mindstudio-probe 1.0.3__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (278) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.1.0.dist-info/RECORD +287 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +131 -237
  7. msprobe/__init__.py +16 -1
  8. msprobe/{config/config.json → config.json} +47 -49
  9. msprobe/core/advisor/advisor.py +124 -124
  10. msprobe/core/advisor/advisor_const.py +58 -59
  11. msprobe/core/advisor/advisor_result.py +58 -58
  12. msprobe/core/common/const.py +402 -318
  13. msprobe/core/common/exceptions.py +99 -99
  14. msprobe/core/common/{file_check.py → file_utils.py} +523 -283
  15. msprobe/core/common/inplace_op_checker.py +38 -0
  16. msprobe/core/common/inplace_ops.yaml +251 -0
  17. msprobe/core/common/log.py +86 -69
  18. msprobe/core/common/utils.py +371 -616
  19. msprobe/core/common_config.py +78 -71
  20. msprobe/core/compare/acc_compare.py +472 -298
  21. msprobe/core/compare/check.py +180 -95
  22. msprobe/core/compare/compare_cli.py +69 -49
  23. msprobe/core/compare/highlight.py +259 -222
  24. msprobe/core/compare/multiprocessing_compute.py +174 -149
  25. msprobe/core/compare/npy_compare.py +310 -295
  26. msprobe/core/compare/utils.py +464 -429
  27. msprobe/core/data_dump/data_collector.py +153 -144
  28. msprobe/core/data_dump/data_processor/base.py +337 -293
  29. msprobe/core/data_dump/data_processor/factory.py +76 -59
  30. msprobe/core/data_dump/data_processor/mindspore_processor.py +192 -198
  31. msprobe/core/data_dump/data_processor/pytorch_processor.py +383 -389
  32. msprobe/core/data_dump/json_writer.py +117 -116
  33. msprobe/core/data_dump/scope.py +194 -178
  34. msprobe/core/grad_probe/constant.py +74 -70
  35. msprobe/core/grad_probe/grad_compare.py +170 -175
  36. msprobe/core/grad_probe/utils.py +77 -52
  37. msprobe/docs/01.installation.md +99 -0
  38. msprobe/docs/02.config_introduction.md +137 -0
  39. msprobe/docs/03.config_examples.md +237 -0
  40. msprobe/docs/04.acl_config_examples.md +78 -0
  41. msprobe/docs/05.data_dump_PyTorch.md +326 -0
  42. msprobe/docs/06.data_dump_MindSpore.md +285 -0
  43. msprobe/docs/07.accuracy_checker_PyTorch.md +297 -0
  44. msprobe/docs/08.accuracy_checker_online_PyTorch.md +238 -0
  45. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  46. msprobe/docs/10.accuracy_compare_PyTorch.md +327 -0
  47. msprobe/docs/11.accuracy_compare_MindSpore.md +333 -0
  48. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  49. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  50. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  51. msprobe/docs/15.free_benchmarking_PyTorch.md +170 -0
  52. msprobe/docs/16.free_benchmarking_MindSpore.md +140 -0
  53. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +205 -207
  54. msprobe/{pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md → docs/18.online_dispatch.md} +89 -90
  55. msprobe/docs/FAQ.md +189 -0
  56. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  57. msprobe/docs/img/free_benchmark_framework.png +0 -0
  58. msprobe/docs/img/ms_dump.png +0 -0
  59. msprobe/docs/img/ms_layer.png +0 -0
  60. msprobe/docs/img/pt_dump.png +0 -0
  61. msprobe/mindspore/__init__.py +2 -1
  62. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +278 -245
  63. msprobe/mindspore/api_accuracy_checker/api_info.py +76 -69
  64. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  65. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  66. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  67. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  68. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  69. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  70. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  71. msprobe/mindspore/cell_processor.py +58 -34
  72. msprobe/mindspore/common/const.py +108 -87
  73. msprobe/mindspore/common/log.py +37 -37
  74. msprobe/mindspore/common/utils.py +97 -57
  75. msprobe/mindspore/compare/distributed_compare.py +62 -75
  76. msprobe/mindspore/compare/layer_mapping.py +146 -0
  77. msprobe/mindspore/compare/modify_mapping.py +107 -0
  78. msprobe/mindspore/compare/ms_compare.py +357 -117
  79. msprobe/mindspore/compare/ms_graph_compare.py +364 -317
  80. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  81. msprobe/mindspore/debugger/debugger_config.py +69 -74
  82. msprobe/mindspore/debugger/precision_debugger.py +150 -107
  83. msprobe/mindspore/dump/dump_tool_factory.py +50 -35
  84. msprobe/mindspore/dump/hook_cell/api_registry.py +128 -104
  85. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  86. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +206 -0
  87. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +994 -925
  88. msprobe/mindspore/dump/hook_cell/wrap_api.py +121 -0
  89. msprobe/mindspore/dump/jit_dump.py +96 -56
  90. msprobe/mindspore/dump/kernel_graph_dump.py +75 -60
  91. msprobe/mindspore/dump/kernel_kbyk_dump.py +79 -65
  92. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +131 -116
  93. msprobe/mindspore/free_benchmark/common/config.py +27 -12
  94. msprobe/mindspore/free_benchmark/common/handler_params.py +32 -17
  95. msprobe/mindspore/free_benchmark/common/utils.py +85 -71
  96. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  97. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +57 -42
  98. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +122 -107
  99. msprobe/mindspore/free_benchmark/handler/base_handler.py +105 -90
  100. msprobe/mindspore/free_benchmark/handler/check_handler.py +56 -41
  101. msprobe/mindspore/free_benchmark/handler/fix_handler.py +51 -36
  102. msprobe/mindspore/free_benchmark/handler/handler_factory.py +36 -21
