mindspore 2.0.0rc1__cp38-cp38-manylinux1_x86_64.whl → 2.2.0__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (884) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +2 -2
  3. mindspore/__init__.py +5 -2
  4. mindspore/_akg/akg/build_module.py +5 -6
  5. mindspore/_akg/akg/composite/build_module.py +49 -16
  6. mindspore/_akg/akg/composite/split_stitch.py +10 -11
  7. mindspore/_akg/akg/config/repository.json +195 -0
  8. mindspore/_akg/akg/global_configs.py +5 -1
  9. mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
  10. mindspore/_akg/akg/tvm/api.py +4 -3
  11. mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
  12. mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
  13. mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
  14. mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
  15. mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
  16. mindspore/_akg/akg/tvm/build_module.py +16 -1
  17. mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
  18. mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
  19. mindspore/_akg/akg/tvm/ir_builder.py +1 -1
  20. mindspore/_akg/akg/tvm/module.py +1 -2
  21. mindspore/_akg/akg/tvm/stmt.py +2 -2
  22. mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
  23. mindspore/_akg/akg/utils/kernel_exec.py +58 -260
  24. mindspore/_akg/akg/utils/op_dsl.py +17 -1
  25. mindspore/_akg/akg/utils/result_analysis.py +4 -24
  26. mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
  27. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  28. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  29. mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
  30. mindspore/_check_jit_forbidden_api.py +5 -1
  31. mindspore/_checkparam.py +79 -62
  32. mindspore/_extends/graph_kernel/__init__.py +0 -1
  33. mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
  34. mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
  35. mindspore/_extends/graph_kernel/splitter.py +1 -9
  36. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
  37. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
  38. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
  39. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
  40. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
  41. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
  42. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
  43. mindspore/_extends/parse/__init__.py +19 -17
  44. mindspore/_extends/parse/namespace.py +7 -36
  45. mindspore/_extends/parse/parser.py +375 -189
  46. mindspore/_extends/parse/resources.py +36 -41
  47. mindspore/_extends/parse/standard_method.py +350 -245
  48. mindspore/_extends/parse/trope.py +2 -12
  49. mindspore/_extends/remote/kernel_build_server.py +24 -7
  50. mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
  51. mindspore/_install_custom.py +43 -0
  52. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  53. mindspore/amp.py +85 -19
  54. mindspore/bin/cache_admin +0 -0
  55. mindspore/bin/cache_server +0 -0
  56. mindspore/boost/base.py +2 -2
  57. mindspore/boost/boost.py +27 -32
  58. mindspore/boost/boost_cell_wrapper.py +37 -13
  59. mindspore/boost/grad_accumulation.py +1 -1
  60. mindspore/boost/grad_freeze.py +34 -6
  61. mindspore/boost/group_loss_scale_manager.py +15 -14
  62. mindspore/boost/less_batch_normalization.py +28 -3
  63. mindspore/common/__init__.py +15 -11
  64. mindspore/common/_auto_dynamic.py +68 -0
  65. mindspore/common/_jit_fallback_utils.py +111 -0
  66. mindspore/common/_register_for_adapter.py +17 -5
  67. mindspore/common/_register_for_tensor.py +2 -2
  68. mindspore/common/_stub_tensor.py +18 -15
  69. mindspore/common/_utils.py +31 -7
  70. mindspore/common/api.py +269 -101
  71. mindspore/common/auto_dynamic_shape.py +498 -0
  72. mindspore/common/dtype.py +61 -21
  73. mindspore/common/dump.py +9 -7
  74. mindspore/common/initializer.py +106 -76
  75. mindspore/common/jit_config.py +35 -14
  76. mindspore/common/lazy_inline.py +187 -0
  77. mindspore/common/mindir_util.py +101 -0
  78. mindspore/common/mutable.py +10 -13
  79. mindspore/common/parameter.py +246 -55
  80. mindspore/common/seed.py +13 -7
  81. mindspore/common/sparse_tensor.py +29 -33
  82. mindspore/common/tensor.py +907 -251
  83. mindspore/communication/__init__.py +7 -4
  84. mindspore/communication/_comm_helper.py +84 -4
  85. mindspore/communication/management.py +160 -88
  86. mindspore/config/op_info.config +99 -75
  87. mindspore/config/super_bar_config.json +36 -4
  88. mindspore/context.py +526 -219
  89. mindspore/dataset/__init__.py +9 -46
  90. mindspore/dataset/audio/__init__.py +4 -19
  91. mindspore/dataset/audio/transforms.py +545 -233
  92. mindspore/dataset/audio/utils.py +21 -18
  93. mindspore/dataset/callback/ds_callback.py +42 -13
  94. mindspore/dataset/core/config.py +158 -100
  95. mindspore/dataset/core/validator_helpers.py +1 -63
  96. mindspore/dataset/debug/debug_hook.py +45 -13
  97. mindspore/dataset/debug/pre_defined_hook.py +5 -5
  98. mindspore/dataset/engine/__init__.py +0 -5
  99. mindspore/dataset/engine/cache_client.py +38 -15
  100. mindspore/dataset/engine/datasets.py +615 -278
  101. mindspore/dataset/engine/datasets_audio.py +154 -283
  102. mindspore/dataset/engine/datasets_standard_format.py +104 -116
  103. mindspore/dataset/engine/datasets_text.py +443 -326
  104. mindspore/dataset/engine/datasets_user_defined.py +251 -164
  105. mindspore/dataset/engine/datasets_vision.py +839 -1443
  106. mindspore/dataset/engine/iterators.py +11 -4
  107. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
  108. mindspore/dataset/engine/obs/util.py +3 -0
  109. mindspore/dataset/engine/offload.py +6 -6
  110. mindspore/dataset/engine/queue.py +15 -14
  111. mindspore/dataset/engine/samplers.py +39 -23
  112. mindspore/dataset/engine/serializer_deserializer.py +22 -6
  113. mindspore/dataset/engine/validators.py +21 -331
  114. mindspore/dataset/text/__init__.py +5 -33
  115. mindspore/dataset/text/transforms.py +334 -165
  116. mindspore/dataset/text/utils.py +215 -145
  117. mindspore/dataset/transforms/__init__.py +1 -1
  118. mindspore/dataset/transforms/c_transforms.py +3 -2
  119. mindspore/dataset/transforms/py_transforms_util.py +40 -12
  120. mindspore/dataset/transforms/transforms.py +174 -71
  121. mindspore/dataset/utils/browse_dataset.py +25 -17
  122. mindspore/dataset/utils/line_reader.py +24 -21
  123. mindspore/dataset/vision/__init__.py +5 -26
  124. mindspore/dataset/vision/c_transforms.py +177 -165
  125. mindspore/dataset/vision/py_transforms.py +114 -119
  126. mindspore/dataset/vision/py_transforms_util.py +54 -51
  127. mindspore/dataset/vision/transforms.py +1127 -381
  128. mindspore/dataset/vision/utils.py +54 -38
  129. mindspore/dataset/vision/validators.py +12 -2
  130. mindspore/experimental/map_parameter.py +38 -4
  131. mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
  132. mindspore/experimental/optim/adam.py +192 -0
  133. mindspore/experimental/optim/adamw.py +181 -0
  134. mindspore/experimental/optim/lr_scheduler.py +1427 -0
  135. mindspore/experimental/optim/optimizer.py +252 -0
  136. mindspore/experimental/optim/sgd.py +147 -0
  137. mindspore/gen_ops.py +273 -0
  138. mindspore/include/OWNERS +1 -2
  139. mindspore/include/api/context.h +21 -1
  140. mindspore/include/api/data_type.h +2 -1
  141. mindspore/include/api/graph.h +0 -15
  142. mindspore/include/api/kernel.h +2 -0
  143. mindspore/include/api/kernel_api.h +37 -12
  144. mindspore/include/api/model.h +29 -42
  145. mindspore/include/api/model_group.h +14 -3
  146. mindspore/include/api/model_parallel_runner.h +18 -2
  147. mindspore/include/api/serialization.h +26 -0
  148. mindspore/include/api/status.h +1 -0
  149. mindspore/include/api/types.h +38 -4
  150. mindspore/include/c_api/ms/abstract.h +67 -0
  151. mindspore/include/c_api/ms/attribute.h +197 -0
  152. mindspore/include/c_api/ms/base/handle_types.h +43 -0
  153. mindspore/include/c_api/ms/base/macros.h +32 -0
  154. mindspore/include/c_api/ms/base/status.h +33 -0
  155. mindspore/include/c_api/ms/base/types.h +282 -0
  156. mindspore/include/c_api/ms/context.h +102 -0
  157. mindspore/include/c_api/ms/graph.h +160 -0
  158. mindspore/include/c_api/ms/node.h +606 -0
  159. mindspore/include/c_api/ms/tensor.h +161 -0
  160. mindspore/include/c_api/ms/value.h +84 -0
  161. mindspore/include/c_api/status_c.h +3 -0
  162. mindspore/include/dataset/constants.h +6 -12
  163. mindspore/include/dataset/execute.h +23 -13
  164. mindspore/include/dataset/text.h +26 -26
  165. mindspore/include/dataset/transforms.h +25 -31
  166. mindspore/include/dataset/vision.h +60 -60
  167. mindspore/include/dataset/vision_ascend.h +5 -6
  168. mindspore/include/dataset/vision_lite.h +17 -17
  169. mindspore/include/mindapi/base/format.h +0 -1
  170. mindspore/include/mindapi/base/type_id.h +2 -1
  171. mindspore/include/mindapi/base/types.h +5 -1
  172. mindspore/lib/libdnnl.so.2 +0 -0
  173. mindspore/lib/libjemalloc.so.2 +0 -0
  174. mindspore/lib/libmindspore.so +0 -0
  175. mindspore/lib/libmindspore_backend.so +0 -0
  176. mindspore/lib/libmindspore_common.so +0 -0
  177. mindspore/lib/libmindspore_core.so +0 -0
  178. mindspore/lib/libmindspore_glog.so.0 +0 -0
  179. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  180. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  181. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  182. mindspore/lib/libmindspore_shared_lib.so +0 -0
  183. mindspore/lib/libmpi_adapter.so +0 -0
  184. mindspore/lib/libnnacl.so +0 -0
  185. mindspore/lib/libopencv_core.so.4.5 +0 -0
  186. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  187. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  188. mindspore/lib/libps_cache.so +0 -0
  189. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  190. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  191. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
  192. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  193. mindspore/lib/plugin/ascend/libakg.so +0 -0
  194. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  195. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  196. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  197. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  198. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  199. mindspore/lib/plugin/cpu/libakg.so +0 -0
  200. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  201. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  202. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  203. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  204. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  205. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  206. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  207. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  208. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  209. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  210. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  211. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  212. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  213. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  214. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  215. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  216. mindspore/log.py +9 -6
  217. mindspore/mindrecord/filereader.py +33 -4
  218. mindspore/mindrecord/filewriter.py +70 -35
  219. mindspore/mindrecord/mindpage.py +40 -34
  220. mindspore/mindrecord/shardreader.py +1 -1
  221. mindspore/mindrecord/shardsegment.py +1 -1
  222. mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
  223. mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
  224. mindspore/mindrecord/tools/csv_to_mr.py +29 -13
  225. mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
  226. mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
  227. mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
  228. mindspore/nn/cell.py +463 -169
  229. mindspore/nn/dynamic_lr.py +47 -43
  230. mindspore/nn/layer/activation.py +225 -82
  231. mindspore/nn/layer/basic.py +121 -79
  232. mindspore/nn/layer/channel_shuffle.py +21 -21
  233. mindspore/nn/layer/combined.py +33 -26
  234. mindspore/nn/layer/container.py +277 -22
  235. mindspore/nn/layer/conv.py +441 -304
  236. mindspore/nn/layer/dense.py +19 -13
  237. mindspore/nn/layer/embedding.py +62 -49
  238. mindspore/nn/layer/flash_attention.py +264 -0
  239. mindspore/nn/layer/image.py +50 -39
  240. mindspore/nn/layer/math.py +62 -51
  241. mindspore/nn/layer/normalization.py +219 -167
  242. mindspore/nn/layer/padding.py +58 -70
  243. mindspore/nn/layer/pooling.py +334 -287
  244. mindspore/nn/layer/rnn_cells.py +53 -38
  245. mindspore/nn/layer/rnns.py +59 -56
  246. mindspore/nn/layer/thor_layer.py +52 -44
  247. mindspore/nn/layer/timedistributed.py +6 -4
  248. mindspore/nn/layer/transformer.py +284 -164
  249. mindspore/nn/learning_rate_schedule.py +34 -25
  250. mindspore/nn/loss/__init__.py +3 -2
  251. mindspore/nn/loss/loss.py +554 -311
  252. mindspore/nn/optim/ada_grad.py +12 -9
  253. mindspore/nn/optim/adadelta.py +14 -11
  254. mindspore/nn/optim/adafactor.py +19 -16
  255. mindspore/nn/optim/adam.py +62 -47
  256. mindspore/nn/optim/adamax.py +13 -10
  257. mindspore/nn/optim/adasum.py +12 -8
  258. mindspore/nn/optim/asgd.py +10 -9
  259. mindspore/nn/optim/ftrl.py +20 -17
  260. mindspore/nn/optim/lamb.py +16 -12
  261. mindspore/nn/optim/lars.py +8 -6
  262. mindspore/nn/optim/lazyadam.py +25 -20
  263. mindspore/nn/optim/momentum.py +10 -7
  264. mindspore/nn/optim/optimizer.py +61 -9
  265. mindspore/nn/optim/proximal_ada_grad.py +14 -13
  266. mindspore/nn/optim/rmsprop.py +17 -13
  267. mindspore/nn/optim/rprop.py +30 -17
  268. mindspore/nn/optim/sgd.py +40 -23
  269. mindspore/nn/optim/thor.py +24 -26
  270. mindspore/nn/probability/bijector/bijector.py +11 -11
  271. mindspore/nn/probability/bijector/exp.py +1 -1
  272. mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
  273. mindspore/nn/probability/bijector/invert.py +1 -1
  274. mindspore/nn/probability/bijector/power_transform.py +29 -29
  275. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  276. mindspore/nn/probability/bijector/softplus.py +5 -5
  277. mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
  278. mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
  279. mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
  280. mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
  281. mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
  282. mindspore/nn/probability/distribution/_utils/utils.py +1 -1
  283. mindspore/nn/probability/distribution/bernoulli.py +9 -9
  284. mindspore/nn/probability/distribution/beta.py +8 -8
  285. mindspore/nn/probability/distribution/categorical.py +23 -15
  286. mindspore/nn/probability/distribution/cauchy.py +5 -6
  287. mindspore/nn/probability/distribution/distribution.py +3 -3
  288. mindspore/nn/probability/distribution/exponential.py +4 -4
  289. mindspore/nn/probability/distribution/gamma.py +10 -10
  290. mindspore/nn/probability/distribution/geometric.py +8 -8
  291. mindspore/nn/probability/distribution/gumbel.py +8 -9
  292. mindspore/nn/probability/distribution/half_normal.py +5 -5
  293. mindspore/nn/probability/distribution/laplace.py +5 -5
  294. mindspore/nn/probability/distribution/log_normal.py +12 -11
  295. mindspore/nn/probability/distribution/logistic.py +8 -8
  296. mindspore/nn/probability/distribution/normal.py +6 -5
  297. mindspore/nn/probability/distribution/poisson.py +10 -11
  298. mindspore/nn/probability/distribution/student_t.py +8 -9
  299. mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
  300. mindspore/nn/probability/distribution/uniform.py +11 -11
  301. mindspore/nn/reinforcement/tensor_array.py +2 -2
  302. mindspore/nn/sparse/sparse.py +9 -9
  303. mindspore/nn/wrap/cell_wrapper.py +188 -63
  304. mindspore/nn/wrap/grad_reducer.py +21 -12
  305. mindspore/nn/wrap/loss_scale.py +136 -49
  306. mindspore/numpy/__init__.py +4 -4
  307. mindspore/numpy/array_creations.py +55 -56
  308. mindspore/numpy/array_ops.py +134 -35
  309. mindspore/numpy/logic_ops.py +66 -20
  310. mindspore/numpy/math_ops.py +142 -139
  311. mindspore/numpy/utils_const.py +2 -2
  312. mindspore/offline_debug/convert_async.py +2 -2
  313. mindspore/ops/_grad_experimental/__init__.py +7 -5
  314. mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
