"],
|
|
@@ -867,6 +893,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
|
|
|
867
893
|
)
|
|
868
894
|
thenlper__gte_base = ModelMeta(
|
|
869
895
|
name="thenlper/gte-base",
|
|
896
|
+
model_type=["dense"],
|
|
870
897
|
revision="c078288308d8dee004ab72c6191778064285ec0c",
|
|
871
898
|
release_date="2023-07-27",
|
|
872
899
|
languages=["eng-Latn"],
|
|
@@ -895,6 +922,7 @@ thenlper__gte_base = ModelMeta(
|
|
|
895
922
|
)
|
|
896
923
|
thenlper__gte_large = ModelMeta(
|
|
897
924
|
name="thenlper/gte-large",
|
|
925
|
+
model_type=["dense"],
|
|
898
926
|
revision="4bef63f39fcc5e2d6b0aae83089f307af4970164",
|
|
899
927
|
release_date="2023-07-27",
|
|
900
928
|
languages=["eng-Latn"],
|
|
@@ -923,6 +951,7 @@ thenlper__gte_large = ModelMeta(
|
|
|
923
951
|
)
|
|
924
952
|
thenlper__gte_small = ModelMeta(
|
|
925
953
|
name="thenlper/gte-small",
|
|
954
|
+
model_type=["dense"],
|
|
926
955
|
revision="17e1f347d17fe144873b1201da91788898c639cd",
|
|
927
956
|
release_date="2023-07-27",
|
|
928
957
|
languages=["eng-Latn"],
|
|
@@ -951,6 +980,7 @@ thenlper__gte_small = ModelMeta(
|
|
|
951
980
|
)
|
|
952
981
|
OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
953
982
|
name="OrlikB/KartonBERT-USE-base-v1",
|
|
983
|
+
model_type=["dense"],
|
|
954
984
|
revision="1f59dd58fe57995c0e867d5e29f03763eae99645",
|
|
955
985
|
release_date="2024-09-30",
|
|
956
986
|
languages=["pol-Latn"],
|
|
@@ -973,6 +1003,7 @@ OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
|
|
|
973
1003
|
)
|
|
974
1004
|
OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
975
1005
|
name="OrlikB/st-polish-kartonberta-base-alpha-v1",
|
|
1006
|
+
model_type=["dense"],
|
|
976
1007
|
revision="5590a0e2d7bb43674e44d7076b3ff157f7d4a1cb",
|
|
977
1008
|
release_date="2023-11-12",
|
|
978
1009
|
languages=["pol-Latn"],
|
|
@@ -995,6 +1026,7 @@ OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
|
|
|
995
1026
|
)
|
|
996
1027
|
sdadas__mmlw_e5_base = ModelMeta(
|
|
997
1028
|
name="sdadas/mmlw-e5-base",
|
|
1029
|
+
model_type=["dense"],
|
|
998
1030
|
revision="f10628ed55b5ec400502aff439bd714a6da0af30",
|
|
999
1031
|
release_date="2023-11-17",
|
|
1000
1032
|
languages=["pol-Latn"],
|
|
@@ -1025,6 +1057,7 @@ sdadas__mmlw_e5_base = ModelMeta(
|
|
|
1025
1057
|
)
|
|
1026
1058
|
dwzhu__e5_base_4k = ModelMeta(
|
|
1027
1059
|
name="dwzhu/e5-base-4k",
|
|
1060
|
+
model_type=["dense"],
|
|
1028
1061
|
revision="1b5664b8cb2bccd8c309429b7bfe5864402e8fbc",
|
|
1029
1062
|
release_date="2024-03-28",
|
|
1030
1063
|
languages=["eng-Latn"],
|
|
@@ -1053,6 +1086,7 @@ dwzhu__e5_base_4k = ModelMeta(
|
|
|
1053
1086
|
)
|
|
1054
1087
|
sdadas__mmlw_e5_large = ModelMeta(
|
|
1055
1088
|
name="sdadas/mmlw-e5-large",
|
|
1089
|
+
model_type=["dense"],
|
|
1056
1090
|
revision="5c143fb045ebed664fd85b43fc45155999eb110f",
|
|
1057
1091
|
release_date="2023-11-17",
|
|
1058
1092
|
languages=["pol-Latn"],
|
|
