mindstudio-probe 1.0.3__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (278) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.1.0.dist-info/RECORD +287 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +131 -237
  7. msprobe/__init__.py +16 -1
  8. msprobe/{config/config.json → config.json} +47 -49
  9. msprobe/core/advisor/advisor.py +124 -124
  10. msprobe/core/advisor/advisor_const.py +58 -59
  11. msprobe/core/advisor/advisor_result.py +58 -58
  12. msprobe/core/common/const.py +402 -318
  13. msprobe/core/common/exceptions.py +99 -99
  14. msprobe/core/common/{file_check.py → file_utils.py} +523 -283
  15. msprobe/core/common/inplace_op_checker.py +38 -0
  16. msprobe/core/common/inplace_ops.yaml +251 -0
  17. msprobe/core/common/log.py +86 -69
  18. msprobe/core/common/utils.py +371 -616
  19. msprobe/core/common_config.py +78 -71
  20. msprobe/core/compare/acc_compare.py +472 -298
  21. msprobe/core/compare/check.py +180 -95
  22. msprobe/core/compare/compare_cli.py +69 -49
  23. msprobe/core/compare/highlight.py +259 -222
  24. msprobe/core/compare/multiprocessing_compute.py +174 -149
  25. msprobe/core/compare/npy_compare.py +310 -295
  26. msprobe/core/compare/utils.py +464 -429
  27. msprobe/core/data_dump/data_collector.py +153 -144
  28. msprobe/core/data_dump/data_processor/base.py +337 -293
  29. msprobe/core/data_dump/data_processor/factory.py +76 -59
  30. msprobe/core/data_dump/data_processor/mindspore_processor.py +192 -198
  31. msprobe/core/data_dump/data_processor/pytorch_processor.py +383 -389
  32. msprobe/core/data_dump/json_writer.py +117 -116
  33. msprobe/core/data_dump/scope.py +194 -178
  34. msprobe/core/grad_probe/constant.py +74 -70
  35. msprobe/core/grad_probe/grad_compare.py +170 -175
  36. msprobe/core/grad_probe/utils.py +77 -52
  37. msprobe/docs/01.installation.md +99 -0
  38. msprobe/docs/02.config_introduction.md +137 -0
  39. msprobe/docs/03.config_examples.md +237 -0
  40. msprobe/docs/04.acl_config_examples.md +78 -0
  41. msprobe/docs/05.data_dump_PyTorch.md +326 -0
  42. msprobe/docs/06.data_dump_MindSpore.md +285 -0
  43. msprobe/docs/07.accuracy_checker_PyTorch.md +297 -0
  44. msprobe/docs/08.accuracy_checker_online_PyTorch.md +238 -0
  45. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  46. msprobe/docs/10.accuracy_compare_PyTorch.md +327 -0
  47. msprobe/docs/11.accuracy_compare_MindSpore.md +333 -0
  48. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  49. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  50. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  51. msprobe/docs/15.free_benchmarking_PyTorch.md +170 -0
  52. msprobe/docs/16.free_benchmarking_MindSpore.md +140 -0
  53. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +205 -207
  54. msprobe/{pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md → docs/18.online_dispatch.md} +89 -90
  55. msprobe/docs/FAQ.md +189 -0
  56. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  57. msprobe/docs/img/free_benchmark_framework.png +0 -0
  58. msprobe/docs/img/ms_dump.png +0 -0
  59. msprobe/docs/img/ms_layer.png +0 -0
  60. msprobe/docs/img/pt_dump.png +0 -0
  61. msprobe/mindspore/__init__.py +2 -1
  62. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +278 -245
  63. msprobe/mindspore/api_accuracy_checker/api_info.py +76 -69
  64. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  65. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  66. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  67. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  68. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  69. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  70. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  71. msprobe/mindspore/cell_processor.py +58 -34
  72. msprobe/mindspore/common/const.py +108 -87
  73. msprobe/mindspore/common/log.py +37 -37
  74. msprobe/mindspore/common/utils.py +97 -57
  75. msprobe/mindspore/compare/distributed_compare.py +62 -75
  76. msprobe/mindspore/compare/layer_mapping.py +146 -0
  77. msprobe/mindspore/compare/modify_mapping.py +107 -0
  78. msprobe/mindspore/compare/ms_compare.py +357 -117
  79. msprobe/mindspore/compare/ms_graph_compare.py +364 -317
  80. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  81. msprobe/mindspore/debugger/debugger_config.py +69 -74
  82. msprobe/mindspore/debugger/precision_debugger.py +150 -107
  83. msprobe/mindspore/dump/dump_tool_factory.py +50 -35
  84. msprobe/mindspore/dump/hook_cell/api_registry.py +128 -104
  85. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  86. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +206 -0
  87. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +994 -925
  88. msprobe/mindspore/dump/hook_cell/wrap_api.py +121 -0
  89. msprobe/mindspore/dump/jit_dump.py +96 -56
  90. msprobe/mindspore/dump/kernel_graph_dump.py +75 -60
  91. msprobe/mindspore/dump/kernel_kbyk_dump.py +79 -65
  92. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +131 -116
  93. msprobe/mindspore/free_benchmark/common/config.py +27 -12
  94. msprobe/mindspore/free_benchmark/common/handler_params.py +32 -17
  95. msprobe/mindspore/free_benchmark/common/utils.py +85 -71
  96. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  97. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +57 -42
  98. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +122 -107
  99. msprobe/mindspore/free_benchmark/handler/base_handler.py +105 -90
  100. msprobe/mindspore/free_benchmark/handler/check_handler.py +56 -41
  101. msprobe/mindspore/free_benchmark/handler/fix_handler.py +51 -36
  102. msprobe/mindspore/free_benchmark/handler/handler_factory.py +36 -21
  103. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +82 -67
  104. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +36 -21
  105. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +78 -63
  106. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +77 -0
  107. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +49 -34
  108. msprobe/mindspore/free_benchmark/perturbation/no_change.py +27 -12
