mindstudio-probe 1.0.3__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (278) hide show
  1. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/METADATA +36 -34
  3. mindstudio_probe-1.1.0.dist-info/RECORD +287 -0
  4. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +131 -237
  7. msprobe/__init__.py +16 -1
  8. msprobe/{config/config.json → config.json} +47 -49
  9. msprobe/core/advisor/advisor.py +124 -124
  10. msprobe/core/advisor/advisor_const.py +58 -59
  11. msprobe/core/advisor/advisor_result.py +58 -58
  12. msprobe/core/common/const.py +402 -318
  13. msprobe/core/common/exceptions.py +99 -99
  14. msprobe/core/common/{file_check.py → file_utils.py} +523 -283
  15. msprobe/core/common/inplace_op_checker.py +38 -0
  16. msprobe/core/common/inplace_ops.yaml +251 -0
  17. msprobe/core/common/log.py +86 -69
  18. msprobe/core/common/utils.py +371 -616
  19. msprobe/core/common_config.py +78 -71
  20. msprobe/core/compare/acc_compare.py +472 -298
  21. msprobe/core/compare/check.py +180 -95
  22. msprobe/core/compare/compare_cli.py +69 -49
  23. msprobe/core/compare/highlight.py +259 -222
  24. msprobe/core/compare/multiprocessing_compute.py +174 -149
  25. msprobe/core/compare/npy_compare.py +310 -295
  26. msprobe/core/compare/utils.py +464 -429
  27. msprobe/core/data_dump/data_collector.py +153 -144
  28. msprobe/core/data_dump/data_processor/base.py +337 -293
  29. msprobe/core/data_dump/data_processor/factory.py +76 -59
  30. msprobe/core/data_dump/data_processor/mindspore_processor.py +192 -198
  31. msprobe/core/data_dump/data_processor/pytorch_processor.py +383 -389
  32. msprobe/core/data_dump/json_writer.py +117 -116
  33. msprobe/core/data_dump/scope.py +194 -178
  34. msprobe/core/grad_probe/constant.py +74 -70
  35. msprobe/core/grad_probe/grad_compare.py +170 -175
  36. msprobe/core/grad_probe/utils.py +77 -52
  37. msprobe/docs/01.installation.md +99 -0
  38. msprobe/docs/02.config_introduction.md +137 -0
  39. msprobe/docs/03.config_examples.md +237 -0
  40. msprobe/docs/04.acl_config_examples.md +78 -0
  41. msprobe/docs/05.data_dump_PyTorch.md +326 -0
  42. msprobe/docs/06.data_dump_MindSpore.md +285 -0
  43. msprobe/docs/07.accuracy_checker_PyTorch.md +297 -0
  44. msprobe/docs/08.accuracy_checker_online_PyTorch.md +238 -0
  45. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  46. msprobe/docs/10.accuracy_compare_PyTorch.md +327 -0
  47. msprobe/docs/11.accuracy_compare_MindSpore.md +333 -0
  48. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  49. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  50. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  51. msprobe/docs/15.free_benchmarking_PyTorch.md +170 -0
  52. msprobe/docs/16.free_benchmarking_MindSpore.md +140 -0
  53. msprobe/{doc/grad_probe/grad_probe.md → docs/17.grad_probe.md} +205 -207
  54. msprobe/{pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md → docs/18.online_dispatch.md} +89 -90
  55. msprobe/docs/FAQ.md +189 -0
  56. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  57. msprobe/docs/img/free_benchmark_framework.png +0 -0
  58. msprobe/docs/img/ms_dump.png +0 -0
  59. msprobe/docs/img/ms_layer.png +0 -0
  60. msprobe/docs/img/pt_dump.png +0 -0
  61. msprobe/mindspore/__init__.py +2 -1
  62. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +278 -245
  63. msprobe/mindspore/api_accuracy_checker/api_info.py +76 -69
  64. msprobe/mindspore/api_accuracy_checker/api_runner.py +155 -151
  65. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +196 -196
  66. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  67. msprobe/mindspore/api_accuracy_checker/compute_element.py +238 -223
  68. msprobe/mindspore/api_accuracy_checker/main.py +8 -15
  69. msprobe/mindspore/api_accuracy_checker/type_mapping.py +113 -113
  70. msprobe/mindspore/api_accuracy_checker/utils.py +79 -62
  71. msprobe/mindspore/cell_processor.py +58 -34
  72. msprobe/mindspore/common/const.py +108 -87
  73. msprobe/mindspore/common/log.py +37 -37
  74. msprobe/mindspore/common/utils.py +97 -57
  75. msprobe/mindspore/compare/distributed_compare.py +62 -75
  76. msprobe/mindspore/compare/layer_mapping.py +146 -0
  77. msprobe/mindspore/compare/modify_mapping.py +107 -0
  78. msprobe/mindspore/compare/ms_compare.py +357 -117
  79. msprobe/mindspore/compare/ms_graph_compare.py +364 -317
  80. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -399
  81. msprobe/mindspore/debugger/debugger_config.py +69 -74
  82. msprobe/mindspore/debugger/precision_debugger.py +150 -107
  83. msprobe/mindspore/dump/dump_tool_factory.py +50 -35
  84. msprobe/mindspore/dump/hook_cell/api_registry.py +128 -104
  85. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -53
  86. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +206 -0
  87. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +994 -925
  88. msprobe/mindspore/dump/hook_cell/wrap_api.py +121 -0
  89. msprobe/mindspore/dump/jit_dump.py +96 -56
  90. msprobe/mindspore/dump/kernel_graph_dump.py +75 -60
  91. msprobe/mindspore/dump/kernel_kbyk_dump.py +79 -65
  92. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +131 -116
  93. msprobe/mindspore/free_benchmark/common/config.py +27 -12
  94. msprobe/mindspore/free_benchmark/common/handler_params.py +32 -17
  95. msprobe/mindspore/free_benchmark/common/utils.py +85 -71
  96. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -842
  97. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +57 -42
  98. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +122 -107
  99. msprobe/mindspore/free_benchmark/handler/base_handler.py +105 -90
  100. msprobe/mindspore/free_benchmark/handler/check_handler.py +56 -41
  101. msprobe/mindspore/free_benchmark/handler/fix_handler.py +51 -36
  102. msprobe/mindspore/free_benchmark/handler/handler_factory.py +36 -21
  103. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +82 -67
  104. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +36 -21
  105. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +78 -63
  106. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +77 -0
  107. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +49 -34
  108. msprobe/mindspore/free_benchmark/perturbation/no_change.py +27 -12
  109. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +44 -27
  110. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +48 -33
  111. msprobe/mindspore/grad_probe/global_context.py +100 -91
  112. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -231
  113. msprobe/mindspore/grad_probe/grad_monitor.py +27 -27
  114. msprobe/mindspore/grad_probe/grad_stat_csv.py +131 -131
  115. msprobe/mindspore/grad_probe/hook.py +94 -92
  116. msprobe/mindspore/grad_probe/utils.py +29 -28
  117. msprobe/mindspore/ms_config.py +128 -126
  118. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +60 -45
  119. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +49 -34
  120. msprobe/mindspore/runtime.py +4 -4
  121. msprobe/mindspore/service.py +297 -354
  122. msprobe/mindspore/task_handler_factory.py +24 -24
  123. msprobe/msprobe.py +105 -107
  124. msprobe/pytorch/__init__.py +23 -4