@@ -1083,6 +1117,7 @@ sdadas__mmlw_e5_large = ModelMeta(
|
|
|
1083
1117
|
)
|
|
1084
1118
|
sdadas__mmlw_e5_small = ModelMeta(
|
|
1085
1119
|
name="sdadas/mmlw-e5-small",
|
|
1120
|
+
model_type=["dense"],
|
|
1086
1121
|
revision="ff1298cb6d997f18b794d2f3d73cad2ba2ad739a",
|
|
1087
1122
|
release_date="2023-11-17",
|
|
1088
1123
|
languages=["pol-Latn"],
|
|
@@ -1113,6 +1148,7 @@ sdadas__mmlw_e5_small = ModelMeta(
|
|
|
1113
1148
|
)
|
|
1114
1149
|
sdadas__mmlw_roberta_base = ModelMeta(
|
|
1115
1150
|
name="sdadas/mmlw-roberta-base",
|
|
1151
|
+
model_type=["dense"],
|
|
1116
1152
|
revision="0ac7f23f6c96af601fa6a17852bd08d5136d6365",
|
|
1117
1153
|
release_date="2023-11-17",
|
|
1118
1154
|
languages=["pol-Latn"],
|
|
@@ -1143,6 +1179,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
|
|
|
1143
1179
|
)
|
|
1144
1180
|
sdadas__mmlw_roberta_large = ModelMeta(
|
|
1145
1181
|
name="sdadas/mmlw-roberta-large",
|
|
1182
|
+
model_type=["dense"],
|
|
1146
1183
|
revision="b8058066a8de32d0737b3cd82d8b4f4108745af9",
|
|
1147
1184
|
release_date="2023-11-17",
|
|
1148
1185
|
languages=["pol-Latn"],
|
|
@@ -1228,6 +1265,7 @@ udever_languages = [
|
|
|
1228
1265
|
|
|
1229
1266
|
izhx__udever_bloom_1b1 = ModelMeta(
|
|
1230
1267
|
name="izhx/udever-bloom-1b1",
|
|
1268
|
+
model_type=["dense"],
|
|
1231
1269
|
revision="7bf1ee29878cb040b2708a691aa4b61f27eaa252",
|
|
1232
1270
|
release_date="2023-10-24",
|
|
1233
1271
|
languages=udever_languages,
|
|
@@ -1256,6 +1294,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
|
|
|
1256
1294
|
)
|
|
1257
1295
|
izhx__udever_bloom_3b = ModelMeta(
|
|
1258
1296
|
name="izhx/udever-bloom-3b",
|
|
1297
|
+
model_type=["dense"],
|
|
1259
1298
|
revision="4edd8affe80ca89ba0f6b6ba4103fc7f25fc57b2",
|
|
1260
1299
|
release_date="2023-10-24",
|
|
1261
1300
|
languages=udever_languages,
|
|
@@ -1284,6 +1323,7 @@ izhx__udever_bloom_3b = ModelMeta(
|
|
|
1284
1323
|
)
|
|
1285
1324
|
izhx__udever_bloom_560m = ModelMeta(
|
|
1286
1325
|
name="izhx/udever-bloom-560m",
|
|
1326
|
+
model_type=["dense"],
|
|
1287
1327
|
revision="b2a723e355946ec5a5c5fbed3459766627ded2bb",
|
|
1288
1328
|
release_date="2023-10-24",
|
|
1289
1329
|
languages=udever_languages,
|
|
@@ -1312,6 +1352,7 @@ izhx__udever_bloom_560m = ModelMeta(
|
|
|
1312
1352
|
)
|
|
1313
1353
|
izhx__udever_bloom_7b1 = ModelMeta(
|
|
1314
1354
|
name="izhx/udever-bloom-7b1",
|
|
1355
|
+
model_type=["dense"],
|
|
1315
1356
|
revision="18e8d3e6dbd94868584877f2e72a105a17df22ef",
|
|
1316
1357
|
release_date="2023-10-24",
|
|
1317
1358
|
languages=udever_languages,
|
|
@@ -1340,6 +1381,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
|
|
|
1340
1381
|
)
|
|
1341
1382
|
avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
1342
1383
|
name="avsolatorio/GIST-Embedding-v0",
|
|
1384
|
+
model_type=["dense"],
|
|
1343
1385
|
revision="bf6b2e55e92f510a570ad4d7d2da2ec8cd22590c",
|
|
1344
1386
|