  109. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +44 -27
  110. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +48 -33
  111. msprobe/mindspore/grad_probe/global_context.py +100 -91
  112. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  113. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  114. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  115. msprobe/mindspore/grad_probe/hook.py +94 -92
  116. msprobe/mindspore/grad_probe/utils.py +29 -28
  117. msprobe/mindspore/ms_config.py +128 -126
  118. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +60 -45
  119. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +49 -34
  120. msprobe/mindspore/runtime.py +4 -4
  121. msprobe/mindspore/service.py +297 -354
  122. msprobe/mindspore/task_handler_factory.py +24 -24
  123. msprobe/msprobe.py +105 -107
  124. msprobe/pytorch/__init__.py +23 -4
  125. msprobe/pytorch/api_accuracy_checker/common/config.py +70 -55
  126. msprobe/pytorch/api_accuracy_checker/common/utils.py +246 -165
  127. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +230 -213
  128. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +632 -581
  129. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  130. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  131. msprobe/pytorch/api_accuracy_checker/compare/compare.py +416 -381
  132. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +90 -73
  133. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +265 -244
  134. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  135. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +370 -332
  136. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +221 -199
  137. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +150 -134
  138. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +518 -581
  139. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +213 -74
  140. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  141. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +218 -202
  142. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +370 -324
  143. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +227 -204
  144. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/dump_dispatch.py +110 -0
  145. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +244 -218
  146. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/torch_ops_config.yaml +63 -0
  147. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +44 -0
  148. msprobe/pytorch/bench_functions/__init__.py +30 -15
  149. msprobe/pytorch/bench_functions/apply_adam_w.py +43 -28
  150. msprobe/pytorch/bench_functions/confusion_transpose.py +34 -19
  151. msprobe/pytorch/bench_functions/fast_gelu.py +70 -55
  152. msprobe/pytorch/bench_functions/layer_norm_eval.py +21 -6
  153. msprobe/pytorch/bench_functions/linear.py +27 -12
  154. msprobe/pytorch/bench_functions/matmul_backward.py +63 -48
  155. msprobe/pytorch/bench_functions/npu_fusion_attention.py +538 -421
  156. msprobe/pytorch/bench_functions/rms_norm.py +30 -15
  157. msprobe/pytorch/bench_functions/rotary_mul.py +71 -52
  158. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +41 -26
  159. msprobe/pytorch/bench_functions/swiglu.py +70 -55
  160. msprobe/pytorch/common/__init__.py +17 -2
  161. msprobe/pytorch/common/compare_script.template +14 -14
  162. msprobe/pytorch/common/log.py +33 -32
  163. msprobe/pytorch/common/parse_json.py +54 -39
  164. msprobe/pytorch/common/utils.py +310 -300
  165. msprobe/pytorch/compare/distributed_compare.py +66 -66
  166. msprobe/pytorch/compare/mapping.yaml +607 -607
  167. msprobe/pytorch/compare/match.py +49 -33
  168. msprobe/pytorch/compare/pt_compare.py +82 -40
  169. msprobe/pytorch/debugger/debugger_config.py +108 -95
  170. msprobe/pytorch/debugger/precision_debugger.py +173 -125
  171. msprobe/pytorch/free_benchmark/__init__.py +23 -8
  172. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  173. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  174. msprobe/pytorch/free_benchmark/common/enums.py +65 -37
  175. msprobe/pytorch/free_benchmark/common/params.py +144 -129
  176. msprobe/pytorch/free_benchmark/common/utils.py +118 -102
  177. msprobe/pytorch/free_benchmark/compare/grad_saver.py +200 -179
  178. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +119 -104
  179. msprobe/pytorch/free_benchmark/main.py +120 -105
  180. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +28 -13
  181. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +56 -41
  182. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +105 -90
  183. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +119 -104
  184. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +87 -63
  185. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +83 -68
  186. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +43 -28
  187. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +60 -45
  188. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +34 -19
  189. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +256 -217
  190. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +54 -39
  191. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +38 -23
  192. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +45 -30
  193. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +185 -170
  194. msprobe/pytorch/function_factory.py +91 -75
  195. msprobe/pytorch/functional/module_dump.py +84 -0
  196. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  197. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  198. msprobe/pytorch/hook_module/__init__.py +16 -1
  199. msprobe/pytorch/hook_module/api_registry.py +166 -161
  200. msprobe/pytorch/hook_module/hook_module.py +118 -120
  201. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  202. msprobe/pytorch/hook_module/utils.py +28 -29
  203. msprobe/pytorch/hook_module/wrap_aten.py +111 -110
  204. msprobe/pytorch/hook_module/wrap_distributed.py +77 -78
  205. msprobe/pytorch/hook_module/wrap_functional.py +104 -105
  206. msprobe/pytorch/hook_module/wrap_npu_custom.py +85 -84