  103. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +82 -67
  104. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +36 -21
  105. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +78 -63
  106. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +77 -0
  107. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +49 -34
  108. msprobe/mindspore/free_benchmark/perturbation/no_change.py +27 -12
  109. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +44 -27
  110. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +48 -33
  111. msprobe/mindspore/grad_probe/global_context.py +100 -91
  112. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  113. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  114. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  115. msprobe/mindspore/grad_probe/hook.py +94 -92
  116. msprobe/mindspore/grad_probe/utils.py +29 -28
  117. msprobe/mindspore/ms_config.py +128 -126
  118. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +60 -45
  119. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +49 -34
  120. msprobe/mindspore/runtime.py +4 -4
  121. msprobe/mindspore/service.py +297 -354
  122. msprobe/mindspore/task_handler_factory.py +24 -24
  123. msprobe/msprobe.py +105 -107
  124. msprobe/pytorch/__init__.py +23 -4
  125. msprobe/pytorch/api_accuracy_checker/common/config.py +70 -55
  126. msprobe/pytorch/api_accuracy_checker/common/utils.py +246 -165
  127. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +230 -213
  128. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +632 -581
  129. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  130. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  131. msprobe/pytorch/api_accuracy_checker/compare/compare.py +416 -381
  132. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +90 -73
  133. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +265 -244
  134. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  135. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +370 -332
  136. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +221 -199
  137. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +150 -134
  138. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +518 -581
  139. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +213 -74
  140. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  141. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +218 -202
  142. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +370 -324
  143. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +227 -204
  144. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/dump_dispatch.py +110 -0
  145. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +244 -218
  146. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/torch_ops_config.yaml +63 -0
  147. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +44 -0
  148. msprobe/pytorch/bench_functions/__init__.py +30 -15
  149. msprobe/pytorch/bench_functions/apply_adam_w.py +43 -28
  150. msprobe/pytorch/bench_functions/confusion_transpose.py +34 -19
  151. msprobe/pytorch/bench_functions/fast_gelu.py +70 -55
  152. msprobe/pytorch/bench_functions/layer_norm_eval.py +21 -6
  153. msprobe/pytorch/bench_functions/linear.py +27 -12
  154. msprobe/pytorch/bench_functions/matmul_backward.py +63 -48
  155. msprobe/pytorch/bench_functions/npu_fusion_attention.py +538 -421
  156. msprobe/pytorch/bench_functions/rms_norm.py +30 -15
  157. msprobe/pytorch/bench_functions/rotary_mul.py +71 -52
  158. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +41 -26
  159. msprobe/pytorch/bench_functions/swiglu.py +70 -55
  160. msprobe/pytorch/common/__init__.py +17 -2
  161. msprobe/pytorch/common/compare_script.template +14 -14
  162. msprobe/pytorch/common/log.py +33 -32
  163. msprobe/pytorch/common/parse_json.py +54 -39
  164. msprobe/pytorch/common/utils.py +310 -300
  165. msprobe/pytorch/compare/distributed_compare.py +66 -66
  166. msprobe/pytorch/compare/mapping.yaml +607 -607
  167. msprobe/pytorch/compare/match.py +49 -33
  168. msprobe/pytorch/compare/pt_compare.py +82 -40
  169. msprobe/pytorch/debugger/debugger_config.py +108 -95
  170. msprobe/pytorch/debugger/precision_debugger.py +173 -125
  171. msprobe/pytorch/free_benchmark/__init__.py +23 -8
  172. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  173. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  174. msprobe/pytorch/free_benchmark/common/enums.py +65 -37
  175. msprobe/pytorch/free_benchmark/common/params.py +144 -129
  176. msprobe/pytorch/free_benchmark/common/utils.py +118 -102
  177. msprobe/pytorch/free_benchmark/compare/grad_saver.py +200 -179
  178. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +119 -104
  179. msprobe/pytorch/free_benchmark/main.py +120 -105
  180. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +28 -13
  181. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +56 -41
  182. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +105 -90
  183. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +119 -104
  184. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +87 -63
  185. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +83 -68
  186. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +43 -28
  187. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +60 -45
  188. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +34 -19
  189. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +256 -217
  190. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +54 -39
  191. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +38 -23
  192. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +45 -30
  193. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +185 -170