  315. mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
  316. mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
  317. mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
  318. mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
  319. mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
  320. mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
  321. mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
  322. mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
  323. mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
  324. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
  325. mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
  326. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
  327. mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
  328. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
  329. mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
  330. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
  331. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
  332. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
  333. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
  334. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  335. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
  336. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
  337. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
  338. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  339. mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
  340. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
  341. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
  342. mindspore/ops/_op_impl/aicpu/cast.py +52 -0
  343. mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
  344. mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
  345. mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
  346. mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
  347. mindspore/ops/_op_impl/aicpu/eps.py +32 -0
  348. mindspore/ops/_op_impl/aicpu/eye.py +4 -4
  349. mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
  350. mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
  351. mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
  352. mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
  353. mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
  354. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
  355. mindspore/ops/_op_impl/aicpu/lu.py +39 -0
  356. mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
  357. mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
  358. mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
  359. mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
  360. mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
  361. mindspore/ops/_op_impl/aicpu/median.py +1 -0
  362. mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
  363. mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
  364. mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
  365. mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
  366. mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
  367. mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
  368. mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
  369. mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
  370. mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
  371. mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
  372. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
  373. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
  374. mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
  375. mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
  376. mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
  377. mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
  378. mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
  379. mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
  380. mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
  381. mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
  382. mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
  383. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
  384. mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
  385. mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
  386. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
  387. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
  388. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
  389. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
  390. mindspore/ops/_op_impl/tbe/__init__.py +6 -4
  391. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  392. mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
  393. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
  394. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
  395. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
  396. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
  397. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
  398. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  399. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
  400. mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
  401. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
  402. mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
  403. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
  404. mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
  405. mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
  406. mindspore/ops/_op_impl/tbe/im2col.py +4 -4
  407. mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
  408. mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
  409. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
  410. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
  411. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  412. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
  413. mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
  414. mindspore/ops/_primitive_cache.py +1 -1
  415. mindspore/ops/_tracefunc.py +241 -0
  416. mindspore/ops/_utils/utils.py +10 -2
  417. mindspore/ops/_vmap/vmap_array_ops.py +5 -3
  418. mindspore/ops/_vmap/vmap_base.py +5 -4
  419. mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
  420. mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
  421. mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
  422. mindspore/ops/_vmap/vmap_math_ops.py +5 -2
  423. mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
  424. mindspore/ops/arg_dtype_cast.py +54 -0
  425. mindspore/ops/composite/__init__.py +7 -5
  426. mindspore/ops/composite/base.py +78 -34
  427. mindspore/ops/composite/math_ops.py +5 -695
  428. mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
  429. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
  430. mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
  431. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  432. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  433. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
  434. mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
  435. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
  436. mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
  437. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
  438. mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
  439. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
  440. mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
  441. mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
  442. mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
  443. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
  444. mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
  445. mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
  446. mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
  447. mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
  448. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  449. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
  450. mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
  451. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
  452. mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
  453. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
  454. mindspore/ops/deprecated.py +304 -0
  455. mindspore/ops/function/__init__.py +41 -4
  456. mindspore/ops/function/array_func.py +1108 -467
  457. mindspore/ops/function/clip_func.py +94 -27
  458. mindspore/ops/function/debug_func.py +3 -1
  459. mindspore/ops/function/grad/grad_func.py +82 -73
  460. mindspore/ops/function/image_func.py +28 -12
  461. mindspore/ops/function/linalg_func.py +135 -39
  462. mindspore/ops/function/math_func.py +3779 -894
  463. mindspore/ops/function/nn_func.py +1584 -657
  464. mindspore/ops/function/parameter_func.py +13 -3
  465. mindspore/ops/function/random_func.py +247 -153
  466. mindspore/ops/function/sparse_func.py +14 -11
  467. mindspore/ops/function/sparse_unary_func.py +173 -47
  468. mindspore/ops/function/spectral_func.py +8 -4
  469. mindspore/ops/function/vmap_func.py +8 -7
  470. mindspore/ops/functional.py +47 -16
  471. mindspore/ops/op_info_register.py +346 -86
  472. mindspore/ops/operations/__init__.py +38 -22
  473. mindspore/ops/operations/_grad_ops.py +145 -149
  474. mindspore/ops/operations/_inner_ops.py +298 -56
  475. mindspore/ops/operations/_ms_kernel.py +3 -3
  476. mindspore/ops/operations/_quant_ops.py +24 -28
  477. mindspore/ops/operations/_rl_inner_ops.py +9 -7
  478. mindspore/ops/operations/_scalar_ops.py +115 -0
  479. mindspore/ops/operations/_sequence_ops.py +148 -10
  480. mindspore/ops/operations/_tensor_array.py +1 -1
  481. mindspore/ops/operations/_thor_ops.py +2 -2
  482. mindspore/ops/operations/array_ops.py +1239 -561
  483. mindspore/ops/operations/comm_ops.py +166 -90
  484. mindspore/ops/operations/control_ops.py +3 -3
  485. mindspore/ops/operations/custom_ops.py +124 -102
  486. mindspore/ops/operations/debug_ops.py +24 -11
  487. mindspore/ops/operations/image_ops.py +86 -71
  488. mindspore/ops/operations/inner_ops.py +18 -13
  489. mindspore/ops/operations/linalg_ops.py +30 -11
  490. mindspore/ops/operations/math_ops.py +1730 -435
  491. mindspore/ops/operations/nn_ops.py +1953 -943
  492. mindspore/ops/operations/other_ops.py +65 -43
  493. mindspore/ops/operations/random_ops.py +258 -98
  494. mindspore/ops/operations/rl_ops.py +4 -36
  495. mindspore/ops/operations/sparse_ops.py +38 -33
  496. mindspore/ops/operations/spectral_ops.py +8 -4
  497. mindspore/ops/primitive.py +66 -44
  498. mindspore/ops/signature.py +5 -5
  499. mindspore/parallel/_auto_parallel_context.py +80 -19
  500. mindspore/parallel/_cost_model_context.py +42 -0
  501. mindspore/parallel/_offload_context.py +162 -72
  502. mindspore/parallel/_parallel_serialization.py +2 -2
  503. mindspore/parallel/_ps_context.py +16 -4
  504. mindspore/parallel/_recovery_context.py +2 -1
  505. mindspore/parallel/_tensor.py +15 -13
  506. mindspore/parallel/_transformer/layers.py +8 -6
  507. mindspore/parallel/_transformer/loss.py +1 -0
  508. mindspore/parallel/_transformer/moe.py +7 -7
  509. mindspore/parallel/_transformer/op_parallel_config.py +12 -1
  510. mindspore/parallel/_transformer/transformer.py +34 -14
  511. mindspore/parallel/_utils.py +36 -14
  512. mindspore/parallel/algo_parameter_config.py +114 -20
  513. mindspore/parallel/checkpoint_transform.py +16 -18
  514. mindspore/parallel/shard.py +16 -13
  515. mindspore/profiler/__init__.py +1 -1
  516. mindspore/profiler/common/struct_type.py +3 -3
  517. mindspore/profiler/common/util.py +3 -2
  518. mindspore/profiler/envprofiling.py +11 -4
  519. mindspore/profiler/parser/aicpu_data_parser.py +5 -3
  520. mindspore/profiler/parser/ascend_flops_generator.py +94 -0
  521. mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
  522. mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
  523. mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
  524. mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
  525. mindspore/profiler/parser/ascend_op_generator.py +276 -0
  526. mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
  527. mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
  528. mindspore/profiler/parser/base_timeline_generator.py +11 -7
  529. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
  530. mindspore/profiler/parser/flops_parser.py +15 -11
  531. mindspore/profiler/parser/framework_parser.py +92 -73
  532. mindspore/profiler/parser/hccl_parser.py +16 -12
  533. mindspore/profiler/parser/integrator.py +22 -11
  534. mindspore/profiler/parser/memory_usage_parser.py +36 -11
  535. mindspore/profiler/parser/minddata_analyzer.py +12 -14
  536. mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
  537. mindspore/profiler/parser/msadvisor_parser.py +8 -4
  538. mindspore/profiler/parser/op_intermediate_parser.py +5 -2
  539. mindspore/profiler/parser/optime_parser.py +1 -1
  540. mindspore/profiler/parser/profiler_info.py +4 -5
  541. mindspore/profiler/parser/step_trace_parser.py +11 -14
  542. mindspore/profiler/profiling.py +678 -377
  543. mindspore/rewrite/api/node.py +211 -54
  544. mindspore/rewrite/api/node_type.py +5 -0
  545. mindspore/rewrite/api/pattern_engine.py +22 -23
  546. mindspore/rewrite/api/scoped_value.py +20 -17
  547. mindspore/rewrite/api/symbol_tree.py +252 -106
  548. mindspore/rewrite/api/tree_node_helper.py +3 -0
  549. mindspore/rewrite/ast_helpers/__init__.py +2 -1
  550. mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
  551. mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
  552. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
  553. mindspore/rewrite/common/rewrite_elog.py +5 -1
  554. mindspore/rewrite/namer.py +51 -51
  555. mindspore/rewrite/namespace.py +14 -5
  556. mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
  557. mindspore/rewrite/node/call_function.py +79 -0
  558. mindspore/rewrite/node/cell_container.py +135 -0
  559. mindspore/rewrite/node/control_flow.py +88 -0
  560. mindspore/rewrite/{node.py → node/node.py} +313 -247
  561. mindspore/rewrite/node/node_manager.py +254 -0
  562. mindspore/rewrite/node/node_topological_manager.py +243 -0
  563. mindspore/rewrite/parsers/arguments_parser.py +22 -21
  564. mindspore/rewrite/parsers/assign_parser.py +225 -239
  565. mindspore/rewrite/parsers/attribute_parser.py +9 -7
  566. mindspore/rewrite/parsers/class_def_parser.py +179 -218
  567. mindspore/rewrite/parsers/constant_parser.py +9 -6
  568. mindspore/rewrite/parsers/container_parser.py +9 -7
  569. mindspore/rewrite/parsers/for_parser.py +36 -15
  570. mindspore/rewrite/parsers/function_def_parser.py +23 -20
  571. mindspore/rewrite/parsers/if_parser.py +28 -24
  572. mindspore/rewrite/parsers/module_parser.py +202 -25
  573. mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
  574. mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
  575. mindspore/rewrite/parsers/return_parser.py +6 -6
  576. mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
  577. mindspore/rewrite/sparsify/sparsify.py +4 -1
  578. mindspore/rewrite/sparsify/utils.py +11 -5
  579. mindspore/rewrite/symbol_tree.py +577 -732
  580. mindspore/rewrite/symbol_tree_builder.py +9 -175
  581. mindspore/rewrite/symbol_tree_dumper.py +2 -2
  582. mindspore/run_check/_check_version.py +46 -39
  583. mindspore/run_check/run_check.py +3 -2
  584. mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
  585. mindspore/safeguard/rewrite_obfuscation.py +517 -0
  586. mindspore/scipy/__init__.py +1 -1
  587. mindspore/scipy/linalg.py +67 -61
  588. mindspore/scipy/ops.py +5 -41
  589. mindspore/scipy/ops_grad.py +3 -2
  590. mindspore/scipy/ops_wrapper.py +5 -5
  591. mindspore/scipy/optimize/line_search.py +8 -8
  592. mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
  593. mindspore/scipy/optimize/minimize.py +16 -12
  594. mindspore/scipy/utils.py +1 -52
  595. mindspore/scipy/utils_const.py +4 -4
  596. mindspore/train/__init__.py +4 -4
  597. mindspore/train/_utils.py +13 -5
  598. mindspore/train/amp.py +410 -148
  599. mindspore/train/anf_ir_pb2.py +16 -4
  600. mindspore/train/callback/_backup_and_restore.py +8 -11
  601. mindspore/train/callback/_callback.py +80 -3
  602. mindspore/train/callback/_checkpoint.py +82 -51
  603. mindspore/train/callback/_early_stop.py +12 -15
  604. mindspore/train/callback/_history.py +1 -1
  605. mindspore/train/callback/_lambda_callback.py +13 -13