  207. msprobe/pytorch/hook_module/wrap_tensor.py +69 -71
  208. msprobe/pytorch/hook_module/wrap_torch.py +84 -86
  209. msprobe/pytorch/hook_module/wrap_vf.py +60 -62
  210. msprobe/pytorch/module_processer.py +153 -138
  211. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  212. msprobe/pytorch/online_dispatch/compare.py +235 -236
  213. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  214. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  215. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  216. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +57 -49
  217. msprobe/pytorch/online_dispatch/utils.py +127 -146
  218. msprobe/pytorch/parse.py +19 -4
  219. msprobe/pytorch/parse_tool/cli.py +31 -32
  220. msprobe/pytorch/parse_tool/lib/compare.py +259 -271
  221. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  222. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  223. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  224. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  225. msprobe/pytorch/parse_tool/lib/parse_tool.py +161 -158
  226. msprobe/pytorch/parse_tool/lib/utils.py +320 -321
  227. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  228. msprobe/pytorch/pt_config.py +317 -187
  229. msprobe/pytorch/service.py +311 -252
  230. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  231. msprobe/config/README.md +0 -539
  232. msprobe/mindspore/doc/compare.md +0 -58
  233. msprobe/mindspore/doc/dump.md +0 -217
  234. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  235. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  236. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +0 -10
  237. msprobe/pytorch/doc/FAQ.md +0 -193
  238. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  239. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  240. msprobe/pytorch/doc/dump.md +0 -260
  241. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  242. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  243. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  244. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  245. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  246. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  247. msprobe/pytorch/functional/data_processor.py +0 -0
  248. msprobe/pytorch/functional/dump_module.py +0 -39
  249. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/top_level.txt +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  256. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  257. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  258. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  259. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  260. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  261. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  263. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  264. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  265. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  266. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  267. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  268. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  269. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  270. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  271. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  272. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  273. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  274. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  275. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  276. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  277. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  278. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,295 +1,310 @@
1
- import abc
2
- import numpy as np
3
- from msprobe.core.common.utils import format_value
4
- from msprobe.core.common.const import Const, CompareConst
5
- from msprobe.core.common.log import logger
6
-
7
-
8
- def handle_inf_nan(n_value, b_value):
9
- """处理inf和nan的数据"""
10
- n_inf = np.isinf(n_value)
11
- b_inf = np.isinf(b_value)
12
- n_nan = np.isnan(n_value)
13
- b_nan = np.isnan(b_value)
14
- n_invalid = np.any(n_inf) or np.any(n_nan)
15
- b_invalid = np.any(b_inf) or np.any(b_nan)
16
- if n_invalid or b_invalid:
17
- if np.array_equal(n_inf, b_inf) and np.array_equal(n_nan, b_nan):
18
- n_value[n_inf] = 0
19
- b_value[b_inf] = 0
20
- n_value[n_nan] = 0
21
- b_value[b_nan] = 0
22
- else:
23
- return CompareConst.NAN, CompareConst.NAN
24
- return n_value, b_value
25
-
26
-
27
- def get_error_type(n_value, b_value, error_flag):
28
- """判断数据是否有异常并返回异常的n_value, b_value,同时返回error_flag"""
29
- if error_flag:
30
- return CompareConst.READ_NONE, CompareConst.READ_NONE, True
31
- if n_value.size == 0: # 判断读取到的数据是否为空
32
- return CompareConst.NONE, CompareConst.NONE, True
33
- if n_value.shape != b_value.shape: # 判断NPU和bench的数据结构是否一致
34
- return CompareConst.SHAPE_UNMATCH, CompareConst.SHAPE_UNMATCH, True
35
- if not n_value.shape: # 判断数据是否为标量
36
- return n_value, b_value, False
37
-
38
- n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有nan/inf数据
39
- if n_value is CompareConst.NAN or b_value is CompareConst.NAN:
40
- return CompareConst.NAN, CompareConst.NAN, True
41
- return n_value, b_value, False
42
-
43
-
44
- def reshape_value(n_value, b_value):
45
- """返回reshape后的数据"""
46
- if not n_value.shape: # 判断数据是否为标量
47
- if n_value.dtype == bool:
48
- n_value = n_value.astype(float)
49
- b_value = b_value.astype(float)
50
- return n_value, b_value
51
-
52
- n_value = n_value.reshape(-1).astype(float)
53
- b_value = b_value.reshape(-1).astype(float)
54
- return n_value, b_value
55
-
56
-
57
- def get_error_message(n_value, b_value, npu_op_name, error_flag, error_file=None):
58
- """获取异常情况的错误信息"""
59
- if error_flag:
60
- if n_value == CompareConst.READ_NONE:
61
- if error_file:
62
- return "Dump file: {} not found.".format(error_file)
63
- return CompareConst.NO_BENCH
64
- if n_value == CompareConst.NONE:
65
- return "This is empty data, can not compare."
