mteb 2.5.1__py3-none-any.whl → 2.5.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (148) hide show
  1. mteb/abstasks/abstask.py +6 -6
  2. mteb/abstasks/aggregated_task.py +4 -10
  3. mteb/abstasks/clustering_legacy.py +3 -2
  4. mteb/abstasks/task_metadata.py +2 -3
  5. mteb/cache.py +7 -4
  6. mteb/cli/build_cli.py +10 -5
  7. mteb/cli/generate_model_card.py +4 -3
  8. mteb/deprecated_evaluator.py +4 -3
  9. mteb/evaluate.py +4 -1
  10. mteb/get_tasks.py +4 -3
  11. mteb/leaderboard/app.py +70 -3
  12. mteb/models/abs_encoder.py +5 -3
  13. mteb/models/cache_wrappers/cache_backends/faiss_cache.py +4 -1
  14. mteb/models/cache_wrappers/cache_backends/numpy_cache.py +13 -12
  15. mteb/models/model_implementations/align_models.py +1 -0
  16. mteb/models/model_implementations/amazon_models.py +1 -0
  17. mteb/models/model_implementations/andersborges.py +2 -0
  18. mteb/models/model_implementations/ara_models.py +1 -0
  19. mteb/models/model_implementations/arctic_models.py +8 -0
  20. mteb/models/model_implementations/b1ade_models.py +1 -0
  21. mteb/models/model_implementations/bedrock_models.py +4 -0
  22. mteb/models/model_implementations/bge_models.py +17 -0
  23. mteb/models/model_implementations/bica_model.py +1 -0
  24. mteb/models/model_implementations/blip2_models.py +2 -0
  25. mteb/models/model_implementations/blip_models.py +8 -0
  26. mteb/models/model_implementations/bm25.py +1 -0
  27. mteb/models/model_implementations/bmretriever_models.py +4 -0
  28. mteb/models/model_implementations/cadet_models.py +1 -0
  29. mteb/models/model_implementations/cde_models.py +2 -0
  30. mteb/models/model_implementations/clip_models.py +3 -0
  31. mteb/models/model_implementations/clips_models.py +3 -0
  32. mteb/models/model_implementations/codefuse_models.py +3 -0
  33. mteb/models/model_implementations/codesage_models.py +3 -0
  34. mteb/models/model_implementations/cohere_models.py +4 -0
  35. mteb/models/model_implementations/cohere_v.py +5 -0
  36. mteb/models/model_implementations/colpali_models.py +3 -0
  37. mteb/models/model_implementations/colqwen_models.py +9 -0
  38. mteb/models/model_implementations/colsmol_models.py +2 -0
  39. mteb/models/model_implementations/conan_models.py +1 -0
  40. mteb/models/model_implementations/dino_models.py +19 -0
  41. mteb/models/model_implementations/e5_instruct.py +4 -0
  42. mteb/models/model_implementations/e5_models.py +9 -0
  43. mteb/models/model_implementations/e5_v.py +1 -0
  44. mteb/models/model_implementations/eagerworks_models.py +1 -0
  45. mteb/models/model_implementations/emillykkejensen_models.py +3 -0
  46. mteb/models/model_implementations/en_code_retriever.py +1 -0
  47. mteb/models/model_implementations/euler_models.py +1 -0
  48. mteb/models/model_implementations/evaclip_models.py +4 -0
  49. mteb/models/model_implementations/fa_models.py +8 -0
  50. mteb/models/model_implementations/facebookai.py +2 -0
  51. mteb/models/model_implementations/geogpt_models.py +1 -0
  52. mteb/models/model_implementations/gme_v_models.py +6 -3
  53. mteb/models/model_implementations/google_models.py +5 -0
  54. mteb/models/model_implementations/granite_vision_embedding_models.py +1 -0
  55. mteb/models/model_implementations/gritlm_models.py +2 -0
  56. mteb/models/model_implementations/gte_models.py +9 -0
  57. mteb/models/model_implementations/hinvec_models.py +1 -0
  58. mteb/models/model_implementations/human.py +1 -0
  59. mteb/models/model_implementations/ibm_granite_models.py +6 -0
  60. mteb/models/model_implementations/inf_models.py +2 -0
  61. mteb/models/model_implementations/jasper_models.py +2 -0
  62. mteb/models/model_implementations/jina_clip.py +1 -0
  63. mteb/models/model_implementations/jina_models.py +7 -1
  64. mteb/models/model_implementations/kalm_models.py +6 -0
  65. mteb/models/model_implementations/kblab.py +1 -0
  66. mteb/models/model_implementations/kennethenevoldsen_models.py +2 -0
  67. mteb/models/model_implementations/kfst.py +1 -0
  68. mteb/models/model_implementations/kowshik24_models.py +1 -0
  69. mteb/models/model_implementations/lens_models.py +2 -0
  70. mteb/models/model_implementations/lgai_embedding_models.py +1 -0
  71. mteb/models/model_implementations/linq_models.py +1 -0
  72. mteb/models/model_implementations/listconranker.py +1 -1
  73. mteb/models/model_implementations/llm2clip_models.py +3 -0
  74. mteb/models/model_implementations/llm2vec_models.py +8 -0
  75. mteb/models/model_implementations/mcinext_models.py +7 -1
  76. mteb/models/model_implementations/mdbr_models.py +2 -0
  77. mteb/models/model_implementations/misc_models.py +63 -0
  78. mteb/models/model_implementations/mme5_models.py +1 -0
  79. mteb/models/model_implementations/moco_models.py +2 -0
  80. mteb/models/model_implementations/model2vec_models.py +13 -0
  81. mteb/models/model_implementations/moka_models.py +3 -0
  82. mteb/models/model_implementations/mxbai_models.py +3 -0
  83. mteb/models/model_implementations/nbailab.py +3 -0