release_date="2024-01-31",
|
|
1345
1387
|
languages=["eng-Latn"],
|
|
@@ -1389,6 +1431,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
|
|
|
1389
1431
|
)
|
|
1390
1432
|
avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
1391
1433
|
name="avsolatorio/GIST-all-MiniLM-L6-v2",
|
|
1434
|
+
model_type=["dense"],
|
|
1392
1435
|
revision="ea89dfad053bba14677bb784a4269898abbdce44",
|
|
1393
1436
|
release_date="2024-02-03",
|
|
1394
1437
|
languages=["eng-Latn"],
|
|
@@ -1438,6 +1481,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
|
|
|
1438
1481
|
)
|
|
1439
1482
|
avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
1440
1483
|
name="avsolatorio/GIST-large-Embedding-v0",
|
|
1484
|
+
model_type=["dense"],
|
|
1441
1485
|
revision="7831200e2f7819b994490c091cf3258a2b821f0c",
|
|
1442
1486
|
release_date="2024-02-14",
|
|
1443
1487
|
languages=["eng-Latn"],
|
|
@@ -1487,6 +1531,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
|
|
|
1487
1531
|
)
|
|
1488
1532
|
avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
1489
1533
|
name="avsolatorio/GIST-small-Embedding-v0",
|
|
1534
|
+
model_type=["dense"],
|
|
1490
1535
|
revision="d6c4190f9e01b9994dc7cac99cf2f2b85cfb57bc",
|
|
1491
1536
|
release_date="2024-02-03",
|
|
1492
1537
|
languages=["eng-Latn"],
|
|
@@ -1536,6 +1581,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
|
|
|
1536
1581
|
)
|
|
1537
1582
|
bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
1538
1583
|
name="bigscience/sgpt-bloom-7b1-msmarco",
|
|
1584
|
+
model_type=["dense"],
|
|
1539
1585
|
revision="dc579f3d2d5a0795eba2049e16c3e36c74007ad3",
|
|
1540
1586
|
release_date="2022-08-26",
|
|
1541
1587
|
languages=None,
|
|
@@ -1564,6 +1610,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
|
|
|
1564
1610
|
)
|
|
1565
1611
|
aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
1566
1612
|
name="aari1995/German_Semantic_STS_V2",
|
|
1613
|
+
model_type=["dense"],
|
|
1567
1614
|
revision="22912542b0ec7a7ef369837e28ffe6352a27afc9",
|
|
1568
1615
|
release_date="2022-11-17",
|
|
1569
1616
|
languages=["deu-Latn"],
|
|
@@ -1587,6 +1634,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
|
|
|
1587
1634
|
)
|
|
1588
1635
|
abhinand__medembed_small_v0_1 = ModelMeta(
|
|
1589
1636
|
name="abhinand/MedEmbed-small-v0.1",
|
|
1637
|
+
model_type=["dense"],
|
|
1590
1638
|
revision="40a5850d046cfdb56154e332b4d7099b63e8d50e",
|
|
1591
1639
|
release_date="2024-10-20",
|
|
1592
1640
|
languages=["eng-Latn"],
|
|
@@ -1624,6 +1672,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
|
|
|
1624
1672
|
)
|
|
1625
1673
|
avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
|
|
1626
1674
|
name="avsolatorio/NoInstruct-small-Embedding-v0",
|
|
1675
|
+
model_type=["dense"],
|
|
1627
1676
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|
|
1628
1677
|
release_date="2024-05-01",
|
|
1629
1678
|
languages=["eng-Latn"],
|
|