66
- if n_value == CompareConst.SHAPE_UNMATCH:
67
- return "Shape of NPU and bench Tensor do not match. Skipped."
68
- if n_value == CompareConst.NAN:
69
- return "The position of inf or nan in NPU and bench Tensor do not match."
70
- else:
71
- if not n_value.shape:
72
- return "This is type of scalar data, can not compare."
73
- if n_value.dtype != b_value.dtype:
74
- logger.warning("Dtype of NPU and bench Tensor do not match: {}".format(npu_op_name))
75
- return "Dtype of NPU and bench Tensor do not match."
76
- return ""
77
-
78
-
79
- def npy_data_check(n_value, b_value):
80
- error_message = ""
81
- if n_value is None or b_value is None:
82
- error_message += "Dump file not found.\n"
83
- if n_value == "" or b_value == "":
84
- error_message += "Dump file not found.\n"
85
-
86
- # 检查 n_value 和 b_value 是否为空
87
- if not error_message and (n_value.size == 0 or b_value.size == 0):
88
- error_message += "This is empty data, can not compare.\n"
89
-
90
- if not error_message:
91
- if not n_value.shape or not b_value.shape:
92
- error_message += "This is type of scalar data, can not compare.\n"
93
- if n_value.shape != b_value.shape:
94
- error_message += "Shape of NPU and bench Tensor do not match.\n"
95
- if n_value.dtype != b_value.dtype:
96
- error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
97
-
98
- if not error_message:
99
- n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有 nan/inf 数据
100
- if CompareConst.NAN in (n_value, b_value):
101
- error_message += "The position of inf or nan in NPU and bench Tensor do not match.\n"
102
- if error_message == "":
103
- error_flag = False
104
- else:
105
- error_flag = True
106
- return error_flag, error_message
107
-
108
-
109
- def statistics_data_check(result_dict):
110
- error_message = ""
111
-
112
- if result_dict.get(CompareConst.NPU_NAME) is None or result_dict.get(CompareConst.BENCH_NAME) is None:
113
- error_message += "Dump file not found.\n"
114
-
115
- if not result_dict.get(CompareConst.NPU_SHAPE) or not result_dict.get(CompareConst.BENCH_SHAPE):
116
- error_message += "This is type of scalar data, can not compare.\n"
117
- elif result_dict.get(CompareConst.NPU_SHAPE) != result_dict.get(CompareConst.BENCH_SHAPE):
118
- error_message += "Tensor shapes do not match.\n"
119
-
120
- if result_dict.get(CompareConst.NPU_DTYPE) != result_dict.get(CompareConst.BENCH_DTYPE):
121
- error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
122
-
123
- if error_message == "":
124
- error_flag = False
125
- else:
126
- error_flag = True
127
- return error_flag, error_message
128
-
129
-
130
- class TensorComparisonBasic(abc.ABC):
131
- """NPU和bench中npy数据的比较模板"""
132
- @abc.abstractmethod
133
- def apply(self, n_value, b_value, error_flag, relative_err=None):
134
- raise NotImplementedError
135
-
136
-
137
- class GetCosineSimilarity(TensorComparisonBasic):
138
- """计算cosine相似度"""
139
- @staticmethod
140
- def correct_data(result):
141
- if result == CompareConst.NAN:
142
- return result
143
- if float(result) > CompareConst.COSINE_THRESHOLD:
144
- return 1.0
145
- return result
146
-
147
- def apply(self, n_value, b_value, error_flag, relative_err=None):
148
- if error_flag:
149
- if n_value == CompareConst.READ_NONE:
150
- return CompareConst.NONE, ''
151
- if n_value == CompareConst.NONE:
152
- return CompareConst.UNSUPPORTED, ''
153
- if n_value == CompareConst.SHAPE_UNMATCH:
154
- return CompareConst.SHAPE_UNMATCH, ''
155
- if n_value == CompareConst.NAN:
156
- return "N/A", ''
157
-
158
- if not n_value.shape:
159
- return CompareConst.UNSUPPORTED, ''
160
-
161
- with np.errstate(divide='ignore', invalid='ignore'):
162
- if len(n_value) == 1:
163
- return CompareConst.UNSUPPORTED, "This tensor is scalar."
