mindspore 2.0.0rc1__cp38-cp38-manylinux1_x86_64.whl → 2.2.0__cp38-cp38-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Third_Party_Open_Source_Software_Notice +2 -2
- mindspore/__init__.py +5 -2
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +49 -16
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/config/repository.json +195 -0
- mindspore/_akg/akg/global_configs.py +5 -1
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
- mindspore/_akg/akg/utils/kernel_exec.py +58 -260
- mindspore/_akg/akg/utils/op_dsl.py +17 -1
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
- mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +5 -1
- mindspore/_checkparam.py +79 -62
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +1 -9
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +19 -17
- mindspore/_extends/parse/namespace.py +7 -36
- mindspore/_extends/parse/parser.py +375 -189
- mindspore/_extends/parse/resources.py +36 -41
- mindspore/_extends/parse/standard_method.py +350 -245
- mindspore/_extends/parse/trope.py +2 -12
- mindspore/_extends/remote/kernel_build_server.py +24 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/amp.py +85 -19
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/base.py +2 -2
- mindspore/boost/boost.py +27 -32
- mindspore/boost/boost_cell_wrapper.py +37 -13
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/grad_freeze.py +34 -6
- mindspore/boost/group_loss_scale_manager.py +15 -14
- mindspore/boost/less_batch_normalization.py +28 -3
- mindspore/common/__init__.py +15 -11
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_jit_fallback_utils.py +111 -0
- mindspore/common/_register_for_adapter.py +17 -5
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +18 -15
- mindspore/common/_utils.py +31 -7
- mindspore/common/api.py +269 -101
- mindspore/common/auto_dynamic_shape.py +498 -0
- mindspore/common/dtype.py +61 -21
- mindspore/common/dump.py +9 -7
- mindspore/common/initializer.py +106 -76
- mindspore/common/jit_config.py +35 -14
- mindspore/common/lazy_inline.py +187 -0
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/mutable.py +10 -13
- mindspore/common/parameter.py +246 -55
- mindspore/common/seed.py +13 -7
- mindspore/common/sparse_tensor.py +29 -33
- mindspore/common/tensor.py +907 -251
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +84 -4
- mindspore/communication/management.py +160 -88
- mindspore/config/op_info.config +99 -75
- mindspore/config/super_bar_config.json +36 -4
- mindspore/context.py +526 -219
- mindspore/dataset/__init__.py +9 -46
- mindspore/dataset/audio/__init__.py +4 -19
- mindspore/dataset/audio/transforms.py +545 -233
- mindspore/dataset/audio/utils.py +21 -18
- mindspore/dataset/callback/ds_callback.py +42 -13
- mindspore/dataset/core/config.py +158 -100
- mindspore/dataset/core/validator_helpers.py +1 -63
- mindspore/dataset/debug/debug_hook.py +45 -13
- mindspore/dataset/debug/pre_defined_hook.py +5 -5
- mindspore/dataset/engine/__init__.py +0 -5
- mindspore/dataset/engine/cache_client.py +38 -15
- mindspore/dataset/engine/datasets.py +615 -278
- mindspore/dataset/engine/datasets_audio.py +154 -283
- mindspore/dataset/engine/datasets_standard_format.py +104 -116
- mindspore/dataset/engine/datasets_text.py +443 -326
- mindspore/dataset/engine/datasets_user_defined.py +251 -164
- mindspore/dataset/engine/datasets_vision.py +839 -1443
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/offload.py +6 -6
- mindspore/dataset/engine/queue.py +15 -14
- mindspore/dataset/engine/samplers.py +39 -23
- mindspore/dataset/engine/serializer_deserializer.py +22 -6
- mindspore/dataset/engine/validators.py +21 -331
- mindspore/dataset/text/__init__.py +5 -33
- mindspore/dataset/text/transforms.py +334 -165
- mindspore/dataset/text/utils.py +215 -145
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/c_transforms.py +3 -2
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +174 -71
- mindspore/dataset/utils/browse_dataset.py +25 -17
- mindspore/dataset/utils/line_reader.py +24 -21
- mindspore/dataset/vision/__init__.py +5 -26
- mindspore/dataset/vision/c_transforms.py +177 -165
- mindspore/dataset/vision/py_transforms.py +114 -119
- mindspore/dataset/vision/py_transforms_util.py +54 -51
- mindspore/dataset/vision/transforms.py +1127 -381
- mindspore/dataset/vision/utils.py +54 -38
- mindspore/dataset/vision/validators.py +12 -2
- mindspore/experimental/map_parameter.py +38 -4
- mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
- mindspore/experimental/optim/adam.py +192 -0
- mindspore/experimental/optim/adamw.py +181 -0
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/experimental/optim/optimizer.py +252 -0
- mindspore/experimental/optim/sgd.py +147 -0
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +1 -2
- mindspore/include/api/context.h +21 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +29 -42
- mindspore/include/api/model_group.h +14 -3
- mindspore/include/api/model_parallel_runner.h +18 -2