  84. mteb/models/model_implementations/no_instruct_sentence_models.py +1 -0
  85. mteb/models/model_implementations/nomic_models.py +6 -0
  86. mteb/models/model_implementations/nomic_models_vision.py +1 -0
  87. mteb/models/model_implementations/nvidia_llama_nemoretriever_colemb.py +2 -0
  88. mteb/models/model_implementations/nvidia_models.py +3 -0
  89. mteb/models/model_implementations/octen_models.py +195 -0
  90. mteb/models/model_implementations/openai_models.py +5 -0
  91. mteb/models/model_implementations/openclip_models.py +8 -0
  92. mteb/models/model_implementations/opensearch_neural_sparse_models.py +5 -0
  93. mteb/models/model_implementations/ops_moa_models.py +2 -0
  94. mteb/models/model_implementations/pawan_models.py +1 -0
  95. mteb/models/model_implementations/piccolo_models.py +2 -0
  96. mteb/models/model_implementations/promptriever_models.py +4 -0
  97. mteb/models/model_implementations/pylate_models.py +3 -0
  98. mteb/models/model_implementations/qodo_models.py +2 -0
  99. mteb/models/model_implementations/qtack_models.py +1 -0
  100. mteb/models/model_implementations/qwen3_models.py +3 -0
  101. mteb/models/model_implementations/qzhou_models.py +2 -0
  102. mteb/models/model_implementations/random_baseline.py +2 -1
  103. mteb/models/model_implementations/rasgaard_models.py +1 -0
  104. mteb/models/model_implementations/reasonir_model.py +1 -0
  105. mteb/models/model_implementations/repllama_models.py +2 -0
  106. mteb/models/model_implementations/rerankers_custom.py +3 -3
  107. mteb/models/model_implementations/rerankers_monot5_based.py +14 -14
  108. mteb/models/model_implementations/richinfoai_models.py +1 -0
  109. mteb/models/model_implementations/ru_sentence_models.py +20 -0
  110. mteb/models/model_implementations/ruri_models.py +10 -0
  111. mteb/models/model_implementations/salesforce_models.py +3 -0
  112. mteb/models/model_implementations/samilpwc_models.py +1 -0
  113. mteb/models/model_implementations/sarashina_embedding_models.py +2 -0
  114. mteb/models/model_implementations/searchmap_models.py +1 -0
  115. mteb/models/model_implementations/seed_1_6_embedding_models.py +1 -0
  116. mteb/models/model_implementations/seed_models.py +1 -0
  117. mteb/models/model_implementations/sentence_transformers_models.py +18 -0
  118. mteb/models/model_implementations/shuu_model.py +32 -31
  119. mteb/models/model_implementations/siglip_models.py +10 -0
  120. mteb/models/model_implementations/sonar_models.py +1 -0
  121. mteb/models/model_implementations/spartan8806_atles_champion.py +1 -0
  122. mteb/models/model_implementations/stella_models.py +6 -0
  123. mteb/models/model_implementations/tarka_models.py +2 -0
  124. mteb/models/model_implementations/ua_sentence_models.py +1 -0
  125. mteb/models/model_implementations/uae_models.py +1 -0
  126. mteb/models/model_implementations/vdr_models.py +1 -0
  127. mteb/models/model_implementations/vi_vn_models.py +6 -0
  128. mteb/models/model_implementations/vista_models.py +2 -0
  129. mteb/models/model_implementations/vlm2vec_models.py +2 -0
  130. mteb/models/model_implementations/voyage_models.py +15 -0
  131. mteb/models/model_implementations/voyage_v.py +1 -0
  132. mteb/models/model_implementations/xyz_models.py +1 -0
  133. mteb/models/model_implementations/youtu_models.py +1 -0
  134. mteb/models/model_implementations/yuan_models.py +1 -0
  135. mteb/models/model_implementations/yuan_models_en.py +1 -0
  136. mteb/models/model_meta.py +49 -4
  137. mteb/models/search_encoder_index/search_indexes/faiss_search_index.py +4 -1
  138. mteb/models/search_wrappers.py +4 -2
  139. mteb/models/sentence_transformer_wrapper.py +10 -10
  140. mteb/results/benchmark_results.py +67 -43
  141. mteb/results/model_result.py +3 -1
  142. mteb/results/task_result.py +22 -17
  143. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/METADATA +1 -1
  144. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/RECORD +148 -147
  145. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/WHEEL +0 -0
  146. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/entry_points.txt +0 -0
  147. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/licenses/LICENSE +0 -0
  148. {mteb-2.5.1.dist-info → mteb-2.5.3.dist-info}/top_level.txt +0 -0
@@ -13,6 +13,7 @@ from .sentence_transformers_models import sent_trf_training_dataset
13
13
  Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
14
14
  loader=sentence_transformers_loader,
15
15
  name="Haon-Chen/speed-embedding-7b-instruct",
16
+ model_type=["dense"],
16
17
  revision="c167e9a8144b397622ce47b85d9edcdeecef3d3f",
17
18
  release_date="2024-10-31",
18
19
  languages=["eng-Latn"],
@@ -40,6 +41,7 @@ Haon_Chen__speed_embedding_7b_instruct = ModelMeta(
40
41
  )
41
42
  Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
42
43
  name="Gameselo/STS-multilingual-mpnet-base-v2",
44
+ model_type=["dense"],
43
45
  revision="449f917af30f590fc31f9ffb226c94f21a2f47b8",
44
46