  125. msprobe/pytorch/api_accuracy_checker/common/config.py +70 -55
  126. msprobe/pytorch/api_accuracy_checker/common/utils.py +246 -165
  127. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +230 -213
  128. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +632 -581
  129. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  130. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  131. msprobe/pytorch/api_accuracy_checker/compare/compare.py +416 -381
  132. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +90 -73
  133. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +265 -244
  134. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -10
  135. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +370 -332
  136. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +221 -199
  137. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +150 -134
  138. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +518 -581
  139. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +213 -74
  140. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  141. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +218 -202
  142. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +370 -324
  143. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +227 -204
  144. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/dump_dispatch.py +110 -0
  145. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +244 -218
  146. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/torch_ops_config.yaml +63 -0
  147. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +44 -0
  148. msprobe/pytorch/bench_functions/__init__.py +30 -15
  149. msprobe/pytorch/bench_functions/apply_adam_w.py +43 -28
  150. msprobe/pytorch/bench_functions/confusion_transpose.py +34 -19
  151. msprobe/pytorch/bench_functions/fast_gelu.py +70 -55
  152. msprobe/pytorch/bench_functions/layer_norm_eval.py +21 -6
  153. msprobe/pytorch/bench_functions/linear.py +27 -12
  154. msprobe/pytorch/bench_functions/matmul_backward.py +63 -48
  155. msprobe/pytorch/bench_functions/npu_fusion_attention.py +538 -421
  156. msprobe/pytorch/bench_functions/rms_norm.py +30 -15
  157. msprobe/pytorch/bench_functions/rotary_mul.py +71 -52
  158. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +41 -26
  159. msprobe/pytorch/bench_functions/swiglu.py +70 -55
  160. msprobe/pytorch/common/__init__.py +17 -2
  161. msprobe/pytorch/common/compare_script.template +14 -14
  162. msprobe/pytorch/common/log.py +33 -32
  163. msprobe/pytorch/common/parse_json.py +54 -39
  164. msprobe/pytorch/common/utils.py +310 -300
  165. msprobe/pytorch/compare/distributed_compare.py +66 -66
  166. msprobe/pytorch/compare/mapping.yaml +607 -607
  167. msprobe/pytorch/compare/match.py +49 -33
  168. msprobe/pytorch/compare/pt_compare.py +82 -40
  169. msprobe/pytorch/debugger/debugger_config.py +108 -95
  170. msprobe/pytorch/debugger/precision_debugger.py +173 -125
  171. msprobe/pytorch/free_benchmark/__init__.py +23 -8
  172. msprobe/pytorch/free_benchmark/common/constant.py +70 -70
  173. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  174. msprobe/pytorch/free_benchmark/common/enums.py +65 -37
  175. msprobe/pytorch/free_benchmark/common/params.py +144 -129
  176. msprobe/pytorch/free_benchmark/common/utils.py +118 -102
  177. msprobe/pytorch/free_benchmark/compare/grad_saver.py +200 -179
  178. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +119 -104
  179. msprobe/pytorch/free_benchmark/main.py +120 -105
  180. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +28 -13
  181. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +56 -41
  182. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +105 -90
  183. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +119 -104
  184. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +87 -63
  185. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +83 -68
  186. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +43 -28
  187. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +60 -45
  188. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +34 -19
  189. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +256 -217
  190. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +54 -39
  191. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +38 -23
  192. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +45 -30
  193. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +185 -170
  194. msprobe/pytorch/function_factory.py +91 -75
  195. msprobe/pytorch/functional/module_dump.py +84 -0
  196. msprobe/pytorch/grad_probe/grad_monitor.py +91 -90
  197. msprobe/pytorch/grad_probe/grad_stat_csv.py +128 -128
  198. msprobe/pytorch/hook_module/__init__.py +16 -1
  199. msprobe/pytorch/hook_module/api_registry.py +166 -161
  200. msprobe/pytorch/hook_module/hook_module.py +118 -120
  201. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1877
  202. msprobe/pytorch/hook_module/utils.py +28 -29
  203. msprobe/pytorch/hook_module/wrap_aten.py +111 -110
  204. msprobe/pytorch/hook_module/wrap_distributed.py +77 -78
  205. msprobe/pytorch/hook_module/wrap_functional.py +104 -105
  206. msprobe/pytorch/hook_module/wrap_npu_custom.py +85 -84
  207. msprobe/pytorch/hook_module/wrap_tensor.py +69 -71
  208. msprobe/pytorch/hook_module/wrap_torch.py +84 -86
  209. msprobe/pytorch/hook_module/wrap_vf.py +60 -62
  210. msprobe/pytorch/module_processer.py +153 -138
  211. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  212. msprobe/pytorch/online_dispatch/compare.py +235 -236
  213. msprobe/pytorch/online_dispatch/dispatch.py +271 -271
  214. msprobe/pytorch/online_dispatch/dump_compare.py +155 -156
  215. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  216. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +57 -49
  217. msprobe/pytorch/online_dispatch/utils.py +127 -146
  218. msprobe/pytorch/parse.py +19 -4
  219. msprobe/pytorch/parse_tool/cli.py +31 -32
  220. msprobe/pytorch/parse_tool/lib/compare.py +259 -271
  221. msprobe/pytorch/parse_tool/lib/config.py +52 -52
  222. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  223. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  224. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  225. msprobe/pytorch/parse_tool/lib/parse_tool.py +161 -158
  226. msprobe/pytorch/parse_tool/lib/utils.py +320 -321
  227. msprobe/pytorch/parse_tool/lib/visualization.py +85 -91
  228. msprobe/pytorch/pt_config.py +317 -187
  229. msprobe/pytorch/service.py +311 -252
  230. mindstudio_probe-1.0.3.dist-info/RECORD +0 -272
  231. msprobe/config/README.md +0 -539
  232. msprobe/mindspore/doc/compare.md +0 -58
  233. msprobe/mindspore/doc/dump.md +0 -217
  234. msprobe/mindspore/dump/hook_cell/wrap_functional.py +0 -91
  235. msprobe/mindspore/dump/hook_cell/wrap_tensor.py +0 -63
  236. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +0 -10
  237. msprobe/pytorch/doc/FAQ.md +0 -193
  238. msprobe/pytorch/doc/api_accuracy_checker.md +0 -313
  239. msprobe/pytorch/doc/api_accuracy_checker_online.md +0 -187
  240. msprobe/pytorch/doc/dump.md +0 -260