- mindspore/include/api/serialization.h +26 -0
- mindspore/include/api/status.h +1 -0
- mindspore/include/api/types.h +38 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/c_api/status_c.h +3 -0
- mindspore/include/dataset/constants.h +6 -12
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +25 -31
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/format.h +0 -1
- mindspore/include/mindapi/base/type_id.h +2 -1
- mindspore/include/mindapi/base/types.h +5 -1
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libmpi_adapter.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/log.py +9 -6
- mindspore/mindrecord/filereader.py +33 -4
- mindspore/mindrecord/filewriter.py +70 -35
- mindspore/mindrecord/mindpage.py +40 -34
- mindspore/mindrecord/shardreader.py +1 -1
- mindspore/mindrecord/shardsegment.py +1 -1
- mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
- mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
- mindspore/mindrecord/tools/csv_to_mr.py +29 -13
- mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
- mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
- mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
- mindspore/nn/cell.py +463 -169
- mindspore/nn/dynamic_lr.py +47 -43
- mindspore/nn/layer/activation.py +225 -82
- mindspore/nn/layer/basic.py +121 -79
- mindspore/nn/layer/channel_shuffle.py +21 -21
- mindspore/nn/layer/combined.py +33 -26
- mindspore/nn/layer/container.py +277 -22
- mindspore/nn/layer/conv.py +441 -304
- mindspore/nn/layer/dense.py +19 -13
- mindspore/nn/layer/embedding.py +62 -49
- mindspore/nn/layer/flash_attention.py +264 -0
- mindspore/nn/layer/image.py +50 -39
- mindspore/nn/layer/math.py +62 -51
- mindspore/nn/layer/normalization.py +219 -167
- mindspore/nn/layer/padding.py +58 -70
- mindspore/nn/layer/pooling.py +334 -287
- mindspore/nn/layer/rnn_cells.py +53 -38
- mindspore/nn/layer/rnns.py +59 -56
- mindspore/nn/layer/thor_layer.py +52 -44
- mindspore/nn/layer/timedistributed.py +6 -4
- mindspore/nn/layer/transformer.py +284 -164
- mindspore/nn/learning_rate_schedule.py +34 -25
- mindspore/nn/loss/__init__.py +3 -2
- mindspore/nn/loss/loss.py +554 -311
- mindspore/nn/optim/ada_grad.py +12 -9
- mindspore/nn/optim/adadelta.py +14 -11
- mindspore/nn/optim/adafactor.py +19 -16
- mindspore/nn/optim/adam.py +62 -47
- mindspore/nn/optim/adamax.py +13 -10
- mindspore/nn/optim/adasum.py +12 -8
- mindspore/nn/optim/asgd.py +10 -9
- mindspore/nn/optim/ftrl.py +20 -17
- mindspore/nn/optim/lamb.py +16 -12
- mindspore/nn/optim/lars.py +8 -6
- mindspore/nn/optim/lazyadam.py +25 -20
- mindspore/nn/optim/momentum.py +10 -7
- mindspore/nn/optim/optimizer.py +61 -9
- mindspore/nn/optim/proximal_ada_grad.py +14 -13
- mindspore/nn/optim/rmsprop.py +17 -13
- mindspore/nn/optim/rprop.py +30 -17
- mindspore/nn/optim/sgd.py +40 -23
- mindspore/nn/optim/thor.py +24 -26
- mindspore/nn/probability/bijector/bijector.py +11 -11
- mindspore/nn/probability/bijector/exp.py +1 -1
- mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
- mindspore/nn/probability/bijector/invert.py +1 -1
- mindspore/nn/probability/bijector/power_transform.py +29 -29
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +5 -5
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
- mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
- mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
- mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
- mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
- mindspore/nn/probability/distribution/_utils/utils.py +1 -1
- mindspore/nn/probability/distribution/bernoulli.py +9 -9
- mindspore/nn/probability/distribution/beta.py +8 -8
- mindspore/nn/probability/distribution/categorical.py +23 -15
- mindspore/nn/probability/distribution/cauchy.py +5 -6
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/exponential.py +4 -4
- mindspore/nn/probability/distribution/gamma.py +10 -10
- mindspore/nn/probability/distribution/geometric.py +8 -8
- mindspore/nn/probability/distribution/gumbel.py +8 -9
- mindspore/nn/probability/distribution/half_normal.py +5 -5
- mindspore/nn/probability/distribution/laplace.py +5 -5
- mindspore/nn/probability/distribution/log_normal.py +12 -11
- mindspore/nn/probability/distribution/logistic.py +8 -8
- mindspore/nn/probability/distribution/normal.py +6 -5
- mindspore/nn/probability/distribution/poisson.py +10 -11
- mindspore/nn/probability/distribution/student_t.py +8 -9
- mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
- mindspore/nn/probability/distribution/uniform.py +11 -11
- mindspore/nn/reinforcement/tensor_array.py +2 -2
- mindspore/nn/sparse/sparse.py +9 -9
- mindspore/nn/wrap/cell_wrapper.py +188 -63
- mindspore/nn/wrap/grad_reducer.py +21 -12
- mindspore/nn/wrap/loss_scale.py +136 -49
- mindspore/numpy/__init__.py +4 -4
- mindspore/numpy/array_creations.py +55 -56
- mindspore/numpy/array_ops.py +134 -35
- mindspore/numpy/logic_ops.py +66 -20
- mindspore/numpy/math_ops.py +142 -139
- mindspore/numpy/utils_const.py +2 -2