  606. mindspore/train/callback/_landscape.py +21 -17
  607. mindspore/train/callback/_loss_monitor.py +9 -10
  608. mindspore/train/callback/_on_request_exit.py +16 -33
  609. mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
  610. mindspore/train/callback/_summary_collector.py +44 -30
  611. mindspore/train/callback/_time_monitor.py +62 -12
  612. mindspore/train/data_sink.py +10 -16
  613. mindspore/train/dataset_helper.py +154 -86
  614. mindspore/train/loss_scale_manager.py +14 -9
  615. mindspore/train/metrics/__init__.py +10 -2
  616. mindspore/train/metrics/accuracy.py +1 -1
  617. mindspore/train/metrics/auc.py +1 -1
  618. mindspore/train/metrics/bleu_score.py +2 -2
  619. mindspore/train/metrics/confusion_matrix.py +14 -14
  620. mindspore/train/metrics/cosine_similarity.py +3 -3
  621. mindspore/train/metrics/dice.py +1 -1
  622. mindspore/train/metrics/fbeta.py +1 -1
  623. mindspore/train/metrics/hausdorff_distance.py +8 -6
  624. mindspore/train/metrics/mean_surface_distance.py +5 -4
  625. mindspore/train/metrics/metric.py +49 -17
  626. mindspore/train/metrics/occlusion_sensitivity.py +4 -4
  627. mindspore/train/metrics/perplexity.py +1 -1
  628. mindspore/train/metrics/precision.py +2 -2
  629. mindspore/train/metrics/recall.py +2 -3
  630. mindspore/train/metrics/roc.py +7 -7
  631. mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
  632. mindspore/train/metrics/topk.py +7 -4
  633. mindspore/train/mind_ir_pb2.py +193 -48
  634. mindspore/train/model.py +377 -133
  635. mindspore/train/serialization.py +697 -245
  636. mindspore/train/summary/_summary_adapter.py +5 -2
  637. mindspore/train/summary/_writer_pool.py +4 -3
  638. mindspore/train/summary/summary_record.py +25 -23
  639. mindspore/train/train_thor/convert_utils.py +39 -23
  640. mindspore/train/train_thor/dataset_helper.py +4 -3
  641. mindspore/train/train_thor/model_thor.py +8 -8
  642. mindspore/version.py +1 -1
  643. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
  644. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +647 -818
  645. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
  646. mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
  647. mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
  648. mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
  649. mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
  650. mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
  651. mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
  652. mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
  653. mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
  654. mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
  655. mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
  656. mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
  657. mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
  658. mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
  659. mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
  660. mindspore/_akg/akg/tvm/rpc/base.py +0 -182
  661. mindspore/_akg/akg/tvm/rpc/client.py +0 -436
  662. mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
  663. mindspore/_akg/akg/tvm/rpc/server.py +0 -413
  664. mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
  665. mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
  666. mindspore/_extends/graph_kernel/expander.py +0 -80
  667. mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
  668. mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
  669. mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
  670. mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
  671. mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
  672. mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
  673. mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
  674. mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
  675. mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
  676. mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
  677. mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
  678. mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
  679. mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
  680. mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
  681. mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
  682. mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
  683. mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
  684. mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
  685. mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
  686. mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
  687. mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
  688. mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
  689. mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
  690. mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
  691. mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
  692. mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
  693. mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
  694. mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
  695. mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
  696. mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
  697. mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
  698. mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
  699. mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
  700. mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
  701. mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
  702. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
  703. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
  704. mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
  705. mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
  706. mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
  707. mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
  708. mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
  709. mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
  710. mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
  711. mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
  712. mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
  713. mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
  714. mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
  715. mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
  716. mindspore/_extends/parse/jit_fallback_modules.py +0 -51
  717. mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
  718. mindspore/dataset/engine/graphdata.py +0 -1586
  719. mindspore/include/api/net.h +0 -142
  720. mindspore/ops/_grad/grad_array_ops.py +0 -1347
  721. mindspore/ops/_grad/grad_clip_ops.py +0 -84
  722. mindspore/ops/_grad/grad_debug_ops.py +0 -68
  723. mindspore/ops/_grad/grad_inner_ops.py +0 -235
  724. mindspore/ops/_grad/grad_math_ops.py +0 -1684
  725. mindspore/ops/_grad/grad_nn_ops.py +0 -1529
  726. mindspore/ops/_grad/grad_other_ops.py +0 -89
  727. mindspore/ops/_grad/grad_sequence_ops.py +0 -296
  728. mindspore/ops/_grad/grad_sparse.py +0 -323
  729. mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
  730. mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
  731. mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
  732. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  733. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  734. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
  735. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
  736. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
  737. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
  738. mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
  739. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
  740. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
  741. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  742. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
  743. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  744. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
  745. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  746. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
  747. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
  748. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
  749. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  750. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  751. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
  752. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
  753. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
  754. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
  755. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
  756. mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
  757. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
  758. mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
  759. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
  760. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
  761. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
  762. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  763. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  764. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
  765. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
  766. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
  767. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  768. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  769. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  770. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
  771. mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
  772. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  773. mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
  774. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
  775. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
  776. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
  777. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
  778. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
  779. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
  780. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  781. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
  782. mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
  783. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
  784. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
  785. mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
  786. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  787. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
  788. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
  789. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
  790. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
  791. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
  792. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
  793. mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
  794. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  795. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
  796. mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
  797. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
  798. mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
  799. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
  800. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
  801. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
  802. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
  803. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
  804. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
  805. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
  806. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
  807. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  808. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  809. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  810. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
  811. mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
  812. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  813. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  814. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
  815. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
  816. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
  817. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
  818. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  819. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  820. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  821. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
  822. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
  823. mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
  824. mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
  825. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
  826. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  827. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
  828. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
  829. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
  830. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
  831. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
  832. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
  833. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
  834. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
  835. mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
  836. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  837. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  838. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
  839. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
  840. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
  841. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  842. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
  843. mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
  844. mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
  845. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
  846. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  847. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
  848. mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
  849. mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
  850. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
  851. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  852. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
  853. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
  854. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  855. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
  856. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
  857. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  858. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  859. mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
  860. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
  861. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
  862. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
  863. mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
  864. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  865. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
  866. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
  867. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
  868. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
  869. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  870. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  871. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
  872. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
  873. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
  874. mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
  875. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
  876. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
  877. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
  878. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
  879. mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
  880. mindspore/rewrite/node_visitor.py +0 -44
  881. mindspore/rewrite/topological_manager.py +0 -203
  882. mindspore/scipy/sparse/linalg.py +0 -192
  883. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
  884. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
@@ -22,6 +22,7 @@ import itertools
22
22
  import sys
23
23
  from numpy import dtype as nptype
24
24
 