  241. msprobe/pytorch/doc/msprobe/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  242. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -240
  243. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  244. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  245. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  246. msprobe/pytorch/doc//321/206/320/247/320/260/321/206/320/260/320/227/321/206/320/255/320/226/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/205/320/254/342/225/221/321/206/320/251/320/277/321/211/320/272/320/234/321/210/320/277/320/221/321/205/320/242/320/234/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -151
  247. msprobe/pytorch/functional/data_processor.py +0 -0
  248. msprobe/pytorch/functional/dump_module.py +0 -39
  249. {mindstudio_probe-1.0.3.dist-info → mindstudio_probe-1.1.0.dist-info}/top_level.txt +0 -0
  250. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  251. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  252. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  253. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  254. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  255. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  256. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  257. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  258. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  259. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  260. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  261. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  262. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  263. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  264. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  265. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  266. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  267. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  268. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  269. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  270. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  271. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  272. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  273. /msprobe/{doc/grad_probe/img/image-1.png → docs/img/grad_probe_image-1.png} +0 -0
  274. /msprobe/{doc/grad_probe/img/image-2.png → docs/img/grad_probe_image-2.png} +0 -0
  275. /msprobe/{doc/grad_probe/img/image-3.png → docs/img/grad_probe_image-3.png} +0 -0
  276. /msprobe/{doc/grad_probe/img/image-4.png → docs/img/grad_probe_image-4.png} +0 -0
  277. /msprobe/{doc/grad_probe/img/image.png → docs/img/grad_probe_image.png} +0 -0
  278. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,317 +1,364 @@
1
- import csv
2
- import glob
3
- import os
4
- import sys
5
- import copy
6
-
7
- import numpy as np
8
- import pandas as pd
9
- from msprobe.core.common.const import CompareConst, GraphMode
10
- from msprobe.core.common.exceptions import FileCheckException
11
- from msprobe.core.common.file_check import create_directory
12
- from msprobe.core.common.log import logger
13
- from msprobe.core.common.utils import add_time_with_xlsx, CompareException
14
- from msprobe.core.compare.multiprocessing_compute import _ms_graph_handle_multi_process, check_accuracy
15
- from msprobe.core.compare.npy_compare import npy_data_check, statistics_data_check, reshape_value, compare_ops_apply
16
- from msprobe.core.common.file_check import FileOpen
17
-
18
- class row_data:
19
- def __init__(self, mode):
20
- self.basic_data = copy.deepcopy(CompareConst.MS_GRAPH_BASE)
21
- self.npy_data = copy.deepcopy(CompareConst.MS_GRAPH_NPY)
22
- self.statistic_data = copy.deepcopy(CompareConst.MS_GRAPH_STATISTIC)
23
- if mode == GraphMode.NPY_MODE:
24
- self.data = {**self.basic_data, **self.npy_data}
25
- else:
26
- self.data = {**self.basic_data, **self.statistic_data}
27
-
28
- def __call__(self):
29
- return self.data
30
-
31
-
32
- def generate_step(npu_path, rank_id):
33
- step_set = set()
34
- rank_path = os.path.join(npu_path, f"rank_{rank_id}")
35
- if not os.path.exists(rank_path):
36
- return []
37
- for path in os.listdir(rank_path):
38
- if path not in ["execution_order", "graphs"]:
39
- data_path = os.path.join(rank_path, path)
40
- for graph_path in os.listdir(data_path):
41
- step_set.update([int(i) for i in os.listdir(os.path.join(data_path, graph_path))])
42
- return sorted(step_set)
43
-
44
-
45
- def generate_path_by_rank_step(base_path, rank_id, step_id):
46
- path_with_rank_id = os.path.join(base_path, f"rank_{rank_id}")
47
- if not os.path.exists(path_with_rank_id):
48
- return ''
49
- for path in os.listdir(path_with_rank_id):
50
- if path not in ["execution_order", "graphs"]:
51
-
52
- return os.path.join(path_with_rank_id, path, "*", str(step_id))
53
- logger.error(f"Data_path {path_with_rank_id} is not exist.")
54
- return ''
55
-
56
-
57
- def statistic_data_read(statistic_file_list, statistic_file_path):
58
- data_list = []
59
- statistic_data_list = []
60
- for statistic_file in statistic_file_list:
61
- with open(statistic_file, "r") as f:
62
- csv_reader = csv.reader(f, delimiter=",")
63
- header = next(csv_reader)
64
- header_index = {'Data Type': None, 'Shape': None, 'Max Value': None, 'Min Value': None,
65
- 'Avg Value': None, 'L2Norm Value': None}
66
- for key in header_index.keys():
67
- for index, value in enumerate(header):
68
- if key == value:
69
- header_index[key] = index
70
- for key in header_index.keys():
71
- if header_index[key] is None:
72
- logger.error(f"Data_path {statistic_file_path} has no key {key}")
73
- raise FileCheckException(f"Data_path {statistic_file_path} has no key {key}")
74
- statistic_data_list.extend([row for row in csv_reader])
75
-
76
- for data in statistic_data_list:
77
- compare_key = f"{data[1]}.{data[2]}.{data[3]}.{data[5]}"
78
- timestamp = int(data[4])
79
- data_list.append(
80
- [statistic_file_path, compare_key, timestamp, data[header_index['Data Type']],
81
- data[header_index['Shape']], data[header_index['Max Value']], data[header_index['Min Value']],
82
- data[header_index['Avg Value']], data[header_index['L2Norm Value']]])
83
- return data_list
84
-
85
-
86
- def generate_data_name(data_path):
87
- data_list = []
88
-
89
- mapping_path = os.path.join(data_path, "mapping.csv")
90
- statistic_path = os.path.join(data_path, "statistic.csv")
91
- npy_path = os.path.join(data_path, "*.npy")
92
-
93
- mapping_file_list = glob.glob(mapping_path)
94
- statistic_file_list = glob.glob(statistic_path)
95
- npy_file_list = glob.glob(npy_path)
96
-
97
- mapping_exist = bool(mapping_file_list)
98
- statistic_exist = bool(statistic_file_list)
99
- npy_exist = bool(npy_file_list)
100
-
101
- mapping_dict = []
102
- if mapping_exist:
103
- for mapping_file in mapping_file_list:
104
- with FileOpen(mapping_file, "r") as f:
105
- csv_reader = csv.reader(f, delimiter=",")
106
- header = next(csv_reader)
107
- for row in csv_reader:
108
- mapping_dict[row[0]] = row[1]
109
-
110
- if npy_exist:
111
- for data in npy_file_list:
112
- if data in mapping_dict:
113
- split_list = mapping_dict[data].split(".")