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +7 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
- mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
- mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
- mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
- mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
- mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
- mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
- mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
- mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
- mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
- mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
- mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
- mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/cast.py +52 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/eye.py +4 -4
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
- mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
- mindspore/ops/_op_impl/aicpu/median.py +1 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
- mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
- mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
- mindspore/ops/_op_impl/tbe/__init__.py +6 -4
- mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
- mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
- mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
- mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
- mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
- mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
- mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
- mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
- mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
- mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
- mindspore/ops/_op_impl/tbe/im2col.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
- mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +241 -0
- mindspore/ops/_utils/utils.py +10 -2
- mindspore/ops/_vmap/vmap_array_ops.py +5 -3
- mindspore/ops/_vmap/vmap_base.py +5 -4
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/__init__.py +7 -5
- mindspore/ops/composite/base.py +78 -34
- mindspore/ops/composite/math_ops.py +5 -695
- mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
- mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
- mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +41 -4
- mindspore/ops/function/array_func.py +1108 -467
- mindspore/ops/function/clip_func.py +94 -27
- mindspore/ops/function/debug_func.py +3 -1
- mindspore/ops/function/grad/grad_func.py +82 -73
- mindspore/ops/function/image_func.py +28 -12
- mindspore/ops/function/linalg_func.py +135 -39
- mindspore/ops/function/math_func.py +3779 -894
- mindspore/ops/function/nn_func.py +1584 -657
- mindspore/ops/function/parameter_func.py +13 -3
- mindspore/ops/function/random_func.py +247 -153
- mindspore/ops/function/sparse_func.py +14 -11
- mindspore/ops/function/sparse_unary_func.py +173 -47
- mindspore/ops/function/spectral_func.py +8 -4
- mindspore/ops/function/vmap_func.py +8 -7
- mindspore/ops/functional.py +47 -16
- mindspore/ops/op_info_register.py +346 -86
- mindspore/ops/operations/__init__.py +38 -22
- mindspore/ops/operations/_grad_ops.py +145 -149
- mindspore/ops/operations/_inner_ops.py +298 -56
- mindspore/ops/operations/_ms_kernel.py +3 -3
- mindspore/ops/operations/_quant_ops.py +24 -28
- mindspore/ops/operations/_rl_inner_ops.py +9 -7
- mindspore/ops/operations/_scalar_ops.py +115 -0
- mindspore/ops/operations/_sequence_ops.py +148 -10
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/_thor_ops.py +2 -2
- mindspore/ops/operations/array_ops.py +1239 -561
- mindspore/ops/operations/comm_ops.py +166 -90
- mindspore/ops/operations/control_ops.py +3 -3
- mindspore/ops/operations/custom_ops.py +124 -102
- mindspore/ops/operations/debug_ops.py +24 -11
- mindspore/ops/operations/image_ops.py +86 -71
- mindspore/ops/operations/inner_ops.py +18 -13
- mindspore/ops/operations/linalg_ops.py +30 -11
- mindspore/ops/operations/math_ops.py +1730 -435
- mindspore/ops/operations/nn_ops.py +1953 -943
- mindspore/ops/operations/other_ops.py +65 -43
- mindspore/ops/operations/random_ops.py +258 -98
- mindspore/ops/operations/rl_ops.py +4 -36
- mindspore/ops/operations/sparse_ops.py +38 -33
- mindspore/ops/operations/spectral_ops.py +8 -4
- mindspore/ops/primitive.py +66 -44
- mindspore/ops/signature.py +5 -5
- mindspore/parallel/_auto_parallel_context.py +80 -19
- mindspore/parallel/_cost_model_context.py +42 -0
- mindspore/parallel/_offload_context.py +162 -72
- mindspore/parallel/_parallel_serialization.py +2 -2
- mindspore/parallel/_ps_context.py +16 -4
- mindspore/parallel/_recovery_context.py +2 -1
- mindspore/parallel/_tensor.py +15 -13
- mindspore/parallel/_transformer/layers.py +8 -6
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +7 -7
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +34 -14
- mindspore/parallel/_utils.py +36 -14
- mindspore/parallel/algo_parameter_config.py +114 -20
- mindspore/parallel/checkpoint_transform.py +16 -18
- mindspore/parallel/shard.py +16 -13
- mindspore/profiler/__init__.py +1 -1
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +3 -2
- mindspore/profiler/envprofiling.py +11 -4
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +94 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
- mindspore/profiler/parser/ascend_op_generator.py +276 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
- mindspore/profiler/parser/base_timeline_generator.py +11 -7
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +92 -73
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +36 -11
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +4 -5
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +678 -377
- mindspore/rewrite/api/node.py +211 -54
- mindspore/rewrite/api/node_type.py +5 -0
- mindspore/rewrite/api/pattern_engine.py +22 -23
- mindspore/rewrite/api/scoped_value.py +20 -17
- mindspore/rewrite/api/symbol_tree.py +252 -106
- mindspore/rewrite/api/tree_node_helper.py +3 -0
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +51 -51
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +313 -247
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/node/node_topological_manager.py +243 -0
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +225 -239
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +179 -218
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +36 -15
- mindspore/rewrite/parsers/function_def_parser.py +23 -20
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +202 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/sparsify.py +4 -1
- mindspore/rewrite/sparsify/utils.py +11 -5
- mindspore/rewrite/symbol_tree.py +577 -732
- mindspore/rewrite/symbol_tree_builder.py +9 -175
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +46 -39
- mindspore/run_check/run_check.py +3 -2
- mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
- mindspore/safeguard/rewrite_obfuscation.py +517 -0
- mindspore/scipy/__init__.py +1 -1
- mindspore/scipy/linalg.py +67 -61
- mindspore/scipy/ops.py +5 -41
- mindspore/scipy/ops_grad.py +3 -2
- mindspore/scipy/ops_wrapper.py +5 -5
- mindspore/scipy/optimize/line_search.py +8 -8
- mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
- mindspore/scipy/optimize/minimize.py +16 -12
- mindspore/scipy/utils.py +1 -52
- mindspore/scipy/utils_const.py +4 -4
- mindspore/train/__init__.py +4 -4
- mindspore/train/_utils.py +13 -5
- mindspore/train/amp.py +410 -148
- mindspore/train/anf_ir_pb2.py +16 -4
- mindspore/train/callback/_backup_and_restore.py +8 -11
- mindspore/train/callback/_callback.py +80 -3
- mindspore/train/callback/_checkpoint.py +82 -51
- mindspore/train/callback/_early_stop.py +12 -15
- mindspore/train/callback/_history.py +1 -1
- mindspore/train/callback/_lambda_callback.py +13 -13
- mindspore/train/callback/_landscape.py +21 -17
- mindspore/train/callback/_loss_monitor.py +9 -10
- mindspore/train/callback/_on_request_exit.py +16 -33
- mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
- mindspore/train/callback/_summary_collector.py +44 -30
- mindspore/train/callback/_time_monitor.py +62 -12
- mindspore/train/data_sink.py +10 -16
- mindspore/train/dataset_helper.py +154 -86
- mindspore/train/loss_scale_manager.py +14 -9
- mindspore/train/metrics/__init__.py +10 -2
- mindspore/train/metrics/accuracy.py +1 -1
- mindspore/train/metrics/auc.py +1 -1
- mindspore/train/metrics/bleu_score.py +2 -2
- mindspore/train/metrics/confusion_matrix.py +14 -14
- mindspore/train/metrics/cosine_similarity.py +3 -3
- mindspore/train/metrics/dice.py +1 -1
- mindspore/train/metrics/fbeta.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +8 -6
- mindspore/train/metrics/mean_surface_distance.py +5 -4
- mindspore/train/metrics/metric.py +49 -17
- mindspore/train/metrics/occlusion_sensitivity.py +4 -4
- mindspore/train/metrics/perplexity.py +1 -1
- mindspore/train/metrics/precision.py +2 -2
- mindspore/train/metrics/recall.py +2 -3
- mindspore/train/metrics/roc.py +7 -7
- mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
- mindspore/train/metrics/topk.py +7 -4
- mindspore/train/mind_ir_pb2.py +193 -48
- mindspore/train/model.py +377 -133
- mindspore/train/serialization.py +697 -245
- mindspore/train/summary/_summary_adapter.py +5 -2
- mindspore/train/summary/_writer_pool.py +4 -3
- mindspore/train/summary/summary_record.py +25 -23
- mindspore/train/train_thor/convert_utils.py +39 -23
- mindspore/train/train_thor/dataset_helper.py +4 -3
- mindspore/train/train_thor/model_thor.py +8 -8
- mindspore/version.py +1 -1
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +647 -818
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/_extends/parse/jit_fallback_modules.py +0 -51
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/dataset/engine/graphdata.py +0 -1586
- mindspore/include/api/net.h +0 -142