25
+ import mindspore.ops as ops
25
26
  from mindspore.ops import operations as P
26
27
  from mindspore.ops import functional as F
27
28
  from mindspore.ops import composite as C
@@ -82,7 +83,7 @@ def absolute(x, dtype=None):
82
83
 
83
84
  Args:
84
85
  x (Tensor): Tensor to be used for calculation.
85
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
86
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
86
87
  output Tensor.
87
88
 
88
89
  Returns:
@@ -121,10 +122,10 @@ def count_nonzero(x, axis=None, keepdims=False):
121
122
  x (Tensor): The tensor for which to count non-zeros.
122
123
  axis (Union[int,tuple], optional): Axis or tuple of axes along which to
123
124
  count non-zeros. Default is None, meaning that non-zeros will be counted
124
- along a flattened version of `x`. Default: `None`.
125
+ along a flattened version of `x`. Default: ``None`` .
125
126
  keepdims (bool, optional): If this is set to True, the axes that are counted
126
127
  are left in the result as dimensions with size one. With this option,
127
- the result will broadcast correctly against `x`. Default: `False`.
128
+ the result will broadcast correctly against `x`. Default: ``False`` .
128
129
 
129
130
  Returns:
130
131
  Tensor, indicating number of non-zero values in the `x` along a given axis.
@@ -148,7 +149,7 @@ def count_nonzero(x, axis=None, keepdims=False):
148
149
  return ZERO_TENSOR
149
150
  if axis is None:
150
151
  axis = ()
151
- return C.count_nonzero(x=x, axis=axis, keep_dims=keepdims)
152
+ return ops.count_nonzero(x=x, axis=axis, keep_dims=keepdims)
152
153
 
153
154
 
154
155
  def clip(x, xmin, xmax, dtype=None):
@@ -167,7 +168,7 @@ def clip(x, xmin, xmax, dtype=None):
167
168
  on upper interval edge. Not more than one of `xmin` and `xmax` may be None.
168
169
  If `xmin` or `xmax` are tensors, then the three tensors will be broadcasted
169
170
  to match their shapes.
170
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
171
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
171
172
  output Tensor.
172
173
 
173
174
  Returns:
@@ -203,7 +204,7 @@ def deg2rad(x, dtype=None):
203
204
 
204
205
  Args:
205
206
  x (Tensor): Angles in degrees.
206
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
207
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
207
208
  output Tensor.
208
209
 
209
210
  Returns:
@@ -236,7 +237,7 @@ def rad2deg(x, dtype=None):
236
237
 
237
238
  Args:
238
239
  x (Tensor): Angles in radians.
239
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
240
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
240
241
  output Tensor.
241
242
 
242
243
  Returns:
@@ -271,7 +272,7 @@ def add(x1, x2, dtype=None):
271
272
  Args:
272
273
  x1 (Tensor): input to be added.
273
274
  x2 (Tensor): input to be added.
274
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
275
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
275
276
  output Tensor.
276
277
 
277
278
  Returns:
@@ -309,7 +310,7 @@ def subtract(x1, x2, dtype=None):
309
310
  Args:
310
311
  x1 (Tensor): The input to be subtracted from.
311
312
  x2 (Tensor): The input to be subtracted by.
312
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
313
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
313
314
  output Tensor.
314
315
 
315
316
  Returns:
@@ -343,7 +344,7 @@ def multiply(x1, x2, dtype=None):
343
344
  Args:
344
345
  x1 (Tensor): input tensor to be multiplied.
345
346
  x2 (Tensor): input tensor to be multiplied.
346
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
347
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
347
348
  output Tensor.
348
349
 
349
350
  Returns:
@@ -387,7 +388,7 @@ def divide(x1, x2, dtype=None):
387
388
  Args:
388
389
  x1 (Tensor): the divident.
389
390
  x2 (Tensor): the divisor.
390
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
391
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
391
392
  output Tensor.
392
393
 
393
394
  Returns:
@@ -427,7 +428,7 @@ def true_divide(x1, x2, dtype=None):
427
428
  Args:
428
429
  x1 (Tensor): the dividend.
429
430
  x2 (Tensor): the divisor.
430
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
431
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
431
432
  output Tensor.
432
433
 
433
434
  Returns:
@@ -463,7 +464,7 @@ def power(x1, x2, dtype=None):
463
464
  Args:
464
465
  x1 (Tensor): The bases.
465
466
  x2 (Tensor): The exponents.
466
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
467
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
467
468
  output Tensor.
468
469
 
469
470
  Returns:
@@ -505,7 +506,7 @@ def float_power(x1, x2, dtype=None):
505
506
  Args:
506
507
  x1 (Tensor): the bases.
507
508
  x2 (Tensor): the exponents.
508
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
509
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
509
510
  output Tensor.
510
511
 
511
512
  Returns:
@@ -545,7 +546,7 @@ def minimum(x1, x2, dtype=None):
545
546
  Args:
546
547
  x1 (Tensor): first input tensor to be compared.
547
548
  x2 (Tensor): second input tensor to be compared.
548
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
549
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
549
550
  output Tensor.
550
551
 
551
552
  Returns:
@@ -605,13 +606,13 @@ def mean(a, axis=None, keepdims=False, dtype=None):
605
606
  If a is not an array, a conversion is attempted.
606
607
  axis (None or int or tuple of integers, optional): Axis or axes along
607
608
  which the means are computed. The default is to compute
608
- the mean of the flattened array. If this is a tuple of
609
+ the mean of the flattened array. If this is a tuple of
609
610
  ints, a mean is performed over multiple axes.
610
- keepdims (bool, optional): If this is set to True, the axes which
611
+ keepdims (bool, optional): If this is set to ``True`` , the axes which
611
612
  are reduced are left in the result as dimensions with
612
613
  size one. With this option, the result will broadcast
613
614
  correctly against the input tensor.
614
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
615
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
615
616
  output Tensor.
616
617
 
617
618
  Returns:
@@ -740,6 +741,10 @@ def dot(a, b):
740
741
  [[[105. 105. 105. 105.]
741
742
  [105. 105. 105. 105.]]]
742
743
  """
744
+ def _check(dim_a, dim_b):
745
+ if dim_a != dim_b:
746
+ raise ValueError('shapes are not aligned')
747
+
743
748
  ndim_a, ndim_b = F.rank(a), F.rank(b)
744
749
  if ndim_a == 0 or ndim_b == 0:
745
750
  return F.tensor_mul(a, b)
@@ -748,8 +753,7 @@ def dot(a, b):
748
753
  perm = perm[:-2] + (perm[-1],) + (perm[-2],)
749
754
  b = F.transpose(b, perm)
750
755
 
751
- if F.shape(a)[-1] != F.shape(b)[-1]:
752
- _raise_value_error('shapes are not aligned')
756
+ _check(F.shape(a)[-1], F.shape(b)[-1])
753
757
  a_aligned = F.reshape(a, (-1, F.shape(a)[-1]))
754
758
  b_aligned = F.reshape(b, (-1, F.shape(b)[-1]))
755
759
 
@@ -876,7 +880,7 @@ def tensordot(a, b, axes=2):
876
880
  """
877
881
  if F.rank(a)*F.rank(b) == 0 and axes == 0:
878
882
  return F.tensor_mul(a, b)
879
- return C.tensor_dot(a, b, axes)
883
+ return ops.tensor_dot(a, b, axes)
880
884
 