@@ -1646,6 +1695,7 @@ avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
|
|
|
1646
1695
|
)
|
|
1647
1696
|
brahmairesearch__slx_v0_1 = ModelMeta(
|
|
1648
1697
|
name="brahmairesearch/slx-v0.1",
|
|
1698
|
+
model_type=["dense"],
|
|
1649
1699
|
revision="688c83fd1a7f34b25575a2bc26cfd87c11b4ce71",
|
|
1650
1700
|
release_date="2024-08-13",
|
|
1651
1701
|
languages=["eng-Latn"],
|
|
@@ -1668,6 +1718,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
|
|
|
1668
1718
|
)
|
|
1669
1719
|
deepfile__embedder_100p = ModelMeta(
|
|
1670
1720
|
name="deepfile/embedder-100p",
|
|
1721
|
+
model_type=["dense"],
|
|
1671
1722
|
revision="aa02f08f11517977fbcdc94dc9dbf9a1ca152d9b",
|
|
1672
1723
|
release_date="2023-07-24",
|
|
1673
1724
|
languages=None,
|
|
@@ -1690,6 +1741,7 @@ deepfile__embedder_100p = ModelMeta(
|
|
|
1690
1741
|
)
|
|
1691
1742
|
infgrad__stella_base_en_v2 = ModelMeta(
|
|
1692
1743
|
name="infgrad/stella-base-en-v2",
|
|
1744
|
+
model_type=["dense"],
|
|
1693
1745
|
revision="c9e80ff9892d80b39dc54e30a7873f91ea161034",
|
|
1694
1746
|
release_date="2023-10-19",
|
|
1695
1747
|
languages=["eng-Latn"],
|
|
@@ -1712,6 +1764,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
|
|
|
1712
1764
|
)
|
|
1713
1765
|
malenia1__ternary_weight_embedding = ModelMeta(
|
|
1714
1766
|
name="malenia1/ternary-weight-embedding",
|
|
1767
|
+
model_type=["dense"],
|
|
1715
1768
|
revision="a1208fb7f646647bb62639fd2e1eb6cc2ef3738e",
|
|
1716
1769
|
release_date="2024-10-23",
|
|
1717
1770
|
languages=None,
|
|
@@ -1734,6 +1787,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
|
|
|
1734
1787
|
)
|
|
1735
1788
|
omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
|
|
1736
1789
|
name="omarelshehy/arabic-english-sts-matryoshka",
|
|
1790
|
+
model_type=["dense"],
|
|
1737
1791
|
revision="763d116fbe8bf7883c64635c862feeaa3768bb64",
|
|
1738
1792
|
release_date="2024-10-13",
|
|
1739
1793
|
languages=["ara-Arab", "eng-Latn"],
|
|
@@ -1774,6 +1828,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1774
1828
|
# https://huggingface.co/openbmb/MiniCPM-Embedding/blob/c0cb2de33fb366e17c30f9d53142ff11bc18e049/README.md?code=true#L405
|
|
1775
1829
|
),
|
|
1776
1830
|
name="openbmb/MiniCPM-Embedding",
|
|
1831
|
+
model_type=["dense"],
|
|
1777
1832
|
revision="c0cb2de33fb366e17c30f9d53142ff11bc18e049",
|
|
1778
1833
|
release_date="2024-09-04",
|
|
1779
1834
|
languages=["zho-Hans", "eng-Latn"],
|
|
@@ -1796,6 +1851,7 @@ openbmb__minicpm_embedding = ModelMeta(
|
|
|
1796
1851
|
|
|
1797
1852
|
silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
1798
1853
|
name="silma-ai/silma-embeddding-matryoshka-v0.1",
|
|
1854
|
+
model_type=["dense"],
|
|
1799
1855
|
revision="a520977a9542ebdb8a7206df6b7ff6977f1886ea",
|
|
1800
1856
|
release_date="2024-10-12",
|
|
1801
1857
|
languages=["ara-Arab", "eng-Latn"],
|
|
@@ -1826,6 +1882,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
|
|
|
1826
1882