114
- else:
115
- split_list = data.split(".")
116
- compare_key = f"{split_list[1]}.{split_list[2]}.{split_list[3]}.{split_list[5]}.{split_list[6]}"
117
- timestamp = int(split_list[4])
118
-
119
- data_list.append([os.path.join(data_path, data), compare_key, timestamp])
120
- elif statistic_exist:
121
- data_list = statistic_data_read(statistic_file_list, os.path.join(data_path, statistic_path))
122
-
123
- if npy_exist:
124
- mode = GraphMode.NPY_MODE
125
- elif statistic_exist:
126
- mode = GraphMode.STATISTIC_MODE
127
- else:
128
- mode = GraphMode.ERROR_MODE
129
- logger.error(f"Error mode.")
130
- return mode, data_list
131
-
132
-
133
- def read_npy_data(data_path):
134
- try:
135
- data_value = np.load(data_path)
136
- if data_value.dtype == np.float16:
137
- data_value = data_value.astype(np.float32)
138
- except FileNotFoundError as e:
139
- data_value = None
140
- except EOFError:
141
- data_value = None
142
- return data_value
143
-
144
-
145
- class GraphMSComparator:
146
- def __init__(self, input_param, output_path):
147
- self.output_path = output_path
148
- self.base_npu_path = input_param.get('npu_path', None)
149
- self.base_bench_path = input_param.get('bench_path', None)
150
- self.rank_list = input_param.get('rank_id', [])
151
- self.step_list = input_param.get('step_id', [])
152
-
153
- @staticmethod
154
- def compare_ops(compare_result_db, mode):
155
-
156
- def npy_mode_compute(row):
157
- result_dict = row_data(GraphMode.NPY_MODE)()
158
-
159
- def process_npy_file(file_path, name_prefix, result):
160
- if os.path.exists(file_path):
161
- data = read_npy_data(file_path)
162
- result[f'{name_prefix} Name'] = file_path
163
- result[f'{name_prefix} Dtype'] = data.dtype
164
- result[f'{name_prefix} Tensor Shape'] = data.shape
165
- result[f'{name_prefix} max'] = np.max(data)
166
- result[f'{name_prefix} min'] = np.min(data)
167
- result[f'{name_prefix} mean'] = np.mean(data)
168
- result[f'{name_prefix} l2norm'] = np.linalg.norm(data)
169
- return data
170
- return ""
171
-
172
- n_value = process_npy_file(row[CompareConst.NPU_NAME], 'NPU', result_dict)
173
- b_value = process_npy_file(row[CompareConst.BENCH_NAME], 'Bench', result_dict)
174
-
175
- error_flag, error_message = npy_data_check(n_value, b_value)
176
- result_dict[CompareConst.ERROR_MESSAGE] = error_message
177
-
178
- if not error_flag:
179
- n_value, b_value = reshape_value(n_value, b_value)
180
- result_list, err_msg = compare_ops_apply(n_value, b_value, False, "")
181
- result_dict[CompareConst.COSINE] = result_list[0]
182
- result_dict[CompareConst.MAX_ABS_ERR] = result_list[1]
183
- result_dict[CompareConst.MAX_RELATIVE_ERR] = result_list[2]
184
- result_dict[CompareConst.ONE_THOUSANDTH_ERR_RATIO] = result_list[3]
185
- result_dict[CompareConst.FIVE_THOUSANDTHS_ERR_RATIO] = result_list[4]
186
- result_dict[CompareConst.ACCURACY] = check_accuracy(result_list[0], result_list[1])
187
- result_dict[CompareConst.ERROR_MESSAGE] = err_msg
188
-
189
- return pd.Series(result_dict)
190
-
191
- def statistic_mode_compute(row):
192
- result_dict = row_data('STATISTIC')()
193
-
194
- def update_result_dict(result, rows, prefix):
195
- result[f'{prefix} Name'] = rows[f'{prefix} Name']
196
- result[f'{prefix} Dtype'] = rows[f'{prefix} Dtype']
197
- result[f'{prefix} Tensor Shape'] = rows[f'{prefix} Tensor Shape']
198
- result[f'{prefix} max'] = np.float32(rows[f'{prefix} max'])
199
- result[f'{prefix} min'] = np.float32(rows[f'{prefix} min'])
200
- result[f'{prefix} mean'] = np.float32(rows[f'{prefix} mean'])
201
- result[f'{prefix} l2norm'] = np.float32(rows[f'{prefix} l2norm'])
202
-
203
- # 使用示例
204
- update_result_dict(result_dict, row, 'NPU')
205
- update_result_dict(result_dict, row, 'Bench')
206
- error_flag, error_message = statistics_data_check(result_dict)
207
- result_dict[CompareConst.ERROR_MESSAGE] += error_message
208
- if not error_flag:
209
- result_dict[CompareConst.MAX_DIFF] = np.abs(
210
- result_dict[CompareConst.NPU_MAX] - result_dict[CompareConst.BENCH_MAX])
211
- result_dict[CompareConst.MIN_DIFF] = np.abs(
212
- result_dict[CompareConst.NPU_MIN] - result_dict[CompareConst.BENCH_MIN])
213
- result_dict[CompareConst.MEAN_DIFF] = np.abs(
214
- result_dict[CompareConst.NPU_MEAN] - result_dict[CompareConst.BENCH_MEAN])
215
- result_dict[CompareConst.NORM_DIFF] = np.abs(
216
- result_dict[CompareConst.NPU_NORM] - result_dict[CompareConst.BENCH_NORM])
217
- result_dict[CompareConst.MAX_RELATIVE_ERR] = result_dict[CompareConst.MAX_DIFF] / result_dict[
218
- CompareConst.BENCH_MAX] if result_dict[CompareConst.BENCH_MAX] > 0 else 0
219
- result_dict[CompareConst.MAX_RELATIVE_ERR] = str(result_dict[CompareConst.MAX_RELATIVE_ERR] * 100) + "%"
220
- result_dict[CompareConst.MIN_RELATIVE_ERR] = result_dict[CompareConst.MIN_DIFF] / result_dict[
221
- CompareConst.BENCH_MIN] if result_dict[CompareConst.BENCH_MIN] > 0 else 0
222