881
885
 
882
886
  def std(x, axis=None, ddof=0, keepdims=False):
@@ -894,16 +898,16 @@ def std(x, axis=None, ddof=0, keepdims=False):
894
898
  Args:
895
899
  x (Tensor): A Tensor to be calculated.
896
900
  axis (Union[None, int, tuple(int)]): Axis or axes along which the standard
897
- deviation is computed. Default: `None`.
901
+ deviation is computed. Default: ``None`` .
898
902
 
899
- If `None`, compute the standard deviation of the flattened array.
903
+ If ``None`` , compute the standard deviation of the flattened array.
900
904
  ddof (int): Means Delta Degrees of Freedom. The divisor used in calculations is :math:`N - ddof`,
901
905
  where :math:`N` represents the number of elements. Default: 0.
902
906
  keepdims: If this is set to True, the axes which are reduced are left in the result as
903
907
  dimensions with size one. With this option, the result will broadcast correctly against the input tensor.
904
908
  If the default value is passed, then keepdims will not be passed through to the std method of
905
909
  sub-classes of tensor, however any non-default value will be. If the sub-class’ method does not
906
- implement keepdims any exceptions will be raised. Default: `False`.
910
+ implement keepdims any exceptions will be raised. Default: ``False`` .
907
911
 
908
912
  Returns:
909
913
  Standard deviation tensor.
@@ -937,14 +941,14 @@ def var(x, axis=None, ddof=0, keepdims=False):
937
941
  Args:
938
942
  x (Tensor): A Tensor to be calculated.
939
943
  axis (Union[None, int, tuple(int)]): Axis or axes along which the variance is computed.
940
- The default is to compute the variance of the flattened array. Default: `None`.
941
- ddof (int): Means Delta Degrees of Freedom. Default: 0.
944
+ The default is to compute the variance of the flattened array. Default: ``None`` .
945
+ ddof (int): Means Delta Degrees of Freedom. Default: ``0`` .
942
946
  The divisor used in calculations is :math:`N - ddof`, where :math:`N` represents the number of elements.
943
947
  keepdims (bool): If this is set to True, the axes which are reduced are left in the result as
944
948
  dimensions with size one. With this option, the result will broadcast correctly against the input tensor.
945
949
  If the default value is passed, then keepdims will not be passed through to the var method of
946
950
  sub-classes of tensor, however any non-default value will be. If the sub-class method does not
947
- implement keepdims any exceptions will be raised. Default: `False`.
951
+ implement keepdims any exceptions will be raised. Default: ``False`` .
948
952
 
949
953
  Supported Platforms:
950
954
  ``Ascend`` ``GPU`` ``CPU``
@@ -974,11 +978,11 @@ def ptp(x, axis=None, keepdims=False):
974
978
  Args:
975
979
  x (Tensor): Input tensor.
976
980
  axis (Union[None, int, tuple(int)]): Axis or axes along which the range is computed.
977
- The default is to compute the variance of the flattened array. Default: None.
981
+ The default is to compute the variance of the flattened array. Default: ``None``.
978
982
  keepdims (bool): If this is set to True, the axes which are reduced are left in the result as
979
983
  dimensions with size one. With this option, the result will broadcast correctly against the input tensor.
980
984
  If the default value is passed, then keepdims will not be passed through to the ptp method of
981
- sub-classes of tensor, however any non-default value will be. Default is False.
985
+ sub-classes of tensor, however any non-default value will be. Default: ``False`` .
982
986
 
983
987
  Returns:
984
988
  Tensor.
@@ -1007,14 +1011,14 @@ def average(x, axis=None, weights=None, returned=False):
1007
1011
 
1008
1012
  Args:
1009
1013
  x (Tensor): A Tensor to be averaged.
1010
- axis (Union[None, int, tuple(int)]): Axis along which to average `x`. Default: `None`.
1014
+ axis (Union[None, int, tuple(int)]): Axis along which to average `x`. Default: ``None`` .
1011
1015
  If the axis is `None`, it will average over all of the elements of the tensor `x`.
1012
1016
  If the axis is negative, it counts from the last to the first axis.
1013
- weights (Union[None, Tensor]): Weights associated with the values in `x`. Default: `None`.
1017
+ weights (Union[None, Tensor]): Weights associated with the values in `x`. Default: ``None`` .
1014
1018
  If `weights` is `None`, all the data in `x` are assumed to have a weight equal to one.
1015
1019
  If `weights` is 1-D tensor, the length must be the same as the given axis.
1016
1020
  Otherwise, `weights` should have the same shape as `x`.
1017
- returned (bool): Default: `False`.
1021
+ returned (bool): Default: ``False`` .
1018
1022
  If `True`, the tuple (average, sum_of_weights) is returned.
1019
1023
  If `False`, only the average is returned.
1020
1024
 
@@ -1104,7 +1108,7 @@ def matmul(x1, x2, dtype=None):
1104
1108
  Args:
1105
1109
  x1 (Tensor): Input tensor, scalar not allowed.
1106
1110
  x2 (Tensor): Input tensor, scalar not allowed.
1107
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1111
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1108
1112
  output Tensor.
1109
1113
 
1110
1114
  Returns:
@@ -1145,7 +1149,7 @@ def square(x, dtype=None):
1145
1149
 
1146
1150
  Args:
1147
1151
  x (Tensor): Input data.
1148
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1152
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1149
1153
  output Tensor.
1150
1154
 
1151
1155
  Returns:
@@ -1176,7 +1180,7 @@ def sqrt(x, dtype=None):
1176
1180
 
1177
1181
  Args:
1178
1182
  x (Tensor): The values whose square-roots are required.
1179
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1183
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1180
1184
  output Tensor.
1181
1185
 
1182
1186
  Returns:
@@ -1216,7 +1220,7 @@ def reciprocal(x, dtype=None):
1216
1220
  x (Tensor): Input array. For integer arguments with absolute value larger
1217
1221
  than 1 the result is always zero because of the way Python handles
1218
1222
  integer division. For integer zero the result is an overflow.
1219
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1223
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1220
1224
  output Tensor.
1221
1225
 
1222
1226
  Returns:
@@ -1251,7 +1255,7 @@ def log(x, dtype=None):
1251
1255
 
1252
1256
  Args:
1253
1257
  x (Tensor): Input array.
1254
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1258
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1255
1259
  output Tensor.
1256
1260
 
1257
1261
  Returns:
@@ -1295,7 +1299,7 @@ def maximum(x1, x2, dtype=None):
1295
1299
  x2 (Tensor): The array holding the elements to be compared. If
1296
1300
  ``x1.shape != x2.shape``, they must be broadcastable to a common shape
1297
1301
  (which becomes the shape of the output).
1298
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1302
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1299
1303
  output Tensor.
1300
1304
 
1301
1305
  Returns:
@@ -1345,7 +1349,7 @@ def heaviside(x1, x2, dtype=None):
1345
1349
  x2 (Tensor): The value of the function when `x1` is 0. If
1346
1350
  ``x1.shape != x2.shape``, they must be broadcastable to a common shape
1347
1351
  (which becomes the shape of the output).
1348
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1352
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1349
1353
  output Tensor.
1350
1354
 
1351
1355
  Returns:
@@ -1398,18 +1402,18 @@ def amax(a, axis=None, keepdims=False, initial=None, where=True):
1398
1402
 
1399
1403
  Args:
1400
1404
  a (Tensor): Input data.
1401
- axis (None or int or tuple of integers, optional): Defaults to None. Axis or
1405
+ axis (None or int or tuple of integers, optional): Default: ``None`` . Axis or
1402
1406
  axes along which to operate. By default, flattened input is used. If
1403
1407
  this is a tuple of integers, the maximum is selected over multiple axes,
1404
1408
  instead of a single axis or all the axes as before.
1405
- keepdims (boolean, optional): Defaults to False.
1409
+ keepdims (boolean, optional): Default: ``False`` .
1406
1410
  If this is set to True, the axes which are reduced are left in the
1407
1411
  result as dimensions with size one. With this option, the result will
1408
1412
  broadcast correctly against the input array.
1409
- initial (scalar, optional): Defaults to None.
1413
+ initial (scalar, optional): Default: ``None`` .
1410
1414
  The minimum value of an output element. Must be present to allow
1411
1415
  computation on empty slice.
1412
- where (boolean Tensor, optional): Defaults to True.
1416
+ where (boolean Tensor, optional): Default: ``True`` .
1413
1417
  A boolean array which is broadcasted to match the dimensions of array,
1414
1418
  and selects elements to include in the reduction. If non-default value
1415
1419
  is passed, initial must also be provided.
@@ -1454,18 +1458,18 @@ def amin(a, axis=None, keepdims=False, initial=None, where=True):
1454
1458
 
1455
1459
  Args:
1456
1460
  a (Tensor): Input data.
1457
- axis (None or int or tuple of integers, optional): Defaults to None. Axis or
1461
+ axis (None or int or tuple of integers, optional): Default: ``None`` . Axis or
1458
1462
  axes along which to operate. By default, flattened input is used. If
1459
1463
  this is a tuple of integers, the minimum is selected over multiple axes,
1460
1464
  instead of a single axis or all the axes as before.
1461
- keepdims (bool, optional): Defaults to False.
1465
+ keepdims (bool, optional): Default: ``False`` .
1462
1466
  If this is set to True, the axes which are reduced are left in the
1463
1467
  result as dimensions with size one. With this option, the result will
1464
1468
  broadcast correctly against the input array.
1465
- initial (Number, optional): Defaults to None.
1469
+ initial (Number, optional): Default: ``None`` .
1466
1470
  The maximum value of an output element. Must be present to allow
1467
1471
  computation on empty slice.
1468
- where (bool Tensor, optional): Defaults to True.
1472
+ where (bool Tensor, optional): Default: ``True`` .
1469
1473
  A boolean array which is broadcasted to match the dimensions of array,
1470
1474
  and selects elements to include in the reduction. If non-default value
1471
1475
  is passed, initial must also be provided.
@@ -1519,7 +1523,7 @@ def hypot(x1, x2, dtype=None):
1519
1523
  x2 (Tensor): Leg of the triangle(s). If ``x1.shape != x2.shape``, they
1520
1524
  must be broadcastable to a common shape (which becomes the shape of
1521
1525
  the output).
1522
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1526
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1523
1527
  output Tensor.
1524
1528
 
1525
1529
  Returns:
@@ -1568,7 +1572,7 @@ def floor(x, dtype=None):
1568
1572
 
1569
1573
  Args:
1570
1574
  x (Tensor): input data.
1571
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1575
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1572
1576
  output Tensor.
1573
1577
 
1574
1578
  Returns:
@@ -1600,7 +1604,7 @@ def floor_divide(x1, x2, dtype=None):
1600
1604
  Args:
1601
1605
  x1 (Tensor): Input array.
1602
1606
  x2 (Tensor): Input array.
1603
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1607
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1604
1608
  output Tensor.
1605
1609
 