|
|
|
1827
1883
|
sbert_chinese_general_v1 = ModelMeta(
|
|
1828
1884
|
name="DMetaSoul/sbert-chinese-general-v1",
|
|
1885
|
+
model_type=["dense"],
|
|
1829
1886
|
revision="bd27765956bcc2fcf682de0097819947ac10037e",
|
|
1830
1887
|
release_date="2022-03-25",
|
|
1831
1888
|
languages=["zho-Hans"],
|
|
@@ -1853,6 +1910,7 @@ sbert_chinese_general_v1 = ModelMeta(
|
|
|
1853
1910
|
|
|
1854
1911
|
dmeta_embedding_zh_small = ModelMeta(
|
|
1855
1912
|
name="DMetaSoul/Dmeta-embedding-zh-small",
|
|
1913
|
+
model_type=["dense"],
|
|
1856
1914
|
revision="2050d3439a2f68999dd648c1697471acaac37a29",
|
|
1857
1915
|
release_date="2024-03-25",
|
|
1858
1916
|
languages=["zho-Hans"],
|
|
@@ -1875,6 +1933,7 @@ dmeta_embedding_zh_small = ModelMeta(
|
|
|
1875
1933
|
|
|
1876
1934
|
xiaobu_embedding = ModelMeta(
|
|
1877
1935
|
name="lier007/xiaobu-embedding",
|
|
1936
|
+
model_type=["dense"],
|
|
1878
1937
|
revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92",
|
|
1879
1938
|
release_date="2024-01-09",
|
|
1880
1939
|
languages=["zho-Hans"],
|
|
@@ -1898,6 +1957,7 @@ xiaobu_embedding = ModelMeta(
|
|
|
1898
1957
|
|
|
1899
1958
|
xiaobu_embedding_v2 = ModelMeta(
|
|
1900
1959
|
name="lier007/xiaobu-embedding-v2",
|
|
1960
|
+
model_type=["dense"],
|
|
1901
1961
|
revision="1912f2e59a5c2ef802a471d735a38702a5c9485e",
|
|
1902
1962
|
release_date="2024-06-30",
|
|
1903
1963
|
languages=["zho-Hans"],
|
|
@@ -1921,6 +1981,7 @@ xiaobu_embedding_v2 = ModelMeta(
|
|
|
1921
1981
|
|
|
1922
1982
|
yinka_embedding = ModelMeta(
|
|
1923
1983
|
name="Classical/Yinka",
|
|
1984
|
+
model_type=["dense"],
|
|
1924
1985
|
revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92",
|
|
1925
1986
|
release_date="2024-01-09",
|
|
1926
1987
|
languages=["zho-Hans"],
|
|
@@ -1943,6 +2004,7 @@ yinka_embedding = ModelMeta(
|
|
|
1943
2004
|
)
|
|
1944
2005
|
conan_embedding = ModelMeta(
|
|
1945
2006
|
name="TencentBAC/Conan-embedding-v1",
|
|
2007
|
+
model_type=["dense"],
|
|
1946
2008
|
revision="bb9749a57d4f02fd71722386f8d0f5a9398d7eeb",
|
|
1947
2009
|
release_date="2024-08-22",
|
|
1948
2010
|
languages=["zho-Hans"],
|
|
@@ -1976,6 +2038,7 @@ conan_embedding = ModelMeta(
|
|
|
1976
2038
|
ember_v1 = ModelMeta(
|
|
1977
2039
|
loader=sentence_transformers_loader,
|
|
1978
2040
|
name="llmrails/ember-v1",
|
|
2041
|
+
model_type=["dense"],
|
|
1979
2042
|
revision="5e5ce5904901f6ce1c353a95020f17f09e5d021d",
|
|
1980
2043
|
release_date="2023-10-10",
|
|
1981
2044
|
languages=["eng-Latn"],
|
|
@@ -119,6 +119,7 @@ mocov3_training_datasets = set(
|
|
|
119
119
|
mocov3_vit_base = ModelMeta(
|
|
120
120
|
loader=mocov3_loader, # type: ignore
|
|
121
121
|
name="nyu-visionx/moco-v3-vit-b",
|
|
122
|
+
model_type=["dense"],
|
|
122
123
|
languages=["eng-Latn"],
|
|
123
124
|
revision="7d091cd70772c5c0ecf7f00b5f12ca609a99d69d",
|
|
124
125
|
release_date="2024-06-03",
|
|
@@ -142,6 +143,7 @@ mocov3_vit_base = ModelMeta(