  release_date="2024-06-07",
45
47
  languages=[],
@@ -140,6 +142,7 @@ Gameselo__STS_multilingual_mpnet_base_v2 = ModelMeta(
140
142
 
141
143
  Hum_Works__lodestone_base_4096_v1 = ModelMeta(
142
144
  name="Hum-Works/lodestone-base-4096-v1",
145
+ model_type=["dense"],
143
146
  revision="9bbc2d0b57dd2198aea029404b0f976712a7d966",
144
147
  release_date="2023-08-25",
145
148
  languages=["eng-Latn"],
@@ -206,6 +209,7 @@ Hum_Works__lodestone_base_4096_v1 = ModelMeta(
206
209
  )
207
210
  Jaume__gemma_2b_embeddings = ModelMeta(
208
211
  name="Jaume/gemma-2b-embeddings",
212
+ model_type=["dense"],
209
213
  revision="86431f65d7c3f66b2af096c61e614a2958f191f1",
210
214
  release_date="2024-06-29",
211
215
  languages=[],
@@ -237,6 +241,7 @@ bilingual_embedding_training_data = {
237
241
 
238
242
  Lajavaness__bilingual_embedding_base = ModelMeta(
239
243
  name="Lajavaness/bilingual-embedding-base",
244
+ model_type=["dense"],
240
245
  revision="0bfc54bb2aa2666dd84715289c7ef58a95eb4d8d",
241
246
  release_date="2024-06-26",
242
247
  languages=None,
@@ -285,6 +290,7 @@ Lajavaness__bilingual_embedding_base = ModelMeta(
285
290
  )
286
291
  Lajavaness__bilingual_embedding_large = ModelMeta(
287
292
  name="Lajavaness/bilingual-embedding-large",
293
+ model_type=["dense"],
288
294
  revision="e83179d7a66e8aed1b3015e98bb5ae234ed89598",
289
295
  release_date="2024-06-24",
290
296
  languages=["fra-Latn", "eng-Latn"],
@@ -333,6 +339,7 @@ Lajavaness__bilingual_embedding_large = ModelMeta(
333
339
  )
334
340
  Lajavaness__bilingual_embedding_small = ModelMeta(
335
341
  name="Lajavaness/bilingual-embedding-small",
342
+ model_type=["dense"],
336
343
  revision="ed4a1dd814de0db81d4a4e287c296a03194463e3",
337
344
  release_date="2024-07-17",
338
345
  languages=["fra-Latn", "eng-Latn"],
@@ -381,6 +388,7 @@ Lajavaness__bilingual_embedding_small = ModelMeta(
381
388
  )
382
389
  Mihaiii__Bulbasaur = ModelMeta(
383
390
  name="Mihaiii/Bulbasaur",
391
+ model_type=["dense"],
384
392
  revision="6876f839e18ae36224049a41194a431953f08747",
385
393
  release_date="2024-04-27",
386
394
  languages=None,
@@ -404,6 +412,7 @@ Mihaiii__Bulbasaur = ModelMeta(
404
412
  )
405
413
  Mihaiii__Ivysaur = ModelMeta(
406
414
  name="Mihaiii/Ivysaur",
415
+ model_type=["dense"],
407
416
  revision="65914d976f45beb4bda7485c39d88865b4ce6554",
408
417
  release_date="2024-04-27",
409
418
  languages=None,
@@ -427,6 +436,7 @@ Mihaiii__Ivysaur = ModelMeta(
427
436
  )
428
437
  Mihaiii__Squirtle = ModelMeta(
429
438
  name="Mihaiii/Squirtle",
439
+ model_type=["dense"],
430
440
  revision="5b991da48a9286637a256d4a35aab87a1a57b78a",
431
441
  release_date="2024-04-30",
432
442
  languages=None,
@@ -450,6 +460,7 @@ Mihaiii__Squirtle = ModelMeta(
450
460
  )
451
461
  Mihaiii__Venusaur = ModelMeta(
452
462
  name="Mihaiii/Venusaur",
463
+ model_type=["dense"],
453
464
  revision="0dc817f0addbb7bab8feeeeaded538f9ffeb3419",
454
465
  release_date="2024-04-29",
455
466
  languages=None,
@@ -473,6 +484,7 @@ Mihaiii__Venusaur = ModelMeta(
473
484
  )
474
485
  Mihaiii__Wartortle = ModelMeta(
475
486
  name="Mihaiii/Wartortle",
487
+ model_type=["dense"],
476
488
  revision="14caca5253414d38a7d28b62d1b7c30ef3293a87",
477
489
  release_date="2024-04-30",
478
490
  languages=None,
@@ -496,6 +508,7 @@ Mihaiii__Wartortle = ModelMeta(
496
508
  )
497
509
  Mihaiii__gte_micro = ModelMeta(
498
510
  name="Mihaiii/gte-micro",
511
+ model_type=["dense"],
499
512
  revision="6fd2397cb9dfa7c901aedf9a2a44d3c888ccafdd",
500
513
  release_date="2024-04-21",
501
514
  languages=None,
@@ -518,6 +531,7 @@ Mihaiii__gte_micro = ModelMeta(
518
531
  )
519
532
  Mihaiii__gte_micro_v4 = ModelMeta(
520
533
  name="Mihaiii/gte-micro-v4",
534
+ model_type=["dense"],
521
535
  revision="78e1a4b348f8524c3ab2e3e3475788f5adb8c98f",
522
536
  release_date="2024-04-22",
523
537
  languages=None,
@@ -540,6 +554,7 @@ Mihaiii__gte_micro_v4 = ModelMeta(
540
554
  )
541
555
  OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
542
556
  name="OrdalieTech/Solon-embeddings-large-0.1",
557
+ model_type=["dense"],
543
558
  revision="9f6465f6ea2f6d10c6294bc15d84edf87d47cdef",
544
559
  release_date="2023-12-09",
545
560
  languages=["fra-Latn"],
@@ -562,6 +577,7 @@ OrdalieTech__Solon_embeddings_large_0_1 = ModelMeta(
562
577
  )
563
578
  Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
564
579
  name="Omartificial-Intelligence-Space/Arabert-all-nli-triplet-Matryoshka",
580
+ model_type=["dense"],
565
581
  revision="d0361a36f6fe69febfc8550d0918abab174f6f30",
566
582
  release_date="2024-06-16",
567
583
  languages=["ara-Arab"],
@@ -593,6 +609,7 @@ Omartificial_Intelligence_Space__Arabert_all_nli_triplet_Matryoshka = ModelMeta(
593
609
  )
594
610
  Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMeta(
595
611
  name="Omartificial-Intelligence-Space/Arabic-MiniLM-L12-v2-all-nli-triplet",
612
+ model_type=["dense"],
596
613
  revision="6916465c43b984e955aa6dc72851474f0128f428",