1606
1610
  Returns:
@@ -1657,7 +1661,7 @@ def remainder(x1, x2, dtype=None):
1657
1661
  Args:
1658
1662
  x1 (Tensor): input array.
1659
1663
  x2 (Tensor): input array.
1660
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1664
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1661
1665
  output Tensor.
1662
1666
 
1663
1667
  Returns:
@@ -1732,7 +1736,7 @@ def fmod(x1, x2, dtype=None):
1732
1736
  Args:
1733
1737
  x1 (Tensor): the first input arrays.
1734
1738
  x2 (Tensor): the second input arrays.
1735
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1739
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1736
1740
  output Tensor.
1737
1741
 
1738
1742
  Returns:
@@ -1764,7 +1768,7 @@ def trunc(x, dtype=None):
1764
1768
 
1765
1769
  Args:
1766
1770
  x (Tensor): input data.
1767
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1771
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1768
1772
  output Tensor.
1769
1773
 
1770
1774
  Returns:
@@ -1798,7 +1802,7 @@ def exp(x, dtype=None):
1798
1802
 
1799
1803
  Args:
1800
1804
  x (Tensor): input data.
1801
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1805
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1802
1806
  output Tensor.
1803
1807
 
1804
1808
  Returns:
@@ -1829,7 +1833,7 @@ def expm1(x, dtype=None):
1829
1833
 
1830
1834
  Args:
1831
1835
  x (Tensor): input data.
1832
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1836
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1833
1837
  output Tensor.
1834
1838
 
1835
1839
  Returns:
@@ -1856,7 +1860,7 @@ def divmod_(x1, x2, dtype=None):
1856
1860
  x1(Union[Tensor]): Dividend tensor.
1857
1861
  x2(Union[Tensor, int, float, bool]): Divisor. If ``x1.shape != x2.shape``,
1858
1862
  they must be broadcastable to a common shape.
1859
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
1863
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
1860
1864
  output Tensor.
1861
1865
 
1862
1866
  Returns:
@@ -1912,14 +1916,14 @@ def diff(a, n=1, axis=-1, prepend=None, append=None):
1912
1916
  Args:
1913
1917
  a (Tensor): Input tensor.
1914
1918
  n (int, optional): The number of times values are differenced. If zero,
1915
- the input is returned as-is. Default: 1.
1919
+ the input is returned as-is. Default: ``1`` .
1916
1920
  axis (int, optional): The axis along which the difference is taken, default
1917
- is the last axis. Default: -1.
1921
+ is the last axis. Default: ``-1`` .
1918
1922
  prepend/append (Tensor, optional): Values to prepend or append to a along
1919
1923
  `axis` prior to performing the difference. Scalar values are expanded to
1920
1924
  arrays with length 1 in the direction of `axis` and the shape of the input
1921
1925
  array in along all other axes. Otherwise the dimension and shape must
1922
- match `a` except along axis. Default: `None`.
1926
+ match `a` except along axis. Default: ``None`` .
1923
1927
 
1924
1928
  Returns:
1925
1929
  The n-th differences. The shape of the output is the same as a except along
@@ -2042,10 +2046,9 @@ def trapz(y, x=None, dx=1.0, axis=-1):
2042
2046
  y (Tensor): Input array to integrate.
2043
2047
  x (Union[int, float, bool, list, tuple, Tensor], optional): The sample points
2044
2048
  corresponding to the `y` values. If `x` is None, the sample points are
2045
- assumed to be evenly spaced `dx` apart. The default is None.
2046
- dx (scalar, optional): The spacing between sample points when `x` is None. The
2047
- default is 1.0.
2048
- axis (int, optional): The axis along which to integrate. Defaults to -1.
2049
+ assumed to be evenly spaced `dx` apart. Default: ``None`` .
2050
+ dx (scalar, optional): The spacing between sample points when `x` is None. Default: ``1.0`` .
2051
+ axis (int, optional): The axis along which to integrate. Default: ``-1`` .
2049
2052
 
2050
2053
  Returns:
2051
2054
  Tensor of float, definite integral as approximated by trapezoidal rule.
@@ -2131,7 +2134,7 @@ def gcd(x1, x2, dtype=None):
2131
2134
  Args:
2132
2135
  x1 (Tensor): input data.
2133
2136
  x2 (Tensor): input data.
2134
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2137
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2135
2138
  output Tensor.
2136
2139
 
2137
2140
  Returns:
@@ -2161,7 +2164,7 @@ def lcm(x1, x2, dtype=None):
2161
2164
  Args:
2162
2165
  x1 (Tensor): input data.
2163
2166
  x2 (Tensor): input data.
2164
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2167
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2165
2168
  output Tensor.
2166
2169
 
2167
2170
  Returns:
@@ -2303,7 +2306,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=N
2303
2306
  Estimates a covariance matrix, given data and weights.
2304
2307
 
2305
2308
  Covariance indicates the level to which two variables vary together. If we examine
2306
- N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix
2309
+ N-dimensional samples, :math:`X = [x_1, x_2, .. x_N]^T`, then the covariance matrix
2307
2310
  element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element
2308
2311
  :math:`C_{ii}` is the variance of :math:`x_i`.
2309
2312
 
@@ -2417,7 +2420,7 @@ def _shape_reduced_keepdims(shape, axes):
2417
2420
  keeping the number of dimensions unchanged.
2418
2421
  """
2419
2422
  ndim_out = F.tuple_len(shape)
2420
- shape_out = [1]*ndim_out
2423
+ shape_out = [1] * ndim_out
2421
2424
  for i in range(ndim_out):
2422
2425
  if i not in axes:
2423
2426
  shape_out[i] = shape[i]
@@ -2498,9 +2501,9 @@ def nanmax(a, axis=None, dtype=None, keepdims=False):
2498
2501
  is desired. If `a` is not an array, a conversion is attempted.
2499
2502
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the maximum is
2500
2503
  computed. The default is to compute the maximum of the flattened array.
2501
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2504
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2502
2505
  output Tensor.
2503
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2506
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2504
2507
  are reduced are left in the result as dimensions with size one. With this option,
2505
2508
  the result will broadcast correctly against the original `a`.
2506
2509
 
@@ -2548,9 +2551,9 @@ def nanmin(a, axis=None, dtype=None, keepdims=False):
2548
2551
  is desired. If `a` is not an array, a conversion is attempted.
2549
2552
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the minimum is
2550
2553
  computed. The default is to compute the minimum of the flattened array.
2551
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2554
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2552
2555
  output Tensor.
2553
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2556
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2554
2557
  are reduced are left in the result as dimensions with size one. With this option,
2555
2558
  the result will broadcast correctly against the original `a`.
2556
2559
 
@@ -2603,9 +2606,9 @@ def nansum(a, axis=None, dtype=None, keepdims=False):
2603
2606
  whose sum is desired. If `a` is not an array, a conversion is attempted.
2604
2607
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the sum is
2605
2608
  computed. The default is to compute the sum of the flattened array.
2606
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2609
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2607
2610
  output Tensor.
2608
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2611
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2609
2612
  are reduced are left in the result as dimensions with size one. With this option,
2610
2613
  the result will broadcast correctly against the original `a`.
2611
2614
 
@@ -2660,9 +2663,9 @@ def nanmean(a, axis=None, dtype=None, keepdims=False):
2660
2663
  whose mean is desired. If `a` is not an array, a conversion is attempted.
2661
2664
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the mean is
2662
2665
  computed. The default is to compute the mean of the flattened array.
2663
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2666
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2664
2667
  output Tensor.
2665
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2668
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2666
2669
  are reduced are left in the result as dimensions with size one. With this option,
2667
2670
  the result will broadcast correctly against the original `a`.
2668
2671
 
@@ -2722,12 +2725,12 @@ def nanvar(a, axis=None, dtype=None, ddof=0, keepdims=False):
2722
2725
  whose variance is desired. If `a` is not an array, a conversion is attempted.
2723
2726
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the variance is
2724
2727
  computed. The default is to compute the variance of the flattened array.
2725
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2728
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2726
2729
  output Tensor.
2727
2730
  ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
2728
2731
  ``N - ddof``, where `N` represents the number of non-NaN elements. By default `ddof`
2729
2732
  is zero.
2730
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2733
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2731
2734
  are reduced are left in the result as dimensions with size one. With this option,
2732
2735
  the result will broadcast correctly against the original `a`.
2733
2736
 
@@ -2777,12 +2780,12 @@ def nanstd(a, axis=None, dtype=None, ddof=0, keepdims=False):
2777
2780
  axis (Union[int, tuple of int, None], optional): Axis or axes along which the standard
2778
2781
  deviation is computed. The default is to compute the standard deviation of the
2779
2782
  flattened array.
2780
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
2783
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
2781
2784
  output Tensor.
2782
2785
  ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
2783
2786
  ``N - ddof``, where `N` represents the number of non-NaN elements. By default `ddof`
2784
2787
  is zero.
2785
- keepdims (boolean, optional): Defaults to False. If this is set to True, the axes which
2788
+ keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
2786
2789
  are reduced are left in the result as dimensions with size one. With this option,
2787
2790
  the result will broadcast correctly against the original `a`.
2788
2791
 
@@ -2826,7 +2829,7 @@ def exp2(x, dtype=None):
2826
2829
 
2827
2830
  Args:
2828
2831
  x (Tensor): input values.
2829
- dtype (:class:`mindspore.dtype`, optional): Defaults to :class:`None`. Overrides the dtype of the
2832
+ dtype (:class:`mindspore.dtype`, optional): Defaults to ``None``. Overrides the dtype of the
2830
2833
  output Tensor.
2831
2834
 
2832
2835
  Returns:
@@ -2924,7 +2927,7 @@ def cross(a, b, axisa=- 1, axisb=- 1, axisc=- 1, axis=None):
2924
2927
  the last axis.
2925
2928
  axis (int, optional): If defined, the axis of `a`, `b` and `c` that defines the
2926
2929
  vector(s) and cross product(s). Overrides `axisa`, `axisb` and `axisc`.
2927
- Defaults to None.
2930
+ Default: ``None`` .
2928
2931
 
2929
2932
  Returns:
2930
2933
  Tensor, vector cross product(s).
@@ -3016,7 +3019,7 @@ def ceil(x, dtype=None):
3016
3019
 
3017
3020
  Args:
3018
3021
  x (Tensor): input values.
3019
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
3022
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
3020
3023
  output Tensor.
3021
3024
 
3022
3025
  Returns:
@@ -3060,7 +3063,7 @@ def positive(a, dtype=None):
3060
3063
 