  194. msprobe/pytorch/function_factory.py +91 -75
  195. msprobe/pytorch/functional/module_dump.py +84 -0
  196. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  197. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  198. msprobe/pytorch/hook_module/__init__.py +16 -1
  199. msprobe/pytorch/hook_module/api_registry.py +166 -161
  200. msprobe/pytorch/hook_module/hook_module.py +118 -120
  201. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  202. msprobe/pytorch/hook_module/utils.py +28 -29
  203. msprobe/pytorch/hook_module/wrap_aten.py +111 -110
  204. msprobe/pytorch/hook_module/wrap_distributed.py +77 -78
  205. msprobe/pytorch/hook_module/wrap_functional.py +104 -105
  206. msprobe/pytorch/hook_module/wrap_npu_custom.py +85 -84
  207. msprobe/pytorch/hook_module/wrap_tensor.py +69 -71
  208. msprobe/pytorch/hook_module/wrap_torch.py +84 -86
  209. msprobe/pytorch/hook_module/wrap_vf.py +60 -62
  210. msprobe/pytorch/module_processer.py +153 -138
  211. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  212. msprobe/pytorch/online_dispatch/compare.py +235 -236
  213. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  214. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  215. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  216. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +57 -49
  217. msprobe/pytorch/online_dispatch/utils.py +127 -146
  218. msprobe/pytorch/parse.py +19 -4
  219. msprobe/pytorch/parse_tool/cli.py +31 -32
  220. msprobe/pytorch/parse_tool/lib/compare.py +259 -271
  221. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  222. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  223. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  224. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  225. msprobe/pytorch/parse_tool/lib/parse_tool.py +161 -158
  226. msprobe/pytorch/parse_tool/lib/utils.py +320 -321
  227. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  228. msprobe/pytorch/pt_config.py +317 -187
  229. msprobe/pytorch/service.py +311 -252
  230. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  231. msprobe/config/README.md +0 -539
  232. msprobe/mindspore/doc/compare.md +0 -58
  233. msprobe/mindspore/doc/dump.md +0 -217
  234. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  235. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  236. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +0 -10
  237. msprobe/pytorch/doc/FAQ.md +0 -193
  238. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  239. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  240. msprobe/pytorch/doc/dump.md +0 -260
  241. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  242. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  243. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  244. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  245. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  246. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  247. msprobe/pytorch/functional/data_processor.py +0 -0
  248. msprobe/pytorch/functional/dump_module.py +0 -39
  249. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/top_level.txt +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  256. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  257. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  258. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  259. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  260. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  261. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  263. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  264. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  265. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  266. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  267. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  268. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  269. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  270. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  271. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  272. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  273. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  274. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  275. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  276. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  277. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  278. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,391 +1,391 @@
1
- import logging
2
- from functools import wraps
3
- import torch
4
- from prettytable import PrettyTable
5
- from collections import namedtuple
6
- from msprobe.pytorch.common.log import logger
7
-
8
- def func_log_wrapper():
9
- def _out_wrapper(func):
10
- @wraps(func)
11
- def _in_wrapper(*kargs, **kwargs):
12
- logger.info(f"start to run: {func.__name__}")
13
- x = func(*kargs, **kwargs)
14
- logger.info(f"end to run: {func.__name__}")
15
- return x
16
-
17
- return _in_wrapper
18
-
19
- return _out_wrapper
20
-
21
-
22
- class SingleBenchmarkCompareStandard:
23
- def __init__(self, high_precision=True):
24
- self.high_precision = high_precision
25
- self.small_value = 1.0
26
- self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
- torch.bfloat16: [2 ** -8, 2 ** -6],
28
- torch.float32: [2 ** -14, 2 ** -11],
29
- torch.float64: [2 ** -14, 2 ** -11]}
30
- self.eb_thd = {torch.float16: 2 ** -10,
31
- torch.bfloat16: 2 ** -7,
32
- torch.float32: 2 ** -14,
33
- torch.float64: 2 ** -14}
34
-
35
- def get_error_thd(self, dtype):
36
- if dtype in self.error_thd.keys():
37
- if dtype == torch.float64:
38
- logging.warning("the output data of fp64 uses the same standard as fp32.")