164
- num = n_value.dot(b_value)
165
- a_norm = np.linalg.norm(n_value)
166
- b_norm = np.linalg.norm(b_value)
167
-
168
- if a_norm <= Const.FLOAT_EPSILON and b_norm <= Const.FLOAT_EPSILON:
169
- return 1.0, ''
170
- if a_norm <= Const.FLOAT_EPSILON:
171
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in npu dump data.'
172
- if b_norm <= Const.FLOAT_EPSILON:
173
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in Bench dump data.'
174
-
175
- cos = num / (a_norm * b_norm)
176
- if np.isnan(cos):
177
- return CompareConst.NAN, 'Cannot compare by Cosine Similarity, the dump data has NaN.'
178
- result = format_value(cos)
179
- result = self.correct_data(result)
180
- return 1.0 if float(result) > 0.99999 else result, ''
181
-
182
-
183
- class GetMaxAbsErr(TensorComparisonBasic):
184
- """计算最大绝对误差"""
185
- def apply(self, n_value, b_value, error_flag, relative_err=None):
186
- if error_flag:
187
- if n_value == CompareConst.READ_NONE:
188
- return CompareConst.NONE, ""
189
- if n_value == CompareConst.NONE:
190
- return 0, ""
191
- if n_value == CompareConst.SHAPE_UNMATCH:
192
- return CompareConst.SHAPE_UNMATCH, ""
193
- if n_value == CompareConst.NAN:
194
- return "N/A", ""
195
-
196
- temp_res = n_value - b_value
197
- max_value = np.max(np.abs(temp_res))
198
- return format_value(max_value), ""
199
-
200
-
201
- def get_relative_err(n_value, b_value):
202
- """计算相对误差"""
203
- with np.errstate(divide='ignore', invalid='ignore'):
204
- if b_value.dtype not in CompareConst.FLOAT_TYPE:
205
- n_value, b_value = n_value.astype(float), b_value.astype(float)
206
- zero_mask = (b_value == 0)
207
- b_value[zero_mask] += np.finfo(b_value.dtype).eps
208
- n_value[zero_mask] += np.finfo(b_value.dtype).eps
209
- relative_err = np.divide((n_value - b_value), b_value)
210
- return np.abs(relative_err)
211
-
212
-
213
- class GetMaxRelativeErr(TensorComparisonBasic):
214
- """计算最大相对误差"""
215
- def apply(self, n_value, b_value, error_flag, relative_err=None):
216
- if error_flag:
217
- if n_value == CompareConst.READ_NONE:
218
- return CompareConst.NONE, ''
219
- if n_value == CompareConst.NONE:
220
- return 0, ''
221
- if n_value == CompareConst.SHAPE_UNMATCH:
222
- return CompareConst.SHAPE_UNMATCH, ''
223
- if n_value == CompareConst.NAN:
224
- return "N/A", ''
225
-
226
- if relative_err is None:
227
- relative_err = get_relative_err(n_value, b_value)
228
- max_relative_err = np.max(np.abs(relative_err))
229
- if np.isnan(max_relative_err):
230
- message = 'Cannot compare by MaxRelativeError, the data contains nan in dump data.'
231
- return CompareConst.NAN, message
232
- return format_value(max_relative_err), ''
233
-
234
-
235
- class GetThousandErrRatio(TensorComparisonBasic):
236
- """计算相对误差小于千分之一的比例"""
237
- def apply(self, n_value, b_value, error_flag, relative_err=None):
238
- if error_flag:
239
- if n_value == CompareConst.READ_NONE:
240
- return CompareConst.NONE, ""
241
- if n_value == CompareConst.NONE:
242
- return 0, ""
243
- if n_value == CompareConst.SHAPE_UNMATCH:
244
- return CompareConst.SHAPE_UNMATCH, ""
245
- if n_value == CompareConst.NAN:
246
- return "N/A", ""
247
-
248
- if not n_value.shape:
249
- return CompareConst.NAN, ""
250
- if relative_err is None:
251
- relative_err = get_relative_err(n_value, b_value)
252
- if not np.size(relative_err):
253
- return CompareConst.NAN, ""
254
- return format_value(np.sum(relative_err < CompareConst.THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
255
-
256
-
257
- class GetFiveThousandErrRatio(TensorComparisonBasic):
258
- """计算相对误差小于千分之五的比例"""
259
- def apply(self, n_value, b_value, error_flag, relative_err=None):
260
- if error_flag:
261
- if n_value == CompareConst.READ_NONE:
262
- return CompareConst.NONE, ""
263
- if n_value == CompareConst.NONE:
264
- return 0, ""
265
- if n_value == CompareConst.SHAPE_UNMATCH:
266
- return CompareConst.SHAPE_UNMATCH, ""
267