3061
3064
  Args:
3062
3065
  a (Tensor): Input tensor.
3063
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
3066
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
3064
3067
  output Tensor.
3065
3068
 
3066
3069
  Returns:
@@ -3091,7 +3094,7 @@ def negative(a, dtype=None):
3091
3094
 
3092
3095
  Args:
3093
3096
  a (Tensor): Input tensor.
3094
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
3097
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
3095
3098
  output Tensor.
3096
3099
 
3097
3100
  Returns:
@@ -3121,11 +3124,11 @@ def cumsum(a, axis=None, dtype=None):
3121
3124
  Args:
3122
3125
  a (Tensor): Input tensor.
3123
3126
  axis (int, optional): Axis along which the cumulative sum is computed. The
3124
- default (None) is to compute the cumsum over the flattened array.
3127
+ default ( ``None`` ) is to compute the cumsum over the flattened array.
3125
3128
  dtype (:class:`mindspore.dtype`, optional): If not specified, stay the same as `a`,
3126
3129
  unless `a` has an integer dtype with a precision less than that of the
3127
3130
  default platform integer. In that case, the default platform integer
3128
- is used. Default: `None`.
3131
+ is used. Default: ``None`` .
3129
3132
 
3130
3133
  Returns:
3131
3134
  Tensor.
@@ -3209,7 +3212,7 @@ def cbrt(x, dtype=None):
3209
3212
 
3210
3213
  Args:
3211
3214
  x (Tensor): Input tensor.
3212
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
3215
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
3213
3216
  output Tensor.
3214
3217
 
3215
3218
  Returns:
@@ -3247,7 +3250,7 @@ def log1p(x, dtype=None):
3247
3250
 
3248
3251
  Args:
3249
3252
  x (Tensor): Input array.
3250
- dtype (:class:`mindspore.dtype`): Default: :class:`None`. Overrides the dtype of the
3253
+ dtype (:class:`mindspore.dtype`): Default: ``None``. Overrides the dtype of the
3251
3254
  output Tensor.
3252
3255
 
3253
3256
  Returns:
@@ -3283,7 +3286,7 @@ def logaddexp(x1, x2, dtype=None):
3283
3286
  x1 (Tensor): Input array.
3284
3287
  x2 (Tensor): Input array. If ``x1.shape != x2.shape``, they must be broadcastable to
3285
3288
  a common shape (which becomes the shape of the output).
3286
- dtype (:class:`mindspore.dtype`): Default: :class:`None`. Overrides the dtype of the
3289
+ dtype (:class:`mindspore.dtype`): Default: ``None``. Overrides the dtype of the
3287
3290
  output Tensor.
3288
3291
 
3289
3292
  Returns:
@@ -3315,7 +3318,7 @@ def log2(x, dtype=None):
3315
3318
 
3316
3319
  Args:
3317
3320
  x (Tensor): Input tensor.
3318
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3321
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3319
3322
  output Tensor.
3320
3323
 
3321
3324
  Returns:
@@ -3357,7 +3360,7 @@ def logaddexp2(x1, x2, dtype=None):
3357
3360
  x1 (Tensor): Input tensor.
3358
3361
  x2 (Tensor): Input tensor. If ``x1.shape != x2.shape``, they must be broadcastable to
3359
3362
  a common shape (which becomes the shape of the output).
3360
- dtype (:class:`mindspore.dtype`): Default: :class:`None`. Overrides the dtype of the
3363
+ dtype (:class:`mindspore.dtype`): Default: ``None``. Overrides the dtype of the
3361
3364
  output Tensor.
3362
3365
 
3363
3366
  Returns:
@@ -3389,7 +3392,7 @@ def log10(x, dtype=None):
3389
3392
 
3390
3393
  Args:
3391
3394
  x (Tensor): Input tensor.
3392
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3395
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3393
3396
  output Tensor.
3394
3397
 
3395
3398
  Returns:
@@ -3431,7 +3434,7 @@ def sin(x, dtype=None):
3431
3434
 
3432
3435
  Args:
3433
3436
  x (Tensor): Input tensor.
3434
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3437
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3435
3438
  output Tensor.
3436
3439
 
3437
3440
  Returns:
@@ -3461,7 +3464,7 @@ def cos(x, dtype=None):
3461
3464
 
3462
3465
  Args:
3463
3466
  x (Tensor): Input tensor.
3464
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3467
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3465
3468
  output Tensor.
3466
3469
 
3467
3470
  Returns:
@@ -3492,7 +3495,7 @@ def tan(x, dtype=None):
3492
3495
 
3493
3496
  Args:
3494
3497
  x (Tensor): Input tensor.
3495
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3498
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3496
3499
  output Tensor.
3497
3500
 
3498
3501
  Returns:
@@ -3524,7 +3527,7 @@ def arcsin(x, dtype=None):
3524
3527
 
3525
3528
  Args:
3526
3529
  x (Tensor): Input tensor. y-coordinate on the unit circle.
3527
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3530
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3528
3531
  output Tensor.
3529
3532
 
3530
3533
  Returns:
@@ -3558,7 +3561,7 @@ def arccos(input, dtype=None):
3558
3561
  Args:
3559
3562
  input (Tensor): Input tensor. x-coordinate on the unit circle.
3560
3563
  For real arguments, the domain is :math:`[-1, 1]`.
3561
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3564
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3562
3565
  output Tensor.
3563
3566
 
3564
3567
  Returns:
@@ -3593,7 +3596,7 @@ def arctan(x, dtype=None):
3593
3596
 
3594
3597
  Args:
3595
3598
  x (Tensor): Input tensor.
3596
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3599
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3597
3600
  output Tensor.
3598
3601
 
3599
3602
  Returns:
@@ -3622,7 +3625,7 @@ def sinh(x, dtype=None):
3622
3625
 
3623
3626
  Args:
3624
3627
  x (Tensor): Input tensor.
3625
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3628
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3626
3629
  output Tensor.
3627
3630
 
3628
3631
  Returns:
@@ -3651,7 +3654,7 @@ def cosh(x, dtype=None):
3651
3654
 
3652
3655
  Args:
3653
3656
  x (Tensor): Input tensor.
3654
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3657
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3655
3658
  output Tensor.
3656
3659
 
3657
3660
  Returns:
@@ -3680,7 +3683,7 @@ def tanh(x, dtype=None):
3680
3683
 
3681
3684
  Args:
3682
3685
  x (Tensor): Input tensor.
3683
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3686
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3684
3687
  output Tensor.
3685
3688
 
3686
3689
  Returns:
@@ -3709,7 +3712,7 @@ def arcsinh(x, dtype=None):
3709
3712
 
3710
3713
  Args:
3711
3714
  x (Tensor): Input tensor.
3712
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3715
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3713
3716
  output Tensor.
3714
3717
 
3715
3718
  Returns:
@@ -3738,7 +3741,7 @@ def arccosh(x, dtype=None):
3738
3741
 
3739
3742
  Args:
3740
3743
  x (Tensor): Input tensor.
3741
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3744
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3742
3745
  output Tensor.
3743
3746
 
3744
3747
  Returns:
@@ -3767,7 +3770,7 @@ def arctanh(x, dtype=None):
3767
3770
 
3768
3771
  Args:
3769
3772
  x (Tensor): Input tensor.
3770
- dtype (:class:`mindspore.dtype`, optional): Default: :class:`None`. Overrides the dtype of the
3773
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None``. Overrides the dtype of the
3771
3774
  output Tensor.
3772
3775
 
3773
3776
  Returns:
@@ -3797,7 +3800,7 @@ def arctan2(x1, x2, dtype=None):
3797
3800
  Args:
3798
3801
  x1 (Tensor): input tensor.
3799
3802
  x2 (Tensor): input tensor.
3800
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
3803
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
3801
3804
  output Tensor.
3802
3805
 
3803
3806
  Returns:
@@ -3869,13 +3872,13 @@ def corrcoef(x, y=None, rowvar=True, dtype=None):
3869
3872
  multiple variables and observations. Each row of `x` represents a variable,
3870
3873
  and each column a single observation of all those variables. Also see rowvar below.
3871
3874
  y (Union[int, float, bool, tuple, list, Tensor], optional): An additional set
3872
- of variables and observations. Default: `None`.
3873
- rowvar (bool, optional): If rowvar is `True` (default), then each row represents
3875
+ of variables and observations. Default: ``None`` .
3876
+ rowvar (bool, optional): If rowvar is ``True`` (default), then each row represents
3874
3877
  a variable, with observations in the columns. Otherwise, the relationship
3875
3878
  is transposed: each column represents a variable, while the rows contain observations.
3876
- Default: `True`.
3879
+ Default: ``True`` .
3877
3880
  dtype (:class:`mindspore.dtype`, optional): Data-type of the result. By default,
3878
- the return data-type will have at least float32 precision. Default: `None`.
3881
+ the return data-type will have at least float32 precision. Default: ``None`` .
3879
3882
 
3880
3883
  Returns:
3881
3884
  Tensor, The correlation coefficient matrix of the variables.
@@ -3984,7 +3987,7 @@ def gradient(f, *varargs, axis=None, edge_order=1):
3984
3987
  the gradient for all the axes of the input tensor. `axis` may be negative,
3985
3988
  in which case it counts from the last to the first `axis`.
3986
3989
  edge_order (int): Gradient is calculated using N-th order accurate differences
3987
- at the boundaries. Default: 1.
3990
+ at the boundaries. Default: ``1`` .
3988
3991
 
3989
3992
  Returns:
3990
3993
  gradient, a list of tensors (or a single tensor if there is only one dimension
@@ -4126,7 +4129,7 @@ def _get_dims(shapes):
4126
4129
  raise ValueError('Array must be 2 dimensional')
4127
4130
  dims = tuple(map(operator.itemgetter(0), shapes))
4128
4131
  if any(shape[1] != dim for shape, dim in zip(shapes[:-1], dims[1:])):
4129
- raise ValueError(f'shapes not aligned')
4132
+ raise ValueError('Shapes{} are not aligned'.format(str(shapes)))
4130
4133
  return dims + (shapes[-1][1],)
4131
4134
 
4132
4135
 
@@ -4229,7 +4232,7 @@ def argmax(a, axis=None):
4229
4232
  a (Union[int, float, bool, list, tuple, Tensor]): Input array.
4230
4233
  axis (int, optional): By default, the index is into
4231
4234
  the flattened array, otherwise along the specified axis.
4232
- Default: `None`.
4235
+ Default: ``None`` .
4233
4236
 
4234
4237
  Returns:
4235
4238
  Tensor, array of indices into the array. It has the same
@@ -4268,7 +4271,7 @@ def argmin(a, axis=None):
4268
4271
  a (Union[int, float, bool, list, tuple, Tensor]): Input array.
4269
4272
  axis (int, optional): By default, the index is into
4270
4273
  the flattened array, otherwise along the specified axis.
4271
- Default: `None`.
4274
+ Default: ``None`` .
4272
4275
 