39
- return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
- logging.error(
41
- "Single benchmark compare only supports floating point "
42
- "in fp16, bf16, fp32. "
43
- )
44
- return None
45
-
46
- def get_eb_thd(self, dtype):
47
- if dtype in self.eb_thd.keys():
48
- return self.eb_thd.get(dtype)
49
- return None
50
-
51
-
52
- class SingleBenchmarkAccuracyResult:
53
- def __init__(
54
- self,
55
- result=True,
56
- error_balance=None,
57
- max_abs_diff=None,
58
- max_abs_idx=None,
59
- max_rel_diff=None,
60
- max_rel_idx=None
61
- ):
62
- self.result = result
63
- self.error_balance = error_balance
64
- self.max_abs_diff = max_abs_diff
65
- self.max_abs_idx = max_abs_idx
66
- self.max_rel_diff = max_rel_diff
67
- self.max_rel_idx = max_rel_idx
68
-
69
- def get_result(self, eb_thd, error_thd):
70
- if (
71
- self.error_balance > eb_thd
72
- or self.max_abs_diff > error_thd
73
- or self.max_rel_diff > error_thd
74
- ):
75
- self.result = False
76
- else:
77
- self.result = True
78
-
79
-
80
- class SingleBenchmarkAccuracyCompare:
81
- @classmethod
82
- @func_log_wrapper()
83
- def check_output_size(cls, npu_out, bench_out):
84
- acc_result = None
85
- if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
- info = (
87
- "The npu_output is [], and it is same as benchmark_output, "
88
- "the result of data_compare is Pass"
89
- )
90
- logging.debug(info)
91
- acc_result = SingleBenchmarkAccuracyResult(result=True)
92
-
93
- if npu_out.size() != bench_out.size():
94
- error_info = (
95
- f"the size of npu output[{npu_out.size()}] and"
96
- f"benchmark[{bench_out.size()}] is not equal"
97
- )
98
-
99
- logging.error(error_info)
100
- acc_result = SingleBenchmarkAccuracyResult(result=False)
101
- return acc_result
102
-
103
- @classmethod
104
- @func_log_wrapper()
105
- def check_output_invalid_value(cls, output):
106
- has_nan = torch.isnan(output).any()
107
- has_inf = torch.isinf(output).any()
108
- return has_nan or has_inf
109
-
110
- @classmethod
111
- @func_log_wrapper()
112
- def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
- error_thd = None
114
- eb_thd = None
115
- acc_result = cls.check_output_size(npu_out, bench_out)
116
- CompareResultInfo = namedtuple("CompareResultInfo",
117
- ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
-
119
- if acc_result:
120
- failed_info = "比对数据的shape不一致"
121
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
-
123
- if cls.check_output_invalid_value(bench_out):
124
- logging.info("The benchmark result contains nan/inf value. ")
125
- failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
- acc_result = SingleBenchmarkAccuracyResult(result=True)
127
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
-
129
- if cls.check_output_invalid_value(npu_out):
130
- logging.info("The NPU result contains nan/inf value. ")
131
- failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
- acc_result = SingleBenchmarkAccuracyResult(result=False)
133
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
-
135
- data_type = npu_out.dtype
136
- if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
- acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
- else:
139
- error_thd = benchmark_standard.get_error_thd(data_type)
140
- eb_thd = benchmark_standard.get_eb_thd(data_type)
141
- if error_thd is None:
142
- logging.error(
143
- "single benchmark not support the comparison of %s", str(data_type)
144
- )
145
- acc_result = SingleBenchmarkAccuracyResult(result=False)
146
- else:
147
- if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
- npu_out = npu_out.to(torch.float32)
149
- error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
- max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
- max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
- acc_result = SingleBenchmarkAccuracyResult(
153
- error_balance=error_balance,
154
- max_abs_diff=max_abs_diff,
155
- max_abs_idx=max_abs_idx,
156
- max_rel_diff=max_rel_diff,
157
- max_rel_idx=max_rel_idx
158
- )
159
- acc_result.get_result(eb_thd, error_thd)
160
- return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
- return None
162
-
163
- @classmethod
164
- @func_log_wrapper()
165
- def compute_binary_diff(cls, npu_out, bench_out):
166
- result = torch.equal(npu_out, bench_out)
167
- if result:
168
- logger.info("二进制精度比对通过, 无需单标杆比对法验证")
169
- return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
-
171
- @classmethod
172
- @func_log_wrapper()
173
- def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
- ones = torch.ones_like(npu_out)
175
- zeros = torch.zeros_like(npu_out)
176
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
- abs_mask_idx = abs_mask_idx.type(torch.bool)
178
- diff_value = torch.subtract(npu_out, bench_out)
179
- diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
- rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
- eb_float = float(torch.mean(rel_and_abs))
182
- return eb_float
183
-
184
- @classmethod
185
- @func_log_wrapper()
186
- def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
- max_abs_diff = 0
188
- max_abs_idx = None
189
-
190
- ones = torch.ones_like(npu_out)
191
- zeros = torch.zeros_like(npu_out)
192
- diff_value = torch.subtract(npu_out, bench_out)
193
- diff_abs = torch.abs(diff_value)
194
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
195
- abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
- abs_err_idx = abs_err_idx * abs_mask_idx
197
- abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
-
199
- if len(abs_err) > 0:
200
- err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