- if n_value == CompareConst.NAN:
268
- return "N/A", ""
269
-
270
- if not n_value.shape:
271
- return CompareConst.NAN, ""
272
- if relative_err is None:
273
- relative_err = get_relative_err(n_value, b_value)
274
- if not np.size(relative_err):
275
- return CompareConst.NAN, ""
276
- return format_value(np.sum(relative_err < CompareConst.FIVE_THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
277
-
278
-
279
- class CompareOps:
280
- compare_ops = {
281
- "cosine_similarity": GetCosineSimilarity(),
282
- "max_abs_error": GetMaxAbsErr(),
283
- "max_relative_error": GetMaxRelativeErr(),
284
- "one_thousand_err_ratio": GetThousandErrRatio(),
285
- "five_thousand_err_ratio": GetFiveThousandErrRatio()
286
- }
287
-
288
-
289
- def compare_ops_apply(n_value, b_value, error_flag, err_msg, relative_err=None):
290
- result_list = []
291
- for op in CompareOps.compare_ops.values():
292
- result, msg = op.apply(n_value, b_value, error_flag, relative_err=relative_err)
293
- err_msg += msg
294
- result_list.append(result)
295
- return result_list, err_msg
1
+ # Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import abc
17
+ import numpy as np
18
+ from msprobe.core.common.utils import format_value
19
+ from msprobe.core.common.const import Const, CompareConst
20
+ from msprobe.core.common.log import logger
21
+
22
+
23
+ def handle_inf_nan(n_value, b_value):
24
+ """处理inf和nan的数据"""
25
+ n_inf = np.isinf(n_value)
26
+ b_inf = np.isinf(b_value)
27
+ n_nan = np.isnan(n_value)
28
+ b_nan = np.isnan(b_value)
29
+ n_invalid = np.any(n_inf) or np.any(n_nan)
30
+ b_invalid = np.any(b_inf) or np.any(b_nan)
31
+ if n_invalid or b_invalid:
32
+ if np.array_equal(n_inf, b_inf) and np.array_equal(n_nan, b_nan):
33
+ n_value[n_inf] = 0
34
+ b_value[b_inf] = 0
35
+ n_value[n_nan] = 0
36
+ b_value[b_nan] = 0
37
+ else:
38
+ return CompareConst.NAN, CompareConst.NAN
39
+ return n_value, b_value
40
+
41
+
42
+ def get_error_type(n_value, b_value, error_flag):
43
+ """判断数据是否有异常并返回异常的n_value, b_value,同时返回error_flag"""
44
+ if error_flag:
45
+ return CompareConst.READ_NONE, CompareConst.READ_NONE, True
46
+ if n_value.size == 0: # 判断读取到的数据是否为空
47
+ return CompareConst.NONE, CompareConst.NONE, True
48
+ if n_value.shape != b_value.shape: # 判断NPU和bench的数据结构是否一致
49
+ return CompareConst.SHAPE_UNMATCH, CompareConst.SHAPE_UNMATCH, True
50
+ if not n_value.shape: # 判断数据是否为标量
51
+ return n_value, b_value, False
52
+
53
+ n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有nan/inf数据
54
+ if n_value is CompareConst.NAN or b_value is CompareConst.NAN:
55
+ return CompareConst.NAN, CompareConst.NAN, True
56
+ return n_value, b_value, False
57
+
58
+
59
+ def reshape_value(n_value, b_value):
60
+ """返回reshape后的数据"""
61
+ if not n_value.shape: # 判断数据是否为标量
62
+ if n_value.dtype == bool:
63
+ n_value = n_value.astype(float)
64
+ b_value = b_value.astype(float)
65
+ return n_value, b_value
66
+
67
+ n_value = n_value.reshape(-1).astype(float)
68
+ b_value = b_value.reshape(-1).astype(float)
69
+ return n_value, b_value
70
+
71
+
72
+ def get_error_message(n_value, b_value, npu_op_name, error_flag, error_file=None):
73
+ """获取异常情况的错误信息"""
74
+ if error_flag:
75
+ if n_value == CompareConst.READ_NONE:
76
+ if error_file:
77
+ return "Dump file: {} not found.".format(error_file)
78
+ return CompareConst.NO_BENCH
79
+ if n_value == CompareConst.NONE:
80
+ return "This is empty data, can not compare."
81
+ if n_value == CompareConst.SHAPE_UNMATCH:
82
+ return "Shape of NPU and bench Tensor do not match. Skipped."
83
+ if n_value == CompareConst.NAN:
84
+ return "The position of inf or nan in NPU and bench Tensor do not match."
85
+ else:
86
+ if not n_value.shape:
87
+ return "This is type of scalar data, can not compare."
88
+ if n_value.dtype != b_value.dtype:
89
+ logger.warning("Dtype of NPU and bench Tensor do not match: {}".format(npu_op_name))
90
+ return "Dtype of NPU and bench Tensor do not match."