597
614
  release_date="2024-06-25",
598
615
  languages=["ara-Arab"],
@@ -617,6 +634,7 @@ Omartificial_Intelligence_Space__Arabic_MiniLM_L12_v2_all_nli_triplet = ModelMet
617
634
  )
618
635
  Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
619
636
  name="Omartificial-Intelligence-Space/Arabic-all-nli-triplet-Matryoshka",
637
+ model_type=["dense"],
620
638
  revision="1ca467cc576bd76666a4d21b24ee43afa914dd10",
621
639
  release_date="2024-06-14",
622
640
  languages=["ara-Arab"],
@@ -650,6 +668,7 @@ Omartificial_Intelligence_Space__Arabic_all_nli_triplet_Matryoshka = ModelMeta(
650
668
  )
651
669
  Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
652
670
  name="Omartificial-Intelligence-Space/Arabic-labse-Matryoshka",
671
+ model_type=["dense"],
653
672
  revision="ee6d5e33c78ed582ade47fd452a74ea52aa5bfe2",
654
673
  release_date="2024-06-16",
655
674
  languages=["ara-Arab"],
@@ -683,6 +702,7 @@ Omartificial_Intelligence_Space__Arabic_labse_Matryoshka = ModelMeta(
683
702
  )
684
703
  Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
685
704
  name="Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet",
705
+ model_type=["dense"],
686
706
  revision="2628cb641e040f44328195fadcdfb58e6d5cffa7",
687
707
  release_date="2024-06-15",
688
708
  languages=["ara-Arab"],
@@ -716,6 +736,7 @@ Omartificial_Intelligence_Space__Arabic_mpnet_base_all_nli_triplet = ModelMeta(
716
736
  )
717
737
  Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
718
738
  name="Omartificial-Intelligence-Space/Marbert-all-nli-triplet-Matryoshka",
739
+ model_type=["dense"],
719
740
  revision="ecf3274e164f057c4a3dd70691cae0265d87a9d0",
720
741
  release_date="2024-06-17",
721
742
  languages=["ara-Arab"],
@@ -747,6 +768,7 @@ Omartificial_Intelligence_Space__Marbert_all_nli_triplet_Matryoshka = ModelMeta(
747
768
  )
748
769
  consciousai__cai_lunaris_text_embeddings = ModelMeta(
749
770
  name="consciousAI/cai-lunaris-text-embeddings",
771
+ model_type=["dense"],
750
772
  revision="8332c464d13505968ff7a6e2213f36fd8730b4c7",
751
773
  release_date="2023-06-22",
752
774
  languages=None,
@@ -769,6 +791,7 @@ consciousai__cai_lunaris_text_embeddings = ModelMeta(
769
791
  )
770
792
  consciousai__cai_stellaris_text_embeddings = ModelMeta(
771
793
  name="consciousAI/cai-stellaris-text-embeddings",
794
+ model_type=["dense"],
772
795
  revision="c000ec4b29588daf0f4a0b2ad4e72ee807d8efc0",
773
796
  release_date="2023-06-23",
774
797
  languages=None,
@@ -800,6 +823,7 @@ SENTENCE_CROISSANT_TRAINING_DATA = {
800
823
  }
801
824
  manu__sentence_croissant_alpha_v0_2 = ModelMeta(
802
825
  name="manu/sentence_croissant_alpha_v0.2",
826
+ model_type=["dense"],
803
827
  revision="4610b8cea65d7dd59e0b04af50753933fe5b29b2",
804
828
  release_date="2024-03-15",
805
829
  languages=None,
@@ -822,6 +846,7 @@ manu__sentence_croissant_alpha_v0_2 = ModelMeta(
822
846
  )
823
847
  manu__sentence_croissant_alpha_v0_3 = ModelMeta(
824
848
  name="manu/sentence_croissant_alpha_v0.3",
849
+ model_type=["dense"],
825
850
  revision="4ac16754f3d81aba76cc32955dc9ee4122df96eb",
826
851
  release_date="2024-04-26",
827
852
  languages=None,
@@ -844,6 +869,7 @@ manu__sentence_croissant_alpha_v0_3 = ModelMeta(
844
869
  )
845
870
  manu__sentence_croissant_alpha_v0_4 = ModelMeta(
846
871
  name="manu/sentence_croissant_alpha_v0.4",
872
+ model_type=["dense"],
847
873
  revision="0ce6372e6a3c21134dcf26dcde13cca869c767fc",
848
874
  release_date="2024-04-27",
849
875
  languages=["fra-Latn", "eng-Latn"],
@@ -867,6 +893,7 @@ manu__sentence_croissant_alpha_v0_4 = ModelMeta(
867
893
  )
868
894
  thenlper__gte_base = ModelMeta(
869
895
  name="thenlper/gte-base",
896
+ model_type=["dense"],
870
897
  revision="c078288308d8dee004ab72c6191778064285ec0c",
871
898
  release_date="2023-07-27",
872
899
  languages=["eng-Latn"],
@@ -895,6 +922,7 @@ thenlper__gte_base = ModelMeta(
895
922
  )
896
923
  thenlper__gte_large = ModelMeta(
897
924
  name="thenlper/gte-large",
925
+ model_type=["dense"],
898
926
  revision="4bef63f39fcc5e2d6b0aae83089f307af4970164",
899
927
  release_date="2023-07-27",
900
928
  languages=["eng-Latn"],
@@ -923,6 +951,7 @@ thenlper__gte_large = ModelMeta(
923
951
  )
924
952
  thenlper__gte_small = ModelMeta(
925
953
  name="thenlper/gte-small",
954
+ model_type=["dense"],
926
955
  revision="17e1f347d17fe144873b1201da91788898c639cd",
927
956
  release_date="2023-07-27",
928
957
  languages=["eng-Latn"],
@@ -951,6 +980,7 @@ thenlper__gte_small = ModelMeta(
951
980
  )
952
981
  OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
953
982
  name="OrlikB/KartonBERT-USE-base-v1",
983
+ model_type=["dense"],
954
984
  revision="1f59dd58fe57995c0e867d5e29f03763eae99645",
955
985
  release_date="2024-09-30",
956
986
  languages=["pol-Latn"],
@@ -973,6 +1003,7 @@ OrlikB__KartonBERT_USE_base_v1 = ModelMeta(
973
1003
  )
974
1004
  OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
975
1005
  name="OrlikB/st-polish-kartonberta-base-alpha-v1",
1006
+ model_type=["dense"],
976
1007
  revision="5590a0e2d7bb43674e44d7076b3ff157f7d4a1cb",
977
1008
  release_date="2023-11-12",
978
1009
  languages=["pol-Latn"],
@@ -995,6 +1026,7 @@ OrlikB__st_polish_kartonberta_base_alpha_v1 = ModelMeta(
995
1026
  )
996
1027
  sdadas__mmlw_e5_base = ModelMeta(
997
1028
  name="sdadas/mmlw-e5-base",
1029
+ model_type=["dense"],
998
1030
  revision="f10628ed55b5ec400502aff439bd714a6da0af30",
999
1031
  release_date="2023-11-17",
1000
1032
  languages=["pol-Latn"],
@@ -1025,6 +1057,7 @@ sdadas__mmlw_e5_base = ModelMeta(
1025
1057
  )
1026
1058
  dwzhu__e5_base_4k = ModelMeta(
1027
1059
  name="dwzhu/e5-base-4k",
1060
+ model_type=["dense"],
1028
1061
  revision="1b5664b8cb2bccd8c309429b7bfe5864402e8fbc",
1029
1062
  release_date="2024-03-28",
1030
1063
  languages=["eng-Latn"],
@@ -1053,6 +1086,7 @@ dwzhu__e5_base_4k = ModelMeta(
1053
1086
  )
1054
1087
  sdadas__mmlw_e5_large = ModelMeta(
1055
1088
  name="sdadas/mmlw-e5-large",
1089
+ model_type=["dense"],
1056
1090
  revision="5c143fb045ebed664fd85b43fc45155999eb110f",
1057
1091
  release_date="2023-11-17",
1058
1092
  languages=["pol-Latn"],
@@ -1083,6 +1117,7 @@ sdadas__mmlw_e5_large = ModelMeta(
1083
1117
  )
1084
1118
  sdadas__mmlw_e5_small = ModelMeta(
1085
1119
  name="sdadas/mmlw-e5-small",
1120
+ model_type=["dense"],
1086
1121
  revision="ff1298cb6d997f18b794d2f3d73cad2ba2ad739a",
1087
1122
  release_date="2023-11-17",
1088
1123
  languages=["pol-Latn"],
@@ -1113,6 +1148,7 @@ sdadas__mmlw_e5_small = ModelMeta(
1113
1148
  )
1114
1149
  sdadas__mmlw_roberta_base = ModelMeta(
1115
1150
  name="sdadas/mmlw-roberta-base",
1151
+ model_type=["dense"],
1116
1152
  revision="0ac7f23f6c96af601fa6a17852bd08d5136d6365",
1117
1153
  release_date="2023-11-17",
1118
1154
  languages=["pol-Latn"],
@@ -1143,6 +1179,7 @@ sdadas__mmlw_roberta_base = ModelMeta(
1143
1179
  )
1144
1180
  sdadas__mmlw_roberta_large = ModelMeta(
1145
1181
  name="sdadas/mmlw-roberta-large",
1182
+ model_type=["dense"],
1146
1183
  revision="b8058066a8de32d0737b3cd82d8b4f4108745af9",
1147
1184
  release_date="2023-11-17",
1148
1185
  languages=["pol-Latn"],
@@ -1228,6 +1265,7 @@ udever_languages = [
1228
1265
 
1229
1266
  izhx__udever_bloom_1b1 = ModelMeta(
1230
1267
  name="izhx/udever-bloom-1b1",
1268
+ model_type=["dense"],
1231
1269
  revision="7bf1ee29878cb040b2708a691aa4b61f27eaa252",
1232
1270
  release_date="2023-10-24",
1233
1271
  languages=udever_languages,
@@ -1256,6 +1294,7 @@ izhx__udever_bloom_1b1 = ModelMeta(
1256
1294
  )
1257
1295
  izhx__udever_bloom_3b = ModelMeta(
1258
1296
  name="izhx/udever-bloom-3b",
1297
+ model_type=["dense"],
1259
1298
  revision="4edd8affe80ca89ba0f6b6ba4103fc7f25fc57b2",
1260
1299
  release_date="2023-10-24",
1261
1300
  languages=udever_languages,
@@ -1284,6 +1323,7 @@ izhx__udever_bloom_3b = ModelMeta(
1284
1323
  )
1285
1324
  izhx__udever_bloom_560m = ModelMeta(
1286
1325
  name="izhx/udever-bloom-560m",
1326
+ model_type=["dense"],
1287
1327
  revision="b2a723e355946ec5a5c5fbed3459766627ded2bb",
1288
1328
  release_date="2023-10-24",
1289
1329
  languages=udever_languages,
@@ -1312,6 +1352,7 @@ izhx__udever_bloom_560m = ModelMeta(
1312
1352
  )
1313
1353
  izhx__udever_bloom_7b1 = ModelMeta(
1314
1354
  name="izhx/udever-bloom-7b1",
1355
+ model_type=["dense"],
1315
1356
  revision="18e8d3e6dbd94868584877f2e72a105a17df22ef",
1316
1357
  release_date="2023-10-24",
1317
1358
  languages=udever_languages,
@@ -1340,6 +1381,7 @@ izhx__udever_bloom_7b1 = ModelMeta(
1340
1381
  )
1341
1382
  avsolatorio__gist_embedding_v0 = ModelMeta(
1342
1383
  name="avsolatorio/GIST-Embedding-v0",
1384
+ model_type=["dense"],
1343
1385
  revision="bf6b2e55e92f510a570ad4d7d2da2ec8cd22590c",
1344
1386
  release_date="2024-01-31",
1345
1387
  languages=["eng-Latn"],
@@ -1389,6 +1431,7 @@ avsolatorio__gist_embedding_v0 = ModelMeta(
1389
1431
  )
1390
1432
  avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
1391
1433
  name="avsolatorio/GIST-all-MiniLM-L6-v2",
1434
+ model_type=["dense"],
1392
1435
  revision="ea89dfad053bba14677bb784a4269898abbdce44",
1393
1436
  release_date="2024-02-03",
1394
1437
  languages=["eng-Latn"],
@@ -1438,6 +1481,7 @@ avsolatorio__gist_all_minilm_l6_v2 = ModelMeta(
1438
1481
  )
1439
1482
  avsolatorio__gist_large_embedding_v0 = ModelMeta(
1440
1483
  name="avsolatorio/GIST-large-Embedding-v0",
1484
+ model_type=["dense"],
1441
1485
  revision="7831200e2f7819b994490c091cf3258a2b821f0c",
1442
1486
  release_date="2024-02-14",
1443
1487
  languages=["eng-Latn"],
@@ -1487,6 +1531,7 @@ avsolatorio__gist_large_embedding_v0 = ModelMeta(
1487
1531
  )
1488
1532
  avsolatorio__gist_small_embedding_v0 = ModelMeta(
1489
1533
  name="avsolatorio/GIST-small-Embedding-v0",
1534
+ model_type=["dense"],
1490
1535
  revision="d6c4190f9e01b9994dc7cac99cf2f2b85cfb57bc",
1491
1536
  release_date="2024-02-03",
1492
1537
  languages=["eng-Latn"],
@@ -1536,6 +1581,7 @@ avsolatorio__gist_small_embedding_v0 = ModelMeta(
1536
1581
  )
1537
1582
  bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
1538
1583
  name="bigscience/sgpt-bloom-7b1-msmarco",
1584
+ model_type=["dense"],
1539
1585
  revision="dc579f3d2d5a0795eba2049e16c3e36c74007ad3",
1540
1586
  release_date="2022-08-26",
1541
1587
  languages=None,
@@ -1564,6 +1610,7 @@ bigscience__sgpt_bloom_7b1_msmarco = ModelMeta(
1564
1610
  )
1565
1611
  aari1995__german_semantic_sts_v2 = ModelMeta(
1566
1612
  name="aari1995/German_Semantic_STS_V2",
1613
+ model_type=["dense"],
1567
1614
  revision="22912542b0ec7a7ef369837e28ffe6352a27afc9",
1568
1615
  release_date="2022-11-17",
1569
1616
  languages=["deu-Latn"],
@@ -1587,6 +1634,7 @@ aari1995__german_semantic_sts_v2 = ModelMeta(
1587
1634
  )
1588
1635
  abhinand__medembed_small_v0_1 = ModelMeta(
1589
1636
  name="abhinand/MedEmbed-small-v0.1",
1637
+ model_type=["dense"],
1590
1638
  revision="40a5850d046cfdb56154e332b4d7099b63e8d50e",
1591
1639
  release_date="2024-10-20",
1592
1640
  languages=["eng-Latn"],
@@ -1624,6 +1672,7 @@ abhinand__medembed_small_v0_1 = ModelMeta(
1624
1672
  )
1625
1673
  avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
1626
1674
  name="avsolatorio/NoInstruct-small-Embedding-v0",
1675
+ model_type=["dense"],
1627
1676
  revision="b38747000553d8268915c95a55fc87e707c9aadd",
1628
1677
  release_date="2024-05-01",
1629
1678
  languages=["eng-Latn"],
@@ -1646,6 +1695,7 @@ avsolatorio__noinstruct_small_embedding_v0 = ModelMeta(
1646
1695
  )
1647
1696
  brahmairesearch__slx_v0_1 = ModelMeta(
1648
1697
  name="brahmairesearch/slx-v0.1",
1698
+ model_type=["dense"],
1649
1699
  revision="688c83fd1a7f34b25575a2bc26cfd87c11b4ce71",
1650
1700
  release_date="2024-08-13",
1651
1701
  languages=["eng-Latn"],
@@ -1668,6 +1718,7 @@ brahmairesearch__slx_v0_1 = ModelMeta(
1668
1718
  )
1669
1719
  deepfile__embedder_100p = ModelMeta(
1670
1720
  name="deepfile/embedder-100p",
1721
+ model_type=["dense"],
1671
1722
  revision="aa02f08f11517977fbcdc94dc9dbf9a1ca152d9b",
1672
1723
  release_date="2023-07-24",
1673
1724
  languages=None,
@@ -1690,6 +1741,7 @@ deepfile__embedder_100p = ModelMeta(
1690
1741
  )
1691
1742
  infgrad__stella_base_en_v2 = ModelMeta(
1692
1743
  name="infgrad/stella-base-en-v2",
1744
+ model_type=["dense"],
1693
1745
  revision="c9e80ff9892d80b39dc54e30a7873f91ea161034",
1694
1746
  release_date="2023-10-19",
1695
1747
  languages=["eng-Latn"],
@@ -1712,6 +1764,7 @@ infgrad__stella_base_en_v2 = ModelMeta(
1712
1764
  )
1713
1765
  malenia1__ternary_weight_embedding = ModelMeta(
1714
1766
  name="malenia1/ternary-weight-embedding",
1767
+ model_type=["dense"],
1715
1768
  revision="a1208fb7f646647bb62639fd2e1eb6cc2ef3738e",
1716
1769
  release_date="2024-10-23",
1717
1770
  languages=None,
@@ -1734,6 +1787,7 @@ malenia1__ternary_weight_embedding = ModelMeta(
1734
1787
  )
1735
1788
  omarelshehy__arabic_english_sts_matryoshka = ModelMeta(
1736
1789
  name="omarelshehy/arabic-english-sts-matryoshka",
1790
+ model_type=["dense"],
1737
1791
  revision="763d116fbe8bf7883c64635c862feeaa3768bb64",
1738
1792
  release_date="2024-10-13",
1739
1793
  languages=["ara-Arab", "eng-Latn"],
@@ -1774,6 +1828,7 @@ openbmb__minicpm_embedding = ModelMeta(
1774
1828
  # https://huggingface.co/openbmb/MiniCPM-Embedding/blob/c0cb2de33fb366e17c30f9d53142ff11bc18e049/README.md?code=true#L405
1775
1829
  ),
1776
1830
  name="openbmb/MiniCPM-Embedding",
1831
+ model_type=["dense"],
1777
1832
  revision="c0cb2de33fb366e17c30f9d53142ff11bc18e049",
1778
1833
  release_date="2024-09-04",
1779
1834
  languages=["zho-Hans", "eng-Latn"],
@@ -1796,6 +1851,7 @@ openbmb__minicpm_embedding = ModelMeta(
1796
1851
 
1797
1852
  silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
1798
1853
  name="silma-ai/silma-embeddding-matryoshka-v0.1",
1854
+ model_type=["dense"],
1799
1855
  revision="a520977a9542ebdb8a7206df6b7ff6977f1886ea",
1800
1856
  release_date="2024-10-12",
1801
1857
  languages=["ara-Arab", "eng-Latn"],
@@ -1826,6 +1882,7 @@ silma_ai__silma_embedding_matryoshka_v0_1 = ModelMeta(
1826
1882
 
1827
1883
  sbert_chinese_general_v1 = ModelMeta(
1828
1884
  name="DMetaSoul/sbert-chinese-general-v1",
1885
+ model_type=["dense"],
1829
1886
  revision="bd27765956bcc2fcf682de0097819947ac10037e",
1830
1887
  release_date="2022-03-25",
1831
1888
  languages=["zho-Hans"],
@@ -1853,6 +1910,7 @@ sbert_chinese_general_v1 = ModelMeta(
1853
1910
 
1854
1911
  dmeta_embedding_zh_small = ModelMeta(
1855
1912
  name="DMetaSoul/Dmeta-embedding-zh-small",
1913
+ model_type=["dense"],
1856
1914
  revision="2050d3439a2f68999dd648c1697471acaac37a29",
1857
1915
  release_date="2024-03-25",
1858
1916
  languages=["zho-Hans"],
@@ -1875,6 +1933,7 @@ dmeta_embedding_zh_small = ModelMeta(
1875
1933
 
1876
1934
  xiaobu_embedding = ModelMeta(
1877
1935
  name="lier007/xiaobu-embedding",
1936
+ model_type=["dense"],
1878
1937
  revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92",
1879
1938
  release_date="2024-01-09",
1880
1939
  languages=["zho-Hans"],
@@ -1898,6 +1957,7 @@ xiaobu_embedding = ModelMeta(
1898
1957
 
1899
1958
  xiaobu_embedding_v2 = ModelMeta(
1900
1959
  name="lier007/xiaobu-embedding-v2",
1960
+ model_type=["dense"],
1901
1961
  revision="1912f2e59a5c2ef802a471d735a38702a5c9485e",
1902
1962
  release_date="2024-06-30",
1903
1963
  languages=["zho-Hans"],
@@ -1921,6 +1981,7 @@ xiaobu_embedding_v2 = ModelMeta(
1921
1981
 
1922
1982
  yinka_embedding = ModelMeta(
1923
1983
  name="Classical/Yinka",
1984
+ model_type=["dense"],
1924
1985
  revision="59c79d82eb5223cd9895f6eb8e825c7fa10e4e92",
1925
1986
  release_date="2024-01-09",
1926
1987
  languages=["zho-Hans"],
@@ -1943,6 +2004,7 @@ yinka_embedding = ModelMeta(
1943
2004
  )
1944
2005
  conan_embedding = ModelMeta(
1945
2006
  name="TencentBAC/Conan-embedding-v1",
2007
+ model_type=["dense"],
1946
2008
  revision="bb9749a57d4f02fd71722386f8d0f5a9398d7eeb",
1947
2009
  release_date="2024-08-22",
1948
2010
  languages=["zho-Hans"],
@@ -1976,6 +2038,7 @@ conan_embedding = ModelMeta(
1976
2038
  ember_v1 = ModelMeta(
1977
2039
  loader=sentence_transformers_loader,
1978
2040
  name="llmrails/ember-v1",
2041
+ model_type=["dense"],
1979
2042
  revision="5e5ce5904901f6ce1c353a95020f17f09e5d021d",
1980
2043
  release_date="2023-10-10",
1981
2044
  languages=["eng-Latn"],
@@ -12,6 +12,7 @@ mme5_mllama = ModelMeta(
12
12
  "trust_remote_code": True,
13
13
  },
14
14
  name="intfloat/mmE5-mllama-11b-instruct",
15
+ model_type=["dense"],
15
16
  revision="cbb328b9bf9ff5362c852c3166931903226d46f1",
16
17
  release_date="2025-02-12",
17
18
  languages=["eng-Latn"],
@@ -119,6 +119,7 @@ mocov3_training_datasets = set(
119
119
  mocov3_vit_base = ModelMeta(
120
120
  loader=mocov3_loader, # type: ignore
121
121
  name="nyu-visionx/moco-v3-vit-b",
122
+ model_type=["dense"],
122
123
  languages=["eng-Latn"],
123
124
  revision="7d091cd70772c5c0ecf7f00b5f12ca609a99d69d",
124
125
  release_date="2024-06-03",
@@ -142,6 +143,7 @@ mocov3_vit_base = ModelMeta(
142
143
  mocov3_vit_large = ModelMeta(
143
144
  loader=mocov3_loader, # type: ignore
144
145
  name="nyu-visionx/moco-v3-vit-l",
146
+ model_type=["dense"],
145
147
  languages=["eng-Latn"],
146
148
  revision="7bf75358d616f39b9716148bf4e3425f3bd35b47",
147
149
  release_date="2024-06-03",
@@ -161,6 +161,7 @@ class Model2VecModel(AbsEncoder):
161
161
  m2v_base_glove_subword = ModelMeta(
162
162
  loader=Model2VecModel,
163
163
  name="minishlab/M2V_base_glove_subword",
164
+ model_type=["dense"],
164
165
  languages=["eng-Latn"],
165
166
  open_weights=True,
166
167
  revision="5f4f5ca159b7321a8b39739bba0794fa0debddf4",
@@ -186,6 +187,7 @@ m2v_base_glove_subword = ModelMeta(
186
187
  m2v_base_glove = ModelMeta(
187
188
  loader=Model2VecModel,
188
189
  name="minishlab/M2V_base_glove",
190
+ model_type=["dense"],
189
191
  languages=["eng-Latn"],
190
192
  open_weights=True,
191
193
  revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2b",
@@ -210,6 +212,7 @@ m2v_base_glove = ModelMeta(
210
212
  m2v_base_output = ModelMeta(
211
213
  loader=Model2VecModel,
212
214
  name="minishlab/M2V_base_output",
215
+ model_type=["dense"],
213
216
  languages=["eng-Latn"],
214
217
  open_weights=True,
215
218
  revision="02460ae401a22b09d2c6652e23371398329551e2",
@@ -234,6 +237,7 @@ m2v_base_output = ModelMeta(
234
237
  m2v_multilingual_output = ModelMeta(
235
238
  loader=Model2VecModel,
236
239
  name="minishlab/M2V_multilingual_output",
240
+ model_type=["dense"],
237
241
  languages=["eng-Latn"],
238
242
  open_weights=True,
239
243
  revision="2cf4ec4e1f51aeca6c55cf9b93097d00711a6305",
@@ -258,6 +262,7 @@ m2v_multilingual_output = ModelMeta(
258
262
  potion_base_2m = ModelMeta(
259
263
  loader=Model2VecModel,
260
264
  name="minishlab/potion-base-2M",
265
+ model_type=["dense"],
261
266
  languages=["eng-Latn"],
262
267
  open_weights=True,
263
268
  revision="86db093558fbced2072b929eb1690bce5272bd4b",
@@ -282,6 +287,7 @@ potion_base_2m = ModelMeta(
282
287
  potion_base_4m = ModelMeta(
283
288
  loader=Model2VecModel,
284
289
  name="minishlab/potion-base-4M",
290
+ model_type=["dense"],
285
291
  languages=["eng-Latn"],
286
292
  open_weights=True,
287
293
  revision="81b1802ada41afcd0987a37dc15e569c9fa76f04",
@@ -306,6 +312,7 @@ potion_base_4m = ModelMeta(
306
312
  potion_base_8m = ModelMeta(
307
313
  loader=Model2VecModel,
308
314
  name="minishlab/potion-base-8M",
315
+ model_type=["dense"],
309
316
  languages=["eng-Latn"],
310
317
  open_weights=True,
311
318
  revision="dcbec7aa2d52fc76754ac6291803feedd8c619ce",
@@ -330,6 +337,7 @@ potion_base_8m = ModelMeta(
330
337
  potion_multilingual_128m = ModelMeta(
331
338
  loader=Model2VecModel,
332
339
  name="minishlab/potion-multilingual-128M",
340
+ model_type=["dense"],
333
341
  languages=_POTION_MULTILINGUAL_128M_LANGUAGES,
334
342
  open_weights=True,
335
343
  revision="38ebd7f10f71e67fa8db898290f92b82e9cfff2a",
