mindspore 2.0.0rc1__cp38-cp38-manylinux1_x86_64.whl → 2.2.0__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (884) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +2 -2
  3. mindspore/__init__.py +5 -2
  4. mindspore/_akg/akg/build_module.py +5 -6
  5. mindspore/_akg/akg/composite/build_module.py +49 -16
  6. mindspore/_akg/akg/composite/split_stitch.py +10 -11
  7. mindspore/_akg/akg/config/repository.json +195 -0
  8. mindspore/_akg/akg/global_configs.py +5 -1
  9. mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
  10. mindspore/_akg/akg/tvm/api.py +4 -3
  11. mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
  12. mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
  13. mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
  14. mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
  15. mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
  16. mindspore/_akg/akg/tvm/build_module.py +16 -1
  17. mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
  18. mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
  19. mindspore/_akg/akg/tvm/ir_builder.py +1 -1
  20. mindspore/_akg/akg/tvm/module.py +1 -2
  21. mindspore/_akg/akg/tvm/stmt.py +2 -2
  22. mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
  23. mindspore/_akg/akg/utils/kernel_exec.py +58 -260
  24. mindspore/_akg/akg/utils/op_dsl.py +17 -1
  25. mindspore/_akg/akg/utils/result_analysis.py +4 -24
  26. mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
  27. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  28. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  29. mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
  30. mindspore/_check_jit_forbidden_api.py +5 -1
  31. mindspore/_checkparam.py +79 -62
  32. mindspore/_extends/graph_kernel/__init__.py +0 -1
  33. mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
  34. mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
  35. mindspore/_extends/graph_kernel/splitter.py +1 -9
  36. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
  37. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
  38. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
  39. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
  40. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
  41. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
  42. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
  43. mindspore/_extends/parse/__init__.py +19 -17
  44. mindspore/_extends/parse/namespace.py +7 -36
  45. mindspore/_extends/parse/parser.py +375 -189
  46. mindspore/_extends/parse/resources.py +36 -41
  47. mindspore/_extends/parse/standard_method.py +350 -245
  48. mindspore/_extends/parse/trope.py +2 -12
  49. mindspore/_extends/remote/kernel_build_server.py +24 -7
  50. mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
  51. mindspore/_install_custom.py +43 -0
  52. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  53. mindspore/amp.py +85 -19
  54. mindspore/bin/cache_admin +0 -0
  55. mindspore/bin/cache_server +0 -0
  56. mindspore/boost/base.py +2 -2
  57. mindspore/boost/boost.py +27 -32
  58. mindspore/boost/boost_cell_wrapper.py +37 -13
  59. mindspore/boost/grad_accumulation.py +1 -1
  60. mindspore/boost/grad_freeze.py +34 -6
  61. mindspore/boost/group_loss_scale_manager.py +15 -14
  62. mindspore/boost/less_batch_normalization.py +28 -3
  63. mindspore/common/__init__.py +15 -11
  64. mindspore/common/_auto_dynamic.py +68 -0
  65. mindspore/common/_jit_fallback_utils.py +111 -0
  66. mindspore/common/_register_for_adapter.py +17 -5
  67. mindspore/common/_register_for_tensor.py +2 -2
  68. mindspore/common/_stub_tensor.py +18 -15
  69. mindspore/common/_utils.py +31 -7
  70. mindspore/common/api.py +269 -101
  71. mindspore/common/auto_dynamic_shape.py +498 -0
  72. mindspore/common/dtype.py +61 -21
  73. mindspore/common/dump.py +9 -7
  74. mindspore/common/initializer.py +106 -76
  75. mindspore/common/jit_config.py +35 -14
  76. mindspore/common/lazy_inline.py +187 -0
  77. mindspore/common/mindir_util.py +101 -0
  78. mindspore/common/mutable.py +10 -13
  79. mindspore/common/parameter.py +246 -55
  80. mindspore/common/seed.py +13 -7
  81. mindspore/common/sparse_tensor.py +29 -33
  82. mindspore/common/tensor.py +907 -251
  83. mindspore/communication/__init__.py +7 -4
  84. mindspore/communication/_comm_helper.py +84 -4
  85. mindspore/communication/management.py +160 -88
  86. mindspore/config/op_info.config +99 -75
  87. mindspore/config/super_bar_config.json +36 -4
  88. mindspore/context.py +526 -219
  89. mindspore/dataset/__init__.py +9 -46
  90. mindspore/dataset/audio/__init__.py +4 -19
  91. mindspore/dataset/audio/transforms.py +545 -233
  92. mindspore/dataset/audio/utils.py +21 -18
  93. mindspore/dataset/callback/ds_callback.py +42 -13
  94. mindspore/dataset/core/config.py +158 -100
  95. mindspore/dataset/core/validator_helpers.py +1 -63
  96. mindspore/dataset/debug/debug_hook.py +45 -13
  97. mindspore/dataset/debug/pre_defined_hook.py +5 -5
  98. mindspore/dataset/engine/__init__.py +0 -5
  99. mindspore/dataset/engine/cache_client.py +38 -15
  100. mindspore/dataset/engine/datasets.py +615 -278
  101. mindspore/dataset/engine/datasets_audio.py +154 -283
  102. mindspore/dataset/engine/datasets_standard_format.py +104 -116
  103. mindspore/dataset/engine/datasets_text.py +443 -326
  104. mindspore/dataset/engine/datasets_user_defined.py +251 -164
  105. mindspore/dataset/engine/datasets_vision.py +839 -1443
  106. mindspore/dataset/engine/iterators.py +11 -4
  107. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
  108. mindspore/dataset/engine/obs/util.py +3 -0
  109. mindspore/dataset/engine/offload.py +6 -6
  110. mindspore/dataset/engine/queue.py +15 -14
  111. mindspore/dataset/engine/samplers.py +39 -23
  112. mindspore/dataset/engine/serializer_deserializer.py +22 -6
  113. mindspore/dataset/engine/validators.py +21 -331
  114. mindspore/dataset/text/__init__.py +5 -33
  115. mindspore/dataset/text/transforms.py +334 -165
  116. mindspore/dataset/text/utils.py +215 -145
  117. mindspore/dataset/transforms/__init__.py +1 -1
  118. mindspore/dataset/transforms/c_transforms.py +3 -2
  119. mindspore/dataset/transforms/py_transforms_util.py +40 -12
  120. mindspore/dataset/transforms/transforms.py +174 -71
  121. mindspore/dataset/utils/browse_dataset.py +25 -17
  122. mindspore/dataset/utils/line_reader.py +24 -21
  123. mindspore/dataset/vision/__init__.py +5 -26
  124. mindspore/dataset/vision/c_transforms.py +177 -165
  125. mindspore/dataset/vision/py_transforms.py +114 -119
  126. mindspore/dataset/vision/py_transforms_util.py +54 -51
  127. mindspore/dataset/vision/transforms.py +1127 -381
  128. mindspore/dataset/vision/utils.py +54 -38
  129. mindspore/dataset/vision/validators.py +12 -2
  130. mindspore/experimental/map_parameter.py +38 -4
  131. mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
  132. mindspore/experimental/optim/adam.py +192 -0
  133. mindspore/experimental/optim/adamw.py +181 -0
  134. mindspore/experimental/optim/lr_scheduler.py +1427 -0
  135. mindspore/experimental/optim/optimizer.py +252 -0
  136. mindspore/experimental/optim/sgd.py +147 -0
  137. mindspore/gen_ops.py +273 -0
  138. mindspore/include/OWNERS +1 -2
  139. mindspore/include/api/context.h +21 -1
  140. mindspore/include/api/data_type.h +2 -1
  141. mindspore/include/api/graph.h +0 -15
  142. mindspore/include/api/kernel.h +2 -0
  143. mindspore/include/api/kernel_api.h +37 -12
  144. mindspore/include/api/model.h +29 -42
  145. mindspore/include/api/model_group.h +14 -3
  146. mindspore/include/api/model_parallel_runner.h +18 -2
  147. mindspore/include/api/serialization.h +26 -0
  148. mindspore/include/api/status.h +1 -0
  149. mindspore/include/api/types.h +38 -4
  150. mindspore/include/c_api/ms/abstract.h +67 -0
  151. mindspore/include/c_api/ms/attribute.h +197 -0
  152. mindspore/include/c_api/ms/base/handle_types.h +43 -0
  153. mindspore/include/c_api/ms/base/macros.h +32 -0
  154. mindspore/include/c_api/ms/base/status.h +33 -0
  155. mindspore/include/c_api/ms/base/types.h +282 -0
  156. mindspore/include/c_api/ms/context.h +102 -0
  157. mindspore/include/c_api/ms/graph.h +160 -0
  158. mindspore/include/c_api/ms/node.h +606 -0
  159. mindspore/include/c_api/ms/tensor.h +161 -0
  160. mindspore/include/c_api/ms/value.h +84 -0
  161. mindspore/include/c_api/status_c.h +3 -0
  162. mindspore/include/dataset/constants.h +6 -12
  163. mindspore/include/dataset/execute.h +23 -13
  164. mindspore/include/dataset/text.h +26 -26
  165. mindspore/include/dataset/transforms.h +25 -31
  166. mindspore/include/dataset/vision.h +60 -60
  167. mindspore/include/dataset/vision_ascend.h +5 -6
  168. mindspore/include/dataset/vision_lite.h +17 -17
  169. mindspore/include/mindapi/base/format.h +0 -1
  170. mindspore/include/mindapi/base/type_id.h +2 -1
  171. mindspore/include/mindapi/base/types.h +5 -1
  172. mindspore/lib/libdnnl.so.2 +0 -0
  173. mindspore/lib/libjemalloc.so.2 +0 -0
  174. mindspore/lib/libmindspore.so +0 -0
  175. mindspore/lib/libmindspore_backend.so +0 -0
  176. mindspore/lib/libmindspore_common.so +0 -0
  177. mindspore/lib/libmindspore_core.so +0 -0
  178. mindspore/lib/libmindspore_glog.so.0 +0 -0
  179. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  180. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  181. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  182. mindspore/lib/libmindspore_shared_lib.so +0 -0
  183. mindspore/lib/libmpi_adapter.so +0 -0
  184. mindspore/lib/libnnacl.so +0 -0
  185. mindspore/lib/libopencv_core.so.4.5 +0 -0
  186. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  187. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  188. mindspore/lib/libps_cache.so +0 -0
  189. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  190. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  191. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
  192. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  193. mindspore/lib/plugin/ascend/libakg.so +0 -0
  194. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  195. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  196. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  197. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  198. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  199. mindspore/lib/plugin/cpu/libakg.so +0 -0
  200. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  201. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  202. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  203. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  204. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  205. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  206. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  207. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  208. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  209. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  210. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  211. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  212. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  213. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  214. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  215. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  216. mindspore/log.py +9 -6
  217. mindspore/mindrecord/filereader.py +33 -4
  218. mindspore/mindrecord/filewriter.py +70 -35
  219. mindspore/mindrecord/mindpage.py +40 -34
  220. mindspore/mindrecord/shardreader.py +1 -1
  221. mindspore/mindrecord/shardsegment.py +1 -1
  222. mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
  223. mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
  224. mindspore/mindrecord/tools/csv_to_mr.py +29 -13
  225. mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
  226. mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
  227. mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
  228. mindspore/nn/cell.py +463 -169
  229. mindspore/nn/dynamic_lr.py +47 -43
  230. mindspore/nn/layer/activation.py +225 -82
  231. mindspore/nn/layer/basic.py +121 -79
  232. mindspore/nn/layer/channel_shuffle.py +21 -21
  233. mindspore/nn/layer/combined.py +33 -26
  234. mindspore/nn/layer/container.py +277 -22
  235. mindspore/nn/layer/conv.py +441 -304
  236. mindspore/nn/layer/dense.py +19 -13
  237. mindspore/nn/layer/embedding.py +62 -49
  238. mindspore/nn/layer/flash_attention.py +264 -0
  239. mindspore/nn/layer/image.py +50 -39
  240. mindspore/nn/layer/math.py +62 -51
  241. mindspore/nn/layer/normalization.py +219 -167
  242. mindspore/nn/layer/padding.py +58 -70
  243. mindspore/nn/layer/pooling.py +334 -287
  244. mindspore/nn/layer/rnn_cells.py +53 -38
  245. mindspore/nn/layer/rnns.py +59 -56
  246. mindspore/nn/layer/thor_layer.py +52 -44
  247. mindspore/nn/layer/timedistributed.py +6 -4
  248. mindspore/nn/layer/transformer.py +284 -164
  249. mindspore/nn/learning_rate_schedule.py +34 -25
  250. mindspore/nn/loss/__init__.py +3 -2
  251. mindspore/nn/loss/loss.py +554 -311
  252. mindspore/nn/optim/ada_grad.py +12 -9
  253. mindspore/nn/optim/adadelta.py +14 -11
  254. mindspore/nn/optim/adafactor.py +19 -16
  255. mindspore/nn/optim/adam.py +62 -47
  256. mindspore/nn/optim/adamax.py +13 -10
  257. mindspore/nn/optim/adasum.py +12 -8
  258. mindspore/nn/optim/asgd.py +10 -9
  259. mindspore/nn/optim/ftrl.py +20 -17
  260. mindspore/nn/optim/lamb.py +16 -12
  261. mindspore/nn/optim/lars.py +8 -6
  262. mindspore/nn/optim/lazyadam.py +25 -20
  263. mindspore/nn/optim/momentum.py +10 -7
  264. mindspore/nn/optim/optimizer.py +61 -9
  265. mindspore/nn/optim/proximal_ada_grad.py +14 -13
  266. mindspore/nn/optim/rmsprop.py +17 -13
  267. mindspore/nn/optim/rprop.py +30 -17
  268. mindspore/nn/optim/sgd.py +40 -23
  269. mindspore/nn/optim/thor.py +24 -26
  270. mindspore/nn/probability/bijector/bijector.py +11 -11
  271. mindspore/nn/probability/bijector/exp.py +1 -1
  272. mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
  273. mindspore/nn/probability/bijector/invert.py +1 -1
  274. mindspore/nn/probability/bijector/power_transform.py +29 -29
  275. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  276. mindspore/nn/probability/bijector/softplus.py +5 -5
  277. mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
  278. mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
  279. mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
  280. mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
  281. mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
  282. mindspore/nn/probability/distribution/_utils/utils.py +1 -1
  283. mindspore/nn/probability/distribution/bernoulli.py +9 -9
  284. mindspore/nn/probability/distribution/beta.py +8 -8
  285. mindspore/nn/probability/distribution/categorical.py +23 -15
  286. mindspore/nn/probability/distribution/cauchy.py +5 -6
  287. mindspore/nn/probability/distribution/distribution.py +3 -3
  288. mindspore/nn/probability/distribution/exponential.py +4 -4
  289. mindspore/nn/probability/distribution/gamma.py +10 -10
  290. mindspore/nn/probability/distribution/geometric.py +8 -8
  291. mindspore/nn/probability/distribution/gumbel.py +8 -9
  292. mindspore/nn/probability/distribution/half_normal.py +5 -5
  293. mindspore/nn/probability/distribution/laplace.py +5 -5
  294. mindspore/nn/probability/distribution/log_normal.py +12 -11
  295. mindspore/nn/probability/distribution/logistic.py +8 -8
  296. mindspore/nn/probability/distribution/normal.py +6 -5
  297. mindspore/nn/probability/distribution/poisson.py +10 -11
  298. mindspore/nn/probability/distribution/student_t.py +8 -9
  299. mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
  300. mindspore/nn/probability/distribution/uniform.py +11 -11
  301. mindspore/nn/reinforcement/tensor_array.py +2 -2
  302. mindspore/nn/sparse/sparse.py +9 -9
  303. mindspore/nn/wrap/cell_wrapper.py +188 -63
  304. mindspore/nn/wrap/grad_reducer.py +21 -12
  305. mindspore/nn/wrap/loss_scale.py +136 -49
  306. mindspore/numpy/__init__.py +4 -4
  307. mindspore/numpy/array_creations.py +55 -56
  308. mindspore/numpy/array_ops.py +134 -35
  309. mindspore/numpy/logic_ops.py +66 -20
  310. mindspore/numpy/math_ops.py +142 -139
  311. mindspore/numpy/utils_const.py +2 -2
  312. mindspore/offline_debug/convert_async.py +2 -2
  313. mindspore/ops/_grad_experimental/__init__.py +7 -5
  314. mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
  315. mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
  316. mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
  317. mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
  318. mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
  319. mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
  320. mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
  321. mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
  322. mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
  323. mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
  324. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
  325. mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
  326. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
  327. mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
  328. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
  329. mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
  330. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
  331. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
  332. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
  333. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
  334. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  335. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
  336. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
  337. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
  338. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  339. mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
  340. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
  341. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
  342. mindspore/ops/_op_impl/aicpu/cast.py +52 -0
  343. mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
  344. mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
  345. mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
  346. mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
  347. mindspore/ops/_op_impl/aicpu/eps.py +32 -0
  348. mindspore/ops/_op_impl/aicpu/eye.py +4 -4
  349. mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
  350. mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
  351. mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
  352. mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
  353. mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
  354. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
  355. mindspore/ops/_op_impl/aicpu/lu.py +39 -0
  356. mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
  357. mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
  358. mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
  359. mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
  360. mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
  361. mindspore/ops/_op_impl/aicpu/median.py +1 -0
  362. mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
  363. mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
  364. mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
  365. mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
  366. mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
  367. mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
  368. mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
  369. mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
  370. mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
  371. mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
  372. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
  373. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
  374. mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
  375. mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
  376. mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
  377. mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
  378. mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
  379. mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
  380. mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
  381. mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
  382. mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
  383. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
  384. mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
  385. mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
  386. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
  387. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
  388. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
  389. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
  390. mindspore/ops/_op_impl/tbe/__init__.py +6 -4
  391. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  392. mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
  393. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
  394. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
  395. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
  396. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
  397. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
  398. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  399. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
  400. mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
  401. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
  402. mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
  403. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
  404. mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
  405. mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
  406. mindspore/ops/_op_impl/tbe/im2col.py +4 -4
  407. mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
  408. mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
  409. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
  410. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
  411. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  412. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
  413. mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
  414. mindspore/ops/_primitive_cache.py +1 -1
  415. mindspore/ops/_tracefunc.py +241 -0
  416. mindspore/ops/_utils/utils.py +10 -2
  417. mindspore/ops/_vmap/vmap_array_ops.py +5 -3
  418. mindspore/ops/_vmap/vmap_base.py +5 -4
  419. mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
  420. mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
  421. mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
  422. mindspore/ops/_vmap/vmap_math_ops.py +5 -2
  423. mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
  424. mindspore/ops/arg_dtype_cast.py +54 -0
  425. mindspore/ops/composite/__init__.py +7 -5
  426. mindspore/ops/composite/base.py +78 -34
  427. mindspore/ops/composite/math_ops.py +5 -695
  428. mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
  429. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
  430. mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
  431. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  432. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  433. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
  434. mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
  435. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
  436. mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
  437. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
  438. mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
  439. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
  440. mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
  441. mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
  442. mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
  443. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
  444. mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
  445. mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
  446. mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
  447. mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
  448. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  449. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
  450. mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
  451. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
  452. mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
  453. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
  454. mindspore/ops/deprecated.py +304 -0
  455. mindspore/ops/function/__init__.py +41 -4
  456. mindspore/ops/function/array_func.py +1108 -467
  457. mindspore/ops/function/clip_func.py +94 -27
  458. mindspore/ops/function/debug_func.py +3 -1
  459. mindspore/ops/function/grad/grad_func.py +82 -73
  460. mindspore/ops/function/image_func.py +28 -12
  461. mindspore/ops/function/linalg_func.py +135 -39
  462. mindspore/ops/function/math_func.py +3779 -894
  463. mindspore/ops/function/nn_func.py +1584 -657
  464. mindspore/ops/function/parameter_func.py +13 -3
  465. mindspore/ops/function/random_func.py +247 -153
  466. mindspore/ops/function/sparse_func.py +14 -11
  467. mindspore/ops/function/sparse_unary_func.py +173 -47
  468. mindspore/ops/function/spectral_func.py +8 -4
  469. mindspore/ops/function/vmap_func.py +8 -7
  470. mindspore/ops/functional.py +47 -16
  471. mindspore/ops/op_info_register.py +346 -86
  472. mindspore/ops/operations/__init__.py +38 -22
  473. mindspore/ops/operations/_grad_ops.py +145 -149
  474. mindspore/ops/operations/_inner_ops.py +298 -56
  475. mindspore/ops/operations/_ms_kernel.py +3 -3
  476. mindspore/ops/operations/_quant_ops.py +24 -28
  477. mindspore/ops/operations/_rl_inner_ops.py +9 -7
  478. mindspore/ops/operations/_scalar_ops.py +115 -0
  479. mindspore/ops/operations/_sequence_ops.py +148 -10
  480. mindspore/ops/operations/_tensor_array.py +1 -1
  481. mindspore/ops/operations/_thor_ops.py +2 -2
  482. mindspore/ops/operations/array_ops.py +1239 -561
  483. mindspore/ops/operations/comm_ops.py +166 -90
  484. mindspore/ops/operations/control_ops.py +3 -3
  485. mindspore/ops/operations/custom_ops.py +124 -102
  486. mindspore/ops/operations/debug_ops.py +24 -11
  487. mindspore/ops/operations/image_ops.py +86 -71
  488. mindspore/ops/operations/inner_ops.py +18 -13
  489. mindspore/ops/operations/linalg_ops.py +30 -11
  490. mindspore/ops/operations/math_ops.py +1730 -435
  491. mindspore/ops/operations/nn_ops.py +1953 -943
  492. mindspore/ops/operations/other_ops.py +65 -43
  493. mindspore/ops/operations/random_ops.py +258 -98
  494. mindspore/ops/operations/rl_ops.py +4 -36
  495. mindspore/ops/operations/sparse_ops.py +38 -33
  496. mindspore/ops/operations/spectral_ops.py +8 -4
  497. mindspore/ops/primitive.py +66 -44
  498. mindspore/ops/signature.py +5 -5
  499. mindspore/parallel/_auto_parallel_context.py +80 -19
  500. mindspore/parallel/_cost_model_context.py +42 -0
  501. mindspore/parallel/_offload_context.py +162 -72
  502. mindspore/parallel/_parallel_serialization.py +2 -2
  503. mindspore/parallel/_ps_context.py +16 -4
  504. mindspore/parallel/_recovery_context.py +2 -1
  505. mindspore/parallel/_tensor.py +15 -13
  506. mindspore/parallel/_transformer/layers.py +8 -6
  507. mindspore/parallel/_transformer/loss.py +1 -0
  508. mindspore/parallel/_transformer/moe.py +7 -7
  509. mindspore/parallel/_transformer/op_parallel_config.py +12 -1
  510. mindspore/parallel/_transformer/transformer.py +34 -14
  511. mindspore/parallel/_utils.py +36 -14
  512. mindspore/parallel/algo_parameter_config.py +114 -20
  513. mindspore/parallel/checkpoint_transform.py +16 -18
  514. mindspore/parallel/shard.py +16 -13
  515. mindspore/profiler/__init__.py +1 -1
  516. mindspore/profiler/common/struct_type.py +3 -3
  517. mindspore/profiler/common/util.py +3 -2
  518. mindspore/profiler/envprofiling.py +11 -4
  519. mindspore/profiler/parser/aicpu_data_parser.py +5 -3
  520. mindspore/profiler/parser/ascend_flops_generator.py +94 -0
  521. mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
  522. mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
  523. mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
  524. mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
  525. mindspore/profiler/parser/ascend_op_generator.py +276 -0
  526. mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
  527. mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
  528. mindspore/profiler/parser/base_timeline_generator.py +11 -7
  529. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
  530. mindspore/profiler/parser/flops_parser.py +15 -11
  531. mindspore/profiler/parser/framework_parser.py +92 -73
  532. mindspore/profiler/parser/hccl_parser.py +16 -12
  533. mindspore/profiler/parser/integrator.py +22 -11
  534. mindspore/profiler/parser/memory_usage_parser.py +36 -11
  535. mindspore/profiler/parser/minddata_analyzer.py +12 -14
  536. mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
  537. mindspore/profiler/parser/msadvisor_parser.py +8 -4
  538. mindspore/profiler/parser/op_intermediate_parser.py +5 -2
  539. mindspore/profiler/parser/optime_parser.py +1 -1
  540. mindspore/profiler/parser/profiler_info.py +4 -5
  541. mindspore/profiler/parser/step_trace_parser.py +11 -14
  542. mindspore/profiler/profiling.py +678 -377
  543. mindspore/rewrite/api/node.py +211 -54
  544. mindspore/rewrite/api/node_type.py +5 -0
  545. mindspore/rewrite/api/pattern_engine.py +22 -23
  546. mindspore/rewrite/api/scoped_value.py +20 -17
  547. mindspore/rewrite/api/symbol_tree.py +252 -106
  548. mindspore/rewrite/api/tree_node_helper.py +3 -0
  549. mindspore/rewrite/ast_helpers/__init__.py +2 -1
  550. mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
  551. mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
  552. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
  553. mindspore/rewrite/common/rewrite_elog.py +5 -1
  554. mindspore/rewrite/namer.py +51 -51
  555. mindspore/rewrite/namespace.py +14 -5
  556. mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
  557. mindspore/rewrite/node/call_function.py +79 -0
  558. mindspore/rewrite/node/cell_container.py +135 -0
  559. mindspore/rewrite/node/control_flow.py +88 -0
  560. mindspore/rewrite/{node.py → node/node.py} +313 -247
  561. mindspore/rewrite/node/node_manager.py +254 -0
  562. mindspore/rewrite/node/node_topological_manager.py +243 -0
  563. mindspore/rewrite/parsers/arguments_parser.py +22 -21
  564. mindspore/rewrite/parsers/assign_parser.py +225 -239
  565. mindspore/rewrite/parsers/attribute_parser.py +9 -7
  566. mindspore/rewrite/parsers/class_def_parser.py +179 -218
  567. mindspore/rewrite/parsers/constant_parser.py +9 -6
  568. mindspore/rewrite/parsers/container_parser.py +9 -7
  569. mindspore/rewrite/parsers/for_parser.py +36 -15
  570. mindspore/rewrite/parsers/function_def_parser.py +23 -20
  571. mindspore/rewrite/parsers/if_parser.py +28 -24
  572. mindspore/rewrite/parsers/module_parser.py +202 -25
  573. mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
  574. mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
  575. mindspore/rewrite/parsers/return_parser.py +6 -6
  576. mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
  577. mindspore/rewrite/sparsify/sparsify.py +4 -1
  578. mindspore/rewrite/sparsify/utils.py +11 -5
  579. mindspore/rewrite/symbol_tree.py +577 -732
  580. mindspore/rewrite/symbol_tree_builder.py +9 -175
  581. mindspore/rewrite/symbol_tree_dumper.py +2 -2
  582. mindspore/run_check/_check_version.py +46 -39
  583. mindspore/run_check/run_check.py +3 -2
  584. mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
  585. mindspore/safeguard/rewrite_obfuscation.py +517 -0
  586. mindspore/scipy/__init__.py +1 -1
  587. mindspore/scipy/linalg.py +67 -61
  588. mindspore/scipy/ops.py +5 -41
  589. mindspore/scipy/ops_grad.py +3 -2
  590. mindspore/scipy/ops_wrapper.py +5 -5
  591. mindspore/scipy/optimize/line_search.py +8 -8
  592. mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
  593. mindspore/scipy/optimize/minimize.py +16 -12
  594. mindspore/scipy/utils.py +1 -52
  595. mindspore/scipy/utils_const.py +4 -4
  596. mindspore/train/__init__.py +4 -4
  597. mindspore/train/_utils.py +13 -5
  598. mindspore/train/amp.py +410 -148
  599. mindspore/train/anf_ir_pb2.py +16 -4
  600. mindspore/train/callback/_backup_and_restore.py +8 -11
  601. mindspore/train/callback/_callback.py +80 -3
  602. mindspore/train/callback/_checkpoint.py +82 -51
  603. mindspore/train/callback/_early_stop.py +12 -15
  604. mindspore/train/callback/_history.py +1 -1
  605. mindspore/train/callback/_lambda_callback.py +13 -13
  606. mindspore/train/callback/_landscape.py +21 -17
  607. mindspore/train/callback/_loss_monitor.py +9 -10
  608. mindspore/train/callback/_on_request_exit.py +16 -33
  609. mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
  610. mindspore/train/callback/_summary_collector.py +44 -30
  611. mindspore/train/callback/_time_monitor.py +62 -12
  612. mindspore/train/data_sink.py +10 -16
  613. mindspore/train/dataset_helper.py +154 -86
  614. mindspore/train/loss_scale_manager.py +14 -9
  615. mindspore/train/metrics/__init__.py +10 -2
  616. mindspore/train/metrics/accuracy.py +1 -1
  617. mindspore/train/metrics/auc.py +1 -1
  618. mindspore/train/metrics/bleu_score.py +2 -2
  619. mindspore/train/metrics/confusion_matrix.py +14 -14
  620. mindspore/train/metrics/cosine_similarity.py +3 -3
  621. mindspore/train/metrics/dice.py +1 -1
  622. mindspore/train/metrics/fbeta.py +1 -1
  623. mindspore/train/metrics/hausdorff_distance.py +8 -6
  624. mindspore/train/metrics/mean_surface_distance.py +5 -4
  625. mindspore/train/metrics/metric.py +49 -17
  626. mindspore/train/metrics/occlusion_sensitivity.py +4 -4
  627. mindspore/train/metrics/perplexity.py +1 -1
  628. mindspore/train/metrics/precision.py +2 -2
  629. mindspore/train/metrics/recall.py +2 -3
  630. mindspore/train/metrics/roc.py +7 -7
  631. mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
  632. mindspore/train/metrics/topk.py +7 -4
  633. mindspore/train/mind_ir_pb2.py +193 -48
  634. mindspore/train/model.py +377 -133
  635. mindspore/train/serialization.py +697 -245
  636. mindspore/train/summary/_summary_adapter.py +5 -2
  637. mindspore/train/summary/_writer_pool.py +4 -3
  638. mindspore/train/summary/summary_record.py +25 -23
  639. mindspore/train/train_thor/convert_utils.py +39 -23
  640. mindspore/train/train_thor/dataset_helper.py +4 -3
  641. mindspore/train/train_thor/model_thor.py +8 -8
  642. mindspore/version.py +1 -1
  643. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
  644. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +647 -818
  645. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
  646. mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
  647. mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
  648. mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
  649. mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
  650. mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
  651. mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
  652. mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
  653. mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
  654. mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
  655. mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
  656. mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
  657. mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
  658. mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
  659. mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
  660. mindspore/_akg/akg/tvm/rpc/base.py +0 -182
  661. mindspore/_akg/akg/tvm/rpc/client.py +0 -436
  662. mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
  663. mindspore/_akg/akg/tvm/rpc/server.py +0 -413
  664. mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
  665. mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
  666. mindspore/_extends/graph_kernel/expander.py +0 -80
  667. mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
  668. mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
  669. mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
  670. mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
  671. mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
  672. mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
  673. mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
  674. mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
  675. mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
  676. mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
  677. mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
  678. mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
  679. mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
  680. mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
  681. mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
  682. mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
  683. mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
  684. mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
  685. mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
  686. mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
  687. mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
  688. mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
  689. mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
  690. mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
  691. mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
  692. mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
  693. mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
  694. mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
  695. mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
  696. mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
  697. mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
  698. mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
  699. mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
  700. mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
  701. mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
  702. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
  703. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
  704. mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
  705. mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
  706. mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
  707. mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
  708. mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
  709. mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
  710. mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
  711. mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
  712. mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
  713. mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
  714. mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
  715. mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
  716. mindspore/_extends/parse/jit_fallback_modules.py +0 -51
  717. mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
  718. mindspore/dataset/engine/graphdata.py +0 -1586
  719. mindspore/include/api/net.h +0 -142
  720. mindspore/ops/_grad/grad_array_ops.py +0 -1347
  721. mindspore/ops/_grad/grad_clip_ops.py +0 -84
  722. mindspore/ops/_grad/grad_debug_ops.py +0 -68
  723. mindspore/ops/_grad/grad_inner_ops.py +0 -235
  724. mindspore/ops/_grad/grad_math_ops.py +0 -1684
  725. mindspore/ops/_grad/grad_nn_ops.py +0 -1529
  726. mindspore/ops/_grad/grad_other_ops.py +0 -89
  727. mindspore/ops/_grad/grad_sequence_ops.py +0 -296
  728. mindspore/ops/_grad/grad_sparse.py +0 -323
  729. mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
  730. mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
  731. mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
  732. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  733. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  734. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
  735. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
  736. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
  737. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
  738. mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
  739. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
  740. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
  741. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  742. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
  743. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  744. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
  745. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  746. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
  747. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
  748. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
  749. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  750. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  751. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
  752. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
  753. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
  754. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
  755. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
  756. mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
  757. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
  758. mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
  759. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
  760. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
  761. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
  762. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  763. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  764. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
  765. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
  766. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
  767. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  768. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  769. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  770. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
  771. mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
  772. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  773. mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
  774. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
  775. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
  776. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
  777. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
  778. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
  779. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
  780. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  781. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
  782. mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
  783. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
  784. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
  785. mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
  786. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  787. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
  788. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
  789. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
  790. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
  791. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
  792. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
  793. mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
  794. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  795. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
  796. mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
  797. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
  798. mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
  799. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
  800. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
  801. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
  802. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
  803. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
  804. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
  805. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
  806. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
  807. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  808. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  809. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  810. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
  811. mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
  812. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  813. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  814. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
  815. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
  816. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
  817. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
  818. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  819. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  820. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  821. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
  822. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
  823. mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
  824. mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
  825. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
  826. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  827. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
  828. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
  829. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
  830. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
  831. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
  832. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
  833. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
  834. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
  835. mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
  836. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  837. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  838. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
  839. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
  840. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
  841. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  842. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
  843. mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
  844. mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
  845. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
  846. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  847. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
  848. mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
  849. mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
  850. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
  851. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  852. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
  853. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
  854. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  855. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
  856. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
  857. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  858. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  859. mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
  860. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
  861. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
  862. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
  863. mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
  864. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  865. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
  866. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
  867. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
  868. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
  869. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  870. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  871. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
  872. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
  873. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
  874. mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
  875. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
  876. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
  877. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
  878. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
  879. mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
  880. mindspore/rewrite/node_visitor.py +0 -44
  881. mindspore/rewrite/topological_manager.py +0 -203
  882. mindspore/scipy/sparse/linalg.py +0 -192
  883. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
  884. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
@@ -191,8 +191,7 @@ class FTRL(Optimizer):
191
191
 
192
192
  FTRL is an online convex optimization algorithm that adaptively chooses its regularization function
193
193
  based on the loss functions. Refer to paper `Adaptive Bound Optimization for Online Convex Optimization
194
- <https://arxiv.org/abs/1002.4908>`_. Refer to paper `Ad Click Prediction: a View from the Trenches
195
- <https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_ for engineering document.
194
+ <https://arxiv.org/abs/1002.4908>`_.
196
195
 
197
196
  The updating formulas are as follows,
198
197
 
@@ -250,20 +249,21 @@ class FTRL(Optimizer):
250
249
  If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
251
250
  one group of `params`.
252
251
 
253
- initial_accum (float): The starting value for accumulators `m`, must be zero or positive values. Default: 0.1.
252
+ initial_accum (float): The starting value for accumulators `m`, must be zero or positive values.
253
+ Default: ``0.1`` .
254
254
  learning_rate (float): The learning rate value, must be zero or positive, dynamic learning rate is currently
255
- not supported. Default: 0.001.
255
+ not supported. Default: ``0.001`` .
256
256
  lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less
257
- than or equal to zero. Use fixed learning rate if lr_power is zero. Default: -0.5.
258
- l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
259
- l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
260
- use_locking (bool): If true, use locks for updating operation. Default: False.
257
+ than or equal to zero. Use fixed learning rate if lr_power is zero. Default: ``-0.5`` .
258
+ l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
259
+ l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
260
+ use_locking (bool): If true, use locks for updating operation. Default: ``False`` .
261
261
  loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
262
262
  Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
263
- `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
263
+ `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
264
264
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
265
- Default: 1.0.
266
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
265
+ Default: ``1.0`` .
266
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
267
267
 
268
268
  - float: The fixed weight decay value. Must be equal to or greater than 0.
269
269
 
@@ -295,7 +295,9 @@ class FTRL(Optimizer):
295
295
  >>> import mindspore as ms
296
296
  >>> from mindspore import nn
297
297
  >>>
298
- >>> net = Net()
298
+ >>> # Define the network structure of LeNet5. Refer to
299
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
300
+ >>> net = LeNet5()
299
301
  >>> #1) All parameters use the same learning rate and weight decay
300
302
  >>> optim = nn.FTRL(params=net.trainable_params())
301
303
  >>>
@@ -313,7 +315,7 @@ class FTRL(Optimizer):
313
315
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
314
316
  >>>
315
317
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
316
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
318
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim)
317
319
  """
318
320
 
319
321
  @opt_init_args_register
@@ -357,6 +359,7 @@ class FTRL(Optimizer):
357
359
  grads = self.scale_grad(grads)
358
360
  grads = self._grad_sparse_indices_deduplicate(grads)
359
361
  lr = self.get_lr()
362
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
360
363
 
361
364
  if self.use_dist_optimizer:
362
365
  success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, self._ps_push, self._ps_pull,
@@ -377,12 +380,12 @@ class FTRL(Optimizer):
377
380
  optimizer operation.
378
381
  """
379
382
  if not isinstance(value, str):
380
- raise TypeError("For 'FTRL', the property 'target' must be string type, "
381
- "but got type {}.".format(type(value)))
383
+ raise TypeError(f"For 'FTRL', the property 'target' must be string type, "
384
+ f"but got type {type(value)}.")
382
385
 
383
386
  if value not in ('CPU', 'Ascend', 'GPU'):
384
- raise ValueError("For 'FTRL', the property 'target' must be 'CPU', 'Ascend' or 'GPU', "
385
- "but got {}".format(value))
387
+ raise ValueError(f"For 'FTRL', the property 'target' must be 'CPU', 'Ascend' or 'GPU', "
388
+ f"but got {value}.")
386
389
 
387
390
  if value == 'CPU':
388
391
  self.sparse_opt = P.FusedSparseFtrl(self.lr, self.l1, self.l2, self.lr_power, self.use_locking)
@@ -132,7 +132,7 @@ class Lamb(Optimizer):
132
132
  There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
133
133
  and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
134
134
  As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means. Refer
135
- document `LossScale <https://www.mindspore.cn/tutorials/en/r2.0/advanced/mixed_precision.html>`_ to
135
+ document `LossScale <https://www.mindspore.cn/tutorials/en/r2.2/advanced/mixed_precision.html>`_ to
136
136
  process `loss_scale` correctly.
137
137
 
138
138
  If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
@@ -140,6 +140,10 @@ class Lamb(Optimizer):
140
140
  parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
141
141
  applied.
142
142
 
143
+ .. warning::
144
+ The update process of the Lamb optimizer is not completely elementwise, and the sharding of weights in
145
+ distributed parallel may affect the update result.
146
+
143
147
  Args:
144
148
  params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
145
149
  `params` is a list of `dict`, the string "params", "lr", "weight_decay", "grad_centralization" and
@@ -181,14 +185,14 @@ class Lamb(Optimizer):
181
185
  - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
182
186
  LearningRateSchedule with step as the input to get the learning rate of current step.
183
187
 
184
- beta1 (float): The exponential decay rate for the 1st moment estimations. Default: 0.9.
188
+ beta1 (float): The exponential decay rate for the 1st moment estimations. Default: ``0.9`` .
185
189
  Should be in range (0.0, 1.0).
186
- beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: 0.999.
190
+ beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: ``0.999`` .
187
191
  Should be in range (0.0, 1.0).
188
- eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
192
+ eps (float): Term added to the denominator to improve numerical stability. Default: ``1e-6`` .
189
193
  Should be greater than 0.
190
194
 
191
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
195
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
192
196
 
193
197
  - float: The fixed weight decay value. Must be equal to or greater than 0.
194
198
 
@@ -201,7 +205,7 @@ class Lamb(Optimizer):
201
205
  - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
202
206
 
203
207
  Outputs:
204
- tuple[bool], all elements are True.
208
+ tuple[bool], all elements are ``True`` .
205
209
 
206
210
  Raises:
207
211
  TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
@@ -218,14 +222,15 @@ class Lamb(Optimizer):
218
222
  Examples:
219
223
  >>> import mindspore as ms
220
224
  >>> from mindspore import nn
221
- >>> from mindspore.nn import learning_rate_schedule
222
225
  >>>
223
- >>> net = Net()
226
+ >>> # Define the network structure of LeNet5. Refer to
227
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
228
+ >>> net = LeNet5()
224
229
  >>> #1) All parameters use the same learning rate and weight decay
225
230
  >>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1)
226
231
  >>>
227
232
  >>> #2) Use parameter groups and set different values
228
- >>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR(learning_rate=0.1, end_learning_rate=0.01,
233
+ >>> poly_decay_lr = nn.PolynomialDecayLR(learning_rate=0.1, end_learning_rate=0.01,
229
234
  ... decay_steps=4, power = 0.5)
230
235
  >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
231
236
  >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
@@ -240,7 +245,7 @@ class Lamb(Optimizer):
240
245
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
241
246
  >>>
242
247
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
243
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
248
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim)
244
249
  """
245
250
  _support_parallel_optimizer = True
246
251
 
@@ -262,8 +267,7 @@ class Lamb(Optimizer):
262
267
  def construct(self, gradients):
263
268
  weight_decay = self.get_weight_decay()
264
269
  lr = self.get_lr()
265
- if not self._is_dynamic_lr_or_weight_decay():
266
- self.assignadd(self.global_step, self.global_step_increase_tensor)
270
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
267
271
  lamb_opt = _lamb_opt
268
272
  gradients = self.flatten_gradients(gradients)
269
273
  gradients = self.gradients_centralization(gradients)
@@ -87,10 +87,10 @@ class LARS(Optimizer):
87
87
  :math:`\gamma` represents `learning_rate` in `optimizer`, :math:`\eta` represents `coefficient`.
88
88
 
89
89
  Args:
90
- optimizer (Optimizer): MindSpore optimizer for which to wrap and modify gradients.
91
- epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05.
92
- coefficient (float): Trust coefficient for calculating the local learning rate. Default: 0.001.
93
- use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
90
+ optimizer (:class:`mindspore.nn.Optimizer`): MindSpore optimizer for which to wrap and modify gradients.
91
+ epsilon (float): Term added to the denominator to improve numerical stability. Default: ``1e-05`` .
92
+ coefficient (float): Trust coefficient for calculating the local learning rate. Default: ``0.001`` .
93
+ use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: ``False`` .
94
94
  lars_filter (Function): A function to determine which of the network parameters to use LARS algorithm. Default:
95
95
  lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
96
96
 
@@ -108,11 +108,13 @@ class LARS(Optimizer):
108
108
  >>> import mindspore as ms
109
109
  >>> from mindspore import nn
110
110
  >>>
111
- >>> net = Net()
111
+ >>> # Define the network structure of LeNet5. Refer to
112
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
113
+ >>> net = LeNet5()
112
114
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
113
115
  >>> opt = nn.Momentum(net.trainable_params(), 0.1, 0.9)
114
116
  >>> opt_lars = nn.LARS(opt, epsilon=1e-08, coefficient=0.02)
115
- >>> model = ms.Model(net, loss_fn=loss, optimizer=opt_lars, metrics=None)
117
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=opt_lars, metrics=None)
116
118
  """
117
119
 
118
120
  @opt_init_args_register
@@ -270,14 +270,15 @@ class LazyAdam(Optimizer):
270
270
  \begin{array}{ll} \\
271
271
  m_{t+1} = \beta_1 * m_{t} + (1 - \beta_1) * g \\
272
272
  v_{t+1} = \beta_2 * v_{t} + (1 - \beta_2) * g * g \\
273
- l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
274
- w_{t+1} = w_{t} - l * \frac{m_{t+1}}{\sqrt{v_{t+1}} + \epsilon}
273
+ \widehat{m_{t+1}} = \frac{m_{t+1}}{1-\beta_1^t} \\
274
+ \widehat{v_{t+1}} = \frac{v_{t+1}}{1-\beta_2^t} \\
275
+ w_{t+1} = w_{t} - \gamma * \frac{\widehat{m_{t+1}}}{\sqrt{\widehat{v_{t+1}}} + \epsilon}
275
276
  \end{array}
276
277
 
277
278
  :math:`m` represents the 1st moment vector `moment1`, :math:`v` represents the 2nd moment vector `moment2`,
278
- :math:`g` represents `gradients`, :math:`l` represents scaling factor, :math:`\beta_1, \beta_2` represent
279
+ :math:`g` represents `gradients`, :math:`\gamma` represents `learning_rate`, :math:`\beta_1, \beta_2` represent
279
280
  `beta1` and `beta2`, :math:`t` represents the current step while :math:`beta_1^t` and :math:`beta_2^t` represent
280
- `beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `params`,
281
+ `beta1_power` and `beta2_power`, :math:`w` represents `params`,
281
282
  :math:`\epsilon` represents `eps`.
282
283
 
283
284
  Note:
@@ -320,7 +321,7 @@ class LazyAdam(Optimizer):
320
321
  If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
321
322
  one group of `params`.
322
323
 
323
- learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: 1e-3.
324
+ learning_rate (Union[float, int, Tensor, Iterable, :class:`~.train.LearningRateScheduler`]): Default: ``1e-3`` .
324
325
 
325
326
  - float: The fixed learning rate value. Must be equal to or greater than 0.
326
327
 
@@ -335,19 +336,19 @@ class LazyAdam(Optimizer):
335
336
  LearningRateSchedule with step as the input to get the learning rate of current step.
336
337
 
337
338
  beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
338
- Default: 0.9.
339
+ Default: ``0.9`` .
339
340
  beta2 (float): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
340
- Default: 0.999.
341
- eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0. Default:
342
- 1e-8.
341
+ Default: ``0.999`` .
342
+ eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0.
343
+ Default: ``1e-8`` .
343
344
  use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
344
- If true, updates of the `w`, `m`, and `v` tensors will be protected by a lock.
345
- If false, the result is unpredictable. Default: False.
345
+ If ``true`` , updates of the `w`, `m`, and `v` tensors will be protected by a lock.
346
+ If ``false`` , the result is unpredictable. Default: ``False`` .
346
347
  use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
347
- If true, update the gradients using NAG.
348
- If false, update the gradients without using NAG. Default: False.
348
+ If ``true`` , update the gradients using NAG.
349
+ If ``false`` , update the gradients without using NAG. Default: ``False`` .
349
350
 
350
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
351
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
351
352
 
352
353
  - float: The fixed weight decay value. Must be equal to or greater than 0.
353
354
 
@@ -358,18 +359,19 @@ class LazyAdam(Optimizer):
358
359
 
359
360
  loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. In general,
360
361
  use the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update`
361
- in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
362
+ in `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
362
363
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
363
- Default: 1.0.
364
+ Default: ``1.0`` .
364
365
 
365
366
  Inputs:
366
367
  - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
367
368
 
368
369
  Outputs:
369
- Tensor[bool], the value is True.
370
+ Tensor[bool], the value is ``True`` .
370
371
 
371
372
  Raises:
372
- TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
373
+ TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable,
374
+ :class:`~.train.LearningRateScheduler`.
373
375
  TypeError: If element of `parameters` is neither Parameter nor dict.
374
376
  TypeError: If `beta1`, `beta2`, `eps` or `loss_scale` is not a float.
375
377
  TypeError: If `weight_decay` is neither float nor int.
@@ -385,7 +387,9 @@ class LazyAdam(Optimizer):
385
387
  >>> import mindspore as ms
386
388
  >>> from mindspore import nn
387
389
  >>>
388
- >>> net = Net()
390
+ >>> # Define the network structure of LeNet5. Refer to
391
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
392
+ >>> net = LeNet5()
389
393
  >>> #1) All parameters use the same learning rate and weight decay
390
394
  >>> optim = nn.LazyAdam(params=net.trainable_params())
391
395
  >>>
@@ -403,7 +407,7 @@ class LazyAdam(Optimizer):
403
407
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
404
408
  >>>
405
409
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
406
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
410
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim)
407
411
  """
408
412
 
409
413
  @deprecated("2.0", "Adam", False)
@@ -442,6 +446,7 @@ class LazyAdam(Optimizer):
442
446
  gradients = self.scale_grad(gradients)
443
447
  gradients = self._grad_sparse_indices_deduplicate(gradients)
444
448
  lr = self.get_lr()
449
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
445
450
 
446
451
  beta1_power = self.beta1_power * self.beta1
447
452
  self.beta1_power = beta1_power
@@ -134,7 +134,7 @@ class Momentum(Optimizer):
134
134
  momentum (float): Hyperparameter of type float, means momentum for the moving average.
135
135
  It must be at least 0.0.
136
136
 
137
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
137
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
138
138
 
139
139
  - float: The fixed weight decay value. Must be equal to or greater than 0.
140
140
 
@@ -145,16 +145,16 @@ class Momentum(Optimizer):
145
145
 
146
146
  loss_scale (float): A floating point value for the loss scale. It must be greater than 0.0. In general, use the
147
147
  default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
148
- `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
148
+ `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
149
149
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
150
- Default: 1.0.
151
- use_nesterov (bool): Enable Nesterov momentum. Default: False.
150
+ Default: ``1.0`` .
151
+ use_nesterov (bool): Enable Nesterov momentum. Default: ``False`` .
152
152
 
153
153
  Inputs:
154
154
  - **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
155
155
 
156
156
  Outputs:
157
- tuple[bool]. All elements are True.
157
+ tuple[bool]. All elements are ``True`` .
158
158
 
159
159
  Raises:
160
160
  TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
@@ -172,7 +172,9 @@ class Momentum(Optimizer):
172
172
  >>> import mindspore as ms
173
173
  >>> from mindspore import nn
174
174
  >>>
175
- >>> net = Net()
175
+ >>> # Define the network structure of LeNet5. Refer to
176
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
177
+ >>> net = LeNet5()
176
178
  >>> #1) All parameters use the same learning rate and weight decay
177
179
  >>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
178
180
  >>>
@@ -190,7 +192,7 @@ class Momentum(Optimizer):
190
192
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
191
193
  >>>
192
194
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
193
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim, metrics=None)
195
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim, metrics=None)
194
196
  """
195
197
  @opt_init_args_register
196
198
  def __init__(self, params, learning_rate, momentum, weight_decay=0.0, loss_scale=1.0, use_nesterov=False):
@@ -218,6 +220,7 @@ class Momentum(Optimizer):
218
220
  gradients = self.gradients_centralization(gradients)
219
221
  gradients = self.scale_grad(gradients)
220
222
  lr = self.get_lr()
223
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
221
224
  if self.use_dist_optimizer:
222
225
  if self.is_group_lr:
223
226
  success = self.hyper_map_reverse(F.partial(_momentum_opt, self.opt, self.momentum),
@@ -121,13 +121,13 @@ class Optimizer(Cell):
121
121
 
122
122
  weight_decay (Union[float, int]): An int or a floating point value for the weight decay.
123
123
  It must be equal to or greater than 0.
124
- If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0.
124
+ If the type of `weight_decay` input is int, it will be converted to float. Default: ``0.0`` .
125
125
  loss_scale (float): A floating point value for the loss scale. It must be greater than 0. If the
126
126
  type of `loss_scale` input is int, it will be converted to float. In general, use the default value. Only
127
127
  when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
128
- `FixedLossScaleManager` is set to False, this value needs to be the same as the `loss_scale` in
128
+ `FixedLossScaleManager` is set to ``False`` , this value needs to be the same as the `loss_scale` in
129
129
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
130
- Default: 1.0.
130
+ Default: ``1.0`` .
131
131
 
132
132
  Raises:
133
133
  TypeError: If `learning_rate` is not one of int, float, Tensor, Iterable, LearningRateSchedule.
@@ -140,6 +140,57 @@ class Optimizer(Cell):
140
140
 
141
141
  Supported Platforms:
142
142
  ``Ascend`` ``GPU`` ``CPU``
143
+
144
+ Examples:
145
+ >>> import mindspore as ms
146
+ >>> from mindspore import nn
147
+ >>> import numpy as np
148
+ >>> import mindspore
149
+ >>> from mindspore import nn, ops, Tensor
150
+ >>>
151
+ >>> class MyMomentum(nn.Optimizer):
152
+ ... def __init__(self, params, learning_rate, momentum=0.9):
153
+ ... super(MyMomentum, self).__init__(learning_rate, params)
154
+ ... self.moments = self.parameters.clone(prefix="moments", init="zeros")
155
+ ... self.momentum = momentum
156
+ ... self.opt = ops.ApplyMomentum()
157
+ ...
158
+ ... def construct(self, gradients):
159
+ ... params = self.parameters
160
+ ... lr = self.get_lr()
161
+ ... gradients = self.flatten_gradients(gradients)
162
+ ... gradients = self.decay_weight(gradients)
163
+ ... gradients = self.gradients_centralization(gradients)
164
+ ... gradients = self.scale_grad(gradients)
165
+ ...
166
+ ... success = None
167
+ ... for param, mom, grad in zip(params, self.moments, gradients):
168
+ ... success = self.opt(param, mom, lr, grad, self.momentum)
169
+ ... return success
170
+ >>>
171
+ >>> net = nn.Dense(2, 3)
172
+ >>> loss_fn = nn.MAELoss()
173
+ >>> opt = MyMomentum(net.trainable_params(), 0.01)
174
+ >>>
175
+ >>> device_target = opt.target
176
+ >>> opt_unique = opt.unique
177
+ >>> weight_decay_value = opt.get_weight_decay()
178
+ >>>
179
+ >>> def forward_fn(data, label):
180
+ ... logits = net(data)
181
+ ... loss = loss_fn(logits, label)
182
+ ... return loss, logits
183
+ >>>
184
+ >>> grad_fn = mindspore.value_and_grad(forward_fn, None, opt.parameters, has_aux=True)
185
+ >>>
186
+ >>> def train_step(data, label):
187
+ ... (loss, _), grads = grad_fn(data, label)
188
+ ... opt(grads)
189
+ ... return loss
190
+ >>>
191
+ >>> data = Tensor(np.random.rand(4, 10, 2), mindspore.dtype.float32)
192
+ >>> label = Tensor(np.random.rand(4, 10, 3), mindspore.dtype.float32)
193
+ >>> train_step(data, label)
143
194
  """
144
195
  _support_parallel_optimizer = False
145
196
 
@@ -148,6 +199,8 @@ class Optimizer(Cell):
148
199
  parameters = self._parameters_base_check(parameters, "parameters")
149
200
  self.param_rank = None
150
201
  self.optim_filter = None
202
+ if not isinstance(parameters, list):
203
+ raise TypeError(f"For 'Optimizer' argument 'parameters' must be 'list', but got {type(parameters)}.")
151
204
  if not all(isinstance(x, Parameter) for x in parameters) and not all(isinstance(x, dict) for x in parameters):
152
205
  raise TypeError("For 'Optimizer', all elements of the argument 'parameters' must be 'Parameter' or 'dict',"
153
206
  " please check the 'parameters'.")
@@ -231,7 +284,7 @@ class Optimizer(Cell):
231
284
  self.cache_enable = tuple(cache_filter(x) for x in self._parameters)
232
285
  self.reciprocal_scale = Tensor(1.0 / self.loss_scale, mstype.float32)
233
286
  self.need_scale = self.loss_scale != 1.0
234
- self.global_step_increase_tensor = Tensor(1, mstype.int32)
287
+ self.global_step_increase_tensor = Tensor([1], mstype.int32)
235
288
  self.param_length = len(self._parameters)
236
289
  self.map_ = C.Map()
237
290
  self.map_reverse = C.Map(None, True)
@@ -700,8 +753,6 @@ class Optimizer(Cell):
700
753
  lr += (current_dynamic_lr,)
701
754
  else:
702
755
  lr = self.learning_rate(self.global_step).reshape(())
703
- if self._is_dynamic_lr_or_weight_decay():
704
- self.assignadd(self.global_step, self.global_step_increase_tensor)
705
756
  return lr
706
757
 
707
758
  def get_lr_parameter(self, param):
@@ -719,8 +770,9 @@ class Optimizer(Cell):
719
770
 
720
771
  Examples:
721
772
  >>> from mindspore import nn
722
- >>> # net = LeNet5()
723
- >>> net = Net()
773
+ >>> # Define the network structure of LeNet5. Refer to
774
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
775
+ >>> net = LeNet5()
724
776
  >>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
725
777
  >>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
726
778
  >>> group_params = [{'params': conv_params, 'lr': 0.05},
@@ -922,7 +974,7 @@ def rowtensor_deduplicate_indices_slices(grad):
922
974
  values = grad.values
923
975
 
924
976
  unique_indices, index_position = P.Unique()(indices)
925
- summed_values = P.UnsortedSegmentSum()(values, index_position, P.TensorShape()(unique_indices)[0])
977
+ summed_values = P.UnsortedSegmentSum()(values, index_position, P.Shape()(unique_indices)[0])
926
978
 
927
979
  return RowTensorInner(unique_indices, summed_values, grad.dense_shape)
928
980
 
@@ -55,9 +55,7 @@ def _check_param_value(accum, l1, l2, use_locking, prim_name=None):
55
55
 
56
56
  class ProximalAdagrad(Optimizer):
57
57
  r"""
58
- Implements the ProximalAdagrad algorithm.
59
-
60
- ProximalAdagrad is an online Learning and Stochastic Optimization.
58
+ Implements the ProximalAdagrad algorithm that is an online Learning and Stochastic Optimization.
61
59
  Refer to paper `Efficient Learning using Forward-Backward Splitting
62
60
  <http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
63
61
 
@@ -110,8 +108,8 @@ class ProximalAdagrad(Optimizer):
110
108
  If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
111
109
  one group of `params`.
112
110
 
113
- accum (float): The starting value for accumulators `accum`, must be zero or positive values. Default: 0.1.
114
- learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: 0.001.
111
+ accum (float): The starting value for accumulators `accum`, must be zero or positive values. Default: ``0.1`` .
112
+ learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``0.001`` .
115
113
 
116
114
  - float: The fixed learning rate value. Must be equal to or greater than 0.
117
115
 
@@ -125,15 +123,15 @@ class ProximalAdagrad(Optimizer):
125
123
  - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
126
124
  LearningRateSchedule with step as the input to get the learning rate of the current step.
127
125
 
128
- l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
129
- l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
130
- use_locking (bool): If true, use locks for updating operation. Default: False.
126
+ l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
127
+ l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
128
+ use_locking (bool): If true, use locks for updating operation. Default: ``False`` .
131
129
  loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
132
130
  Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
133
- `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
131
+ `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
134
132
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
135
- Default: 1.0.
136
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
133
+ Default: ``1.0`` .
134
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
137
135
 
138
136
  - float: The fixed weight decay value. Must be equal to or greater than 0.
139
137
 
@@ -164,7 +162,9 @@ class ProximalAdagrad(Optimizer):
164
162
  >>> import mindspore as ms
165
163
  >>> from mindspore import nn
166
164
  >>>
167
- >>> net = Net()
165
+ >>> # Define the network structure of LeNet5. Refer to
166
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
167
+ >>> net = LeNet5()
168
168
  >>> #1) All parameters use the same learning rate and weight decay
169
169
  >>> optim = nn.ProximalAdagrad(params=net.trainable_params())
170
170
  >>>
@@ -182,7 +182,7 @@ class ProximalAdagrad(Optimizer):
182
182
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
183
183
  >>>
184
184
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
185
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
185
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim)
186
186
  """
187
187
 
188
188
  @opt_init_args_register
@@ -207,6 +207,7 @@ class ProximalAdagrad(Optimizer):
207
207
  grads = self.scale_grad(grads)
208
208
  grads = self._grad_sparse_indices_deduplicate(grads)
209
209
  lr = self.get_lr()
210
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
210
211
  if self.is_group_lr:
211
212
  success = self.map_reverse(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, self.l1, self.l2),
212
213
  lr, grads, params, accum)
@@ -47,8 +47,8 @@ class RMSProp(Optimizer):
47
47
  Implements Root Mean Squared Propagation (RMSProp) algorithm.
48
48
 
49
49
  Update `params` according to the RMSProp algorithm.
50
- The 29th of the original presentation slide
51
- [http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf] proposes RMSProp.
50
+ The 29th of the original `presentation slide
51
+ <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_ proposes RMSProp.
52
52
  The equation is as follows:
53
53
 
54
54
  .. math::
@@ -120,7 +120,7 @@ class RMSProp(Optimizer):
120
120
  If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
121
121
  one group of `params`.
122
122
 
123
- learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: 0.1.
123
+ learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``0.1`` .
124
124
 
125
125
  - float: The fixed learning rate value. Must be equal to or greater than 0.
126
126
 
@@ -134,20 +134,21 @@ class RMSProp(Optimizer):
134
134
  - LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
135
135
  LearningRateSchedule with step as the input to get the learning rate of the current step.
136
136
 
137
- decay (float): Decay rate. Should be equal to or greater than 0. Default: 0.9.
137
+ decay (float): Decay rate. Should be equal to or greater than 0. Default: ``0.9`` .
138
138
  momentum (float): Hyperparameter of type float, means momentum for the moving average. Should be equal to or
139
- greater than 0. Default: 0.0.
139
+ greater than 0. Default: ``0.0`` .
140
140
  epsilon (float): Term added to the denominator to improve numerical stability. Should be greater than
141
- 0. Default: 1e-10.
141
+ 0. Default: ``1e-10`` .
142
142
  use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
143
- Default: False.
144
- centered (bool): If True, gradients are normalized by the estimated variance of the gradient. Default: False.
143
+ Default: ``False`` .
144
+ centered (bool): If True, gradients are normalized by the estimated variance of the gradient.
145
+ Default: ``False`` .
145
146
  loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
146
147
  default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
147
- `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
148
+ `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
148
149
  `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
149
- Default: 1.0.
150
- weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.
150
+ Default: ``1.0`` .
151
+ weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
151
152
 
152
153
  - float: The fixed weight decay value. Must be equal to or greater than 0.
153
154
 
@@ -178,7 +179,9 @@ class RMSProp(Optimizer):
178
179
  >>> import mindspore as ms
179
180
  >>> from mindspore import nn
180
181
  >>>
181
- >>> net = Net()
182
+ >>> # Define the network structure of LeNet5. Refer to
183
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
184
+ >>> net = LeNet5()
182
185
  >>> #1) All parameters use the same learning rate and weight decay
183
186
  >>> optim = nn.RMSProp(params=net.trainable_params(), learning_rate=0.1)
184
187
  >>>
@@ -196,7 +199,7 @@ class RMSProp(Optimizer):
196
199
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
197
200
  >>>
198
201
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
199
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
202
+ >>> model = ms.train.Model(net, loss_fn=loss, optimizer=optim)
200
203
  """
201
204
 
202
205
  @opt_init_args_register
@@ -233,6 +236,7 @@ class RMSProp(Optimizer):
233
236
  gradients = self.gradients_centralization(gradients)
234
237
  gradients = self.scale_grad(gradients)
235
238
  lr = self.get_lr()
239
+ self.assignadd(self.global_step, self.global_step_increase_tensor)
236
240
  if self.centered:
237
241
  if self.is_group_lr:
238
242
  success = self.hyper_map_reverse(F.partial(_centered_rmsprop_opt, self.opt, self.decay, self.epsilon,