- logging.debug("err_for_max for abs %s", err_for_max)
202
- max_abs_idx = torch.argmax(err_for_max)
203
- max_abs_diff = diff_abs[max_abs_idx]
204
- elif torch.sum(abs_mask_idx) > 0:
205
- err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
- logging.debug("error_for_max for abs %s", err_for_max)
207
- max_abs_idx = torch.argmax(err_for_max)
208
- if err_for_max.max() != 0:
209
- max_abs_diff = diff_abs[max_abs_idx]
210
- return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
-
212
- @classmethod
213
- @func_log_wrapper()
214
- def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
- max_rel_diff = 0
216
- max_rel_idx = None
217
-
218
- ones = torch.ones_like(npu_out)
219
- zeros = torch.zeros_like(npu_out)
220
- diff_value = torch.subtract(npu_out, bench_out)
221
- diff_abs = torch.abs(diff_value)
222
-
223
- rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
- rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
- diff_rel = rel_err
226
- rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
- rel_err_idx = rel_err_idx * rel_mask_idx
228
- rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
- if len(rel_err) > 0:
230
- err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
- logging.debug("error_for_max for rel %s", err_for_max)
232
- max_rel_idx = torch.argmax(err_for_max)
233
- max_rel_diff = diff_rel[max_rel_idx]
234
- elif torch.sum(rel_mask_idx > 0):
235
- err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
- logging.debug("err_for_max for rel %s", err_for_max)
237
- max_rel_idx = torch.argmax(err_for_max)
238
- if torch.sum(err_for_max) != 0:
239
- max_rel_diff = diff_rel[max_rel_idx]
240
- return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
-
242
-
243
- class SingleBenchSummary:
244
- def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
- bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
- self.npu_dtype = npu_dtype
247
- self.bench_dtype = bench_dtype
248
- self.shape = shape
249
- self.result = precision_result.result
250
- self.error_balance = precision_result.error_balance
251
- self.max_abs_diff = precision_result.max_abs_diff
252
- self.max_abs_idx = precision_result.max_abs_idx
253
- self.max_rel_diff = precision_result.max_rel_diff
254
- self.max_rel_idx = precision_result.max_rel_idx
255
- self.eb_thd = eb_thd
256
- self.error_thd = error_thd
257
- self.failed_info = failed_info
258
-
259
- def get_check_result(self):
260
- if self.result:
261
- return "PASS"
262
- else:
263
- return "FAILED"
264
-
265
- def get_result_msg(self):
266
- result_str = ""
267
- if self.failed_info:
268
- return self.failed_info
269
-
270
- if self.result:
271
- result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
- result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
- result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
- else:
275
- if self.error_balance > self.eb_thd:
276
- result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
- self.eb_thd,
278
- self.error_balance,
279
- )
280
- if self.max_abs_diff > self.error_thd:
281
- result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
- self.error_thd,
283
- self.max_abs_idx,
284
- self.max_abs_diff
285
- )
286
- if self.max_rel_diff > self.error_thd:
287
- result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
- self.error_thd,
289
- self.max_rel_idx,
290
- self.max_rel_diff,
291
- )
292
- return result_str
293
-
294
- def print_detail_table(self):
295
- table = PrettyTable()
296
- table.title = "Single Benchmark Metrics Info"
297
- table.field_names = ["Index", "Result", "Threshold"]
298
- table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
- table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
- table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
- table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
- table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
-
304
- logger.info(table)
305
-
306
- def to_column_value(self):
307
- return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
- self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
- self.eb_thd, self.error_thd, self.result, self.failed_info]
310
-
311
-
312
- def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
- benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
- npu_out = npu_out.flatten()
315
- bench_out = bench_out.flatten()
316
-
317
- compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
- (
319
- precision_result,
320
- error_thd,
321
- eb_thd,
322
- failed_info
323
- ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
- compare_results.eb_threshold, compare_results.failed_information)
325
-
326
- summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
- result = summary.result
328
- details = summary.to_column_value()
329
- return result, details
330
-
331
-
332
- def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
333
- status, details = [], []
334
- if len(bench_out) != len(npu_out):
335
- summary.result = False
336
- summary.failed_info = "bench and npu output structure is different."
337
- return False, summary.to_column_value()
338
- for b_out_i, n_out_i in zip(bench_out, npu_out):
339
- status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
340
- status.append(status_i)
341
- details.append(details_i)
342
- return status, details
343
-
344
-
345
- def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
346
- b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
- if b_keys != n_keys:
348
- summary.result = False
349
- summary.failed_info = "bench and npu_output dict keys are different."