4273
4276
  Returns:
4274
4277
  Tensor, array of indices into the array. It has the same
@@ -4311,8 +4314,8 @@ def searchsorted(a, v, side='left', sorter=None):
4311
4314
  None, then it must be sorted in ascending order, otherwise `sorter` must be
4312
4315
  an array of indices that sort it.
4313
4316
  v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into `a`.
4314
- side ('left', 'right', optional): If 'left', the index of the first suitable
4315
- location found is given. If 'right', return the last such index. If there is
4317
+ side ('left', 'right', optional): If ``'left'`` , the index of the first suitable
4318
+ location found is given. If ``'right'`` , return the last such index. If there is
4316
4319
  no suitable index, return either 0 or N (where N is the length of `a`).
4317
4320
  sorter (Union[int, float, bool, list, tuple, Tensor]): 1-D optional array of
4318
4321
  integer indices that sort array `a` into ascending order. They are typically
@@ -4395,6 +4398,7 @@ def interp(x, xp, fp, left=None, right=None):
4395
4398
  ``Ascend`` ``GPU`` ``CPU``
4396
4399
 
4397
4400
  Examples:
4401
+ >>> import mindspore.numpy as np
4398
4402
  >>> xp = [1, 2, 3]
4399
4403
  >>> fp = [3, 2, 0]
4400
4404
  >>> print(np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp))
@@ -4464,7 +4468,7 @@ def sign(x, dtype=None):
4464
4468
 
4465
4469
  Args:
4466
4470
  x (Union[int, float, list, tuple, Tensor]): Input values.
4467
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
4471
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
4468
4472
  output Tensor.
4469
4473
 
4470
4474
  Returns:
@@ -4514,7 +4518,7 @@ def copysign(x1, x2, dtype=None):
4514
4518
  x1 (Union[int, float, list, tuple, Tensor]): Values to change the sign of.
4515
4519
  x2 (Union[int, float, list, tuple, Tensor]): The sign of x2 is copied to x1. If `x1.shape != x2.shape`,
4516
4520
  they must be broadcastable to a common shape (which becomes the shape of the output).
4517
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
4521
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
4518
4522
  output Tensor.
4519
4523
 
4520
4524
  Returns:
@@ -4624,10 +4628,10 @@ def bincount(x, weights=None, minlength=0, length=None):
4624
4628
  Args:
4625
4629
  x (Union[list, tuple, Tensor]): 1-d input array.
4626
4630
  weights (Union[int, float, bool, list, tuple, Tensor], optional): Weights,
4627
- array of the same shape as `x`. Defaults to None.
4631
+ array of the same shape as `x`. Default: ``None`` .
4628
4632
  minlength (int, optional): A minimum number of bins for the output array.
4629
- Defaults to 0.
4630
- length (int, optional): Number of bins. Defaults to None.
4633
+ Default: ``0`` .
4634
+ length (int, optional): Number of bins. Default: ``None`` .
4631
4635
 
4632
4636
  Returns:
4633
4637
  Tensor, the result of binning the input array. The length of out is equal to
@@ -5016,7 +5020,7 @@ def around(a, decimals=0):
5016
5020
 
5017
5021
  Args:
5018
5022
  a (Union[int, float, list, tuple, Tensor]): Input data.
5019
- decimals (int): Number of decimal places to round to. Default: 0.
5023
+ decimals (int): Number of decimal places to round to. Default: ``0`` .
5020
5024
 
5021
5025
  Returns:
5022
5026
  Tensor. A tensor of the same type as a, containing the rounded values.
@@ -5166,7 +5170,7 @@ def polyder(p, m=1):
5166
5170
  Args:
5167
5171
  p (Union[int, float, bool, list, tuple, Tensor): Polynomial to differentiate.
5168
5172
  A sequence is interpreted as polynomial coefficients.
5169
- m (int, optional): Defaults to 1, order of differentiation.
5173
+ m (int, optional): Default: ``1`` , order of differentiation.
5170
5174
 
5171
5175
  Returns:
5172
5176
  Tensor, a new polynomial representing the derivative.
@@ -5189,7 +5193,7 @@ def polyder(p, m=1):
5189
5193
  return _to_tensor([])
5190
5194
  for _ in range(m):
5191
5195
  coeff = _to_tensor(F.make_range(_type_convert(int, p.size) - 1, 0, -1))
5192
- p = p[:-1]*coeff
5196
+ p = p[:-1] * coeff
5193
5197
  return p
5194
5198
 
5195
5199
 
@@ -5339,8 +5343,8 @@ def unwrap(p, discont=3.141592653589793, axis=-1):
5339
5343
 
5340
5344
  Args:
5341
5345
  p (Union[int, float, bool, list, tuple, Tensor): Input array.
5342
- discont (float, optional): Maximum discontinuity between values, default is pi.
5343
- axis (int, optional): Axis along which unwrap will operate, default is -1.
5346
+ discont (float, optional): Maximum discontinuity between values, default: ``pi`` .
5347
+ axis (int, optional): Axis along which unwrap will operate, default: ``-1`` .
5344
5348
 
5345
5349
  Returns:
5346
5350
  Tensor.
@@ -5366,9 +5370,9 @@ def unwrap(p, discont=3.141592653589793, axis=-1):
5366
5370
  axis = _check_axis_in_range(axis, ndim)
5367
5371
  dd = diff(p, axis=axis)
5368
5372
  ddmod = remainder(add(dd, pi), 2*pi) - pi
5369
- ddmod = where_(F.logical_and(ddmod == -pi, dd > 0), pi, ddmod)
5373
+ ddmod = F.masked_fill(ddmod, F.logical_and(ddmod == -pi, dd > 0), pi)
5370
5374
  ph_correct = ddmod - dd
5371
- ph_correct = where_(absolute(dd) < discont, 0, ph_correct)
5375
+ ph_correct = F.masked_fill(ph_correct, absolute(dd) < discont, 0)
5372
5376
  slice_all = _list_comprehensions(F.rank(p), F.make_slice(None, None, None), True)
5373
5377
  slice0 = _tuple_setitem(slice_all, axis, F.make_slice(0, 1, None))
5374
5378
  slice1 = _tuple_setitem(slice_all, axis, F.make_slice(1, None, None))
@@ -5387,8 +5391,8 @@ def cumprod(a, axis=None, dtype=None):
5387
5391
  Args:
5388
5392
  a (Union[int, float, bool, list, tuple, Tensor]): Input tensor.
5389
5393
  axis (int, optional): Axis along which the cumulative product is computed.
5390
- By default the input is flattened. Default: `None`.
5391
- dtype (:class:`mindspore.dtype`, optional): Default: `None`. Overrides the dtype of the
5394
+ By default the input is flattened. Default: ``None`` .
5395
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5392
5396
  output Tensor.
5393
5397
 
5394
5398
  Returns:
@@ -5474,7 +5478,7 @@ def ravel_multi_index(multi_index, dims, mode='clip', order='C'):
5474
5478
  multi_index (tuple of array_like):
5475
5479
  A tuple of integer arrays, one array for each dimension.
5476
5480
  dims (Union[int, tuple of integers]): The shape of array into which the indices from multi_index apply.
5477
- mode ({`wrap`, `clip`}): Specifies how out-of-bounds indices are handled. Default: `clip`.
5481
+ mode ({`wrap`, `clip`}): Specifies how out-of-bounds indices are handled. Default: ``clip''``.
5478
5482
 
5479
5483
  - `wrap`: wrap around
5480
5484
  - `clip`: clip to the range
@@ -5581,7 +5585,7 @@ def norm(x, ord=None, axis=None, keepdims=False): # pylint: disable=redefined-bu
5581
5585
  `x` must be 1-D or 2-D, unless `ord` is None. If both `axis` and `ord` are None,
5582
5586
  the 2-norm of ``x.ravel`` will be returned.
5583
5587
  ord (Union[None, 'fro', 'nuc', inf, -inf, int, float], optional): Order of the norm.
5584
- inf means numpy’s inf object. The default is None.
5588
+ inf means numpy’s inf object. Default: ``None`` .
5585
5589
  axis (Union[None, int, 2-tuple of integers], optional): If `axis` is an integer, it
5586
5590
  specifies the axis of `x` along which to compute the vector norms. If `axis` is
5587
5591
  a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of
@@ -5644,7 +5648,7 @@ def bitwise_and(x1, x2, dtype=None):
5644
5648
  x2 (Tensor): Input array. Only integer and boolean types are handled. If
5645
5649
  ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes
5646
5650
  the shape of the output).
5647
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5651
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5648
5652
  output Tensor.
5649
5653
 
5650
5654
  Returns:
@@ -5676,7 +5680,7 @@ def bitwise_or(x1, x2, dtype=None):
5676
5680
  x2 (Tensor): Input array. Only integer and boolean types are handled. If
5677
5681
  ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes
5678
5682
  the shape of the output).
5679
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5683
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5680
5684
  output Tensor.
5681
5685
 
5682
5686
  Returns:
@@ -5708,7 +5712,7 @@ def bitwise_xor(x1, x2, dtype=None):
5708
5712
  x2 (Tensor): Input array. Only integer and boolean types are handled. If
5709
5713
  ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes
5710
5714
  the shape of the output).
5711
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5715
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5712
5716
  output Tensor.
5713
5717
 
5714
5718
  Returns:
@@ -5743,7 +5747,7 @@ def invert(x, dtype=None):
5743
5747
 
5744
5748
  Args:
5745
5749
  x (Tensor): Only integer and boolean types are handled.
5746
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5750
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5747
5751
  output Tensor.
5748
5752
 
5749
5753
  Returns:
@@ -5767,11 +5771,10 @@ def rint(x, dtype=None):
5767
5771
  Note:
5768
5772
  Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are
5769
5773
  not supported.
5770
- Ascend does not support dtype `float64` currently.
5771
5774
 
5772
5775
  Args:
5773
- x (Union[float, list, tuple, Tensor]): Input tensor.
5774
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5776
+ x (Union[float, list, tuple, Tensor]): Input tensor of any dimension.
5777
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5775
5778
  output Tensor.
5776
5779
 
5777
5780
  Returns:
@@ -5890,7 +5893,7 @@ def radians(x, dtype=None):
5890
5893
 
5891
5894
  Args:
5892
5895
  x (Tensor): Angles in degrees.
5893
- dtype (:class:`mindspore.dtype`, optional): Defaults to None. Overrides the dtype of the
5896
+ dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
5894
5897
  output Tensor.
5895
5898
 
5896
5899
  Returns: