mindspore 2.0.0rc1__cp38-cp38-manylinux1_x86_64.whl → 2.2.0__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (884) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +2 -2
  3. mindspore/__init__.py +5 -2
  4. mindspore/_akg/akg/build_module.py +5 -6
  5. mindspore/_akg/akg/composite/build_module.py +49 -16
  6. mindspore/_akg/akg/composite/split_stitch.py +10 -11
  7. mindspore/_akg/akg/config/repository.json +195 -0
  8. mindspore/_akg/akg/global_configs.py +5 -1
  9. mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
  10. mindspore/_akg/akg/tvm/api.py +4 -3
  11. mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
  12. mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
  13. mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
  14. mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
  15. mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
  16. mindspore/_akg/akg/tvm/build_module.py +16 -1
  17. mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
  18. mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
  19. mindspore/_akg/akg/tvm/ir_builder.py +1 -1
  20. mindspore/_akg/akg/tvm/module.py +1 -2
  21. mindspore/_akg/akg/tvm/stmt.py +2 -2
  22. mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
  23. mindspore/_akg/akg/utils/kernel_exec.py +58 -260
  24. mindspore/_akg/akg/utils/op_dsl.py +17 -1
  25. mindspore/_akg/akg/utils/result_analysis.py +4 -24
  26. mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
  27. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  28. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  29. mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
  30. mindspore/_check_jit_forbidden_api.py +5 -1
  31. mindspore/_checkparam.py +79 -62
  32. mindspore/_extends/graph_kernel/__init__.py +0 -1
  33. mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
  34. mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
  35. mindspore/_extends/graph_kernel/splitter.py +1 -9
  36. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
  37. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
  38. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
  39. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
  40. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
  41. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
  42. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
  43. mindspore/_extends/parse/__init__.py +19 -17
  44. mindspore/_extends/parse/namespace.py +7 -36
  45. mindspore/_extends/parse/parser.py +375 -189
  46. mindspore/_extends/parse/resources.py +36 -41
  47. mindspore/_extends/parse/standard_method.py +350 -245
  48. mindspore/_extends/parse/trope.py +2 -12
  49. mindspore/_extends/remote/kernel_build_server.py +24 -7
  50. mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
  51. mindspore/_install_custom.py +43 -0
  52. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  53. mindspore/amp.py +85 -19
  54. mindspore/bin/cache_admin +0 -0
  55. mindspore/bin/cache_server +0 -0
  56. mindspore/boost/base.py +2 -2
  57. mindspore/boost/boost.py +27 -32
  58. mindspore/boost/boost_cell_wrapper.py +37 -13
  59. mindspore/boost/grad_accumulation.py +1 -1
  60. mindspore/boost/grad_freeze.py +34 -6
  61. mindspore/boost/group_loss_scale_manager.py +15 -14
  62. mindspore/boost/less_batch_normalization.py +28 -3
  63. mindspore/common/__init__.py +15 -11
  64. mindspore/common/_auto_dynamic.py +68 -0
  65. mindspore/common/_jit_fallback_utils.py +111 -0
  66. mindspore/common/_register_for_adapter.py +17 -5
  67. mindspore/common/_register_for_tensor.py +2 -2
  68. mindspore/common/_stub_tensor.py +18 -15
  69. mindspore/common/_utils.py +31 -7
  70. mindspore/common/api.py +269 -101
  71. mindspore/common/auto_dynamic_shape.py +498 -0
  72. mindspore/common/dtype.py +61 -21
  73. mindspore/common/dump.py +9 -7
  74. mindspore/common/initializer.py +106 -76
  75. mindspore/common/jit_config.py +35 -14
  76. mindspore/common/lazy_inline.py +187 -0
  77. mindspore/common/mindir_util.py +101 -0
  78. mindspore/common/mutable.py +10 -13
  79. mindspore/common/parameter.py +246 -55
  80. mindspore/common/seed.py +13 -7
  81. mindspore/common/sparse_tensor.py +29 -33
  82. mindspore/common/tensor.py +907 -251
  83. mindspore/communication/__init__.py +7 -4
  84. mindspore/communication/_comm_helper.py +84 -4
  85. mindspore/communication/management.py +160 -88
  86. mindspore/config/op_info.config +99 -75
  87. mindspore/config/super_bar_config.json +36 -4
  88. mindspore/context.py +526 -219
  89. mindspore/dataset/__init__.py +9 -46
  90. mindspore/dataset/audio/__init__.py +4 -19
  91. mindspore/dataset/audio/transforms.py +545 -233
  92. mindspore/dataset/audio/utils.py +21 -18
  93. mindspore/dataset/callback/ds_callback.py +42 -13
  94. mindspore/dataset/core/config.py +158 -100
  95. mindspore/dataset/core/validator_helpers.py +1 -63
  96. mindspore/dataset/debug/debug_hook.py +45 -13
  97. mindspore/dataset/debug/pre_defined_hook.py +5 -5
  98. mindspore/dataset/engine/__init__.py +0 -5
  99. mindspore/dataset/engine/cache_client.py +38 -15
  100. mindspore/dataset/engine/datasets.py +615 -278
  101. mindspore/dataset/engine/datasets_audio.py +154 -283
  102. mindspore/dataset/engine/datasets_standard_format.py +104 -116
  103. mindspore/dataset/engine/datasets_text.py +443 -326
  104. mindspore/dataset/engine/datasets_user_defined.py +251 -164
  105. mindspore/dataset/engine/datasets_vision.py +839 -1443
  106. mindspore/dataset/engine/iterators.py +11 -4
  107. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
  108. mindspore/dataset/engine/obs/util.py +3 -0
  109. mindspore/dataset/engine/offload.py +6 -6
  110. mindspore/dataset/engine/queue.py +15 -14
  111. mindspore/dataset/engine/samplers.py +39 -23
  112. mindspore/dataset/engine/serializer_deserializer.py +22 -6
  113. mindspore/dataset/engine/validators.py +21 -331
  114. mindspore/dataset/text/__init__.py +5 -33
  115. mindspore/dataset/text/transforms.py +334 -165
  116. mindspore/dataset/text/utils.py +215 -145
  117. mindspore/dataset/transforms/__init__.py +1 -1
  118. mindspore/dataset/transforms/c_transforms.py +3 -2
  119. mindspore/dataset/transforms/py_transforms_util.py +40 -12
  120. mindspore/dataset/transforms/transforms.py +174 -71
  121. mindspore/dataset/utils/browse_dataset.py +25 -17
  122. mindspore/dataset/utils/line_reader.py +24 -21
  123. mindspore/dataset/vision/__init__.py +5 -26
  124. mindspore/dataset/vision/c_transforms.py +177 -165
  125. mindspore/dataset/vision/py_transforms.py +114 -119
  126. mindspore/dataset/vision/py_transforms_util.py +54 -51
  127. mindspore/dataset/vision/transforms.py +1127 -381
  128. mindspore/dataset/vision/utils.py +54 -38
  129. mindspore/dataset/vision/validators.py +12 -2
  130. mindspore/experimental/map_parameter.py +38 -4
  131. mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
  132. mindspore/experimental/optim/adam.py +192 -0
  133. mindspore/experimental/optim/adamw.py +181 -0
  134. mindspore/experimental/optim/lr_scheduler.py +1427 -0
  135. mindspore/experimental/optim/optimizer.py +252 -0
  136. mindspore/experimental/optim/sgd.py +147 -0
  137. mindspore/gen_ops.py +273 -0
  138. mindspore/include/OWNERS +1 -2
  139. mindspore/include/api/context.h +21 -1
  140. mindspore/include/api/data_type.h +2 -1
  141. mindspore/include/api/graph.h +0 -15
  142. mindspore/include/api/kernel.h +2 -0
  143. mindspore/include/api/kernel_api.h +37 -12
  144. mindspore/include/api/model.h +29 -42
  145. mindspore/include/api/model_group.h +14 -3
  146. mindspore/include/api/model_parallel_runner.h +18 -2
  147. mindspore/include/api/serialization.h +26 -0
  148. mindspore/include/api/status.h +1 -0
  149. mindspore/include/api/types.h +38 -4
  150. mindspore/include/c_api/ms/abstract.h +67 -0
  151. mindspore/include/c_api/ms/attribute.h +197 -0
  152. mindspore/include/c_api/ms/base/handle_types.h +43 -0
  153. mindspore/include/c_api/ms/base/macros.h +32 -0
  154. mindspore/include/c_api/ms/base/status.h +33 -0
  155. mindspore/include/c_api/ms/base/types.h +282 -0
  156. mindspore/include/c_api/ms/context.h +102 -0
  157. mindspore/include/c_api/ms/graph.h +160 -0
  158. mindspore/include/c_api/ms/node.h +606 -0
  159. mindspore/include/c_api/ms/tensor.h +161 -0
  160. mindspore/include/c_api/ms/value.h +84 -0
  161. mindspore/include/c_api/status_c.h +3 -0
  162. mindspore/include/dataset/constants.h +6 -12
  163. mindspore/include/dataset/execute.h +23 -13
  164. mindspore/include/dataset/text.h +26 -26
  165. mindspore/include/dataset/transforms.h +25 -31
  166. mindspore/include/dataset/vision.h +60 -60
  167. mindspore/include/dataset/vision_ascend.h +5 -6
  168. mindspore/include/dataset/vision_lite.h +17 -17
  169. mindspore/include/mindapi/base/format.h +0 -1
  170. mindspore/include/mindapi/base/type_id.h +2 -1
  171. mindspore/include/mindapi/base/types.h +5 -1
  172. mindspore/lib/libdnnl.so.2 +0 -0
  173. mindspore/lib/libjemalloc.so.2 +0 -0
  174. mindspore/lib/libmindspore.so +0 -0
  175. mindspore/lib/libmindspore_backend.so +0 -0
  176. mindspore/lib/libmindspore_common.so +0 -0
  177. mindspore/lib/libmindspore_core.so +0 -0
  178. mindspore/lib/libmindspore_glog.so.0 +0 -0
  179. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  180. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  181. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  182. mindspore/lib/libmindspore_shared_lib.so +0 -0
  183. mindspore/lib/libmpi_adapter.so +0 -0
  184. mindspore/lib/libnnacl.so +0 -0
  185. mindspore/lib/libopencv_core.so.4.5 +0 -0
  186. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  187. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  188. mindspore/lib/libps_cache.so +0 -0
  189. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  190. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  191. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
  192. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  193. mindspore/lib/plugin/ascend/libakg.so +0 -0
  194. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  195. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  196. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  197. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  198. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  199. mindspore/lib/plugin/cpu/libakg.so +0 -0
  200. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  201. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  202. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  203. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  204. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  205. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  206. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  207. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  208. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  209. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  210. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  211. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  212. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  213. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  214. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  215. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  216. mindspore/log.py +9 -6
  217. mindspore/mindrecord/filereader.py +33 -4
  218. mindspore/mindrecord/filewriter.py +70 -35
  219. mindspore/mindrecord/mindpage.py +40 -34
  220. mindspore/mindrecord/shardreader.py +1 -1
  221. mindspore/mindrecord/shardsegment.py +1 -1
  222. mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
  223. mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
  224. mindspore/mindrecord/tools/csv_to_mr.py +29 -13
  225. mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
  226. mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
  227. mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
  228. mindspore/nn/cell.py +463 -169
  229. mindspore/nn/dynamic_lr.py +47 -43
  230. mindspore/nn/layer/activation.py +225 -82
  231. mindspore/nn/layer/basic.py +121 -79
  232. mindspore/nn/layer/channel_shuffle.py +21 -21
  233. mindspore/nn/layer/combined.py +33 -26
  234. mindspore/nn/layer/container.py +277 -22
  235. mindspore/nn/layer/conv.py +441 -304
  236. mindspore/nn/layer/dense.py +19 -13
  237. mindspore/nn/layer/embedding.py +62 -49
  238. mindspore/nn/layer/flash_attention.py +264 -0
  239. mindspore/nn/layer/image.py +50 -39
  240. mindspore/nn/layer/math.py +62 -51
  241. mindspore/nn/layer/normalization.py +219 -167
  242. mindspore/nn/layer/padding.py +58 -70
  243. mindspore/nn/layer/pooling.py +334 -287
  244. mindspore/nn/layer/rnn_cells.py +53 -38
  245. mindspore/nn/layer/rnns.py +59 -56
  246. mindspore/nn/layer/thor_layer.py +52 -44
  247. mindspore/nn/layer/timedistributed.py +6 -4
  248. mindspore/nn/layer/transformer.py +284 -164
  249. mindspore/nn/learning_rate_schedule.py +34 -25
  250. mindspore/nn/loss/__init__.py +3 -2
  251. mindspore/nn/loss/loss.py +554 -311
  252. mindspore/nn/optim/ada_grad.py +12 -9
  253. mindspore/nn/optim/adadelta.py +14 -11
  254. mindspore/nn/optim/adafactor.py +19 -16
  255. mindspore/nn/optim/adam.py +62 -47
  256. mindspore/nn/optim/adamax.py +13 -10
  257. mindspore/nn/optim/adasum.py +12 -8
  258. mindspore/nn/optim/asgd.py +10 -9
  259. mindspore/nn/optim/ftrl.py +20 -17
  260. mindspore/nn/optim/lamb.py +16 -12
  261. mindspore/nn/optim/lars.py +8 -6
  262. mindspore/nn/optim/lazyadam.py +25 -20
  263. mindspore/nn/optim/momentum.py +10 -7
  264. mindspore/nn/optim/optimizer.py +61 -9
  265. mindspore/nn/optim/proximal_ada_grad.py +14 -13
  266. mindspore/nn/optim/rmsprop.py +17 -13
  267. mindspore/nn/optim/rprop.py +30 -17
  268. mindspore/nn/optim/sgd.py +40 -23
  269. mindspore/nn/optim/thor.py +24 -26
  270. mindspore/nn/probability/bijector/bijector.py +11 -11
  271. mindspore/nn/probability/bijector/exp.py +1 -1
  272. mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
  273. mindspore/nn/probability/bijector/invert.py +1 -1
  274. mindspore/nn/probability/bijector/power_transform.py +29 -29
  275. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  276. mindspore/nn/probability/bijector/softplus.py +5 -5
  277. mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
  278. mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
  279. mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
  280. mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
  281. mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
  282. mindspore/nn/probability/distribution/_utils/utils.py +1 -1
  283. mindspore/nn/probability/distribution/bernoulli.py +9 -9
  284. mindspore/nn/probability/distribution/beta.py +8 -8
  285. mindspore/nn/probability/distribution/categorical.py +23 -15
  286. mindspore/nn/probability/distribution/cauchy.py +5 -6
  287. mindspore/nn/probability/distribution/distribution.py +3 -3
  288. mindspore/nn/probability/distribution/exponential.py +4 -4
  289. mindspore/nn/probability/distribution/gamma.py +10 -10
  290. mindspore/nn/probability/distribution/geometric.py +8 -8
  291. mindspore/nn/probability/distribution/gumbel.py +8 -9
  292. mindspore/nn/probability/distribution/half_normal.py +5 -5
  293. mindspore/nn/probability/distribution/laplace.py +5 -5
  294. mindspore/nn/probability/distribution/log_normal.py +12 -11
  295. mindspore/nn/probability/distribution/logistic.py +8 -8
  296. mindspore/nn/probability/distribution/normal.py +6 -5
  297. mindspore/nn/probability/distribution/poisson.py +10 -11
  298. mindspore/nn/probability/distribution/student_t.py +8 -9
  299. mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
  300. mindspore/nn/probability/distribution/uniform.py +11 -11
  301. mindspore/nn/reinforcement/tensor_array.py +2 -2
  302. mindspore/nn/sparse/sparse.py +9 -9
  303. mindspore/nn/wrap/cell_wrapper.py +188 -63
  304. mindspore/nn/wrap/grad_reducer.py +21 -12
  305. mindspore/nn/wrap/loss_scale.py +136 -49
  306. mindspore/numpy/__init__.py +4 -4
  307. mindspore/numpy/array_creations.py +55 -56
  308. mindspore/numpy/array_ops.py +134 -35
  309. mindspore/numpy/logic_ops.py +66 -20
  310. mindspore/numpy/math_ops.py +142 -139
  311. mindspore/numpy/utils_const.py +2 -2
  312. mindspore/offline_debug/convert_async.py +2 -2
  313. mindspore/ops/_grad_experimental/__init__.py +7 -5
  314. mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
  315. mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
  316. mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
  317. mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
  318. mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
  319. mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
  320. mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
  321. mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
  322. mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
  323. mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
  324. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
  325. mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
  326. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
  327. mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
  328. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
  329. mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
  330. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
  331. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
  332. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
  333. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
  334. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  335. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
  336. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
  337. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
  338. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  339. mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
  340. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
  341. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
  342. mindspore/ops/_op_impl/aicpu/cast.py +52 -0
  343. mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
  344. mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
  345. mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
  346. mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
  347. mindspore/ops/_op_impl/aicpu/eps.py +32 -0
  348. mindspore/ops/_op_impl/aicpu/eye.py +4 -4
  349. mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
  350. mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
  351. mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
  352. mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
  353. mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
  354. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
  355. mindspore/ops/_op_impl/aicpu/lu.py +39 -0
  356. mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
  357. mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
  358. mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
  359. mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
  360. mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
  361. mindspore/ops/_op_impl/aicpu/median.py +1 -0
  362. mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
  363. mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
  364. mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
  365. mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
  366. mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
  367. mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
  368. mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
  369. mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
  370. mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
  371. mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
  372. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
  373. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
  374. mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
  375. mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
  376. mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
  377. mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
  378. mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
  379. mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
  380. mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
  381. mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
  382. mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
  383. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
  384. mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
  385. mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
  386. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
  387. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
  388. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
  389. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
  390. mindspore/ops/_op_impl/tbe/__init__.py +6 -4
  391. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  392. mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
  393. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
  394. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
  395. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
  396. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
  397. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
  398. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  399. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
  400. mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
  401. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
  402. mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
  403. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
  404. mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
  405. mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
  406. mindspore/ops/_op_impl/tbe/im2col.py +4 -4
  407. mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
  408. mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
  409. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
  410. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
  411. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  412. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
  413. mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
  414. mindspore/ops/_primitive_cache.py +1 -1
  415. mindspore/ops/_tracefunc.py +241 -0
  416. mindspore/ops/_utils/utils.py +10 -2
  417. mindspore/ops/_vmap/vmap_array_ops.py +5 -3
  418. mindspore/ops/_vmap/vmap_base.py +5 -4
  419. mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
  420. mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
  421. mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
  422. mindspore/ops/_vmap/vmap_math_ops.py +5 -2
  423. mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
  424. mindspore/ops/arg_dtype_cast.py +54 -0
  425. mindspore/ops/composite/__init__.py +7 -5
  426. mindspore/ops/composite/base.py +78 -34
  427. mindspore/ops/composite/math_ops.py +5 -695
  428. mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
  429. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
  430. mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
  431. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  432. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  433. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
  434. mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
  435. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
  436. mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
  437. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
  438. mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
  439. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
  440. mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
  441. mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
  442. mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
  443. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
  444. mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
  445. mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
  446. mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
  447. mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
  448. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  449. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
  450. mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
  451. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
  452. mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
  453. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
  454. mindspore/ops/deprecated.py +304 -0
  455. mindspore/ops/function/__init__.py +41 -4
  456. mindspore/ops/function/array_func.py +1108 -467
  457. mindspore/ops/function/clip_func.py +94 -27
  458. mindspore/ops/function/debug_func.py +3 -1
  459. mindspore/ops/function/grad/grad_func.py +82 -73
  460. mindspore/ops/function/image_func.py +28 -12
  461. mindspore/ops/function/linalg_func.py +135 -39
  462. mindspore/ops/function/math_func.py +3779 -894
  463. mindspore/ops/function/nn_func.py +1584 -657
  464. mindspore/ops/function/parameter_func.py +13 -3
  465. mindspore/ops/function/random_func.py +247 -153
  466. mindspore/ops/function/sparse_func.py +14 -11
  467. mindspore/ops/function/sparse_unary_func.py +173 -47
  468. mindspore/ops/function/spectral_func.py +8 -4
  469. mindspore/ops/function/vmap_func.py +8 -7
  470. mindspore/ops/functional.py +47 -16
  471. mindspore/ops/op_info_register.py +346 -86
  472. mindspore/ops/operations/__init__.py +38 -22
  473. mindspore/ops/operations/_grad_ops.py +145 -149
  474. mindspore/ops/operations/_inner_ops.py +298 -56
  475. mindspore/ops/operations/_ms_kernel.py +3 -3
  476. mindspore/ops/operations/_quant_ops.py +24 -28
  477. mindspore/ops/operations/_rl_inner_ops.py +9 -7
  478. mindspore/ops/operations/_scalar_ops.py +115 -0
  479. mindspore/ops/operations/_sequence_ops.py +148 -10
  480. mindspore/ops/operations/_tensor_array.py +1 -1
  481. mindspore/ops/operations/_thor_ops.py +2 -2
  482. mindspore/ops/operations/array_ops.py +1239 -561
  483. mindspore/ops/operations/comm_ops.py +166 -90
  484. mindspore/ops/operations/control_ops.py +3 -3
  485. mindspore/ops/operations/custom_ops.py +124 -102
  486. mindspore/ops/operations/debug_ops.py +24 -11
  487. mindspore/ops/operations/image_ops.py +86 -71
  488. mindspore/ops/operations/inner_ops.py +18 -13
  489. mindspore/ops/operations/linalg_ops.py +30 -11
  490. mindspore/ops/operations/math_ops.py +1730 -435
  491. mindspore/ops/operations/nn_ops.py +1953 -943
  492. mindspore/ops/operations/other_ops.py +65 -43
  493. mindspore/ops/operations/random_ops.py +258 -98
  494. mindspore/ops/operations/rl_ops.py +4 -36
  495. mindspore/ops/operations/sparse_ops.py +38 -33
  496. mindspore/ops/operations/spectral_ops.py +8 -4
  497. mindspore/ops/primitive.py +66 -44
  498. mindspore/ops/signature.py +5 -5
  499. mindspore/parallel/_auto_parallel_context.py +80 -19
  500. mindspore/parallel/_cost_model_context.py +42 -0
  501. mindspore/parallel/_offload_context.py +162 -72
  502. mindspore/parallel/_parallel_serialization.py +2 -2
  503. mindspore/parallel/_ps_context.py +16 -4
  504. mindspore/parallel/_recovery_context.py +2 -1
  505. mindspore/parallel/_tensor.py +15 -13
  506. mindspore/parallel/_transformer/layers.py +8 -6
  507. mindspore/parallel/_transformer/loss.py +1 -0
  508. mindspore/parallel/_transformer/moe.py +7 -7
  509. mindspore/parallel/_transformer/op_parallel_config.py +12 -1
  510. mindspore/parallel/_transformer/transformer.py +34 -14
  511. mindspore/parallel/_utils.py +36 -14
  512. mindspore/parallel/algo_parameter_config.py +114 -20
  513. mindspore/parallel/checkpoint_transform.py +16 -18
  514. mindspore/parallel/shard.py +16 -13
  515. mindspore/profiler/__init__.py +1 -1
  516. mindspore/profiler/common/struct_type.py +3 -3
  517. mindspore/profiler/common/util.py +3 -2
  518. mindspore/profiler/envprofiling.py +11 -4
  519. mindspore/profiler/parser/aicpu_data_parser.py +5 -3
  520. mindspore/profiler/parser/ascend_flops_generator.py +94 -0
  521. mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
  522. mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
  523. mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
  524. mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
  525. mindspore/profiler/parser/ascend_op_generator.py +276 -0
  526. mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
  527. mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
  528. mindspore/profiler/parser/base_timeline_generator.py +11 -7
  529. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
  530. mindspore/profiler/parser/flops_parser.py +15 -11
  531. mindspore/profiler/parser/framework_parser.py +92 -73
  532. mindspore/profiler/parser/hccl_parser.py +16 -12
  533. mindspore/profiler/parser/integrator.py +22 -11
  534. mindspore/profiler/parser/memory_usage_parser.py +36 -11
  535. mindspore/profiler/parser/minddata_analyzer.py +12 -14
  536. mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
  537. mindspore/profiler/parser/msadvisor_parser.py +8 -4
  538. mindspore/profiler/parser/op_intermediate_parser.py +5 -2
  539. mindspore/profiler/parser/optime_parser.py +1 -1
  540. mindspore/profiler/parser/profiler_info.py +4 -5
  541. mindspore/profiler/parser/step_trace_parser.py +11 -14
  542. mindspore/profiler/profiling.py +678 -377
  543. mindspore/rewrite/api/node.py +211 -54
  544. mindspore/rewrite/api/node_type.py +5 -0
  545. mindspore/rewrite/api/pattern_engine.py +22 -23
  546. mindspore/rewrite/api/scoped_value.py +20 -17
  547. mindspore/rewrite/api/symbol_tree.py +252 -106
  548. mindspore/rewrite/api/tree_node_helper.py +3 -0
  549. mindspore/rewrite/ast_helpers/__init__.py +2 -1
  550. mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
  551. mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
  552. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
  553. mindspore/rewrite/common/rewrite_elog.py +5 -1
  554. mindspore/rewrite/namer.py +51 -51
  555. mindspore/rewrite/namespace.py +14 -5
  556. mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
  557. mindspore/rewrite/node/call_function.py +79 -0
  558. mindspore/rewrite/node/cell_container.py +135 -0
  559. mindspore/rewrite/node/control_flow.py +88 -0
  560. mindspore/rewrite/{node.py → node/node.py} +313 -247
  561. mindspore/rewrite/node/node_manager.py +254 -0
  562. mindspore/rewrite/node/node_topological_manager.py +243 -0
  563. mindspore/rewrite/parsers/arguments_parser.py +22 -21
  564. mindspore/rewrite/parsers/assign_parser.py +225 -239
  565. mindspore/rewrite/parsers/attribute_parser.py +9 -7
  566. mindspore/rewrite/parsers/class_def_parser.py +179 -218
  567. mindspore/rewrite/parsers/constant_parser.py +9 -6
  568. mindspore/rewrite/parsers/container_parser.py +9 -7
  569. mindspore/rewrite/parsers/for_parser.py +36 -15
  570. mindspore/rewrite/parsers/function_def_parser.py +23 -20
  571. mindspore/rewrite/parsers/if_parser.py +28 -24
  572. mindspore/rewrite/parsers/module_parser.py +202 -25
  573. mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
  574. mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
  575. mindspore/rewrite/parsers/return_parser.py +6 -6
  576. mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
  577. mindspore/rewrite/sparsify/sparsify.py +4 -1
  578. mindspore/rewrite/sparsify/utils.py +11 -5
  579. mindspore/rewrite/symbol_tree.py +577 -732
  580. mindspore/rewrite/symbol_tree_builder.py +9 -175
  581. mindspore/rewrite/symbol_tree_dumper.py +2 -2
  582. mindspore/run_check/_check_version.py +46 -39
  583. mindspore/run_check/run_check.py +3 -2
  584. mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
  585. mindspore/safeguard/rewrite_obfuscation.py +517 -0
  586. mindspore/scipy/__init__.py +1 -1
  587. mindspore/scipy/linalg.py +67 -61
  588. mindspore/scipy/ops.py +5 -41
  589. mindspore/scipy/ops_grad.py +3 -2
  590. mindspore/scipy/ops_wrapper.py +5 -5
  591. mindspore/scipy/optimize/line_search.py +8 -8
  592. mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
  593. mindspore/scipy/optimize/minimize.py +16 -12
  594. mindspore/scipy/utils.py +1 -52
  595. mindspore/scipy/utils_const.py +4 -4
  596. mindspore/train/__init__.py +4 -4
  597. mindspore/train/_utils.py +13 -5
  598. mindspore/train/amp.py +410 -148
  599. mindspore/train/anf_ir_pb2.py +16 -4
  600. mindspore/train/callback/_backup_and_restore.py +8 -11
  601. mindspore/train/callback/_callback.py +80 -3
  602. mindspore/train/callback/_checkpoint.py +82 -51
  603. mindspore/train/callback/_early_stop.py +12 -15
  604. mindspore/train/callback/_history.py +1 -1
  605. mindspore/train/callback/_lambda_callback.py +13 -13
  606. mindspore/train/callback/_landscape.py +21 -17
  607. mindspore/train/callback/_loss_monitor.py +9 -10
  608. mindspore/train/callback/_on_request_exit.py +16 -33
  609. mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
  610. mindspore/train/callback/_summary_collector.py +44 -30
  611. mindspore/train/callback/_time_monitor.py +62 -12
  612. mindspore/train/data_sink.py +10 -16
  613. mindspore/train/dataset_helper.py +154 -86
  614. mindspore/train/loss_scale_manager.py +14 -9
  615. mindspore/train/metrics/__init__.py +10 -2
  616. mindspore/train/metrics/accuracy.py +1 -1
  617. mindspore/train/metrics/auc.py +1 -1
  618. mindspore/train/metrics/bleu_score.py +2 -2
  619. mindspore/train/metrics/confusion_matrix.py +14 -14
  620. mindspore/train/metrics/cosine_similarity.py +3 -3
  621. mindspore/train/metrics/dice.py +1 -1
  622. mindspore/train/metrics/fbeta.py +1 -1
  623. mindspore/train/metrics/hausdorff_distance.py +8 -6
  624. mindspore/train/metrics/mean_surface_distance.py +5 -4
  625. mindspore/train/metrics/metric.py +49 -17
  626. mindspore/train/metrics/occlusion_sensitivity.py +4 -4
  627. mindspore/train/metrics/perplexity.py +1 -1
  628. mindspore/train/metrics/precision.py +2 -2
  629. mindspore/train/metrics/recall.py +2 -3
  630. mindspore/train/metrics/roc.py +7 -7
  631. mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
  632. mindspore/train/metrics/topk.py +7 -4
  633. mindspore/train/mind_ir_pb2.py +193 -48
  634. mindspore/train/model.py +377 -133
  635. mindspore/train/serialization.py +697 -245
  636. mindspore/train/summary/_summary_adapter.py +5 -2
  637. mindspore/train/summary/_writer_pool.py +4 -3
  638. mindspore/train/summary/summary_record.py +25 -23
  639. mindspore/train/train_thor/convert_utils.py +39 -23
  640. mindspore/train/train_thor/dataset_helper.py +4 -3
  641. mindspore/train/train_thor/model_thor.py +8 -8
  642. mindspore/version.py +1 -1
  643. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
  644. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +647 -818
  645. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
  646. mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
  647. mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
  648. mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
  649. mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
  650. mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
  651. mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
  652. mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
  653. mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
  654. mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
  655. mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
  656. mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
  657. mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
  658. mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
  659. mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
  660. mindspore/_akg/akg/tvm/rpc/base.py +0 -182
  661. mindspore/_akg/akg/tvm/rpc/client.py +0 -436
  662. mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
  663. mindspore/_akg/akg/tvm/rpc/server.py +0 -413
  664. mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
  665. mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
  666. mindspore/_extends/graph_kernel/expander.py +0 -80
  667. mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
  668. mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
  669. mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
  670. mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
  671. mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
  672. mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
  673. mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
  674. mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
  675. mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
  676. mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
  677. mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
  678. mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
  679. mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
  680. mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
  681. mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
  682. mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
  683. mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
  684. mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
  685. mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
  686. mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
  687. mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
  688. mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
  689. mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
  690. mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
  691. mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
  692. mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
  693. mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
  694. mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
  695. mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
  696. mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
  697. mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
  698. mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
  699. mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
  700. mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
  701. mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
  702. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
  703. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
  704. mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
  705. mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
  706. mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
  707. mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
  708. mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
  709. mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
  710. mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
  711. mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
  712. mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
  713. mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
  714. mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
  715. mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
  716. mindspore/_extends/parse/jit_fallback_modules.py +0 -51
  717. mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
  718. mindspore/dataset/engine/graphdata.py +0 -1586
  719. mindspore/include/api/net.h +0 -142
  720. mindspore/ops/_grad/grad_array_ops.py +0 -1347
  721. mindspore/ops/_grad/grad_clip_ops.py +0 -84
  722. mindspore/ops/_grad/grad_debug_ops.py +0 -68
  723. mindspore/ops/_grad/grad_inner_ops.py +0 -235
  724. mindspore/ops/_grad/grad_math_ops.py +0 -1684
  725. mindspore/ops/_grad/grad_nn_ops.py +0 -1529
  726. mindspore/ops/_grad/grad_other_ops.py +0 -89
  727. mindspore/ops/_grad/grad_sequence_ops.py +0 -296
  728. mindspore/ops/_grad/grad_sparse.py +0 -323
  729. mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
  730. mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
  731. mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
  732. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  733. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  734. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
  735. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
  736. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
  737. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
  738. mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
  739. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
  740. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
  741. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  742. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
  743. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  744. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
  745. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  746. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
  747. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
  748. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
  749. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  750. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  751. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
  752. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
  753. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
  754. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
  755. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
  756. mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
  757. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
  758. mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
  759. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
  760. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
  761. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
  762. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  763. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  764. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
  765. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
  766. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
  767. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  768. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  769. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  770. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
  771. mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
  772. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  773. mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
  774. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
  775. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
  776. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
  777. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
  778. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
  779. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
  780. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  781. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
  782. mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
  783. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
  784. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
  785. mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
  786. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  787. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
  788. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
  789. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
  790. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
  791. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
  792. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
  793. mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
  794. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  795. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
  796. mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
  797. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
  798. mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
  799. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
  800. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
  801. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
  802. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
  803. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
  804. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
  805. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
  806. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
  807. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  808. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  809. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  810. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
  811. mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
  812. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  813. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  814. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
  815. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
  816. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
  817. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
  818. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  819. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  820. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  821. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
  822. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
  823. mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
  824. mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
  825. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
  826. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  827. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
  828. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
  829. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
  830. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
  831. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
  832. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
  833. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
  834. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
  835. mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
  836. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  837. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  838. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
  839. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
  840. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
  841. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  842. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
  843. mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
  844. mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
  845. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
  846. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  847. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
  848. mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
  849. mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
  850. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
  851. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  852. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
  853. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
  854. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  855. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
  856. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
  857. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  858. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  859. mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
  860. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
  861. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
  862. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
  863. mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
  864. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  865. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
  866. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
  867. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
  868. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
  869. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  870. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  871. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
  872. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
  873. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
  874. mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
  875. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
  876. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
  877. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
  878. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
  879. mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
  880. mindspore/rewrite/node_visitor.py +0 -44
  881. mindspore/rewrite/topological_manager.py +0 -203
  882. mindspore/scipy/sparse/linalg.py +0 -192
  883. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
  884. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
@@ -75,7 +75,7 @@ class AllpassBiquad(AudioTensorOperation):
75
75
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
76
76
  central_freq (float): Central frequency (in Hz).
77
77
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
78
- in range of (0, 1]. Default: 0.707.
78
+ in range of (0, 1]. Default: ``0.707``.
79
79
 
80
80
  Raises:
81
81
  TypeError: If `sample_rate` is not of type int.
@@ -90,11 +90,16 @@ class AllpassBiquad(AudioTensorOperation):
90
90
 
91
91
  Examples:
92
92
  >>> import numpy as np
93
+ >>> import mindspore.dataset as ds
93
94
  >>>
94
95
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
95
96
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
96
- >>> transforms = [audio.AllpassBiquad(44100, 200.0)]
97
+ >>> transforms = [ds.audio.AllpassBiquad(44100, 200.0)]
97
98
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
99
+
100
+ Tutorial Examples:
101
+ - `Illustration of audio transforms
102
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
98
103
  """
99
104
 
100
105
  @check_allpass_biquad
@@ -121,15 +126,15 @@ class AmplitudeToDB(AudioTensorOperation):
121
126
 
122
127
  Args:
123
128
  stype (ScaleType, optional): Scale of the input waveform, which can be
124
- ScaleType.POWER or ScaleType.MAGNITUDE. Default: ScaleType.POWER.
129
+ ``ScaleType.POWER`` or ``ScaleType.MAGNITUDE``. Default: ``ScaleType.POWER``.
125
130
  ref_value (float, optional): Multiplier reference value for generating
126
- `db_multiplier` . Default: 1.0. The formula is
131
+ `db_multiplier` . Default: ``1.0``. The formula is
127
132
 
128
- :math:`\text{db_multiplier} = Log10(max(\text{ref_value}, amin))` .
133
+ :math:`\text{db_multiplier} = \log10(\max(\text{ref_value}, amin))` .
129
134
 
130
135
  amin (float, optional): Lower bound to clamp the input waveform, which must
131
- be greater than zero. Default: 1e-10.
132
- top_db (float, optional): Minimum cut-off decibels, which must be non-negative. Default: 80.0.
136
+ be greater than zero. Default: ``1e-10``.
137
+ top_db (float, optional): Minimum cut-off decibels, which must be non-negative. Default: ``80.0``.
133
138
 
134
139
  Raises:
135
140
  TypeError: If `stype` is not of type :class:`mindspore.dataset.audio.ScaleType` .
@@ -146,12 +151,18 @@ class AmplitudeToDB(AudioTensorOperation):
146
151
 
147
152
  Examples:
148
153
  >>> import numpy as np
154
+ >>> import mindspore.dataset as ds
155
+ >>> import mindspore.dataset.audio as audio
149
156
  >>> from mindspore.dataset.audio import ScaleType
150
157
  >>>
151
158
  >>> waveform = np.random.random([1, 400 // 2 + 1, 30])
152
159
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
153
160
  >>> transforms = [audio.AmplitudeToDB(stype=ScaleType.POWER)]
154
161
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
162
+
163
+ Tutorial Examples:
164
+ - `Illustration of audio transforms
165
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
155
166
  """
156
167
 
157
168
  @check_amplitude_to_db
@@ -182,11 +193,17 @@ class Angle(AudioTensorOperation):
182
193
 
183
194
  Examples:
184
195
  >>> import numpy as np
196
+ >>> import mindspore.dataset as ds
197
+ >>> import mindspore.dataset.audio as audio
185
198
  >>>
186
199
  >>> waveform = np.array([[1.43, 5.434], [23.54, 89.38]])
187
200
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
188
201
  >>> transforms = [audio.Angle()]
189
202
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
203
+
204
+ Tutorial Examples:
205
+ - `Illustration of audio transforms
206
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
190
207
  """
191
208
 
192
209
  def parse(self):
@@ -210,9 +227,10 @@ class BandBiquad(AudioTensorOperation):
210
227
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
211
228
  central_freq (float): Central frequency (in Hz).
212
229
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
213
- in range of (0, 1]. Default: 0.707.
214
- noise (bool, optional) : If True, uses the alternate mode for un-pitched audio (e.g. percussion).
215
- If False, uses mode oriented to pitched audio, i.e. voice, singing, or instrumental music. Default: False.
230
+ in range of (0, 1]. Default: ``0.707``.
231
+ noise (bool, optional) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
232
+ If ``False``, uses mode oriented to pitched audio, i.e. voice, singing, or instrumental music.
233
+ Default: ``False``.
216
234
 
217
235
  Raises:
218
236
  TypeError: If `sample_rate` is not of type int.
@@ -228,11 +246,17 @@ class BandBiquad(AudioTensorOperation):
228
246
 
229
247
  Examples:
230
248
  >>> import numpy as np
249
+ >>> import mindspore.dataset as ds
250
+ >>> import mindspore.dataset.audio as audio
231
251
  >>>
232
252
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
233
253
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
234
254
  >>> transforms = [audio.BandBiquad(44100, 200.0)]
235
255
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
256
+
257
+ Tutorial Examples:
258
+ - `Illustration of audio transforms
259
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
236
260
  """
237
261
 
238
262
  @check_band_biquad
@@ -271,9 +295,9 @@ class BandpassBiquad(AudioTensorOperation):
271
295
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
272
296
  central_freq (float): Central frequency (in Hz).
273
297
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
274
- in range of (0, 1]. Default: 0.707.
275
- const_skirt_gain (bool, optional) : If True, uses a constant skirt gain (peak gain = Q);
276
- If False, uses a constant 0dB peak gain. Default: False.
298
+ in range of (0, 1]. Default: ``0.707``.
299
+ const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q);
300
+ If ``False``, uses a constant 0dB peak gain. Default: ``False``.
277
301
 
278
302
  Raises:
279
303
  TypeError: If `sample_rate` is not of type int.
@@ -289,11 +313,17 @@ class BandpassBiquad(AudioTensorOperation):
289
313
 
290
314
  Examples:
291
315
  >>> import numpy as np
316
+ >>> import mindspore.dataset as ds
317
+ >>> import mindspore.dataset.audio as audio
292
318
  >>>
293
319
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
294
320
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
295
321
  >>> transforms = [audio.BandpassBiquad(44100, 200.0)]
296
322
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
323
+
324
+ Tutorial Examples:
325
+ - `Illustration of audio transforms
326
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
297
327
  """
298
328
 
299
329
  @check_bandpass_biquad
@@ -330,7 +360,7 @@ class BandrejectBiquad(AudioTensorOperation):
330
360
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
331
361
  central_freq (float): Central frequency (in Hz).
332
362
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
333
- in range of (0, 1]. Default: 0.707.
363
+ in range of (0, 1]. Default: ``0.707``.
334
364
 
335
365
  Raises:
336
366
  TypeError: If `sample_rate` is not of type int.
@@ -345,11 +375,17 @@ class BandrejectBiquad(AudioTensorOperation):
345
375
 
346
376
  Examples:
347
377
  >>> import numpy as np
378
+ >>> import mindspore.dataset as ds
379
+ >>> import mindspore.dataset.audio as audio
348
380
  >>>
349
381
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03],[9.246826171875e-03, 1.0894775390625e-02]])
350
382
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
351
383
  >>> transforms = [audio.BandrejectBiquad(44100, 200.0)]
352
384
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
385
+
386
+ Tutorial Examples:
387
+ - `Illustration of audio transforms
388
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
353
389
  """
354
390
 
355
391
  @check_bandreject_biquad
@@ -381,9 +417,9 @@ class BassBiquad(AudioTensorOperation):
381
417
  Args:
382
418
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
383
419
  gain (float): Desired gain at the boost (or attenuation) in dB.
384
- central_freq (float, optional): Central frequency (in Hz). Default: 100.0.
420
+ central_freq (float, optional): Central frequency (in Hz). Default: ``100.0``.
385
421
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
386
- in range of (0, 1]. Default: 0.707.
422
+ in range of (0, 1]. Default: ``0.707``.
387
423
 
388
424
  Raises:
389
425
  TypeError: If `sample_rate` is not of type int.
@@ -399,11 +435,17 @@ class BassBiquad(AudioTensorOperation):
399
435
 
400
436
  Examples:
401
437
  >>> import numpy as np
438
+ >>> import mindspore.dataset as ds
439
+ >>> import mindspore.dataset.audio as audio
402
440
  >>>
403
441
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
404
442
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
405
443
  >>> transforms = [audio.BassBiquad(44100, 100.0)]
406
444
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
445
+
446
+ Tutorial Examples:
447
+ - `Illustration of audio transforms
448
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
407
449
  """
408
450
 
409
451
  @check_bass_biquad
@@ -445,10 +487,15 @@ class Biquad(TensorOperation):
445
487
 
446
488
  Examples:
447
489
  >>> import numpy as np
490
+ >>> import mindspore.dataset.audio as audio
448
491
  >>>
449
492
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
450
493
  >>> biquad_op = audio.Biquad(0.01, 0.02, 0.13, 1, 0.12, 0.3)
451
494
  >>> waveform_filtered = biquad_op(waveform)
495
+
496
+ Tutorial Examples:
497
+ - `Illustration of audio transforms
498
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
452
499
  """
453
500
 
454
501
  @check_biquad
@@ -474,7 +521,7 @@ class ComplexNorm(AudioTensorOperation):
474
521
  The first dimension represents the real part while the second represents the imaginary.
475
522
 
476
523
  Args:
477
- power (float, optional): Power of the norm, which must be non-negative. Default: 1.0.
524
+ power (float, optional): Power of the norm, which must be non-negative. Default: ``1.0``.
478
525
 
479
526
  Raises:
480
527
  TypeError: If `power` is not of type float.
@@ -486,11 +533,17 @@ class ComplexNorm(AudioTensorOperation):
486
533
 
487
534
  Examples:
488
535
  >>> import numpy as np
536
+ >>> import mindspore.dataset as ds
537
+ >>> import mindspore.dataset.audio as audio
489
538
  >>>
490
539
  >>> waveform = np.random.random([2, 4, 2])
491
540
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
492
541
  >>> transforms = [audio.ComplexNorm()]
493
542
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
543
+
544
+ Tutorial Examples:
545
+ - `Illustration of audio transforms
546
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
494
547
  """
495
548
 
496
549
  @check_complex_norm
@@ -524,15 +577,15 @@ class ComputeDeltas(AudioTensorOperation):
524
577
  at time :math:`t` , :math:`N` is :math:`(\text{win_length} - 1) // 2` .
525
578
 
526
579
  Args:
527
- win_length (int, optional): The window length used for computing delta, must be no less than 3. Default: 5.
528
- pad_mode (BorderType, optional): Mode parameter passed to padding, can be BorderType.CONSTANT, BorderType.EDGE,
529
- BorderType.REFLECT or BorderType.SYMMETRIC. Default: BorderType.EDGE.
580
+ win_length (int, optional): The window length used for computing delta, must be no less than 3. Default: ``5``.
581
+ pad_mode (BorderType, optional): Mode parameter passed to padding, can be ``BorderType.CONSTANT``,
582
+ ``BorderType.EDGE``, ``BorderType.REFLECT`` or ``BorderType.SYMMETRIC``. Default: ``BorderType.EDGE``.
530
583
 
531
- - BorderType.CONSTANT, pad with a constant value.
532
- - BorderType.EDGE, pad with the last value on the edge.
533
- - BorderType.REFLECT, reflect the value on the edge while omitting the last one.
584
+ - ``BorderType.CONSTANT``, pad with a constant value.
585
+ - ``BorderType.EDGE``, pad with the last value on the edge.
586
+ - ``BorderType.REFLECT``, reflect the value on the edge while omitting the last one.
534
587
  For example, pad [1, 2, 3, 4] with 2 elements on both sides will result in [3, 2, 1, 2, 3, 4, 3, 2].
535
- - BorderType.SYMMETRIC, reflect the value on the edge while repeating the last one.
588
+ - ``BorderType.SYMMETRIC``, reflect the value on the edge while repeating the last one.
536
589
  For example, pad [1, 2, 3, 4] with 2 elements on both sides will result in [2, 1, 1, 2, 3, 4, 4, 3].
537
590
 
538
591
  Raises:
@@ -546,12 +599,18 @@ class ComputeDeltas(AudioTensorOperation):
546
599
 
547
600
  Examples:
548
601
  >>> import numpy as np
602
+ >>> import mindspore.dataset as ds
603
+ >>> import mindspore.dataset.audio as audio
549
604
  >>> from mindspore.dataset.audio import BorderType
550
605
  >>>
551
606
  >>> waveform = np.random.random([1, 400 // 2 + 1, 30])
552
607
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
553
608
  >>> transforms = [audio.ComputeDeltas(win_length=7, pad_mode=BorderType.EDGE)]
554
609
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
610
+
611
+ Tutorial Examples:
612
+ - `Illustration of audio transforms
613
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
555
614
  """
556
615
 
557
616
  @check_compute_deltas
@@ -577,7 +636,7 @@ class Contrast(AudioTensorOperation):
577
636
 
578
637
  Args:
579
638
  enhancement_amount (float, optional): Controls the amount of the enhancement,
580
- in range of [0, 100]. Default: 75.0. Note that `enhancement_amount` equal
639
+ in range of [0, 100]. Default: ``75.0``. Note that `enhancement_amount` equal
581
640
  to 0 still gives a significant contrast enhancement.
582
641
 
583
642
  Raises:
@@ -590,11 +649,17 @@ class Contrast(AudioTensorOperation):
590
649
 
591
650
  Examples:
592
651
  >>> import numpy as np
652
+ >>> import mindspore.dataset as ds
653
+ >>> import mindspore.dataset.audio as audio
593
654
  >>>
594
655
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
595
656
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
596
657
  >>> transforms = [audio.Contrast()]
597
658
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
659
+
660
+ Tutorial Examples:
661
+ - `Illustration of audio transforms
662
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
598
663
  """
599
664
 
600
665
  @check_contrast
@@ -623,11 +688,17 @@ class DBToAmplitude(AudioTensorOperation):
623
688
 
624
689
  Examples:
625
690
  >>> import numpy as np
691
+ >>> import mindspore.dataset as ds
692
+ >>> import mindspore.dataset.audio as audio
626
693
  >>>
627
694
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
628
695
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
629
696
  >>> transforms = [audio.DBToAmplitude(0.5, 0.5)]
630
697
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
698
+
699
+ Tutorial Examples:
700
+ - `Illustration of audio transforms
701
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
631
702
  """
632
703
 
633
704
  @check_db_to_amplitude
@@ -647,7 +718,8 @@ class DCShift(AudioTensorOperation):
647
718
  Args:
648
719
  shift (float): The amount to shift the audio, the value must be in the range [-2.0, 2.0].
649
720
  limiter_gain (float, optional): Used only on peaks to prevent clipping,
650
- the value should be much less than 1, such as 0.05 or 0.02. Default: None, will be set to `shift` .
721
+ the value should be much less than 1, such as ``0.05`` or ``0.02``. Default: ``None``,
722
+ will be set to `shift` .
651
723
 
652
724
  Raises:
653
725
  TypeError: If `shift` is not of type float.
@@ -659,11 +731,17 @@ class DCShift(AudioTensorOperation):
659
731
 
660
732
  Examples:
661
733
  >>> import numpy as np
734
+ >>> import mindspore.dataset as ds
735
+ >>> import mindspore.dataset.audio as audio
662
736
  >>>
663
737
  >>> waveform = np.array([0.60, 0.97, -1.04, -1.26, 0.97, 0.91, 0.48, 0.93])
664
738
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
665
739
  >>> transforms = [audio.DCShift(0.5, 0.02)]
666
740
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
741
+
742
+ Tutorial Examples:
743
+ - `Illustration of audio transforms
744
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
667
745
  """
668
746
 
669
747
  @check_dc_shift
@@ -695,11 +773,17 @@ class DeemphBiquad(AudioTensorOperation):
695
773
 
696
774
  Examples:
697
775
  >>> import numpy as np
776
+ >>> import mindspore.dataset as ds
777
+ >>> import mindspore.dataset.audio as audio
698
778
  >>>
699
779
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
700
780
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
701
781
  >>> transforms = [audio.DeemphBiquad(44100)]
702
782
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
783
+
784
+ Tutorial Examples:
785
+ - `Illustration of audio transforms
786
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
703
787
  """
704
788
 
705
789
  @check_deemph_biquad
@@ -718,14 +802,14 @@ class DetectPitchFrequency(AudioTensorOperation):
718
802
  It is implemented using normalized cross-correlation function and median smoothing.
719
803
 
720
804
  Args:
721
- sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz), the value can't be zero.
722
- frame_time (float, optional): Duration of a frame, the value must be greater than zero. Default: 0.01.
805
+ sample_rate (int): Sampling rate of the waveform, e.g. ``44100`` (Hz), the value can't be zero.
806
+ frame_time (float, optional): Duration of a frame, the value must be greater than zero. Default: ``0.01``.
723
807
  win_length (int, optional): The window length for median smoothing (in number of frames), the value must be
724
- greater than zero. Default: 30.
808
+ greater than zero. Default: ``30``.
725
809
  freq_low (int, optional): Lowest frequency that can be detected (Hz), the value must be greater than zero.
726
- Default: 85.
810
+ Default: ``85``.
727
811
  freq_high (int, optional): Highest frequency that can be detected (Hz), the value must be greater than zero.
728
- Default: 3400.
812
+ Default: ``3400``.
729
813
 
730
814
  Raises:
731
815
  TypeError: If `sample_rate` is not of type int.
@@ -744,12 +828,18 @@ class DetectPitchFrequency(AudioTensorOperation):
744
828
 
745
829
  Examples:
746
830
  >>> import numpy as np
831
+ >>> import mindspore.dataset as ds
832
+ >>> import mindspore.dataset.audio as audio
747
833
  >>>
748
834
  >>> waveform = np.array([[0.716064e-03, 5.347656e-03, 6.246826e-03, 2.089477e-02, 7.138305e-02],
749
835
  ... [4.156616e-02, 1.394653e-02, 3.550292e-02, 0.614379e-02, 3.840209e-02]])
750
836
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
751
837
  >>> transforms = [audio.DetectPitchFrequency(30, 0.1, 3, 5, 25)]
752
838
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
839
+
840
+ Tutorial Examples:
841
+ - `Illustration of audio transforms
842
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
753
843
  """
754
844
 
755
845
  @check_detect_pitch_frequency
@@ -778,12 +868,12 @@ class Dither(AudioTensorOperation):
778
868
 
779
869
  Args:
780
870
  density_function (DensityFunction, optional): The density function of a continuous
781
- random variable, can be DensityFunction.TPDF (Triangular Probability Density Function),
782
- DensityFunction.RPDF (Rectangular Probability Density Function) or
783
- DensityFunction.GPDF (Gaussian Probability Density Function).
784
- Default: DensityFunction.TPDF.
871
+ random variable, can be ``DensityFunction.TPDF`` (Triangular Probability Density Function),
872
+ ``DensityFunction.RPDF`` (Rectangular Probability Density Function) or
873
+ ``DensityFunction.GPDF`` (Gaussian Probability Density Function).
874
+ Default: ``DensityFunction.TPDF``.
785
875
  noise_shaping (bool, optional): A filtering process that shapes the spectral
786
- energy of quantisation error. Default: False.
876
+ energy of quantisation error. Default: ``False``.
787
877
 
788
878
  Raises:
789
879
  TypeError: If `density_function` is not of type :class:`mindspore.dataset.audio.DensityFunction` .
@@ -795,11 +885,17 @@ class Dither(AudioTensorOperation):
795
885
 
796
886
  Examples:
797
887
  >>> import numpy as np
888
+ >>> import mindspore.dataset as ds
889
+ >>> import mindspore.dataset.audio as audio
798
890
  >>>
799
891
  >>> waveform = np.array([[1, 2, 3], [4, 5, 6]])
800
892
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
801
893
  >>> transforms = [audio.Dither()]
802
894
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
895
+
896
+ Tutorial Examples:
897
+ - `Illustration of audio transforms
898
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
803
899
  """
804
900
 
805
901
  @check_dither
@@ -819,10 +915,10 @@ class EqualizerBiquad(AudioTensorOperation):
819
915
  Similar to `SoX <http://sox.sourceforge.net/sox.html>`_ implementation.
820
916
 
821
917
  Args:
822
- sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz), the value can't be 0.
918
+ sample_rate (int): Sampling rate of the waveform, e.g. ``44100`` (Hz), the value can't be 0.
823
919
  center_freq (float): Central frequency (in Hz).
824
920
  gain (float): Desired gain at the boost (or attenuation) in dB.
825
- Q (float, optional): https://en.wikipedia.org/wiki/Q_factor, range: (0, 1]. Default: 0.707.
921
+ Q (float, optional): https://en.wikipedia.org/wiki/Q_factor, range: (0, 1]. Default: ``0.707``.
826
922
 
827
923
  Raises:
828
924
  TypeError: If `sample_rate` is not of type int.
@@ -837,11 +933,17 @@ class EqualizerBiquad(AudioTensorOperation):
837
933
 
838
934
  Examples:
839
935
  >>> import numpy as np
936
+ >>> import mindspore.dataset as ds
937
+ >>> import mindspore.dataset.audio as audio
840
938
  >>>
841
939
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
842
940
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
843
941
  >>> transforms = [audio.EqualizerBiquad(44100, 1500, 5.5, 0.7)]
844
942
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
943
+
944
+ Tutorial Examples:
945
+ - `Illustration of audio transforms
946
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
845
947
  """
846
948
 
847
949
  @check_equalizer_biquad
@@ -868,20 +970,20 @@ class Fade(AudioTensorOperation):
868
970
  Add a fade in and/or fade out to an waveform.
869
971
 
870
972
  Args:
871
- fade_in_len (int, optional): Length of fade-in (time frames), which must be non-negative. Default: 0.
872
- fade_out_len (int, optional): Length of fade-out (time frames), which must be non-negative. Default: 0.
973
+ fade_in_len (int, optional): Length of fade-in (time frames), which must be non-negative. Default: ``0``.
974
+ fade_out_len (int, optional): Length of fade-out (time frames), which must be non-negative. Default: ``0``.
873
975
  fade_shape (FadeShape, optional): Shape of fade, five different types can be chosen as defined in FadeShape.
874
- Default: FadeShape.LINEAR.
976
+ Default: ``FadeShape.LINEAR``.
875
977
 
876
- -FadeShape.QUARTER_SINE, means it tend to 0 in an quarter sin function.
978
+ - ``FadeShape.QUARTER_SINE``, means it tend to 0 in an quarter sin function.
877
979
 
878
- -FadeShape.HALF_SINE, means it tend to 0 in an half sin function.
980
+ - ``FadeShape.HALF_SINE``, means it tend to 0 in an half sin function.
879
981
 
880
- -FadeShape.LINEAR, means it linear to 0.
982
+ - ``FadeShape.LINEAR``, means it linear to 0.
881
983
 
882
- -FadeShape.LOGARITHMIC, means it tend to 0 in an logrithmic function.
984
+ - ``FadeShape.LOGARITHMIC``, means it tend to 0 in an logrithmic function.
883
985
 
884
- -FadeShape.EXPONENTIAL, means it tend to 0 in an exponential function.
986
+ - ``FadeShape.EXPONENTIAL``, means it tend to 0 in an exponential function.
885
987
 
886
988
  Raises:
887
989
  RuntimeError: If fade_in_len exceeds waveform length.
@@ -892,12 +994,18 @@ class Fade(AudioTensorOperation):
892
994
 
893
995
  Examples:
894
996
  >>> import numpy as np
997
+ >>> import mindspore.dataset as ds
998
+ >>> import mindspore.dataset.audio as audio
895
999
  >>> from mindspore.dataset.audio import FadeShape
896
1000
  >>>
897
1001
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03, 9.246826171875e-03, 1.0894775390625e-02]])
898
1002
  >>> dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
899
1003
  >>> transforms = [audio.Fade(fade_in_len=3, fade_out_len=2, fade_shape=FadeShape.LINEAR)]
900
1004
  >>> dataset = dataset.map(operations=transforms, input_columns=["audio"])
1005
+
1006
+ Tutorial Examples:
1007
+ - `Illustration of audio transforms
1008
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
901
1009
  """
902
1010
 
903
1011
  @check_fade
@@ -922,7 +1030,8 @@ class Filtfilt(AudioTensorOperation):
922
1030
  b_coeffs (Sequence[float]): Numerator coefficients of difference equation of dimension.
923
1031
  Lower delays coefficients are first, e.g. [b0, b1, b2, ...].
924
1032
  Must be same size as a_coeffs (pad with 0's as necessary).
925
- clamp (bool, optional): If True, clamp the output signal to be in the range [-1, 1]. Default: True.
1033
+ clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1].
1034
+ Default: ``True``.
926
1035
 
927
1036
  Raises:
928
1037
  TypeError: If `a_coeffs` is not of type Sequence[float].
@@ -933,6 +1042,8 @@ class Filtfilt(AudioTensorOperation):
933
1042
 
934
1043
  Examples:
935
1044
  >>> import numpy as np
1045
+ >>> import mindspore.dataset as ds
1046
+ >>> import mindspore.dataset.audio as audio
936
1047
  >>>
937
1048
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
938
1049
  >>> a_coeffs = [0.1, 0.2, 0.3]
@@ -940,6 +1051,10 @@ class Filtfilt(AudioTensorOperation):
940
1051
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
941
1052
  >>> transforms = [audio.Filtfilt(a_coeffs, b_coeffs)]
942
1053
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1054
+
1055
+ Tutorial Examples:
1056
+ - `Illustration of audio transforms
1057
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
943
1058
  """
944
1059
 
945
1060
  @check_lfilter
@@ -968,16 +1083,16 @@ class Flanger(AudioTensorOperation):
968
1083
 
969
1084
  Args:
970
1085
  sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz).
971
- delay (float, optional): Desired delay in milliseconds, in range of [0, 30]. Default: 0.0.
972
- depth (float, optional): Desired delay depth in milliseconds, in range of [0, 10]. Default: 2.0.
973
- regen (float, optional): Desired regen (feedback gain) in dB, in range of [-95, 95]. Default: 0.0.
974
- width (float, optional): Desired width (delay gain) in dB, in range of [0, 100]. Default: 71.0.
975
- speed (float, optional): Modulation speed in Hz, in range of [0.1, 10]. Default: 0.5.
976
- phase (float, optional): Percentage phase-shift for multi-channel, in range of [0, 100]. Default: 25.0.
977
- modulation (Modulation, optional): Modulation method, can be Modulation.SINUSOIDAL or Modulation.TRIANGULAR.
978
- Default: Modulation.SINUSOIDAL.
979
- interpolation (Interpolation, optional): Interpolation method, can be Interpolation.LINEAR or
980
- Interpolation.QUADRATIC. Default: Interpolation.LINEAR.
1086
+ delay (float, optional): Desired delay in milliseconds, in range of [0, 30]. Default: ``0.0``.
1087
+ depth (float, optional): Desired delay depth in milliseconds, in range of [0, 10]. Default: ``2.0``.
1088
+ regen (float, optional): Desired regen (feedback gain) in dB, in range of [-95, 95]. Default: ``0.0``.
1089
+ width (float, optional): Desired width (delay gain) in dB, in range of [0, 100]. Default: ``71.0``.
1090
+ speed (float, optional): Modulation speed in Hz, in range of [0.1, 10]. Default: ``0.5``.
1091
+ phase (float, optional): Percentage phase-shift for multi-channel, in range of [0, 100]. Default: ``25.0``.
1092
+ modulation (Modulation, optional): Modulation method, can be ``Modulation.SINUSOIDAL`` or
1093
+ ``Modulation.TRIANGULAR``. Default: ``Modulation.SINUSOIDAL``.
1094
+ interpolation (Interpolation, optional): Interpolation method, can be ``Interpolation.LINEAR`` or
1095
+ ``Interpolation.QUADRATIC``. Default: ``Interpolation.LINEAR``.
981
1096
 
982
1097
  Raises:
983
1098
  TypeError: If `sample_rate` is not of type int.
@@ -1003,11 +1118,17 @@ class Flanger(AudioTensorOperation):
1003
1118
 
1004
1119
  Examples:
1005
1120
  >>> import numpy as np
1121
+ >>> import mindspore.dataset as ds
1122
+ >>> import mindspore.dataset.audio as audio
1006
1123
  >>>
1007
1124
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
1008
1125
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1009
1126
  >>> transforms = [audio.Flanger(44100)]
1010
1127
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1128
+
1129
+ Tutorial Examples:
1130
+ - `Illustration of audio transforms
1131
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1011
1132
  """
1012
1133
 
1013
1134
  @check_flanger
@@ -1038,15 +1159,15 @@ class FrequencyMasking(AudioTensorOperation):
1038
1159
  The shape of the audio waveform to be processed needs to be <..., freq, time>.
1039
1160
 
1040
1161
  Args:
1041
- iid_masks (bool, optional): Whether to apply different masks to each example/channel. Default: False.
1042
- freq_mask_param (int, optional): When `iid_masks` is True, length of the mask will be uniformly sampled
1043
- from [0, freq_mask_param]; When `iid_masks` is False, directly use it as length of the mask.
1162
+ iid_masks (bool, optional): Whether to apply different masks to each example/channel. Default: ``False``.
1163
+ freq_mask_param (int, optional): When `iid_masks` is ``True``, length of the mask will be uniformly sampled
1164
+ from [0, freq_mask_param]; When `iid_masks` is ``False``, directly use it as length of the mask.
1044
1165
  The value should be in range of [0, freq_length], where `freq_length` is the length of audio waveform
1045
- in frequency domain. Default: 0.
1046
- mask_start (int, optional): Starting point to apply mask, only works when `iid_masks` is True. The value should
1047
- be in range of [0, freq_length - freq_mask_param], where `freq_length` is the length of audio waveform
1048
- in frequency domain. Default: 0.
1049
- mask_value (float, optional): Value to assign to the masked columns. Default: 0.0.
1166
+ in frequency domain. Default: ``0``.
1167
+ mask_start (int, optional): Starting point to apply mask, only works when `iid_masks` is ``True``.
1168
+ The value should be in range of [0, freq_length - freq_mask_param], where `freq_length` is
1169
+ the length of audio waveform in frequency domain. Default: ``0``.
1170
+ mask_value (float, optional): Value to assign to the masked columns. Default: ``0.0``.
1050
1171
 
1051
1172
  Raises:
1052
1173
  TypeError: If `iid_masks` is not of type bool.
@@ -1063,12 +1184,18 @@ class FrequencyMasking(AudioTensorOperation):
1063
1184
 
1064
1185
  Examples:
1065
1186
  >>> import numpy as np
1187
+ >>> import mindspore.dataset as ds
1188
+ >>> import mindspore.dataset.audio as audio
1066
1189
  >>>
1067
1190
  >>> waveform = np.random.random([1, 3, 2])
1068
1191
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1069
1192
  >>> transforms = [audio.FrequencyMasking(freq_mask_param=1)]
1070
1193
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1071
1194
 
1195
+ Tutorial Examples:
1196
+ - `Illustration of audio transforms
1197
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1198
+
1072
1199
  .. image:: frequency_masking_original.png
1073
1200
 
1074
1201
  .. image:: frequency_masking.png
@@ -1092,7 +1219,7 @@ class Gain(AudioTensorOperation):
1092
1219
  Apply amplification or attenuation to the whole waveform.
1093
1220
 
1094
1221
  Args:
1095
- gain_db (float): Gain adjustment in decibels (dB). Default: 1.0.
1222
+ gain_db (float): Gain adjustment in decibels (dB). Default: ``1.0``.
1096
1223
 
1097
1224
  Raises:
1098
1225
  TypeError: If `gain_db` is not of type float.
@@ -1102,11 +1229,17 @@ class Gain(AudioTensorOperation):
1102
1229
 
1103
1230
  Examples:
1104
1231
  >>> import numpy as np
1232
+ >>> import mindspore.dataset as ds
1233
+ >>> import mindspore.dataset.audio as audio
1105
1234
  >>>
1106
1235
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
1107
1236
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1108
1237
  >>> transforms = [audio.Gain(1.2)]
1109
1238
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1239
+
1240
+ Tutorial Examples:
1241
+ - `Illustration of audio transforms
1242
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1110
1243
  """
1111
1244
 
1112
1245
  @check_gain
@@ -1126,20 +1259,20 @@ class GriffinLim(AudioTensorOperation):
1126
1259
  and `Signal estimation from modified short-time Fourier transform <https://doi.org/10.1109/ICASSP.1983.1172092>`_ .
1127
1260
 
1128
1261
  Args:
1129
- n_fft (int, optional): Size of FFT. Default: 400.
1130
- n_iter (int, optional): Number of iteration for phase recovery. Default: 32.
1131
- win_length (int, optional): Window size for GriffinLim. Default: None, will be set to `n_fft` .
1262
+ n_fft (int, optional): Size of FFT. Default: ``400``.
1263
+ n_iter (int, optional): Number of iteration for phase recovery. Default: ``32``.
1264
+ win_length (int, optional): Window size for GriffinLim. Default: ``None``, will be set to `n_fft` .
1132
1265
  hop_length (int, optional): Length of hop between STFT windows.
1133
- Default: None, will be set to `win_length // 2` .
1134
- window_type (WindowType, optional): Window type for GriffinLim, which can be WindowType.BARTLETT,
1135
- WindowType.BLACKMAN, WindowType.HAMMING, WindowType.HANN or WindowType.KAISER. Default: WindowType.HANN.
1136
- Currently kaiser window is not supported on macOS.
1137
- power (float, optional): Exponent for the magnitude spectrogram. Default: 2.0.
1138
- momentum (float, optional): The momentum for fast Griffin-Lim. Default: 0.99.
1139
- length (int, optional): Length of the expected output waveform. Default: None, will be set to the value of last
1140
- dimension of the stft matrix.
1266
+ Default: ``None``, will be set to `win_length // 2` .
1267
+ window_type (WindowType, optional): Window type for GriffinLim, which can be ``WindowType.BARTLETT``,
1268
+ ``WindowType.BLACKMAN``, ``WindowType.HAMMING``, ``WindowType.HANN`` or ``WindowType.KAISER``.
1269
+ Default: ``WindowType.HANN``. Currently kaiser window is not supported on macOS.
1270
+ power (float, optional): Exponent for the magnitude spectrogram. Default: ``2.0``.
1271
+ momentum (float, optional): The momentum for fast Griffin-Lim. Default: ``0.99``.
1272
+ length (int, optional): Length of the expected output waveform. Default: ``None``,
1273
+ will be set to the value of last dimension of the stft matrix.
1141
1274
  rand_init (bool, optional): Flag for random phase initialization or all-zero phase initialization.
1142
- Default: True.
1275
+ Default: ``True``.
1143
1276
 
1144
1277
  Raises:
1145
1278
  TypeError: If `n_fft` is not of type int.
@@ -1166,11 +1299,17 @@ class GriffinLim(AudioTensorOperation):
1166
1299
 
1167
1300
  Examples:
1168
1301
  >>> import numpy as np
1302
+ >>> import mindspore.dataset as ds
1303
+ >>> import mindspore.dataset.audio as audio
1169
1304
  >>>
1170
1305
  >>> waveform = np.random.random([201, 6])
1171
1306
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1172
1307
  >>> transforms = [audio.GriffinLim(n_fft=400)]
1173
1308
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1309
+
1310
+ Tutorial Examples:
1311
+ - `Illustration of audio transforms
1312
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1174
1313
  """
1175
1314
 
1176
1315
  @check_griffin_lim
@@ -1202,7 +1341,7 @@ class HighpassBiquad(AudioTensorOperation):
1202
1341
  Args:
1203
1342
  sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz), the value can't be 0.
1204
1343
  cutoff_freq (float): Filter cutoff frequency (in Hz).
1205
- Q (float, optional): Quality factor, https://en.wikipedia.org/wiki/Q_factor, range: (0, 1]. Default: 0.707.
1344
+ Q (float, optional): Quality factor, https://en.wikipedia.org/wiki/Q_factor, range: (0, 1]. Default: ``0.707``.
1206
1345
 
1207
1346
  Raises:
1208
1347
  TypeError: If `sample_rate` is not of type int.
@@ -1217,11 +1356,17 @@ class HighpassBiquad(AudioTensorOperation):
1217
1356
 
1218
1357
  Examples:
1219
1358
  >>> import numpy as np
1359
+ >>> import mindspore.dataset as ds
1360
+ >>> import mindspore.dataset.audio as audio
1220
1361
  >>>
1221
1362
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
1222
1363
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1223
1364
  >>> transforms = [audio.HighpassBiquad(44100, 1500, 0.7)]
1224
1365
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1366
+
1367
+ Tutorial Examples:
1368
+ - `Illustration of audio transforms
1369
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1225
1370
  """
1226
1371
 
1227
1372
  @check_highpass_biquad
@@ -1241,18 +1386,19 @@ class InverseMelScale(AudioTensorOperation):
1241
1386
 
1242
1387
  Args:
1243
1388
  n_stft (int): Number of bins in STFT.
1244
- n_mels (int, optional): Number of mel filterbanks. Default: 128.
1245
- sample_rate (int, optional): Sample rate of audio signal. Default: 16000.
1246
- f_min (float, optional): Minimum frequency. Default: 0.0.
1247
- f_max (float, optional): Maximum frequency. Default: None, will be set to `sample_rate // 2` .
1248
- max_iter (int, optional): Maximum number of optimization iterations. Default: 100000.
1249
- tolerance_loss (float, optional): Value of loss to stop optimization at. Default: 1e-5.
1250
- tolerance_change (float, optional): Difference in losses to stop optimization at. Default: 1e-8.
1251
- sgdargs (dict, optional): Arguments for the SGD optimizer. Default: None, will be set to
1389
+ n_mels (int, optional): Number of mel filterbanks. Default: ``128``.
1390
+ sample_rate (int, optional): Sample rate of audio signal. Default: ``16000``.
1391
+ f_min (float, optional): Minimum frequency. Default: ``0.0``.
1392
+ f_max (float, optional): Maximum frequency. Default: ``None``, will be set to `sample_rate // 2` .
1393
+ max_iter (int, optional): Maximum number of optimization iterations. Default: ``100000``.
1394
+ tolerance_loss (float, optional): Value of loss to stop optimization at. Default: ``1e-5``.
1395
+ tolerance_change (float, optional): Difference in losses to stop optimization at. Default: ``1e-8``.
1396
+ sgdargs (dict, optional): Arguments for the SGD optimizer. Default: ``None``, will be set to
1252
1397
  {'sgd_lr': 0.1, 'sgd_momentum': 0.9}.
1253
- norm (NormType, optional): Normalization method, can be NormType.SLANEY or NormType.NONE.
1254
- Default: NormType.NONE, no narmalization.
1255
- mel_type (MelType, optional): Mel scale to use, can be MelType.SLANEY or MelType.HTK. Default: MelType.HTK.
1398
+ norm (NormType, optional): Normalization method, can be ``NormType.SLANEY`` or ``NormType.NONE``.
1399
+ Default: ``NormType.NONE``, no narmalization.
1400
+ mel_type (MelType, optional): Mel scale to use, can be ``MelType.SLANEY`` or ``MelType.HTK``.
1401
+ Default: ``MelType.HTK``.
1256
1402
 
1257
1403
  Raises:
1258
1404
  TypeError: If `n_stft` is not of type int.
@@ -1280,11 +1426,17 @@ class InverseMelScale(AudioTensorOperation):
1280
1426
 
1281
1427
  Examples:
1282
1428
  >>> import numpy as np
1429
+ >>> import mindspore.dataset as ds
1430
+ >>> import mindspore.dataset.audio as audio
1283
1431
  >>>
1284
1432
  >>> waveform = np.random.randn(2, 2, 3, 2)
1285
1433
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1286
1434
  >>> transforms = [audio.InverseMelScale(20, 3, 16000, 0, 8000, 10)]
1287
1435
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1436
+
1437
+ Tutorial Examples:
1438
+ - `Illustration of audio transforms
1439
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1288
1440
  """
1289
1441
 
1290
1442
  @check_inverse_mel_scale
@@ -1317,24 +1469,24 @@ class InverseSpectrogram(AudioTensorOperation):
1317
1469
  Create an inverse spectrogram to recover an audio signal from a spectrogram.
1318
1470
 
1319
1471
  Args:
1320
- length (int, optional): The output length of the waveform, must be non negative. Default: None,
1472
+ length (int, optional): The output length of the waveform, must be non negative. Default: ``None``,
1321
1473
  means to output the whole waveform.
1322
1474
  n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins, which should be greater than 0.
1323
- Default: 400.
1475
+ Default: ``400``.
1324
1476
  win_length (int, optional): Window size, which should be greater than 0.
1325
- Default: None, will be set to `n_fft` .
1477
+ Default: ``None``, will be set to `n_fft` .
1326
1478
  hop_length (int, optional): Length of hop between STFT windows, which should be greater than 0.
1327
- Default: None, will be set to `win_length // 2` .
1328
- pad (int, optional): Two sided padding of signal, cannot be less than 0. Default: 0.
1479
+ Default: ``None``, will be set to `win_length // 2` .
1480
+ pad (int, optional): Two sided padding of signal, cannot be less than 0. Default: ``0``.
1329
1481
  window (WindowType, optional): A function to create a window tensor that is applied/multiplied to each
1330
- frame/window. Default: WindowType.HANN.
1331
- normalized (bool, optional): Whether the spectrogram was normalized by magnitude after stft. Default: False.
1332
- center (bool, optional): Whether the signal in spectrogram was padded on both sides. Default: True.
1333
- pad_mode (BorderType, optional): Controls the padding method used when `center` is True,
1334
- can be BorderType.REFLECT, BorderType.CONSTANT, BorderType.EDGE or BorderType.SYMMETRIC.
1335
- Default: BorderType.REFLECT.
1482
+ frame/window. Default: ``WindowType.HANN``.
1483
+ normalized (bool, optional): Whether the spectrogram was normalized by magnitude after stft. Default: ``False``.
1484
+ center (bool, optional): Whether the signal in spectrogram was padded on both sides. Default: ``True``.
1485
+ pad_mode (BorderType, optional): Controls the padding method used when `center` is ``True``,
1486
+ can be ``BorderType.REFLECT``, ``BorderType.CONSTANT``, ``BorderType.EDGE`` or ``BorderType.SYMMETRIC``.
1487
+ Default: ``BorderType.REFLECT``.
1336
1488
  onesided (bool, optional): Controls whether spectrogram was used to return half of results to avoid
1337
- redundancy. Default: True.
1489
+ redundancy. Default: ``True``.
1338
1490
 
1339
1491
  Raises:
1340
1492
  TypeError: If `length` is not of type int.
@@ -1358,12 +1510,18 @@ class InverseSpectrogram(AudioTensorOperation):
1358
1510
 
1359
1511
  Examples:
1360
1512
  >>> import numpy as np
1513
+ >>> import mindspore.dataset as ds
1514
+ >>> import mindspore.dataset.audio as audio
1361
1515
  >>>
1362
1516
  >>> waveform = np.array([[[0.8236, 0.2049, 0.3335], [0.5933, 0.9911, 0.2482],
1363
1517
  ... [0.3007, 0.9054, 0.7598], [0.5394, 0.2842, 0.5634], [0.6363, 0.2226, 0.2288]]])
1364
1518
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1365
1519
  >>> transforms = [audio.InverseSpectrogram(1, 400, 400, 200)]
1366
1520
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1521
+
1522
+ Tutorial Examples:
1523
+ - `Illustration of audio transforms
1524
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1367
1525
  """
1368
1526
 
1369
1527
  @check_inverse_spectrogram
@@ -1400,16 +1558,16 @@ class LFCC(AudioTensorOperation):
1400
1558
  The shape of the audio waveform to be processed needs to be <..., time>.
1401
1559
 
1402
1560
  Args:
1403
- sample_rate (int, optional): Sample rate of audio signal. Default: 16000.
1404
- n_filter (int, optional) : Number of linear filters to apply. Default: 128.
1405
- n_lfcc (int, optional) : Number of lfc coefficients to retain. Default: 40.
1406
- f_min (float, optional): Minimum frequency. Default: 0.0.
1407
- f_max (float, optional): Maximum frequency. Default: None, will be set to `sample_rate // 2` .
1408
- dct_type (int, optional) : Type of DCT to use. The value can only be 2. Default: 2.
1409
- norm (NormMode, optional) : Norm to use. Default: NormMode.ORTHO.
1410
- log_lf (bool, optional) : Whether to use log-lf spectrograms instead of db-scaled. Default: False.
1561
+ sample_rate (int, optional): Sample rate of audio signal. Default: ``16000``.
1562
+ n_filter (int, optional) : Number of linear filters to apply. Default: ``128``.
1563
+ n_lfcc (int, optional) : Number of lfc coefficients to retain. Default: ``40``.
1564
+ f_min (float, optional): Minimum frequency. Default: ``0.0``.
1565
+ f_max (float, optional): Maximum frequency. Default: ``None``, will be set to `sample_rate // 2` .
1566
+ dct_type (int, optional) : Type of DCT to use. The value can only be ``2``. Default: ``2``.
1567
+ norm (NormMode, optional) : Norm to use. Default: ``NormMode.ORTHO``.
1568
+ log_lf (bool, optional) : Whether to use log-lf spectrograms instead of db-scaled. Default: ``False``.
1411
1569
  speckwargs (dict, optional) : Arguments for :class:`mindspore.dataset.audio.Spectrogram`.
1412
- Default: None, the default setting is a dict including
1570
+ Default: ``None``, the default setting is a dict including
1413
1571
 
1414
1572
  - 'n_fft': 400
1415
1573
  - 'win_length': n_fft
@@ -1433,7 +1591,7 @@ class LFCC(AudioTensorOperation):
1433
1591
  ValueError: If `n_lfcc` is less than 0.
1434
1592
  ValueError: If `f_min` is greater than `f_max` .
1435
1593
  ValueError: If `f_min` is greater than `sample_rate // 2` when `f_max` is set to None.
1436
- ValueError: If `dct_type` is not 2.
1594
+ ValueError: If `dct_type` is not ``2``.
1437
1595
 
1438
1596
  Supported Platforms:
1439
1597
  ``CPU``
@@ -1447,6 +1605,10 @@ class LFCC(AudioTensorOperation):
1447
1605
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1448
1606
  >>> transforms = [audio.LFCC()]
1449
1607
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1608
+
1609
+ Tutorial Examples:
1610
+ - `Illustration of audio transforms
1611
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1450
1612
  """
1451
1613
 
1452
1614
  @check_lfcc
@@ -1494,7 +1656,7 @@ class LFilter(AudioTensorOperation):
1494
1656
  b_coeffs (Sequence[float]): Numerator coefficients of difference equation of dimension.
1495
1657
  Lower delays coefficients are first, e.g. [b0, b1, b2, ...].
1496
1658
  Must be same size as a_coeffs (pad with 0's as necessary).
1497
- clamp (bool, optional): If True, clamp the output signal to be in the range [-1, 1]. Default: True.
1659
+ clamp (bool, optional): If True, clamp the output signal to be in the range [-1, 1]. Default: ``True``.
1498
1660
 
1499
1661
  Raises:
1500
1662
  TypeError: If `a_coeffs` is not of type Sequence[float].
@@ -1508,6 +1670,8 @@ class LFilter(AudioTensorOperation):
1508
1670
 
1509
1671
  Examples:
1510
1672
  >>> import numpy as np
1673
+ >>> import mindspore.dataset as ds
1674
+ >>> import mindspore.dataset.audio as audio
1511
1675
  >>>
1512
1676
  >>> waveform = np.array([[2.716064453125e-03, 6.34765625e-03], [9.246826171875e-03, 1.0894775390625e-02]])
1513
1677
  >>> a_coeffs = [0.1, 0.2, 0.3]
@@ -1515,6 +1679,10 @@ class LFilter(AudioTensorOperation):
1515
1679
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1516
1680
  >>> transforms = [audio.LFilter(a_coeffs, b_coeffs)]
1517
1681
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1682
+
1683
+ Tutorial Examples:
1684
+ - `Illustration of audio transforms
1685
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1518
1686
  """
1519
1687
 
1520
1688
  @check_lfilter
@@ -1547,7 +1715,7 @@ class LowpassBiquad(AudioTensorOperation):
1547
1715
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
1548
1716
  cutoff_freq (float): Filter cutoff frequency (in Hz).
1549
1717
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
1550
- in range of (0, 1]. Default: 0.707.
1718
+ in range of (0, 1]. Default: ``0.707``.
1551
1719
 
1552
1720
  Raises:
1553
1721
  TypeError: If `sample_rate` is not of type int.
@@ -1562,12 +1730,18 @@ class LowpassBiquad(AudioTensorOperation):
1562
1730
 
1563
1731
  Examples:
1564
1732
  >>> import numpy as np
1733
+ >>> import mindspore.dataset as ds
1734
+ >>> import mindspore.dataset.audio as audio
1565
1735
  >>>
1566
1736
  >>> waveform = np.array([[0.8236, 0.2049, 0.3335], [0.5933, 0.9911, 0.2482],
1567
1737
  ... [0.3007, 0.9054, 0.7598], [0.5394, 0.2842, 0.5634], [0.6363, 0.2226, 0.2288]])
1568
1738
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1569
1739
  >>> transforms = [audio.LowpassBiquad(4000, 1500, 0.7)]
1570
1740
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1741
+
1742
+ Tutorial Examples:
1743
+ - `Illustration of audio transforms
1744
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1571
1745
  """
1572
1746
 
1573
1747
  @check_lowpass_biquad
@@ -1583,10 +1757,10 @@ class LowpassBiquad(AudioTensorOperation):
1583
1757
 
1584
1758
  class Magphase(AudioTensorOperation):
1585
1759
  """
1586
- Separate a complex-valued spectrogram with shape (..., 2) into its magnitude and phase.
1760
+ Separate a complex-valued spectrogram with shape :math:`(..., 2)` into its magnitude and phase.
1587
1761
 
1588
1762
  Args:
1589
- power (float): Power of the norm, which must be non-negative. Default: 1.0.
1763
+ power (float): Power of the norm, which must be non-negative. Default: ``1.0``.
1590
1764
 
1591
1765
  Raises:
1592
1766
  RuntimeError: If the shape of input audio waveform does not match (..., 2).
@@ -1596,11 +1770,17 @@ class Magphase(AudioTensorOperation):
1596
1770
 
1597
1771
  Examples:
1598
1772
  >>> import numpy as np
1773
+ >>> import mindspore.dataset as ds
1774
+ >>> import mindspore.dataset.audio as audio
1599
1775
  >>>
1600
1776
  >>> waveform = np.random.random([2, 4, 2])
1601
1777
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1602
1778
  >>> transforms = [audio.Magphase()]
1603
1779
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1780
+
1781
+ Tutorial Examples:
1782
+ - `Illustration of audio transforms
1783
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1604
1784
  """
1605
1785
 
1606
1786
  @check_magphase
@@ -1632,11 +1812,17 @@ class MaskAlongAxis(AudioTensorOperation):
1632
1812
 
1633
1813
  Examples:
1634
1814
  >>> import numpy as np
1815
+ >>> import mindspore.dataset as ds
1816
+ >>> import mindspore.dataset.audio as audio
1635
1817
  >>>
1636
1818
  >>> waveform = np.random.random([1, 20, 20])
1637
1819
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1638
1820
  >>> transforms = [audio.MaskAlongAxis(0, 10, 0.5, 1)]
1639
1821
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1822
+
1823
+ Tutorial Examples:
1824
+ - `Illustration of audio transforms
1825
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1640
1826
  """
1641
1827
 
1642
1828
  @check_mask_along_axis
@@ -1677,11 +1863,17 @@ class MaskAlongAxisIID(AudioTensorOperation):
1677
1863
 
1678
1864
  Examples:
1679
1865
  >>> import numpy as np
1866
+ >>> import mindspore.dataset as ds
1867
+ >>> import mindspore.dataset.audio as audio
1680
1868
  >>>
1681
1869
  >>> waveform= np.random.random([1, 20, 20])
1682
1870
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1683
1871
  >>> transforms = [audio.MaskAlongAxisIID(5, 0.5, 2)]
1684
1872
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1873
+
1874
+ Tutorial Examples:
1875
+ - `Illustration of audio transforms
1876
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1685
1877
  """
1686
1878
 
1687
1879
  @check_mask_along_axis_iid
@@ -1707,15 +1899,16 @@ class MelScale(AudioTensorOperation):
1707
1899
  Convert normal STFT to STFT at the Mel scale.
1708
1900
 
1709
1901
  Args:
1710
- n_mels (int, optional): Number of mel filterbanks. Default: 128.
1711
- sample_rate (int, optional): Sample rate of audio signal. Default: 16000.
1712
- f_min (float, optional): Minimum frequency. Default: 0.0.
1713
- f_max (float, optional): Maximum frequency. Default: None, will be set to `sample_rate // 2` .
1714
- n_stft (int, optional): Number of bins in STFT. Default: 201.
1715
- norm (NormType, optional): Type of norm, value should be NormType.SLANEY or NormType::NONE.
1716
- If norm is NormType.SLANEY, divide the triangular mel weight by the width of the mel band.
1717
- Default: NormType.NONE, no narmalization.
1718
- mel_type (MelType, optional): Type to use, value should be MelType.SLANEY or MelType.HTK. Default: MelType.HTK.
1902
+ n_mels (int, optional): Number of mel filterbanks. Default: ``128``.
1903
+ sample_rate (int, optional): Sample rate of audio signal. Default: ``16000``.
1904
+ f_min (float, optional): Minimum frequency. Default: ``0.0``.
1905
+ f_max (float, optional): Maximum frequency. Default: ``None``, will be set to `sample_rate // 2` .
1906
+ n_stft (int, optional): Number of bins in STFT. Default: ``201``.
1907
+ norm (NormType, optional): Type of norm, value should be ``NormType.SLANEY`` or ``NormType.NONE``.
1908
+ If `norm` is ``NormType.SLANEY``, divide the triangular mel weight by the width of the mel band.
1909
+ Default: ``NormType.NONE``, no narmalization.
1910
+ mel_type (MelType, optional): Type to use, value should be ``MelType.SLANEY`` or ``MelType.HTK``.
1911
+ Default: ``MelType.HTK``.
1719
1912
 
1720
1913
  Raises:
1721
1914
  TypeError: If `n_mels` is not of type int.
@@ -1736,12 +1929,18 @@ class MelScale(AudioTensorOperation):
1736
1929
 
1737
1930
  Examples:
1738
1931
  >>> import numpy as np
1932
+ >>> import mindspore.dataset as ds
1933
+ >>> import mindspore.dataset.audio as audio
1739
1934
  >>>
1740
1935
  >>> waveform = np.array([[0.8236, 0.2049, 0.3335], [0.5933, 0.9911, 0.2482],
1741
1936
  ... [0.3007, 0.9054, 0.7598], [0.5394, 0.2842, 0.5634], [0.6363, 0.2226, 0.2288]])
1742
1937
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1743
1938
  >>> transforms = [audio.MelScale(4000, 1500, 0.7)]
1744
1939
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
1940
+
1941
+ Tutorial Examples:
1942
+ - `Illustration of audio transforms
1943
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1745
1944
  """
1746
1945
 
1747
1946
  @check_mel_scale
@@ -1766,31 +1965,33 @@ class MelSpectrogram(AudioTensorOperation):
1766
1965
  Create MelSpectrogram for a raw audio signal.
1767
1966
 
1768
1967
  Args:
1769
- sample_rate (int, optional): Sampling rate of audio signal (in Hz), which can't be less than 0. Default: 16000.
1968
+ sample_rate (int, optional): Sampling rate of audio signal (in Hz), which can't be less than 0.
1969
+ Default: ``16000``.
1770
1970
  n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins, which should be greater than 0 and less than
1771
- twice of the last dimension size of the input. Default: 400.
1971
+ twice of the last dimension size of the input. Default: ``400``.
1772
1972
  win_length (int, optional): Window size, which should be greater than 0 and no more than `n_fft` . Default:
1773
1973
  None, will be set to `n_fft` .
1774
1974
  hop_length (int, optional): Length of hop between STFT windows, which should be greater than 0.
1775
- Default: None, will be set to `win_length // 2` .
1776
- f_min (float, optional): Minimum frequency, which can't be greater than `f_max` . Default: 0.0.
1777
- f_max (float, optional): Maximum frequency, which can't be less than 0. Default: None, will be set
1975
+ Default: ``None``, will be set to `win_length // 2` .
1976
+ f_min (float, optional): Minimum frequency, which can't be greater than `f_max` . Default: ``0.0``.
1977
+ f_max (float, optional): Maximum frequency, which can't be less than 0. Default: ``None``, will be set
1778
1978
  to `sample_rate // 2` .
1779
- pad (int, optional): Two sided padding of signal, which can't be less than 0. Default: 0.
1780
- n_mels (int, optional): Number of mel filterbanks, which can't be less than 0. Default: 128.
1979
+ pad (int, optional): Two sided padding of signal, which can't be less than 0. Default: ``0``.
1980
+ n_mels (int, optional): Number of mel filterbanks, which can't be less than 0. Default: ``128``.
1781
1981
  window (WindowType, optional): A function to create a window tensor that is applied/multiplied to each
1782
- frame/window. Default: WindowType.HANN.
1982
+ frame/window. Default: ``WindowType.HANN``.
1783
1983
  power (float, optional): Exponent for the magnitude spectrogram, which must be
1784
- greater than 0, e.g., 1 for energy, 2 for power, etc. Default: 2.0.
1785
- normalized (bool, optional): Whether to normalize by magnitude after stft. Default: False.
1786
- center (bool, optional): Whether to pad waveform on both sides. Default: True.
1787
- pad_mode (BorderType, optional): Controls the padding method used when `center` is True,
1788
- can be BorderType.REFLECT, BorderType.CONSTANT, BorderType.EDGE or BorderType.SYMMETRIC.
1789
- Default: BorderType.REFLECT.
1790
- onesided (bool, optional): Controls whether to return half of results to avoid redundancy. Default: True.
1984
+ greater than 0, e.g., ``1`` for energy, ``2`` for power, etc. Default: ``2.0``.
1985
+ normalized (bool, optional): Whether to normalize by magnitude after stft. Default: ``False``.
1986
+ center (bool, optional): Whether to pad waveform on both sides. Default: ``True``.
1987
+ pad_mode (BorderType, optional): Controls the padding method used when `center` is ``True``,
1988
+ can be ``BorderType.REFLECT``, ``BorderType.CONSTANT``, ``BorderType.EDGE`` or ``BorderType.SYMMETRIC``.
1989
+ Default: ``BorderType.REFLECT``.
1990
+ onesided (bool, optional): Controls whether to return half of results to avoid redundancy. Default: ``True``.
1791
1991
  norm (NormType, optional): If 'slaney', divide the triangular mel weights by the width of the mel band
1792
- (area normalization). Default: NormType.NONE, no narmalization.
1793
- mel_scale (MelType, optional): Mel scale to use, can be MelType.SLANEY or MelType.HTK. Default: MelType.HTK.
1992
+ (area normalization). Default: ``NormType.NONE``, no narmalization.
1993
+ mel_scale (MelType, optional): Mel scale to use, can be ``MelType.SLANEY`` or ``MelType.HTK``.
1994
+ Default: ``MelType.HTK``.
1794
1995
 
1795
1996
  Raises:
1796
1997
  TypeError: If `sample_rate` is not of type int.
@@ -1825,6 +2026,8 @@ class MelSpectrogram(AudioTensorOperation):
1825
2026
 
1826
2027
  Examples:
1827
2028
  >>> import numpy as np
2029
+ >>> import mindspore.dataset as ds
2030
+ >>> import mindspore.dataset.audio as audio
1828
2031
  >>>
1829
2032
  >>> from mindspore.dataset.audio import WindowType, BorderType, NormType, MelType
1830
2033
  >>>
@@ -1835,6 +2038,10 @@ class MelSpectrogram(AudioTensorOperation):
1835
2038
  ... normalized=False, center=True, pad_mode=BorderType.REFLECT, \
1836
2039
  ... onesided=True, norm=NormType.SLANEY, mel_scale=MelType.HTK)]
1837
2040
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2041
+
2042
+ Tutorial Examples:
2043
+ - `Illustration of audio transforms
2044
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1838
2045
  """
1839
2046
 
1840
2047
  @check_mel_spectrogram
@@ -1872,13 +2079,13 @@ class MFCC(AudioTensorOperation):
1872
2079
  Create MFCC for a raw audio signal.
1873
2080
 
1874
2081
  Args:
1875
- sample_rate (int, optional): Sampling rate of audio signal (in Hz), can't be less than 0. Default: 16000.
1876
- n_mfcc (int, optional): Number of mfc coefficients to retain, can't be less than 0. Default: 40.
1877
- dct_type (int, optional): Type of DCT (discrete cosine transform) to use, can only be 2. Default: 2.
1878
- norm (NormMode, optional): Norm to use. Default: NormMode.ORTHO.
1879
- log_mels (bool, optional): Whether to use log-mel spectrograms instead of db-scaled. Default: False.
2082
+ sample_rate (int, optional): Sampling rate of audio signal (in Hz), can't be less than 0. Default: ``16000``.
2083
+ n_mfcc (int, optional): Number of mfc coefficients to retain, can't be less than 0. Default: ``40``.
2084
+ dct_type (int, optional): Type of DCT (discrete cosine transform) to use, can only be ``2``. Default: ``2``.
2085
+ norm (NormMode, optional): Norm to use. Default: ``NormMode.ORTHO``.
2086
+ log_mels (bool, optional): Whether to use log-mel spectrograms instead of db-scaled. Default: ``False``.
1880
2087
  melkwargs (dict, optional): Arguments for :class:`mindspore.dataset.audio.MelSpectrogram`.
1881
- Default: None, the default setting is a dict including
2088
+ Default: ``None``, the default setting is a dict including
1882
2089
 
1883
2090
  - 'n_fft': 400
1884
2091
  - 'win_length': n_fft
@@ -1903,19 +2110,25 @@ class MFCC(AudioTensorOperation):
1903
2110
  TypeError: If `melkwargs` is not of type dict.
1904
2111
  ValueError: If `sample_rate` is a negative number.
1905
2112
  ValueError: If `n_mfcc` is a negative number.
1906
- ValueError: If `dct_type` is not 2.
2113
+ ValueError: If `dct_type` is not ``2``.
1907
2114
 
1908
2115
  Supported Platforms:
1909
2116
  ``CPU``
1910
2117
 
1911
2118
  Examples:
1912
2119
  >>> import numpy as np
2120
+ >>> import mindspore.dataset as ds
2121
+ >>> import mindspore.dataset.audio as audio
1913
2122
  >>>
1914
2123
  >>> waveform = np.array([[0.8236, 0.2049, 0.3335], [0.5933, 0.9911, 0.2482],
1915
2124
  ... [0.3007, 0.9054, 0.7598], [0.5394, 0.2842, 0.5634], [0.6363, 0.2226, 0.2288]])
1916
2125
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1917
2126
  >>> transforms = [audio.MFCC(4000, 1500, 2)]
1918
2127
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2128
+
2129
+ Tutorial Examples:
2130
+ - `Illustration of audio transforms
2131
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1919
2132
  """
1920
2133
 
1921
2134
  @check_mfcc
@@ -1961,7 +2174,7 @@ class MuLawDecoding(AudioTensorOperation):
1961
2174
  Decode mu-law encoded signal, refer to `mu-law algorithm <https://en.wikipedia.org/wiki/M-law_algorithm>`_ .
1962
2175
 
1963
2176
  Args:
1964
- quantization_channels (int, optional): Number of channels, which must be positive. Default: 256.
2177
+ quantization_channels (int, optional): Number of channels, which must be positive. Default: ``256``.
1965
2178
 
1966
2179
  Raises:
1967
2180
  TypeError: If `quantization_channels` is not of type int.
@@ -1973,11 +2186,17 @@ class MuLawDecoding(AudioTensorOperation):
1973
2186
 
1974
2187
  Examples:
1975
2188
  >>> import numpy as np
2189
+ >>> import mindspore.dataset as ds
2190
+ >>> import mindspore.dataset.audio as audio
1976
2191
  >>>
1977
2192
  >>> waveform = np.random.random([1, 3, 4])
1978
2193
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
1979
2194
  >>> transforms = [audio.MuLawDecoding()]
1980
2195
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2196
+
2197
+ Tutorial Examples:
2198
+ - `Illustration of audio transforms
2199
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
1981
2200
  """
1982
2201
 
1983
2202
  @check_mu_law_coding
@@ -1994,7 +2213,7 @@ class MuLawEncoding(AudioTensorOperation):
1994
2213
  Encode signal based on mu-law companding.
1995
2214
 
1996
2215
  Args:
1997
- quantization_channels (int, optional): Number of channels, which must be positive. Default: 256.
2216
+ quantization_channels (int, optional): Number of channels, which must be positive. Default: ``256``.
1998
2217
 
1999
2218
  Raises:
2000
2219
  TypeError: If `quantization_channels` is not of type int.
@@ -2005,11 +2224,17 @@ class MuLawEncoding(AudioTensorOperation):
2005
2224
 
2006
2225
  Examples:
2007
2226
  >>> import numpy as np
2227
+ >>> import mindspore.dataset as ds
2228
+ >>> import mindspore.dataset.audio as audio
2008
2229
  >>>
2009
2230
  >>> waveform = np.random.random([1, 3, 4])
2010
2231
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2011
2232
  >>> transforms = [audio.MuLawEncoding()]
2012
2233
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2234
+
2235
+ Tutorial Examples:
2236
+ - `Illustration of audio transforms
2237
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2013
2238
  """
2014
2239
 
2015
2240
  @check_mu_law_coding
@@ -2028,9 +2253,10 @@ class Overdrive(AudioTensorOperation):
2028
2253
  Similar to `SoX <http://sox.sourceforge.net/sox.html>`_ implementation.
2029
2254
 
2030
2255
  Args:
2031
- gain (float, optional): Desired gain at the boost (or attenuation) in dB, in range of [0, 100]. Default: 20.0.
2256
+ gain (float, optional): Desired gain at the boost (or attenuation) in dB, in range of [0, 100].
2257
+ Default: ``20.0``.
2032
2258
  color (float, optional): Controls the amount of even harmonic content in the over-driven output,
2033
- in range of [0, 100]. Default: 20.0.
2259
+ in range of [0, 100]. Default: ``20.0``.
2034
2260
 
2035
2261
  Raises:
2036
2262
  TypeError: If `gain` is not of type float.
@@ -2044,11 +2270,17 @@ class Overdrive(AudioTensorOperation):
2044
2270
 
2045
2271
  Examples:
2046
2272
  >>> import numpy as np
2273
+ >>> import mindspore.dataset as ds
2274
+ >>> import mindspore.dataset.audio as audio
2047
2275
  >>>
2048
2276
  >>> waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
2049
2277
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2050
2278
  >>> transforms = [audio.Overdrive()]
2051
2279
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2280
+
2281
+ Tutorial Examples:
2282
+ - `Illustration of audio transforms
2283
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2052
2284
  """
2053
2285
 
2054
2286
  @check_overdrive
@@ -2070,14 +2302,15 @@ class Phaser(AudioTensorOperation):
2070
2302
  Args:
2071
2303
  sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz).
2072
2304
  gain_in (float, optional): Desired input gain at the boost (or attenuation) in dB,
2073
- in range of [0.0, 1.0]. Default: 0.4.
2305
+ in range of [0.0, 1.0]. Default: ``0.4``.
2074
2306
  gain_out (float, optional): Desired output gain at the boost (or attenuation) in dB,
2075
- in range of [0.0, 1e9]. Default: 0.74.
2076
- delay_ms (float, optional): Desired delay in milliseconds, in range of [0.0, 5.0]. Default: 3.0.
2077
- decay (float, optional): Desired decay relative to gain-in, in range of [0.0, 0.99]. Default: 0.4.
2078
- mod_speed (float, optional): Modulation speed in Hz, in range of [0.1, 2.0]. Default: 0.5.
2079
- sinusoidal (bool, optional): If True, use sinusoidal modulation (preferable for multiple instruments).
2080
- If False, use triangular modulation (gives single instruments a sharper phasing effect). Default: True.
2307
+ in range of [0.0, 1e9]. Default: ``0.74``.
2308
+ delay_ms (float, optional): Desired delay in milliseconds, in range of [0.0, 5.0]. Default: ``3.0``.
2309
+ decay (float, optional): Desired decay relative to gain-in, in range of [0.0, 0.99]. Default: ``0.4``.
2310
+ mod_speed (float, optional): Modulation speed in Hz, in range of [0.1, 2.0]. Default: ``0.5``.
2311
+ sinusoidal (bool, optional): If ``True``, use sinusoidal modulation (preferable for multiple instruments).
2312
+ If ``False``, use triangular modulation (gives single instruments a sharper phasing effect).
2313
+ Default: ``True``.
2081
2314
 
2082
2315
  Raises:
2083
2316
  TypeError: If `sample_rate` is not of type int.
@@ -2099,11 +2332,17 @@ class Phaser(AudioTensorOperation):
2099
2332
 
2100
2333
  Examples:
2101
2334
  >>> import numpy as np
2335
+ >>> import mindspore.dataset as ds
2336
+ >>> import mindspore.dataset.audio as audio
2102
2337
  >>>
2103
2338
  >>> waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float32)
2104
2339
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2105
2340
  >>> transforms = [audio.Phaser(44100)]
2106
2341
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2342
+
2343
+ Tutorial Examples:
2344
+ - `Illustration of audio transforms
2345
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2107
2346
  """
2108
2347
 
2109
2348
  @check_phaser
@@ -2142,12 +2381,18 @@ class PhaseVocoder(AudioTensorOperation):
2142
2381
 
2143
2382
  Examples:
2144
2383
  >>> import numpy as np
2384
+ >>> import mindspore.dataset as ds
2385
+ >>> import mindspore.dataset.audio as audio
2145
2386
  >>>
2146
2387
  >>> waveform = np.random.random([2, 44, 10, 2])
2147
2388
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2148
2389
  >>> phase_advance = np.random.random([44, 1])
2149
2390
  >>> transforms = [audio.PhaseVocoder(rate=2, phase_advance=phase_advance)]
2150
2391
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2392
+
2393
+ Tutorial Examples:
2394
+ - `Illustration of audio transforms
2395
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2151
2396
  """
2152
2397
 
2153
2398
  @check_phase_vocoder
@@ -2167,13 +2412,13 @@ class PitchShift(AudioTensorOperation):
2167
2412
  Args:
2168
2413
  sample_rate (int): Sampling rate of waveform (in Hz).
2169
2414
  n_steps (int): The steps to shift waveform.
2170
- bins_per_octave (int, optional): The number of steps per octave. Default: 12.
2171
- n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: 512.
2172
- win_length (int, optional): Window size. Default: None, will be set to `n_fft` .
2173
- hop_length (int, optional): Length of hop between STFT windows. Default: None,
2415
+ bins_per_octave (int, optional): The number of steps per octave. Default: ``12``.
2416
+ n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: ``512``.
2417
+ win_length (int, optional): Window size. Default: ``None``, will be set to `n_fft` .
2418
+ hop_length (int, optional): Length of hop between STFT windows. Default: ``None``,
2174
2419
  will be set to `win_length // 4` .
2175
2420
  window (WindowType, optional): Window tensor that is applied/multiplied to each frame/window.
2176
- Default: WindowType.HANN.
2421
+ Default: ``WindowType.HANN``.
2177
2422
 
2178
2423
  Raises:
2179
2424
  TypeError: If `sample_rate` is not of type int.
@@ -2203,6 +2448,10 @@ class PitchShift(AudioTensorOperation):
2203
2448
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2204
2449
  >>> transforms = [audio.PitchShift(sample_rate=16000,n_steps=4)]
2205
2450
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2451
+
2452
+ Tutorial Examples:
2453
+ - `Illustration of audio transforms
2454
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2206
2455
  """
2207
2456
 
2208
2457
  @check_pitch_shift
@@ -2231,15 +2480,18 @@ class Resample(AudioTensorOperation):
2231
2480
  Resample a signal from one frequency to another. A resample method can be given.
2232
2481
 
2233
2482
  Args:
2234
- orig_freq (float, optional): The original frequency of the signal, must be positive. Default: 16000.
2235
- new_freq (float, optional): The desired frequency, must be positive. Default: 16000.
2236
- resample_method (ResampleMethod, optional): The resample method to use, can be ResampleMethod.SINC_INTERPOLATION
2237
- or ResampleMethod.KAISER_WINDOW. Default: ResampleMethod.SINC_INTERPOLATION.
2483
+ orig_freq (float, optional): The original frequency of the signal, must be positive. Default: ``16000``.
2484
+ new_freq (float, optional): The desired frequency, must be positive. Default: ``16000``.
2485
+ resample_method (ResampleMethod, optional): The resample method to use, can be
2486
+ ``ResampleMethod.SINC_INTERPOLATION`` or ``ResampleMethod.KAISER_WINDOW``.
2487
+ Default: ``ResampleMethod.SINC_INTERPOLATION``.
2238
2488
  lowpass_filter_width (int, optional): Controls the sharpness of the filter, more means sharper but less
2239
- efficient, must be positive. Default: 6.
2489
+ efficient, must be positive. Default: ``6``.
2240
2490
  rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist. Lower values
2241
- reduce anti-aliasing, but also reduce some of the highest frequencies, in range of (0, 1]. Default: 0.99.
2242
- beta (float, optional): The shape parameter used for kaiser window. Default: None, will use 14.769656459379492.
2491
+ reduce anti-aliasing, but also reduce some of the highest frequencies, in range of (0, 1].
2492
+ Default: ``0.99``.
2493
+ beta (float, optional): The shape parameter used for kaiser window. Default: ``None``,
2494
+ will use ``14.769656459379492``.
2243
2495
 
2244
2496
  Raises:
2245
2497
  TypeError: If `orig_freq` is not of type float.
@@ -2258,6 +2510,8 @@ class Resample(AudioTensorOperation):
2258
2510
 
2259
2511
  Examples:
2260
2512
  >>> import numpy as np
2513
+ >>> import mindspore.dataset as ds
2514
+ >>> import mindspore.dataset.audio as audio
2261
2515
  >>> from mindspore.dataset.audio import ResampleMethod
2262
2516
  >>>
2263
2517
  >>> waveform = np.random.random([1, 30])
@@ -2266,6 +2520,10 @@ class Resample(AudioTensorOperation):
2266
2520
  ... resample_method=ResampleMethod.SINC_INTERPOLATION,
2267
2521
  ... lowpass_filter_width=6, rolloff=0.99, beta=None)]
2268
2522
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2523
+
2524
+ Tutorial Examples:
2525
+ - `Illustration of audio transforms
2526
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2269
2527
  """
2270
2528
 
2271
2529
  @check_resample
@@ -2304,11 +2562,17 @@ class RiaaBiquad(AudioTensorOperation):
2304
2562
 
2305
2563
  Examples:
2306
2564
  >>> import numpy as np
2565
+ >>> import mindspore.dataset as ds
2566
+ >>> import mindspore.dataset.audio as audio
2307
2567
  >>>
2308
2568
  >>> waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
2309
2569
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2310
2570
  >>> transforms = [audio.RiaaBiquad(44100)]
2311
2571
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2572
+
2573
+ Tutorial Examples:
2574
+ - `Illustration of audio transforms
2575
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2312
2576
  """
2313
2577
 
2314
2578
  @check_riaa_biquad
@@ -2325,12 +2589,12 @@ class SlidingWindowCmn(AudioTensorOperation):
2325
2589
  Apply sliding-window cepstral mean (and optionally variance) normalization per utterance.
2326
2590
 
2327
2591
  Args:
2328
- cmn_window (int, optional): Window in frames for running average CMN computation. Default: 600.
2592
+ cmn_window (int, optional): Window in frames for running average CMN computation. Default: ``600``.
2329
2593
  min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start).
2330
- Only applicable if center is False, ignored if center is True. Default: 100.
2331
- center (bool, optional): If True, use a window centered on the current frame. If False, window is
2332
- to the left. Default: False.
2333
- norm_vars (bool, optional): If True, normalize variance to one. Default: False.
2594
+ Only applicable if center is ``False``, ignored if center is ``True``. Default: ``100``.
2595
+ center (bool, optional): If ``True``, use a window centered on the current frame. If ``False``, window is
2596
+ to the left. Default: ``False``.
2597
+ norm_vars (bool, optional): If ``True``, normalize variance to one. Default: ``False``.
2334
2598
 
2335
2599
  Raises:
2336
2600
  TypeError: If `cmn_window` is not of type int.
@@ -2345,11 +2609,17 @@ class SlidingWindowCmn(AudioTensorOperation):
2345
2609
 
2346
2610
  Examples:
2347
2611
  >>> import numpy as np
2612
+ >>> import mindspore.dataset as ds
2613
+ >>> import mindspore.dataset.audio as audio
2348
2614
  >>>
2349
2615
  >>> waveform = np.array([[[1, 2, 3], [4, 5, 6]]], dtype=np.float64)
2350
2616
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2351
2617
  >>> transforms = [audio.SlidingWindowCmn()]
2352
2618
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2619
+
2620
+ Tutorial Examples:
2621
+ - `Illustration of audio transforms
2622
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2353
2623
  """
2354
2624
 
2355
2625
  @check_sliding_window_cmn
@@ -2376,14 +2646,14 @@ class SpectralCentroid(TensorOperation):
2376
2646
  Compute the spectral centroid for each channel along the time axis.
2377
2647
 
2378
2648
  Args:
2379
- sample_rate (int): Sampling rate of audio signal, e.g. 44100 (Hz).
2380
- n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: 400.
2381
- win_length (int, optional): Window size. Default: None, will use `n_fft` .
2382
- hop_length (int, optional): Length of hop between STFT windows. Default: None, will use `win_length // 2` .
2383
- pad (int, optional): Two sided padding of signal. Default: 0.
2649
+ sample_rate (int): Sampling rate of audio signal, e.g. ``44100`` (Hz).
2650
+ n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: ``400``.
2651
+ win_length (int, optional): Window size. Default: ``None``, will use `n_fft` .
2652
+ hop_length (int, optional): Length of hop between STFT windows. Default: ``None``, will use `win_length // 2` .
2653
+ pad (int, optional): Two sided padding of signal. Default: ``0``.
2384
2654
  window (WindowType, optional): Window function that is applied/multiplied to each frame/window,
2385
- can be WindowType.BARTLETT, WindowType.BLACKMAN, WindowType.HAMMING, WindowType.HANN
2386
- or WindowType.KAISER. Default: WindowType.HANN.
2655
+ can be ``WindowType.BARTLETT``, ``WindowType.BLACKMAN``, ``WindowType.HAMMING``, ``WindowType.HANN``
2656
+ or ``WindowType.KAISER``. Default: ``WindowType.HANN``.
2387
2657
 
2388
2658
  Raises:
2389
2659
  TypeError: If `sample_rate` is not of type int.
@@ -2405,11 +2675,17 @@ class SpectralCentroid(TensorOperation):
2405
2675
 
2406
2676
  Examples:
2407
2677
  >>> import numpy as np
2678
+ >>> import mindspore.dataset as ds
2679
+ >>> import mindspore.dataset.audio as audio
2408
2680
  >>>
2409
2681
  >>> waveform = np.random.random([5, 10, 20])
2410
2682
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2411
2683
  >>> transforms = [audio.SpectralCentroid(44100)]
2412
2684
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2685
+
2686
+ Tutorial Examples:
2687
+ - `Illustration of audio transforms
2688
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2413
2689
  """
2414
2690
 
2415
2691
  @check_spectral_centroid
@@ -2432,21 +2708,21 @@ class Spectrogram(TensorOperation):
2432
2708
  Create a spectrogram from an audio signal.
2433
2709
 
2434
2710
  Args:
2435
- n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: 400.
2436
- win_length (int, optional): Window size. Default: None, will use `n_fft` .
2437
- hop_length (int, optional): Length of hop between STFT windows. Default: None, will use `win_length // 2` .
2438
- pad (int, optional): Two sided padding of signal. Default: 0.
2711
+ n_fft (int, optional): Size of FFT, creates `n_fft // 2 + 1` bins. Default: ``400``.
2712
+ win_length (int, optional): Window size. Default: ``None``, will use `n_fft` .
2713
+ hop_length (int, optional): Length of hop between STFT windows. Default: ``None``, will use `win_length // 2` .
2714
+ pad (int, optional): Two sided padding of signal. Default: ``0``.
2439
2715
  window (WindowType, optional): Window function that is applied/multiplied to each frame/window,
2440
- can be WindowType.BARTLETT, WindowType.BLACKMAN, WindowType.HAMMING, WindowType.HANN
2441
- or WindowType.KAISER. Currently, Kaiser window is not supported on macOS. Default: WindowType.HANN.
2716
+ can be ``WindowType.BARTLETT``, ``WindowType.BLACKMAN``, ``WindowType.HAMMING``, ``WindowType.HANN``
2717
+ or ``WindowType.KAISER``. Currently, Kaiser window is not supported on macOS. Default: ``WindowType.HANN``.
2442
2718
  power (float, optional): Exponent for the magnitude spectrogram, must be non negative,
2443
- e.g., 1 for energy, 2 for power, etc. Default: 2.0.
2444
- normalized (bool, optional): Whether to normalize by magnitude after stft. Default: False.
2445
- center (bool, optional): Whether to pad waveform on both sides. Default: True.
2446
- pad_mode (BorderType, optional): Controls the padding method used when `center` is True,
2447
- can be BorderType.REFLECT, BorderType.CONSTANT, BorderType.EDGE or BorderType.SYMMETRIC.
2448
- Default: BorderType.REFLECT.
2449
- onesided (bool, optional): Controls whether to return half of results to avoid redundancy. Default: True.
2719
+ e.g., ``1`` for energy, ``2`` for power, etc. Default: ``2.0``.
2720
+ normalized (bool, optional): Whether to normalize by magnitude after stft. Default: ``False``.
2721
+ center (bool, optional): Whether to pad waveform on both sides. Default: ``True``.
2722
+ pad_mode (BorderType, optional): Controls the padding method used when `center` is ``True``,
2723
+ can be ``BorderType.REFLECT``, ``BorderType.CONSTANT``, ``BorderType.EDGE`` or ``BorderType.SYMMETRIC``.
2724
+ Default: ``BorderType.REFLECT``.
2725
+ onesided (bool, optional): Controls whether to return half of results to avoid redundancy. Default: ``True``.
2450
2726
 
2451
2727
  Raises:
2452
2728
  TypeError: If `n_fft` is not of type int.
@@ -2472,11 +2748,17 @@ class Spectrogram(TensorOperation):
2472
2748
 
2473
2749
  Examples:
2474
2750
  >>> import numpy as np
2751
+ >>> import mindspore.dataset as ds
2752
+ >>> import mindspore.dataset.audio as audio
2475
2753
  >>>
2476
2754
  >>> waveform = np.random.random([5, 10, 20])
2477
2755
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2478
2756
  >>> transforms = [audio.Spectrogram()]
2479
2757
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2758
+
2759
+ Tutorial Examples:
2760
+ - `Illustration of audio transforms
2761
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2480
2762
  """
2481
2763
 
2482
2764
  @check_spectrogram
@@ -2508,15 +2790,15 @@ class TimeMasking(AudioTensorOperation):
2508
2790
  The shape of the audio waveform to be processed needs to be <..., freq, time>.
2509
2791
 
2510
2792
  Args:
2511
- iid_masks (bool, optional): Whether to apply different masks to each example/channel. Default: False.
2512
- time_mask_param (int, optional): When `iid_masks` is True, length of the mask will be uniformly sampled
2513
- from [0, time_mask_param]; When `iid_masks` is False, directly use it as length of the mask.
2793
+ iid_masks (bool, optional): Whether to apply different masks to each example/channel. Default: ``False``.
2794
+ time_mask_param (int, optional): When `iid_masks` is ``True``, length of the mask will be uniformly sampled
2795
+ from [0, time_mask_param]; When `iid_masks` is ``False``, directly use it as length of the mask.
2514
2796
  The value should be in range of [0, time_length], where `time_length` is the length of audio waveform
2515
- in time domain. Default: 0.
2516
- mask_start (int, optional): Starting point to apply mask, only works when `iid_masks` is True. The value should
2517
- be in range of [0, time_length - time_mask_param], where `time_length` is the length of audio waveform
2518
- in time domain. Default: 0.
2519
- mask_value (float, optional): Value to assign to the masked columns. Default: 0.0.
2797
+ in time domain. Default: ``0``.
2798
+ mask_start (int, optional): Starting point to apply mask, only works when `iid_masks` is ``True``.
2799
+ The value should be in range of [0, time_length - time_mask_param], where `time_length` is
2800
+ the length of audio waveform in time domain. Default: ``0``.
2801
+ mask_value (float, optional): Value to assign to the masked columns. Default: ``0.0``.
2520
2802
 
2521
2803
  Raises:
2522
2804
  TypeError: If `iid_masks` is not of type bool.
@@ -2533,12 +2815,18 @@ class TimeMasking(AudioTensorOperation):
2533
2815
 
2534
2816
  Examples:
2535
2817
  >>> import numpy as np
2818
+ >>> import mindspore.dataset as ds
2819
+ >>> import mindspore.dataset.audio as audio
2536
2820
  >>>
2537
2821
  >>> waveform = np.random.random([4, 3, 2])
2538
2822
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2539
2823
  >>> transforms = [audio.TimeMasking(time_mask_param=1)]
2540
2824
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2541
2825
 
2826
+ Tutorial Examples:
2827
+ - `Illustration of audio transforms
2828
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2829
+
2542
2830
  .. image:: time_masking_original.png
2543
2831
 
2544
2832
  .. image:: time_masking.png
@@ -2566,9 +2854,9 @@ class TimeStretch(AudioTensorOperation):
2566
2854
 
2567
2855
  Args:
2568
2856
  hop_length (int, optional): Length of hop between STFT windows, i.e. the number of samples
2569
- between consecutive frames. Default: None, will use `n_freq - 1` .
2570
- n_freq (int, optional): Number of filter banks from STFT. Default: 201.
2571
- fixed_rate (float, optional): Rate to speed up or slow down by. Default: None, will keep
2857
+ between consecutive frames. Default: ``None``, will use `n_freq - 1` .
2858
+ n_freq (int, optional): Number of filter banks from STFT. Default: ``201``.
2859
+ fixed_rate (float, optional): Rate to speed up or slow down by. Default: ``None``, will keep
2572
2860
  the original rate.
2573
2861
 
2574
2862
  Raises:
@@ -2585,12 +2873,18 @@ class TimeStretch(AudioTensorOperation):
2585
2873
 
2586
2874
  Examples:
2587
2875
  >>> import numpy as np
2876
+ >>> import mindspore.dataset as ds
2877
+ >>> import mindspore.dataset.audio as audio
2588
2878
  >>>
2589
2879
  >>> waveform = np.random.random([44, 10, 2])
2590
2880
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2591
2881
  >>> transforms = [audio.TimeStretch()]
2592
2882
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2593
2883
 
2884
+ Tutorial Examples:
2885
+ - `Illustration of audio transforms
2886
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2887
+
2594
2888
  .. image:: time_stretch_rate1.5.png
2595
2889
 
2596
2890
  .. image:: time_stretch_original.png
@@ -2621,9 +2915,9 @@ class TrebleBiquad(AudioTensorOperation):
2621
2915
  Args:
2622
2916
  sample_rate (int): Sampling rate (in Hz), which can't be zero.
2623
2917
  gain (float): Desired gain at the boost (or attenuation) in dB.
2624
- central_freq (float, optional): Central frequency (in Hz). Default: 3000.
2918
+ central_freq (float, optional): Central frequency (in Hz). Default: ``3000``.
2625
2919
  Q (float, optional): `Quality factor <https://en.wikipedia.org/wiki/Q_factor>`_ ,
2626
- in range of (0, 1]. Default: 0.707.
2920
+ in range of (0, 1]. Default: ``0.707``.
2627
2921
 
2628
2922
  Raises:
2629
2923
  TypeError: If `sample_rate` is not of type int.
@@ -2639,11 +2933,17 @@ class TrebleBiquad(AudioTensorOperation):
2639
2933
 
2640
2934
  Examples:
2641
2935
  >>> import numpy as np
2936
+ >>> import mindspore.dataset as ds
2937
+ >>> import mindspore.dataset.audio as audio
2642
2938
  >>>
2643
2939
  >>> waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
2644
2940
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2645
2941
  >>> transforms = [audio.TrebleBiquad(44100, 200.0)]
2646
2942
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
2943
+
2944
+ Tutorial Examples:
2945
+ - `Illustration of audio transforms
2946
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2647
2947
  """
2648
2948
 
2649
2949
  @check_treble_biquad
@@ -2668,34 +2968,34 @@ class Vad(AudioTensorOperation):
2668
2968
 
2669
2969
  Args:
2670
2970
  sample_rate (int): Sampling rate of audio signal.
2671
- trigger_level (float, optional): The measurement level used to trigger activity detection. Default: 7.0.
2971
+ trigger_level (float, optional): The measurement level used to trigger activity detection. Default: ``7.0``.
2672
2972
  trigger_time (float, optional): The time constant (in seconds) used to help ignore short bursts of
2673
- sounds. Default: 0.25.
2973
+ sounds. Default: ``0.25``.
2674
2974
  search_time (float, optional): The amount of audio (in seconds) to search for quieter/shorter bursts of audio
2675
- to include prior to the detected trigger point. Default: 1.0.
2975
+ to include prior to the detected trigger point. Default: ``1.0``.
2676
2976
  allowed_gap (float, optional): The allowed gap (in seconds) between quieter/shorter bursts of audio to include
2677
- prior to the detected trigger point. Default: 0.25.
2977
+ prior to the detected trigger point. Default: ``0.25``.
2678
2978
  pre_trigger_time (float, optional): The amount of audio (in seconds) to preserve before the trigger point and
2679
- any found quieter/shorter bursts. Default: 0.0.
2680
- boot_time (float, optional): The time for the initial noise estimate. Default: 0.35.
2979
+ any found quieter/shorter bursts. Default: ``0.0``.
2980
+ boot_time (float, optional): The time for the initial noise estimate. Default: ``0.35``.
2681
2981
  noise_up_time (float, optional): Time constant used by the adaptive noise estimator for when the noise level is
2682
- increasing. Default: 0.1.
2982
+ increasing. Default: ``0.1``.
2683
2983
  noise_down_time (float, optional): Time constant used by the adaptive noise estimator for when the noise level
2684
- is decreasing. Default: 0.01.
2984
+ is decreasing. Default: ``0.01``.
2685
2985
  noise_reduction_amount (float, optional): Amount of noise reduction to use in the detection algorithm.
2686
2986
  Default: 1.35.
2687
- measure_freq (float, optional): Frequency of the algorithm's processing/measurements. Default: 20.0.
2688
- measure_duration (float, optional): The duration of measurement. Default: None, will use twice the measurement
2689
- period.
2690
- measure_smooth_time (float, optional): Time constant used to smooth spectral measurements. Default: 0.4.
2987
+ measure_freq (float, optional): Frequency of the algorithm's processing/measurements. Default: ``20.0``.
2988
+ measure_duration (float, optional): The duration of measurement. Default: ``None``,
2989
+ will use twice the measurement period.
2990
+ measure_smooth_time (float, optional): Time constant used to smooth spectral measurements. Default: ``0.4``.
2691
2991
  hp_filter_freq (float, optional): The 'Brick-wall' frequency of high-pass filter applied at the input to the
2692
- detector algorithm. Default: 50.0.
2992
+ detector algorithm. Default: ``50.0``.
2693
2993
  lp_filter_freq (float, optional): The 'Brick-wall' frequency of low-pass filter applied at the input to the
2694
- detector algorithm. Default: 6000.0.
2994
+ detector algorithm. Default: ``6000.0``.
2695
2995
  hp_lifter_freq (float, optional): The 'Brick-wall' frequency of high-pass lifter used in the
2696
- detector algorithm. Default: 150.0.
2996
+ detector algorithm. Default: ``150.0``.
2697
2997
  lp_lifter_freq (float, optional): The 'Brick-wall' frequency of low-pass lifter used in the
2698
- detector algorithm. Default: 2000.0.
2998
+ detector algorithm. Default: ``2000.0``.
2699
2999
 
2700
3000
  Raises:
2701
3001
  TypeError: If `sample_rate` is not of type int.
@@ -2739,11 +3039,17 @@ class Vad(AudioTensorOperation):
2739
3039
 
2740
3040
  Examples:
2741
3041
  >>> import numpy as np
3042
+ >>> import mindspore.dataset as ds
3043
+ >>> import mindspore.dataset.audio as audio
2742
3044
  >>>
2743
3045
  >>> waveform = np.random.random([2, 1000])
2744
3046
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2745
3047
  >>> transforms = [audio.Vad(sample_rate=600)]
2746
3048
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
3049
+
3050
+ Tutorial Examples:
3051
+ - `Illustration of audio transforms
3052
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2747
3053
  """
2748
3054
 
2749
3055
  @check_vad
@@ -2789,17 +3095,17 @@ class Vol(AudioTensorOperation):
2789
3095
 
2790
3096
  Args:
2791
3097
  gain (float): Gain at the boost (or attenuation).
2792
- If `gain_type` is GainType.AMPLITUDE, it is a non negative amplitude ratio.
2793
- If `gain_type` is GainType.POWER, it is a power (voltage squared).
2794
- If `gain_type` is GainType.DB, it is in decibels.
2795
- gain_type (GainType, optional): Type of gain, can be GainType.AMPLITUDE, GainType.POWER
2796
- or GainType.DB. Default: GainType.AMPLITUDE.
3098
+ If `gain_type` is ``GainType.AMPLITUDE``, it is a non negative amplitude ratio.
3099
+ If `gain_type` is ``GainType.POWER``, it is a power (voltage squared).
3100
+ If `gain_type` is ``GainType.DB``, it is in decibels.
3101
+ gain_type (GainType, optional): Type of gain, can be ``GainType.AMPLITUDE``, ``GainType.POWER``
3102
+ or ``GainType.DB``. Default: ``GainType.AMPLITUDE``.
2797
3103
 
2798
3104
  Raises:
2799
3105
  TypeError: If `gain` is not of type float.
2800
3106
  TypeError: If `gain_type` is not of type :class:`mindspore.dataset.audio.GainType` .
2801
- ValueError: If `gain` is a negative number when `gain_type` is GainType.AMPLITUDE.
2802
- ValueError: If `gain` is not a positive number when `gain_type` is GainType.POWER.
3107
+ ValueError: If `gain` is a negative number when `gain_type` is ``GainType.AMPLITUDE``.
3108
+ ValueError: If `gain` is not a positive number when `gain_type` is ``GainType.POWER``.
2803
3109
  RuntimeError: If input tensor is not in shape of <..., time>.
2804
3110
 
2805
3111
  Supported Platforms:
@@ -2807,12 +3113,18 @@ class Vol(AudioTensorOperation):
2807
3113
 
2808
3114
  Examples:
2809
3115
  >>> import numpy as np
3116
+ >>> import mindspore.dataset as ds
3117
+ >>> import mindspore.dataset.audio as audio
2810
3118
  >>> from mindspore.dataset.audio import GainType
2811
3119
  >>>
2812
3120
  >>> waveform = np.random.random([20, 30])
2813
3121
  >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
2814
3122
  >>> transforms = [audio.Vol(gain=10, gain_type=GainType.DB)]
2815
3123
  >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
3124
+
3125
+ Tutorial Examples:
3126
+ - `Illustration of audio transforms
3127
+ <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/audio_gallery.html>`_
2816
3128
  """
2817
3129
 
2818
3130
  @check_vol