350
- return False, summary.to_column_value()
351
- else:
352
- status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
- return status, details
354
-
355
-
356
- def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
357
- return single_benchmark_compare(bench_out, npu_out)
358
-
359
-
360
- def calc_status_details_builtin(npu_out, bench_out, summary):
361
- summary.bench_dtype = str(type(bench_out))
362
- summary.npu_dtype = str(type(npu_out))
363
- status = bench_out == npu_out
364
- summary.result = status
365
- return status, summary.to_column_value()
366
-
367
-
368
- def calc_status_details_none(npu_out, bench_out, high_precision, summary):
369
- summary.result = True
370
- summary.failed_info = "Output is None."
371
- return True, summary.to_column_value()
372
-
373
-
374
- def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
375
- type_method_dict = {
376
- (list, tuple): calc_status_details_list_tuple,
377
- dict: calc_status_details_dict,
378
- torch.Tensor: calc_status_details_tensor,
379
- (bool, int, float, str): calc_status_details_builtin,
380
- None: calc_status_details_none,
381
- }
382
-
383
- result = SingleBenchmarkAccuracyResult(result=True)
384
- bench_summary = SingleBenchSummary(result)
385
- for type1, func in type_method_dict.items():
386
- if isinstance(bench_output, type1):
387
- return func(npu_output, bench_output, high_precision, bench_summary)
388
-
389
- bench_summary.result = True
390
- bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
- return True, bench_summary.to_column_value()
1
+ import logging
2
+ from functools import wraps
3
+ import torch
4
+ from prettytable import PrettyTable
5
+ from collections import namedtuple
6
+ from msprobe.pytorch.common.log import logger
7
+
8
+ def func_log_wrapper():
9
+ def _out_wrapper(func):
10
+ @wraps(func)
11
+ def _in_wrapper(*kargs, **kwargs):
12
+ logger.info(f"start to run: {func.__name__}")
13
+ x = func(*kargs, **kwargs)
14
+ logger.info(f"end to run: {func.__name__}")
15
+ return x
16
+
17
+ return _in_wrapper
18
+
19
+ return _out_wrapper
20
+
21
+
22
+ class SingleBenchmarkCompareStandard:
23
+ def __init__(self, high_precision=True):
24
+ self.high_precision = high_precision
25
+ self.small_value = 1.0
26
+ self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
+ torch.bfloat16: [2 ** -8, 2 ** -6],
28
+ torch.float32: [2 ** -14, 2 ** -11],
29
+ torch.float64: [2 ** -14, 2 ** -11]}
30
+ self.eb_thd = {torch.float16: 2 ** -10,
31
+ torch.bfloat16: 2 ** -7,
32
+ torch.float32: 2 ** -14,
33
+ torch.float64: 2 ** -14}
34
+
35
+ def get_error_thd(self, dtype):
36
+ if dtype in self.error_thd.keys():
37
+ if dtype == torch.float64:
38
+ logging.warning("the output data of fp64 uses the same standard as fp32.")
39
+ return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
+ logging.error(
41
+ "Single benchmark compare only supports floating point "
42
+ "in fp16, bf16, fp32. "
43
+ )
44
+ return None
45
+
46
+ def get_eb_thd(self, dtype):
47
+ if dtype in self.eb_thd.keys():
48
+ return self.eb_thd.get(dtype)
49
+ return None
50
+
51
+
52
+ class SingleBenchmarkAccuracyResult:
53
+ def __init__(
54
+ self,
55
+ result=True,
56
+ error_balance=None,
57
+ max_abs_diff=None,
58
+ max_abs_idx=None,
59
+ max_rel_diff=None,
60
+ max_rel_idx=None
61
+ ):
62
+ self.result = result
63
+ self.error_balance = error_balance
64
+ self.max_abs_diff = max_abs_diff
65
+ self.max_abs_idx = max_abs_idx
66
+ self.max_rel_diff = max_rel_diff
67
+ self.max_rel_idx = max_rel_idx
68
+
69
+ def get_result(self, eb_thd, error_thd):
70
+ if (
71
+ self.error_balance > eb_thd
72
+ or self.max_abs_diff > error_thd
73
+ or self.max_rel_diff > error_thd
74
+ ):
75
+ self.result = False
76
+ else:
77
+ self.result = True
78
+
79
+
80
+ class SingleBenchmarkAccuracyCompare:
81
+ @classmethod
82
+ @func_log_wrapper()
83
+ def check_output_size(cls, npu_out, bench_out):
84
+ acc_result = None
85
+ if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
+ info = (
87
+ "The npu_output is [], and it is same as benchmark_output, "
88
+ "the result of data_compare is Pass"
89
+ )
90
+ logging.debug(info)
91
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
92
+
93
+ if npu_out.size() != bench_out.size():
94
+ error_info = (
95
+ f"the size of npu output[{npu_out.size()}] and"
96
+ f"benchmark[{bench_out.size()}] is not equal"
97
+ )
98
+
99
+ logging.error(error_info)
100
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
101
+ return acc_result
102
+
103
+ @classmethod
104
+ @func_log_wrapper()
105
+ def check_output_invalid_value(cls, output):
106
+ has_nan = torch.isnan(output).any()
107
+ has_inf = torch.isinf(output).any()
108
+ return has_nan or has_inf
109
+
110
+ @classmethod
111
+ @func_log_wrapper()
112
+ def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
+ error_thd = None
114
+ eb_thd = None
115
+ acc_result = cls.check_output_size(npu_out, bench_out)
116
+ CompareResultInfo = namedtuple("CompareResultInfo",
117
+ ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
+
119
+ if acc_result:
120
+ failed_info = "比对数据的shape不一致"