|
|
|
142
143
|
mocov3_vit_large = ModelMeta(
|
|
143
144
|
loader=mocov3_loader, # type: ignore
|
|
144
145
|
name="nyu-visionx/moco-v3-vit-l",
|
|
146
|
+
model_type=["dense"],
|
|
145
147
|
languages=["eng-Latn"],
|
|
146
148
|
revision="7bf75358d616f39b9716148bf4e3425f3bd35b47",
|
|
147
149
|
release_date="2024-06-03",
|
|
@@ -161,6 +161,7 @@ class Model2VecModel(AbsEncoder):
|
|
|
161
161
|
m2v_base_glove_subword = ModelMeta(
|
|
162
162
|
loader=Model2VecModel,
|
|
163
163
|
name="minishlab/M2V_base_glove_subword",
|
|
164
|
+
model_type=["dense"],
|
|
164
165
|
languages=["eng-Latn"],
|
|
165
166
|
open_weights=True,
|
|
166
167
|
revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
|
|
@@ -186,6 +187,7 @@ m2v_base_glove_subword = ModelMeta(
|
|
|
186
187
|
m2v_base_glove = ModelMeta(
|
|
187
188
|
loader=Model2VecModel,
|
|
188
189
|
name="minishlab/M2V_base_glove",
|
|
190
|
+
model_type=["dense"],
|
|
189
191
|
languages=["eng-Latn"],
|
|
190
192
|
open_weights=True,
|
|
191
193
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
|
|
@@ -210,6 +212,7 @@ m2v_base_glove = ModelMeta(
|
|
|
210
212
|
m2v_base_output = ModelMeta(
|
|
211
213
|
loader=Model2VecModel,
|
|
212
214
|
name="minishlab/M2V_base_output",
|
|
215
|
+
model_type=["dense"],
|
|
213
216
|
languages=["eng-Latn"],
|
|
214
217
|
open_weights=True,
|
|
215
218
|
revision="02460ae401a22b09d2c6652e23371398329551e2",
|
|
@@ -234,6 +237,7 @@ m2v_base_output = ModelMeta(
|
|
|
234
237
|
m2v_multilingual_output = ModelMeta(
|
|
235
238
|
loader=Model2VecModel,
|
|
236
239
|
name="minishlab/M2V_multilingual_output",
|
|
240
|
+
model_type=["dense"],
|
|
237
241
|
languages=["eng-Latn"],
|
|
238
242
|
open_weights=True,
|
|
239
243
|
revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
|
|
@@ -258,6 +262,7 @@ m2v_multilingual_output = ModelMeta(
|
|
|
258
262
|
potion_base_2m = ModelMeta(
|
|
259
263
|
loader=Model2VecModel,
|
|
260
264
|
name="minishlab/potion-base-2M",
|
|
265
|
+
model_type=["dense"],
|
|
261
266
|
languages=["eng-Latn"],
|
|
262
267
|
open_weights=True,
|
|
263
268
|
revision="86db093558fbced2072b929eb1690bce5272bd4b",
|
|
@@ -282,6 +287,7 @@ potion_base_2m = ModelMeta(
|
|
|
282
287
|
potion_base_4m = ModelMeta(
|
|
283
288
|
loader=Model2VecModel,
|
|
284
289
|
name="minishlab/potion-base-4M",
|
|
290
|
+
model_type=["dense"],
|
|
285
291
|
languages=["eng-Latn"],
|
|
286
292
|
open_weights=True,
|
|
287
293
|
revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
|
|
@@ -306,6 +312,7 @@ potion_base_4m = ModelMeta(
|
|
|
306
312
|
potion_base_8m = ModelMeta(
|
|
307
313
|
loader=Model2VecModel,
|
|
308
314
|
name="minishlab/potion-base-8M",
|
|
315
|
+
model_type=["dense"],
|
|
309
316
|
languages=["eng-Latn"],
|
|
310
317
|
open_weights=True,
|
|
311
318
|
revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
|
|
@@ -330,6 +337,7 @@ potion_base_8m = ModelMeta(
|