- result_dict[CompareConst.MIN_RELATIVE_ERR] = str(result_dict[CompareConst.MIN_RELATIVE_ERR] * 100) + "%"
223
- result_dict[CompareConst.MEAN_RELATIVE_ERR] = result_dict[CompareConst.MEAN_DIFF] / result_dict[
224
- CompareConst.BENCH_MEAN] if result_dict[CompareConst.BENCH_MEAN] > 0 else 0
225
- result_dict[CompareConst.MEAN_RELATIVE_ERR] = str(
226
- result_dict[CompareConst.MEAN_RELATIVE_ERR] * 100) + "%"
227
- result_dict[CompareConst.NORM_RELATIVE_ERR] = result_dict[CompareConst.NORM_DIFF] / result_dict[
228
- CompareConst.BENCH_NORM] if result_dict[CompareConst.BENCH_NORM] > 0 else 0
229
- result_dict[CompareConst.NORM_RELATIVE_ERR] = str(
230
- result_dict[CompareConst.NORM_RELATIVE_ERR] * 100) + "%"
231
- magnitude_diff = result_dict[CompareConst.MAX_DIFF] / (
232
- max(result_dict[CompareConst.NPU_MAX], result_dict[CompareConst.BENCH_MAX]) + 1e-10)
233
- if magnitude_diff > CompareConst.MAGNITUDE:
234
- result_dict[CompareConst.ACCURACY] = 'No'
235
- else:
236
- result_dict[CompareConst.ACCURACY] = 'Yes'
237
-
238
- return pd.Series(result_dict)
239
-
240
- if mode == GraphMode.NPY_MODE:
241
- compare_result_db = compare_result_db.apply(npy_mode_compute, axis=1)
242
- else:
243
- compare_result_db = compare_result_db.apply(statistic_mode_compute, axis=1)
244
- return compare_result_db
245
-
246
- def compare_core(self):
247
- logger.info("Please check whether the input data belongs to you. If not, there may be security risks.")
248
-
249
- # split by rank and step
250
- if not self.rank_list:
251
- self.rank_list = [int(i.split("_")[-1]) for i in os.listdir(self.base_npu_path)]
252
- for rank_id in self.rank_list:
253
- if not self.step_list:
254
- self.step_list = generate_step(self.base_npu_path, rank_id)
255
- for step_id in self.step_list:
256
- compare_result_df, mode = self.compare_process(rank_id, step_id)
257
- if isinstance(compare_result_df, list):
258
- is_empty = not compare_result_df
259
- elif isinstance(compare_result_df, pd.DataFrame):
260
- is_empty = compare_result_df.empty
261
- else:
262
- is_empty = True
263
- if is_empty or not mode:
264
- continue
265
- compare_result_df = self._do_multi_process(compare_result_df, mode)
266
- compare_result_name = add_time_with_xlsx(f"compare_result_{str(rank_id)}_{str(step_id)}")
267
- compare_result_path = os.path.join(os.path.realpath(self.output_path), f"{compare_result_name}")
268
- compare_result_df.to_excel(compare_result_path, index=False)
269
- logger.info(f"Compare rank: {rank_id} step: {step_id} finish. Compare result: {compare_result_path}.")
270
-
271
- def compare_process(self, rank_id, step_id):
272
- # generate data_path
273
- npu_data_path = generate_path_by_rank_step(self.base_npu_path, rank_id, step_id)
274
- bench_data_path = generate_path_by_rank_step(self.base_bench_path, rank_id, step_id)
275
- if not npu_data_path or not bench_data_path:
276
- return [], ''
277
-
278
- # generate file name
279
- npu_mode, npu_data_list = generate_data_name(npu_data_path)
280
- match_mode, match_data_list = generate_data_name(bench_data_path)
281
-
282
- if npu_mode == "ERROR_MODE" or match_mode == "ERROR_MODE":
283
- logger.warning(f"Data_path {npu_data_path} or {bench_data_path} is not exist.")
284
- return [], ''
285
- if npu_mode != match_mode:
286
- logger.error(f"NPU mode {npu_mode} not equal to MATCH mode {match_mode}.")
287
- return [], ''
288
-
289
- if npu_mode == 'NPY_MODE':
290
- npu_data_df = pd.DataFrame(npu_data_list, columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp'])
291
- bench_data_df = pd.DataFrame(match_data_list, columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp'])
292
- else:
293
- npu_data_df = pd.DataFrame(npu_data_list,
294
- columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp', CompareConst.NPU_DTYPE, CompareConst.NPU_SHAPE,
295
- CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN, CompareConst.NPU_NORM])
296
- bench_data_df = pd.DataFrame(match_data_list,
297
- columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp', CompareConst.BENCH_DTYPE,
298
- CompareConst.BENCH_SHAPE, CompareConst.BENCH_MAX, CompareConst.BENCH_MIN, CompareConst.BENCH_MEAN,
299
- CompareConst.BENCH_NORM])
300
-
301
- npu_data_df['Local Index'] = npu_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
302
- bench_data_df['Local Index'] = bench_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
303
-
304
- compare_result_df = pd.merge(npu_data_df, bench_data_df, on=['Compare Key', 'Local Index'], how='outer')
305
-
306
- compare_result_df[CompareConst.NPU_NAME] = compare_result_df[CompareConst.NPU_NAME].fillna('')
307
- compare_result_df[CompareConst.BENCH_NAME] = compare_result_df[CompareConst.BENCH_NAME].fillna('')
308
-
309
- return compare_result_df, npu_mode
310
-
311
- def _do_multi_process(self, result_df, mode):
312
- try:
313
- result_df = _ms_graph_handle_multi_process(self.compare_ops, result_df, mode)
314
- except ValueError as e:
315
- logger.error('result dataframe is not found.')
316
- raise CompareException(CompareException.INVALID_DATA_ERROR) from e
317
- return result_df
1
+ import copy
2
+ import csv
3
+ import glob
4
+ import os
5
+
6
+ import numpy as np
7
+ import pandas as pd
8
+ from msprobe.core.common.const import CompareConst, GraphMode, Const, FileCheckConst
9
+ from msprobe.core.common.file_utils import FileOpen, check_path_before_create, change_mode, load_npy
10
+ from msprobe.core.common.log import logger
11
+ from msprobe.core.common.utils import add_time_with_xlsx, CompareException
12
+ from msprobe.core.compare.multiprocessing_compute import _ms_graph_handle_multi_process, check_accuracy
13
+ from msprobe.core.compare.npy_compare import npy_data_check, statistics_data_check, reshape_value, compare_ops_apply
14
+ from msprobe.mindspore.common.utils import convert_to_int, list_lowest_level_directories
15
+
16
+
17
+ class row_data:
18
+ def __init__(self, mode):
19
+ self.basic_data = copy.deepcopy(CompareConst.MS_GRAPH_BASE)
20
+ self.npy_data = copy.deepcopy(CompareConst.MS_GRAPH_NPY)
21
+ self.statistic_data = copy.deepcopy(CompareConst.MS_GRAPH_STATISTIC)
22
+ if mode == GraphMode.NPY_MODE:
23
+ self.data = {**self.basic_data, **self.npy_data}
24
+ else:
25
+ self.data = {**self.basic_data, **self.statistic_data}
26
+
27
+ def __call__(self):
28
+ return self.data
29
+
30
+
31
+ def npy_data_read(data_path, npy_file_list, mapping_dict):
32
+ data_list = []
33
+ for data in npy_file_list:
34
+ if data in mapping_dict:
35
+ split_list = mapping_dict[data].split(Const.SEP)
36
+ else:
37
+ split_list = data.split(Const.SEP)
38
+ if len(split_list) < 7:
39
+ continue
40
+ compare_key = f"{split_list[1]}.{split_list[2]}.{split_list[3]}.{split_list[5]}.{split_list[6]}"
41
+ timestamp = convert_to_int(split_list[4])
42
+
43
+ data_list.append([os.path.join(data_path, data), compare_key, timestamp])
44
+ return data_list
45
+
46
+
47
+ def statistic_data_read(statistic_file_list, statistic_file_path):
48
+ data_list = []
49
+ statistic_data_list = []
50
+ header_index = {
51
+ 'Data Type': None, 'Shape': None, 'Max Value': None,
52
+ 'Min Value': None,'Avg Value': None, 'L2Norm Value': None
53
+ }
54
+ for statistic_file in statistic_file_list:
55
+ with FileOpen(statistic_file, "r") as f:
56
+ csv_reader = csv.reader(f, delimiter=",")
57
+ header = next(csv_reader)
58
+ for key in header_index.keys():
59
+ for index, value in enumerate(header):
60
+ if key == value:
61
+ header_index[key] = index
62
+ statistic_data_list.extend([row for row in csv_reader])
63
+
64
+ for key in header_index.keys():
65
+ if header_index[key] is None:
66
+ logger.warning(f"Data_path {statistic_file_path} has no key {key}.")
67
+
68
+ for data in statistic_data_list:
69
+ compare_key = f"{data[1]}.{data[2]}.{data[3]}.{data[5]}"
70
+ op_name = f"{compare_key} {statistic_file_path}"
71
+ timestamp = int(data[4])
72
+ result_data = [op_name, compare_key, timestamp]
73
+ for key in header_index.keys():
74
+ if header_index[key] is None:
75
+ result_data.append(np.nan)
76
+ else:
77
+ result_data.append(data[header_index[key]])
78
+ data_list.append(result_data)
79
+ return data_list
80
+
81
+
82
+ def generate_data_name(data_path):
83
+ data_list = []
84
+
85
+ mapping_path = os.path.join(data_path, "mapping.csv")
86
+ statistic_path = os.path.join(data_path, "statistic.csv")
87
+ npy_path = os.path.join(data_path, "*.npy")
88
+
89
+ mapping_file_list = glob.glob(mapping_path)
90
+ statistic_file_list = glob.glob(statistic_path)
91
+ npy_file_list = glob.glob(npy_path)
92
+
93
+ mapping_exist = bool(mapping_file_list)
94
+ statistic_exist = bool(statistic_file_list)
95
+ npy_exist = bool(npy_file_list)
96
+
97
+ mapping_dict = {}
98
+ if mapping_exist:
99
+ for mapping_file in mapping_file_list:
100
+ with FileOpen(mapping_file, "r") as f:
101
+ csv_reader = csv.reader(f, delimiter=",")
102
+ header = next(csv_reader)
103
+ for row in csv_reader:
104
+ mapping_dict[row[0]] = row[1]
105
+
106
+ if npy_exist:
107
+ data_list = npy_data_read(data_path, npy_file_list, mapping_dict)
108
+
109
+ elif statistic_exist:
110
+ data_list = statistic_data_read(statistic_file_list, os.path.join(data_path, statistic_path))
111
+
112
+ if npy_exist:
113
+ mode = GraphMode.NPY_MODE
114
+ elif statistic_exist:
115
+ mode = GraphMode.STATISTIC_MODE
116
+ else:
117
+ mode = GraphMode.ERROR_MODE
118
+ logger.error(f"Error mode.")
119
+ return mode, data_list
120
+
121
+
122
+ class GraphMSComparator:
123
+ def __init__(self, input_param, output_path):
124
+ self.output_path = output_path
125
+ self.base_npu_path = input_param.get('npu_path', None)
126
+ self.base_bench_path = input_param.get('bench_path', None)
127
+ self.rank_list = [convert_to_int(rank_id) for rank_id in input_param.get('rank_id', [])]
128
+ self.step_list = [convert_to_int(step_id) for step_id in input_param.get('step_id', [])]
129
+ # split by rank and step, generate rank step path
130
+ self.npu_rank_step_dict = self.generate_rank_step_path(self.base_npu_path)
131
+ self.bench_rank_step_dict = self.generate_rank_step_path(self.base_bench_path)
132
+ self.common_rank_step = sorted(
133
+ set(self.npu_rank_step_dict.keys()).intersection(self.bench_rank_step_dict.keys()))
134
+
135
+ @staticmethod
136
+ def compare_ops(compare_result_db, mode):
137
+
138
+ def npy_mode_compute(row):
139
+ result_dict = row_data(GraphMode.NPY_MODE)()
140
+
141
+ def process_npy_file(file_path, name_prefix, result):
142
+ if os.path.exists(file_path):
143
+ data = load_npy(file_path)
144
+ result[f'{name_prefix} Name'] = file_path
145
+ result[f'{name_prefix} Dtype'] = data.dtype
146
+ result[f'{name_prefix} Tensor Shape'] = data.shape
147
+ result[f'{name_prefix} max'] = np.max(data)
148
+ result[f'{name_prefix} min'] = np.min(data)
149
+ result[f'{name_prefix} mean'] = np.mean(data)
150
+ result[f'{name_prefix} l2norm'] = np.linalg.norm(data)
151
+ return data
152
+ return ""
153
+
154
+ n_value = process_npy_file(row[CompareConst.NPU_NAME], 'NPU', result_dict)
155
+ b_value = process_npy_file(row[CompareConst.BENCH_NAME], 'Bench', result_dict)
156
+
157
+ error_flag, error_message = npy_data_check(n_value, b_value)
158
+ result_dict[CompareConst.ERROR_MESSAGE] = error_message
159
+
160
+ if not error_flag:
161
+ n_value, b_value = reshape_value(n_value, b_value)
162
+ result_list, err_msg = compare_ops_apply(n_value, b_value, False, "")
163
+ result_dict[CompareConst.COSINE] = result_list[0]
164
+ result_dict[CompareConst.MAX_ABS_ERR] = result_list[1]
165
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = result_list[2]
166
+ result_dict[CompareConst.ONE_THOUSANDTH_ERR_RATIO] = result_list[3]
167
+ result_dict[CompareConst.FIVE_THOUSANDTHS_ERR_RATIO] = result_list[4]
168
+ result_dict[CompareConst.ACCURACY] = check_accuracy(result_list[0], result_list[1])
169
+ result_dict[CompareConst.ERROR_MESSAGE] = err_msg
170
+
171
+ return pd.Series(result_dict)
172
+
173
+ def statistic_mode_compute(row):
174
+ result_dict = row_data('STATISTIC')()
175
+
176
+ def update_result_dict(result, rows, prefix):
177
+ result[f'{prefix} Name'] = rows[f'{prefix} Name']
178
+ result[f'{prefix} Dtype'] = rows[f'{prefix} Dtype']
179
+ result[f'{prefix} Tensor Shape'] = rows[f'{prefix} Tensor Shape']
180
+ result[f'{prefix} max'] = np.float32(rows[f'{prefix} max'])
181
+ result[f'{prefix} min'] = np.float32(rows[f'{prefix} min'])
182
+ result[f'{prefix} mean'] = np.float32(rows[f'{prefix} mean'])
183
+ result[f'{prefix} l2norm'] = np.float32(rows[f'{prefix} l2norm'])
184
+
185
+ # 使用示例
186
+ update_result_dict(result_dict, row, 'NPU')
187
+ update_result_dict(result_dict, row, 'Bench')
188
+ error_flag, error_message = statistics_data_check(result_dict)
189
+ result_dict[CompareConst.ERROR_MESSAGE] += error_message
190
+ if not error_flag:
191
+ result_dict[CompareConst.MAX_DIFF] = np.abs(
192
+ result_dict[CompareConst.NPU_MAX] - result_dict[CompareConst.BENCH_MAX])
193
+ result_dict[CompareConst.MIN_DIFF] = np.abs(
194
+ result_dict[CompareConst.NPU_MIN] - result_dict[CompareConst.BENCH_MIN])
195
+ result_dict[CompareConst.MEAN_DIFF] = np.abs(
196
+ result_dict[CompareConst.NPU_MEAN] - result_dict[CompareConst.BENCH_MEAN])
197
+ result_dict[CompareConst.NORM_DIFF] = np.abs(
198
+ result_dict[CompareConst.NPU_NORM] - result_dict[CompareConst.BENCH_NORM])
199
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = result_dict[CompareConst.MAX_DIFF] / result_dict[
200
+ CompareConst.BENCH_MAX] if result_dict[CompareConst.BENCH_MAX] > 0 else 0
201
+ result_dict[CompareConst.MAX_RELATIVE_ERR] = str(result_dict[CompareConst.MAX_RELATIVE_ERR] * 100) + "%"
202
+ result_dict[CompareConst.MIN_RELATIVE_ERR] = result_dict[CompareConst.MIN_DIFF] / result_dict[
203
+ CompareConst.BENCH_MIN] if result_dict[CompareConst.BENCH_MIN] > 0 else 0
204
+ result_dict[CompareConst.MIN_RELATIVE_ERR] = str(result_dict[CompareConst.MIN_RELATIVE_ERR] * 100) + "%"
205
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] = result_dict[CompareConst.MEAN_DIFF] / result_dict[
206
+ CompareConst.BENCH_MEAN] if result_dict[CompareConst.BENCH_MEAN] > 0 else 0
207
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] = str(
208
+ result_dict[CompareConst.MEAN_RELATIVE_ERR] * 100) + "%"
209
+ result_dict[CompareConst.NORM_RELATIVE_ERR] = result_dict[CompareConst.NORM_DIFF] / result_dict[
210
+ CompareConst.BENCH_NORM] if result_dict[CompareConst.BENCH_NORM] > 0 else 0
211
+ result_dict[CompareConst.NORM_RELATIVE_ERR] = str(
212
+ result_dict[CompareConst.NORM_RELATIVE_ERR] * 100) + "%"
213
+ magnitude_diff = result_dict[CompareConst.MAX_DIFF] / (
214
+ max(result_dict[CompareConst.NPU_MAX], result_dict[CompareConst.BENCH_MAX]) + 1e-10)
215
+ if magnitude_diff > CompareConst.MAGNITUDE:
216
+ result_dict[CompareConst.ACCURACY] = 'No'
217
+ else:
218
+ result_dict[CompareConst.ACCURACY] = 'Yes'
219
+
220
+ return pd.Series(result_dict)
221
+
222
+ if mode == GraphMode.NPY_MODE:
223
+ compare_result_db = compare_result_db.apply(npy_mode_compute, axis=1)
224
+ else:
225
+ compare_result_db = compare_result_db.apply(statistic_mode_compute, axis=1)
226
+ return compare_result_db
227
+
228
+ def compare_core(self):
229
+ logger.info("Please check whether the input data belongs to you. If not, there may be security risks.")
230
+
231
+ for rank_id, step_id in self.common_rank_step:
232
+ compare_result_df, mode = self.compare_process(rank_id, step_id)
233
+ if isinstance(compare_result_df, list):
234
+ is_empty = not compare_result_df
235
+ elif isinstance(compare_result_df, pd.DataFrame):
236
+ is_empty = compare_result_df.empty
237
+ else:
238
+ is_empty = True
239
+ if is_empty or not mode:
240
+ continue
241
+ compare_result_df = self._do_multi_process(compare_result_df, mode)
242
+ compare_result_name = add_time_with_xlsx(f"compare_result_{str(rank_id)}_{str(step_id)}")
243
+ compare_result_path = os.path.join(os.path.realpath(self.output_path), f"{compare_result_name}")
244
+ check_path_before_create(compare_result_path)
245
+ self.to_excel(compare_result_df, compare_result_path)
246
+ logger.info(f"Compare rank: {rank_id} step: {step_id} finish. Compare result: {compare_result_path}.")
247
+
248
+ def to_excel(self, compare_result_df: pd.DataFrame, compare_result_path: str, slice_num=0, need_slice=False) -> int:
249
+ size = len(compare_result_df)
250
+ # sheet size cannot be larger than 1048576
251
+ if size < CompareConst.MAX_EXCEL_LENGTH:
252
+ compare_result_path = compare_result_path.replace('.xlsx', f'_slice_{slice_num}.xlsx') if need_slice else compare_result_path
253
+ compare_result_df.to_excel(compare_result_path, index=False)
254
+ change_mode(compare_result_path, FileCheckConst.DATA_FILE_AUTHORITY)
255
+ return slice_num + 1
256
+ else:
257
+ slice_num = self.to_excel(compare_result_df.iloc[0: size//2], compare_result_path, slice_num, True)
258
+ return self.to_excel(compare_result_df.iloc[size//2:], compare_result_path, slice_num, True)
259
+
260
+ def compare_process(self, rank_id, step_id):
261
+ # generate data_path
262
+ npu_data_path_list = self.npu_rank_step_dict.get((rank_id, step_id))
263
+ bench_data_path_list = self.bench_rank_step_dict.get((rank_id, step_id))
264
+ if not npu_data_path_list or not npu_data_path_list:
265
+ return [], ''
266
+
267
+ # generate file name
268
+ npu_mode = GraphMode.ERROR_MODE
269
+ bench_mode = GraphMode.ERROR_MODE
270
+ npu_data_list = []
271
+ bench_data_list = []
272
+ for npu_data_path in npu_data_path_list:
273
+ npu_mode, data_list = generate_data_name(npu_data_path)
274
+ npu_data_list.extend(data_list)
275
+ for bench_data_path in bench_data_path_list:
276
+ bench_mode, data_list = generate_data_name(bench_data_path)
277
+ bench_data_list.extend(data_list)
278
+
279
+ if npu_mode == GraphMode.ERROR_MODE or bench_mode == GraphMode.ERROR_MODE:
280
+ logger.warning(f"Data_path {npu_data_path} or {bench_data_path} is not exist.")
281
+ return [], ''
282
+ if npu_mode != bench_mode:
283
+ logger.error(f"NPU mode {npu_mode} not equal to MATCH mode {bench_mode}.")
284
+ return [], ''
285
+
286
+ if npu_mode == 'NPY_MODE':
287
+ npu_data_df = pd.DataFrame(npu_data_list, columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp'])
288
+ bench_data_df = pd.DataFrame(bench_data_list, columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp'])
289
+ else:
290
+ npu_data_df = pd.DataFrame(npu_data_list,
291
+ columns=[CompareConst.NPU_NAME, 'Compare Key', 'TimeStamp',
292
+ CompareConst.NPU_DTYPE, CompareConst.NPU_SHAPE,
293
+ CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN,
294
+ CompareConst.NPU_NORM])
295
+ bench_data_df = pd.DataFrame(bench_data_list,
296
+ columns=[CompareConst.BENCH_NAME, 'Compare Key', 'TimeStamp',
297
+ CompareConst.BENCH_DTYPE,
298
+ CompareConst.BENCH_SHAPE, CompareConst.BENCH_MAX,
299
+ CompareConst.BENCH_MIN, CompareConst.BENCH_MEAN,
300
+ CompareConst.BENCH_NORM])
301
+
302
+ npu_float_type = [CompareConst.NPU_MAX, CompareConst.NPU_MIN, CompareConst.NPU_MEAN, CompareConst.NPU_NORM]
303
+ npu_data_df[npu_float_type] = npu_data_df[npu_float_type].astype(float)
304
+
305
+ bench_float_type = [
306
+ CompareConst.BENCH_MAX, CompareConst.BENCH_MIN,
307
+ CompareConst.BENCH_MEAN,CompareConst.BENCH_NORM
308
+ ]
309
+ bench_data_df[bench_float_type] = bench_data_df[bench_float_type].astype(float)
310
+
311
+ npu_data_df['Local Index'] = npu_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
312
+ bench_data_df['Local Index'] = bench_data_df.sort_values('TimeStamp').groupby('Compare Key').cumcount()
313
+
314
+ compare_result_df = pd.merge(npu_data_df, bench_data_df, on=['Compare Key', 'Local Index'], how='outer')
315
+
316
+ compare_result_df[CompareConst.NPU_NAME] = compare_result_df[CompareConst.NPU_NAME].fillna('')
317
+ compare_result_df[CompareConst.BENCH_NAME] = compare_result_df[CompareConst.BENCH_NAME].fillna('')
318
+
319
+ return compare_result_df, npu_mode
320
+
321
+ def generate_rank_step_path(self, base_path):
322
+
323
+ def generate_rank_step_id(path_with_rank_step):
324
+ split_path = path_with_rank_step.split("/")
325
+ rank_id = -1
326
+ if "rank_" in path_with_rank_step:
327
+ # KBK mode
328
+ if len(split_path) > 4:
329
+ rank_id = convert_to_int(split_path[-4].split("_")[-1])
330
+ step_id = convert_to_int(split_path[-1])
331
+ else:
332
+ if len(split_path) > 4:
333
+ rank_id = convert_to_int(split_path[-4])
334
+ if rank_id == -1 and len(split_path) > 3:
335
+ rank_id = convert_to_int(split_path[-3])
336
+ step_id = convert_to_int(split_path[-1])
337
+ return rank_id, step_id
338
+
339
+ base_path = os.path.abspath(base_path)
340
+ lowest_level = list_lowest_level_directories(base_path)
341
+
342
+ rank_step_path_dict = {}
343
+ for dir_path in lowest_level:
344
+ rank_id, step_id = generate_rank_step_id(dir_path)
345
+ if rank_id == -1 or step_id == -1:
346
+ continue
347
+ if self.rank_list and rank_id not in self.rank_list:
348
+ continue
349
+ if self.step_list and step_id not in self.step_list:
350
+ continue
351
+ rank_step_key = (rank_id, step_id)
352
+ if rank_step_key in rank_step_path_dict:
353
+ rank_step_path_dict[rank_step_key].append(dir_path)
354
+ else:
355
+ rank_step_path_dict[rank_step_key] = [dir_path]
356
+ return dict(sorted(rank_step_path_dict.items()))
357
+
358
+ def _do_multi_process(self, result_df, mode):
359
+ try:
360
+ result_df = _ms_graph_handle_multi_process(self.compare_ops, result_df, mode)
361
+ except ValueError as e:
362
+ logger.error('result dataframe is not found.')
363
+ raise CompareException(CompareException.INVALID_DATA_ERROR) from e
364
+ return result_df