121
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
+
123
+ if cls.check_output_invalid_value(bench_out):
124
+ logging.info("The benchmark result contains nan/inf value. ")
125
+ failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
127
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
+
129
+ if cls.check_output_invalid_value(npu_out):
130
+ logging.info("The NPU result contains nan/inf value. ")
131
+ failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
133
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
+
135
+ data_type = npu_out.dtype
136
+ if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
+ acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
+ else:
139
+ error_thd = benchmark_standard.get_error_thd(data_type)
140
+ eb_thd = benchmark_standard.get_eb_thd(data_type)
141
+ if error_thd is None:
142
+ logging.error(
143
+ "single benchmark not support the comparison of %s", str(data_type)
144
+ )
145
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
146
+ else:
147
+ if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
+ npu_out = npu_out.to(torch.float32)
149
+ error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
+ max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
+ max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
+ acc_result = SingleBenchmarkAccuracyResult(
153
+ error_balance=error_balance,
154
+ max_abs_diff=max_abs_diff,
155
+ max_abs_idx=max_abs_idx,
156
+ max_rel_diff=max_rel_diff,
157
+ max_rel_idx=max_rel_idx
158
+ )
159
+ acc_result.get_result(eb_thd, error_thd)
160
+ return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
+
162
+
163
+ @classmethod
164
+ @func_log_wrapper()
165
+ def compute_binary_diff(cls, npu_out, bench_out):
166
+ result = torch.equal(npu_out, bench_out)
167
+ if result:
168
+ logger.info("二进制精度比对通过, 无需单标杆比对法验证")
169
+ return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
+
171
+ @classmethod
172
+ @func_log_wrapper()
173
+ def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
+ ones = torch.ones_like(npu_out)
175
+ zeros = torch.zeros_like(npu_out)
176
+ abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
+ abs_mask_idx = abs_mask_idx.type(torch.bool)
178
+ diff_value = torch.subtract(npu_out, bench_out)
179
+ diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
+ rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
+ eb_float = float(torch.mean(rel_and_abs))
182
+ return eb_float
183
+
184
+ @classmethod
185
+ @func_log_wrapper()
186
+ def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
+ max_abs_diff = 0
188
+ max_abs_idx = None
189
+
190
+ ones = torch.ones_like(npu_out)
191
+ zeros = torch.zeros_like(npu_out)
192
+ diff_value = torch.subtract(npu_out, bench_out)
193
+ diff_abs = torch.abs(diff_value)
194
+ abs_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
195
+ abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
+ abs_err_idx = abs_err_idx * abs_mask_idx
197
+ abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
+
199
+ if len(abs_err) > 0:
200
+ err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
+ logging.debug("err_for_max for abs %s", err_for_max)
202
+ max_abs_idx = torch.argmax(err_for_max)
203
+ max_abs_diff = diff_abs[max_abs_idx]
204
+ elif torch.sum(abs_mask_idx) > 0:
205
+ err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
+ logging.debug("error_for_max for abs %s", err_for_max)
207
+ max_abs_idx = torch.argmax(err_for_max)
208
+ if err_for_max.max() != 0:
209
+ max_abs_diff = diff_abs[max_abs_idx]
210
+ return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
+
212
+ @classmethod
213
+ @func_log_wrapper()
214
+ def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
+ max_rel_diff = 0
216
+ max_rel_idx = None
217
+
218
+ ones = torch.ones_like(npu_out)
219
+ zeros = torch.zeros_like(npu_out)
220
+ diff_value = torch.subtract(npu_out, bench_out)
221
+ diff_abs = torch.abs(diff_value)
222
+
223
+ rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
+ rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
+ diff_rel = rel_err
226
+ rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
+ rel_err_idx = rel_err_idx * rel_mask_idx
228
+ rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
+ if len(rel_err) > 0:
230
+ err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
+ logging.debug("error_for_max for rel %s", err_for_max)
232
+ max_rel_idx = torch.argmax(err_for_max)
233
+ max_rel_diff = diff_rel[max_rel_idx]
234
+ elif torch.sum(rel_mask_idx > 0):
235
+ err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
+ logging.debug("err_for_max for rel %s", err_for_max)
237
+ max_rel_idx = torch.argmax(err_for_max)
238
+ if torch.sum(err_for_max) != 0:
239
+ max_rel_diff = diff_rel[max_rel_idx]
240
+ return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
+
242
+
243
+ class SingleBenchSummary:
244
+ def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
+ bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
+ self.npu_dtype = npu_dtype
247
+ self.bench_dtype = bench_dtype
248
+ self.shape = shape
249
+ self.result = precision_result.result
250
+ self.error_balance = precision_result.error_balance
251
+ self.max_abs_diff = precision_result.max_abs_diff
252
+ self.max_abs_idx = precision_result.max_abs_idx
253
+ self.max_rel_diff = precision_result.max_rel_diff
254
+ self.max_rel_idx = precision_result.max_rel_idx
255
+ self.eb_thd = eb_thd
256
+ self.error_thd = error_thd
257
+ self.failed_info = failed_info
258
+
259
+ def get_check_result(self):
260
+ if self.result:
261
+ return "PASS"
262
+ else:
263
+ return "FAILED"
264
+
265
+ def get_result_msg(self):
266
+ result_str = ""
267
+ if self.failed_info:
268
+ return self.failed_info
269
+
270
+ if self.result:
271
+ result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
+ result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
+ result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
+ else:
275
+ if self.error_balance > self.eb_thd:
276
+ result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
+ self.eb_thd,
278
+ self.error_balance,
279
+ )
280
+ if self.max_abs_diff > self.error_thd:
281
+ result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
+ self.error_thd,
283
+ self.max_abs_idx,
284
+ self.max_abs_diff
285
+ )
286
+ if self.max_rel_diff > self.error_thd:
287
+ result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
+ self.error_thd,
289
+ self.max_rel_idx,
290
+ self.max_rel_diff,
291
+ )
292
+ return result_str
293
+
294
+ def print_detail_table(self):
295
+ table = PrettyTable()
296
+ table.title = "Single Benchmark Metrics Info"
297
+ table.field_names = ["Index", "Result", "Threshold"]
298
+ table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
+ table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
+ table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
+ table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
+ table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
+
304
+ logger.info(table)
305
+
306
+ def to_column_value(self):
307
+ return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
+ self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
+ self.eb_thd, self.error_thd, self.result, self.failed_info]
310
+
311
+
312
+ def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
+ benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
+ npu_out = npu_out.flatten()
315
+ bench_out = bench_out.flatten()
316
+
317
+ compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
+ (
319
+ precision_result,
320
+ error_thd,
321
+ eb_thd,
322
+ failed_info
323
+ ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
+ compare_results.eb_threshold, compare_results.failed_information)
325
+
326
+ summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
+ result = summary.result
328
+ details = summary.to_column_value()
329
+ return result, details
330
+
331
+
332
+ def calc_status_details_list_tuple(npu_out, bench_out, summary):
333
+ status, details = [], []
334
+ if len(bench_out) != len(npu_out):
335
+ summary.result = False
336
+ summary.failed_info = "bench and npu output structure is different."
337
+ return False, summary.to_column_value()
338
+ for b_out_i, n_out_i in zip(bench_out, npu_out):
339
+ status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i)
340
+ status.append(status_i)
341
+ details.append(details_i)
342
+ return status, details
343
+
344
+
345
+ def calc_status_details_dict(npu_out, bench_out, summary):
346
+ b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
+ if b_keys != n_keys:
348
+ summary.result = False
349
+ summary.failed_info = "bench and npu_output dict keys are different."
350
+ return False, summary.to_column_value()
351
+ else:
352
+ status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
+ return status, details
354
+
355
+
356
+ def calc_status_details_tensor(npu_out, bench_out, summary):
357
+ return single_benchmark_compare(npu_out, bench_out)
358
+
359
+
360
+ def calc_status_details_builtin(npu_out, bench_out, summary):
361
+ summary.bench_dtype = str(type(bench_out))
362
+ summary.npu_dtype = str(type(npu_out))
363
+ status = bench_out == npu_out
364
+ summary.result = status
365
+ return status, summary.to_column_value()
366
+
367
+
368
+ def calc_status_details_none(npu_out, bench_out, summary):
369
+ summary.result = True
370
+ summary.failed_info = "Output is None."
371
+ return True, summary.to_column_value()
372
+
373
+
374
+ def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor):
375
+ type_method_dict = {
376
+ (list, tuple): calc_status_details_list_tuple,
377
+ dict: calc_status_details_dict,
378
+ torch.Tensor: calc_status_details_tensor,
379
+ (bool, int, float, str): calc_status_details_builtin,
380
+ None: calc_status_details_none,
381
+ }
382
+
383
+ result = SingleBenchmarkAccuracyResult(result=True)
384
+ bench_summary = SingleBenchSummary(result)
385
+ for type1, func in type_method_dict.items():
386
+ if isinstance(bench_output, type1):
387
+ return func(npu_output, bench_output, bench_summary)
388
+
389
+ bench_summary.result = True
390
+ bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
+ return True, bench_summary.to_column_value()