91
+ return ""
92
+
93
+
94
+ def npy_data_check(n_value, b_value):
95
+ error_message = ""
96
+ if not isinstance(n_value, np.ndarray) or not isinstance(b_value, np.ndarray):
97
+ error_message += "Dump file is not ndarray.\n"
98
+
99
+ # 检查 n_value b_value 是否为空
100
+ if not error_message and (n_value.size == 0 or b_value.size == 0):
101
+ error_message += "This is empty data, can not compare.\n"
102
+
103
+ if not error_message:
104
+ if not n_value.shape or not b_value.shape:
105
+ error_message += "This is type of scalar data, can not compare.\n"
106
+ if n_value.shape != b_value.shape:
107
+ error_message += "Shape of NPU and bench Tensor do not match.\n"
108
+ if n_value.dtype != b_value.dtype:
109
+ error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
110
+
111
+ if not error_message:
112
+ n_value, b_value = handle_inf_nan(n_value, b_value) # 判断是否有 nan/inf 数据
113
+ # handle_inf_nan 会返回'Nan'或ndarray类型,使用类型判断是否存在无法处理的nan/inf数据
114
+ if not isinstance(n_value, np.ndarray) or not isinstance(b_value, np.ndarray):
115
+ error_message += "The position of inf or nan in NPU and bench Tensor do not match.\n"
116
+ if error_message == "":
117
+ error_flag = False
118
+ else:
119
+ error_flag = True
120
+ return error_flag, error_message
121
+
122
+
123
+ def statistics_data_check(result_dict):
124
+ error_message = ""
125
+
126
+ if result_dict.get(CompareConst.NPU_NAME) is None or result_dict.get(CompareConst.BENCH_NAME) is None:
127
+ error_message += "Dump file not found.\n"
128
+
129
+ if not result_dict.get(CompareConst.NPU_SHAPE) or not result_dict.get(CompareConst.BENCH_SHAPE):
130
+ error_message += "This is type of scalar data, can not compare.\n"
131
+ elif result_dict.get(CompareConst.NPU_SHAPE) != result_dict.get(CompareConst.BENCH_SHAPE):
132
+ error_message += "Tensor shapes do not match.\n"
133
+
134
+ if result_dict.get(CompareConst.NPU_DTYPE) != result_dict.get(CompareConst.BENCH_DTYPE):
135
+ error_message += "Dtype of NPU and bench Tensor do not match. Skipped.\n"
136
+
137
+ if error_message == "":
138
+ error_flag = False
139
+ else:
140
+ error_flag = True
141
+ return error_flag, error_message
142
+
143
+
144
+ class TensorComparisonBasic(abc.ABC):
145
+ """NPU和bench中npy数据的比较模板"""
146
+ @abc.abstractmethod
147
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
148
+ raise NotImplementedError
149
+
150
+
151
+ class GetCosineSimilarity(TensorComparisonBasic):
152
+ """计算cosine相似度"""
153
+ @staticmethod
154
+ def correct_data(result):
155
+ if result == CompareConst.NAN:
156
+ return result
157
+ if float(result) > CompareConst.COSINE_THRESHOLD:
158
+ return round(float(result), 6)
159
+ return result
160
+
161
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
162
+ if error_flag:
163
+ if n_value == CompareConst.READ_NONE:
164
+ return CompareConst.NONE, ''
165
+ if n_value == CompareConst.NONE:
166
+ return CompareConst.UNSUPPORTED, ''
167
+ if n_value == CompareConst.SHAPE_UNMATCH:
168
+ return CompareConst.SHAPE_UNMATCH, ''
169
+ if n_value == CompareConst.NAN:
170
+ return "N/A", ''
171
+
172
+ if not n_value.shape:
173
+ return CompareConst.UNSUPPORTED, ''
174
+
175
+ with np.errstate(divide='ignore', invalid='ignore'):
176
+ if len(n_value) == 1:
177
+ return CompareConst.UNSUPPORTED, "This tensor is scalar."
178
+ num = n_value.dot(b_value)
179
+ a_norm = np.linalg.norm(n_value)
180
+ b_norm = np.linalg.norm(b_value)
181
+
182
+ if a_norm <= Const.FLOAT_EPSILON and b_norm <= Const.FLOAT_EPSILON:
183
+ return 1.0, ''
184
+ if a_norm <= Const.FLOAT_EPSILON:
185
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in npu dump data.'
186
+ if b_norm <= Const.FLOAT_EPSILON:
187
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, All the data is Zero in Bench dump data.'
188
+
189
+ cos = num / (a_norm * b_norm)
190
+ if np.isnan(cos):
191
+ return CompareConst.NAN, 'Cannot compare by Cosine Similarity, the dump data has NaN.'