|
|
330
337
|
potion_multilingual_128m = ModelMeta(
|
|
331
338
|
loader=Model2VecModel,
|
|
332
339
|
name="minishlab/potion-multilingual-128M",
|
|
340
|
+
model_type=["dense"],
|
|
333
341
|
languages=_POTION_MULTILINGUAL_128M_LANGUAGES,
|
|
334
342
|
open_weights=True,
|
|
335
343
|
revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
|
|
@@ -354,6 +362,7 @@ potion_multilingual_128m = ModelMeta(
|
|
|
354
362
|
pubmed_bert_100k = ModelMeta(
|
|
355
363
|
loader=Model2VecModel,
|
|
356
364
|
name="NeuML/pubmedbert-base-embeddings-100K",
|
|
365
|
+
model_type=["dense"],
|
|
357
366
|
languages=["eng-Latn"],
|
|
358
367
|
open_weights=True,
|
|
359
368
|
revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
|
|
@@ -377,6 +386,7 @@ pubmed_bert_100k = ModelMeta(
|
|
|
377
386
|
pubmed_bert_500k = ModelMeta(
|
|
378
387
|
loader=Model2VecModel,
|
|
379
388
|
name="NeuML/pubmedbert-base-embeddings-500K",
|
|
389
|
+
model_type=["dense"],
|
|
380
390
|
languages=["eng-Latn"],
|
|
381
391
|
open_weights=True,
|
|
382
392
|
revision="34ba71e35c393fdad7ed695113f653feb407b16b",
|
|
@@ -400,6 +410,7 @@ pubmed_bert_500k = ModelMeta(
|
|
|
400
410
|
pubmed_bert_1m = ModelMeta(
|
|
401
411
|
loader=Model2VecModel,
|
|
402
412
|
name="NeuML/pubmedbert-base-embeddings-1M",
|
|
413
|
+
model_type=["dense"],
|
|
403
414
|
languages=["eng-Latn"],
|
|
404
415
|
open_weights=True,
|
|
405
416
|
revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
|
|
@@ -423,6 +434,7 @@ pubmed_bert_1m = ModelMeta(
|
|
|
423
434
|
pubmed_bert_2m = ModelMeta(
|
|
424
435
|
loader=Model2VecModel,
|
|
425
436
|
name="NeuML/pubmedbert-base-embeddings-2M",
|
|
437
|
+
model_type=["dense"],
|
|
426
438
|
languages=["eng-Latn"],
|
|
427
439
|
open_weights=True,
|
|
428
440
|
revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
|
|
@@ -446,6 +458,7 @@ pubmed_bert_2m = ModelMeta(
|
|
|
446
458
|
pubmed_bert_8m = ModelMeta(
|
|
447
459
|
loader=Model2VecModel,
|
|
448
460
|
name="NeuML/pubmedbert-base-embeddings-8M",
|
|
461
|
+
model_type=["dense"],
|
|
449
462
|
languages=["eng-Latn"],
|
|
450
463
|
open_weights=True,
|
|
451
464
|
revision="387d350015e963744f4fafe56a574b7cd48646c9",
|
|
@@ -91,6 +91,7 @@ m3e_dataset = {
|
|
|
91
91
|
m3e_base = ModelMeta(
|
|
92
92
|
loader=sentence_transformers_loader,
|
|
93
93
|
name="moka-ai/m3e-base",
|
|
94
|
+
model_type=["dense"],
|
|
94
95
|
languages=["zho-Hans", "eng-Latn"],
|
|
95
96
|
open_weights=True,
|
|
96
97
|
revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
|
|
@@ -116,6 +117,7 @@ m3e_base = ModelMeta(
|
|
|
116
117
|
m3e_small = ModelMeta(
|
|
117
118
|
loader=sentence_transformers_loader,
|
|
118
119
|
name="moka-ai/m3e-small",
|
|
120
|
+
model_type=["dense"],
|
|
119
121
|
languages=["zho-Hans", "eng-Latn"],
|
|
120
122
|
open_weights=True,
|
|
121
123
|
revision="44c696631b2a8c200220aaaad5f987f096e986df",
|
|
@@ -141,6 +143,7 @@ m3e_small = ModelMeta(