@@ -354,6 +362,7 @@ potion_multilingual_128m = ModelMeta(
354
362
  pubmed_bert_100k = ModelMeta(
355
363
  loader=Model2VecModel,
356
364
  name="NeuML/pubmedbert-base-embeddings-100K",
365
+ model_type=["dense"],
357
366
  languages=["eng-Latn"],
358
367
  open_weights=True,
359
368
  revision="bac5e3b12fb8c650e92a19c41b436732c4f16e9e",
@@ -377,6 +386,7 @@ pubmed_bert_100k = ModelMeta(
377
386
  pubmed_bert_500k = ModelMeta(
378
387
  loader=Model2VecModel,
379
388
  name="NeuML/pubmedbert-base-embeddings-500K",
389
+ model_type=["dense"],
380
390
  languages=["eng-Latn"],
381
391
  open_weights=True,
382
392
  revision="34ba71e35c393fdad7ed695113f653feb407b16b",
@@ -400,6 +410,7 @@ pubmed_bert_500k = ModelMeta(
400
410
  pubmed_bert_1m = ModelMeta(
401
411
  loader=Model2VecModel,
402
412
  name="NeuML/pubmedbert-base-embeddings-1M",
413
+ model_type=["dense"],
403
414
  languages=["eng-Latn"],
404
415
  open_weights=True,
405
416
  revision="2b7fed222594708da6d88bcda92ae9b434b7ddd1",
@@ -423,6 +434,7 @@ pubmed_bert_1m = ModelMeta(
423
434
  pubmed_bert_2m = ModelMeta(
424
435
  loader=Model2VecModel,
425
436
  name="NeuML/pubmedbert-base-embeddings-2M",
437
+ model_type=["dense"],
426
438
  languages=["eng-Latn"],
427
439
  open_weights=True,
428
440
  revision="1d7bbe04d6713e425161146bfdc71473cbed498a",
@@ -446,6 +458,7 @@ pubmed_bert_2m = ModelMeta(
446
458
  pubmed_bert_8m = ModelMeta(
447
459
  loader=Model2VecModel,
448
460
  name="NeuML/pubmedbert-base-embeddings-8M",
461
+ model_type=["dense"],
449
462
  languages=["eng-Latn"],
450
463
  open_weights=True,
451
464
  revision="387d350015e963744f4fafe56a574b7cd48646c9",
@@ -91,6 +91,7 @@ m3e_dataset = {
91
91
  m3e_base = ModelMeta(
92
92
  loader=sentence_transformers_loader,
93
93
  name="moka-ai/m3e-base",
94
+ model_type=["dense"],
94
95
  languages=["zho-Hans", "eng-Latn"],
95
96
  open_weights=True,
96
97
  revision="764b537a0e50e5c7d64db883f2d2e051cbe3c64c",
@@ -116,6 +117,7 @@ m3e_base = ModelMeta(
116
117
  m3e_small = ModelMeta(
117
118
  loader=sentence_transformers_loader,
118
119
  name="moka-ai/m3e-small",
120
+ model_type=["dense"],
119
121
  languages=["zho-Hans", "eng-Latn"],
120
122
  open_weights=True,
121
123
  revision="44c696631b2a8c200220aaaad5f987f096e986df",
@@ -141,6 +143,7 @@ m3e_small = ModelMeta(
141
143
  m3e_large = ModelMeta(
142
144
  loader=sentence_transformers_loader,
143
145
  name="moka-ai/m3e-large",
146
+ model_type=["dense"],
144
147
  languages=["zho-Hans", "eng-Latn"],
145
148
  open_weights=True,
146
149
  revision="12900375086c37ba5d83d1e417b21dc7d1d1f388",
@@ -21,6 +21,7 @@ mxbai_embed_large_v1 = ModelMeta(
21
21
  },
22
22
  ),
23
23
  name="mixedbread-ai/mxbai-embed-large-v1",
24
+ model_type=["dense"],
24
25
  languages=["eng-Latn"],
25
26
  open_weights=True,
26
27
  revision="990580e27d329c7408b3741ecff85876e128e203",
@@ -57,6 +58,7 @@ mxbai_embed_large_v1 = ModelMeta(
57
58
  mxbai_embed_2d_large_v1 = ModelMeta(
58
59
  loader=sentence_transformers_loader,
59
60
  name="mixedbread-ai/mxbai-embed-2d-large-v1",
61
+ model_type=["dense"],
60
62
  languages=["eng-Latn"],
61
63
  open_weights=True,
62
64
  revision="7e639ca8e344af398876ead3b19ec3c0b9068f49",
@@ -81,6 +83,7 @@ mxbai_embed_2d_large_v1 = ModelMeta(
81
83
  mxbai_embed_xsmall_v1 = ModelMeta(
82
84
  loader=sentence_transformers_loader,
83
85
  name="mixedbread-ai/mxbai-embed-xsmall-v1",
86
+ model_type=["dense"],
84
87
  languages=["eng-Latn"],
85
88
  open_weights=True,
86
89
  revision="2f741ec33328bb57e4704e1238fc59a4a5745705",
@@ -6,6 +6,7 @@ from mteb.models.sentence_transformer_wrapper import (
6
6
  nb_sbert = ModelMeta(
7
7
  loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
8
8
  name="NbAiLab/nb-sbert-base",
9
+ model_type=["dense"],
9
10
  languages=["nno-Latn", "nob-Latn", "swe-Latn", "dan-Latn"],
10
11
  open_weights=True,
11
12
  revision="b95656350a076aeafd2d23763660f80655408cc6",
@@ -27,6 +28,7 @@ nb_sbert = ModelMeta(
27
28
  nb_bert_large = ModelMeta(
28
29
  loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
29
30
  name="NbAiLab/nb-bert-large",
31
+ model_type=["dense"],
30
32
  languages=["nno-Latn", "nob-Latn"],
31
33
  open_weights=True,
32
34
  revision="f9d0fc184adab4dc354d85e1854b7634540d7550",
@@ -48,6 +50,7 @@ nb_bert_large = ModelMeta(
48
50
  nb_bert_base = ModelMeta(
49
51
  loader=SentenceTransformerEncoderWrapper, # type: ignore[arg-type]
50
52
  name="NbAiLab/nb-bert-base",
53
+ model_type=["dense"],
51
54
  languages=["nno-Latn", "nob-Latn"],
52
55
  open_weights=True,
53
56
  revision="9417c3f62a3adc99f17ff92bff446f35d011f994",
@@ -97,6 +97,7 @@ class NoInstructModel(AbsEncoder):
97
97
  no_instruct_small_v0 = ModelMeta(
98
98
  loader=NoInstructModel,
99
99
  name="avsolatorio/NoInstruct-small-Embedding-v0",
100
+ model_type=["dense"],
100
101
  languages=["eng-Latn"],
101
102
  open_weights=True,
102
103
  revision="b38747000553d8268915c95a55fc87e707c9aadd",