192
+ result = format_value(cos)
193
+ result = self.correct_data(result)
194
+ return 1.0 if float(result) > 0.99999 else result, ''
195
+
196
+
197
+ class GetMaxAbsErr(TensorComparisonBasic):
198
+ """计算最大绝对误差"""
199
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
200
+ if error_flag:
201
+ if n_value == CompareConst.READ_NONE:
202
+ return CompareConst.NONE, ""
203
+ if n_value == CompareConst.NONE:
204
+ return 0, ""
205
+ if n_value == CompareConst.SHAPE_UNMATCH:
206
+ return CompareConst.SHAPE_UNMATCH, ""
207
+ if n_value == CompareConst.NAN:
208
+ return "N/A", ""
209
+
210
+ temp_res = n_value - b_value
211
+ max_value = np.max(np.abs(temp_res))
212
+ return format_value(max_value), ""
213
+
214
+
215
+ def get_relative_err(n_value, b_value):
216
+ """计算相对误差"""
217
+ with np.errstate(divide='ignore', invalid='ignore'):
218
+ if b_value.dtype not in CompareConst.FLOAT_TYPE:
219
+ n_value, b_value = n_value.astype(float), b_value.astype(float)
220
+ zero_mask = (b_value == 0)
221
+ b_value[zero_mask] += np.finfo(b_value.dtype).eps
222
+ n_value[zero_mask] += np.finfo(b_value.dtype).eps
223
+ relative_err = np.divide((n_value - b_value), b_value)
224
+ return np.abs(relative_err)
225
+
226
+
227
+ class GetMaxRelativeErr(TensorComparisonBasic):
228
+ """计算最大相对误差"""
229
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
230
+ if error_flag:
231
+ if n_value == CompareConst.READ_NONE:
232
+ return CompareConst.NONE, ''
233
+ if n_value == CompareConst.NONE:
234
+ return 0, ''
235
+ if n_value == CompareConst.SHAPE_UNMATCH:
236
+ return CompareConst.SHAPE_UNMATCH, ''
237
+ if n_value == CompareConst.NAN:
238
+ return "N/A", ''
239
+
240
+ if relative_err is None:
241
+ relative_err = get_relative_err(n_value, b_value)
242
+ max_relative_err = np.max(np.abs(relative_err))
243
+ if np.isnan(max_relative_err):
244
+ message = 'Cannot compare by MaxRelativeError, the data contains nan in dump data.'
245
+ return CompareConst.NAN, message
246
+ return format_value(max_relative_err), ''
247
+
248
+
249
+ class GetThousandErrRatio(TensorComparisonBasic):
250
+ """计算相对误差小于千分之一的比例"""
251
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
252
+ if error_flag:
253
+ if n_value == CompareConst.READ_NONE:
254
+ return CompareConst.NONE, ""
255
+ if n_value == CompareConst.NONE:
256
+ return 0, ""
257
+ if n_value == CompareConst.SHAPE_UNMATCH:
258
+ return CompareConst.SHAPE_UNMATCH, ""
259
+ if n_value == CompareConst.NAN:
260
+ return "N/A", ""
261
+
262
+ if not n_value.shape:
263
+ return CompareConst.NAN, ""
264
+ if relative_err is None:
265
+ relative_err = get_relative_err(n_value, b_value)
266
+ if not np.size(relative_err):
267
+ return CompareConst.NAN, ""
268
+ return format_value(np.sum(relative_err < CompareConst.THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
269
+
270
+
271
+ class GetFiveThousandErrRatio(TensorComparisonBasic):
272
+ """计算相对误差小于千分之五的比例"""
273
+ def apply(self, n_value, b_value, error_flag, relative_err=None):
274
+ if error_flag:
275
+ if n_value == CompareConst.READ_NONE:
276
+ return CompareConst.NONE, ""
277
+ if n_value == CompareConst.NONE:
278
+ return 0, ""
279
+ if n_value == CompareConst.SHAPE_UNMATCH:
280
+ return CompareConst.SHAPE_UNMATCH, ""
281
+ if n_value == CompareConst.NAN:
282
+ return "N/A", ""
283
+
284
+ if not n_value.shape:
285
+ return CompareConst.NAN, ""
286
+ if relative_err is None:
287
+ relative_err = get_relative_err(n_value, b_value)
288
+ if not np.size(relative_err):
289
+ return CompareConst.NAN, ""
290
+ return format_value(
291
+ np.sum(relative_err < CompareConst.FIVE_THOUSAND_RATIO_THRESHOLD) / np.size(relative_err)), ""
292
+
293
+
294
+ class CompareOps:
295
+ compare_ops = {
296
+ "cosine_similarity": GetCosineSimilarity(),
297
+ "max_abs_error": GetMaxAbsErr(),
298
+ "max_relative_error": GetMaxRelativeErr(),
299
+ "one_thousand_err_ratio": GetThousandErrRatio(),
300
+ "five_thousand_err_ratio": GetFiveThousandErrRatio()
301
+ }
302
+
303
+
304
+ def compare_ops_apply(n_value, b_value, error_flag, err_msg, relative_err=None):
305
+ result_list = []
306
+ for op in CompareOps.compare_ops.values():
307
+ result, msg = op.apply(n_value, b_value, error_flag, relative_err=relative_err)
308
+ err_msg += msg
309
+ result_list.append(result)
310
+ return result_list, err_msg