|
|
|
141
143
|
m3e_large = ModelMeta(
|
|
142
144
|
loader=sentence_transformers_loader,
|
|
143
145
|
name="moka-ai/m3e-large",
|
|
146
|
+
model_type=["dense"],
|
|
144
147
|
languages=["zho-Hans", "eng-Latn"],
|
|
145
148
|
open_weights=True,
|
|
146
149
|
revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
|
|
@@ -21,6 +21,7 @@ mxbai_embed_large_v1 = ModelMeta(
|
|
|
21
21
|
},
|
|
22
22
|
),
|
|
23
23
|
name="mixedbread-ai/mxbai-embed-large-v1",
|
|
24
|
+
model_type=["dense"],
|
|
24
25
|
languages=["eng-Latn"],
|
|
25
26
|
open_weights=True,
|
|
26
27
|
revision="990580e27d329c7408b3741ecff85876e128e203",
|
|
@@ -57,6 +58,7 @@ mxbai_embed_large_v1 = ModelMeta(
|
|
|
57
58
|
mxbai_embed_2d_large_v1 = ModelMeta(
|
|
58
59
|
loader=sentence_transformers_loader,
|
|
59
60
|
name="mixedbread-ai/mxbai-embed-2d-large-v1",
|
|
61
|
+
model_type=["dense"],
|
|
60
62
|
languages=["eng-Latn"],
|
|
61
63
|
open_weights=True,
|
|
62
64
|
revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
|
|
@@ -81,6 +83,7 @@ mxbai_embed_2d_large_v1 = ModelMeta(
|
|
|
81
83
|
mxbai_embed_xsmall_v1 = ModelMeta(
|
|
82
84
|
loader=sentence_transformers_loader,
|
|
83
85
|
name="mixedbread-ai/mxbai-embed-xsmall-v1",
|
|
86
|
+
model_type=["dense"],
|
|
84
87
|
languages=["eng-Latn"],
|
|
85
88
|
open_weights=True,
|
|
86
89
|
revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
|
|
@@ -6,6 +6,7 @@ from mteb.models.sentence_transformer_wrapper import (
|
|
|
6
6
|
nb_sbert = ModelMeta(
|
|
7
7
|
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
8
8
|
name="NbAiLab/nb-sbert-base",
|
|
9
|
+
model_type=["dense"],
|
|
9
10
|
languages=["nno-Latn", "nob-Latn", "swe-Latn", "dan-Latn"],
|
|
10
11
|
open_weights=True,
|
|
11
12
|
revision="b95656350a076aeafd2d23763660f80655408cc6",
|
|
@@ -27,6 +28,7 @@ nb_sbert = ModelMeta(
|
|
|
27
28
|
nb_bert_large = ModelMeta(
|
|
28
29
|
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
29
30
|
name="NbAiLab/nb-bert-large",
|
|
31
|
+
model_type=["dense"],
|
|
30
32
|
languages=["nno-Latn", "nob-Latn"],
|
|
31
33
|
open_weights=True,
|
|
32
34
|
revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
|
|
@@ -48,6 +50,7 @@ nb_bert_large = ModelMeta(
|
|
|
48
50
|
nb_bert_base = ModelMeta(
|
|
49
51
|
loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
|
|
50
52
|
name="NbAiLab/nb-bert-base",
|
|
53
|
+
model_type=["dense"],
|
|
51
54
|
languages=["nno-Latn", "nob-Latn"],
|
|
52
55
|
open_weights=True,
|
|
53
56
|
revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
|
|
@@ -97,6 +97,7 @@ class NoInstructModel(AbsEncoder):
|
|
|
97
97
|
no_instruct_small_v0 = ModelMeta(
|
|
98
98
|
loader=NoInstructModel,
|
|
99
99
|
name="avsolatorio/NoInstruct-small-Embedding-v0",
|
|
100
|
+
model_type=["dense"],
|
|
100
101
|
languages=["eng-Latn"],
|
|
101
102
|
open_weights=True,
|
|
102
103
|
revision="b38747000553d8268915c95a55fc87e707c9aadd",
|