- mindspore/ops/_grad/grad_array_ops.py +0 -1347
- mindspore/ops/_grad/grad_clip_ops.py +0 -84
- mindspore/ops/_grad/grad_debug_ops.py +0 -68
- mindspore/ops/_grad/grad_inner_ops.py +0 -235
- mindspore/ops/_grad/grad_math_ops.py +0 -1684
- mindspore/ops/_grad/grad_nn_ops.py +0 -1529
- mindspore/ops/_grad/grad_other_ops.py +0 -89
- mindspore/ops/_grad/grad_sequence_ops.py +0 -296
- mindspore/ops/_grad/grad_sparse.py +0 -323
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
- mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
- mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
- mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
- mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
- mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
- mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
- mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
- mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
- mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
- mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
- mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
- mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
- mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
- mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
- mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
- mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
- mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
- mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
- mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
- mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
- mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
- mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
- mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
- mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
- mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
- mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
- mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
- mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
- mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
- mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
- mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
- mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
- mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
- mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
- mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
- mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
- mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
- mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- mindspore/rewrite/topological_manager.py +0 -203
- mindspore/scipy/sparse/linalg.py +0 -192
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
- {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
|
@@ -82,12 +82,17 @@ class TruncatedNormal(Primitive):
|
|
|
82
82
|
|
|
83
83
|
Note:
|
|
84
84
|
- The value of `shape` must be greater than zero. The output length can not exceed 1000000.
|
|
85
|
-
-
|
|
86
|
-
|
|
85
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
86
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
87
|
+
separate calls, the random number generated will not change.
|
|
88
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
89
|
+
to worry about which seed is more important.
|
|
87
90
|
|
|
88
91
|
Args:
|
|
89
|
-
seed (int, optional):
|
|
90
|
-
|
|
92
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
93
|
+
must be non-negative. Default: ``0`` .
|
|
94
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
95
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
91
96
|
dtype (mindspore.dtype, optional): Specified output data type. Must be one of the following types:
|
|
92
97
|
mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
|
|
93
98
|
|
|
@@ -140,12 +145,22 @@ class StandardNormal(Primitive):
|
|
|
140
145
|
|
|
141
146
|
Refer to :func:`mindspore.ops.standard_normal` for more details.
|
|
142
147
|
|
|
148
|
+
Note:
|
|
149
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
150
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
151
|
+
separate calls, the random number generated will not change.
|
|
152
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
153
|
+
to worry about which seed is more important.
|
|
154
|
+
|
|
143
155
|
Args:
|
|
144
|
-
seed (int):
|
|
145
|
-
|
|
156
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
157
|
+
must be non-negative. Default: ``0`` .
|
|
158
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
159
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
146
160
|
|
|
147
161
|
Inputs:
|
|
148
162
|
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
163
|
+
Supported dtypes: int32, int64.
|
|
149
164
|
|
|
150
165
|
Outputs:
|
|
151
166
|
Tensor. The shape is the same as the input `shape`. The dtype is float32.
|
|
@@ -181,9 +196,18 @@ class StandardLaplace(Primitive):
|
|
|
181
196
|
.. math::
|
|
182
197
|
\text{f}(x) = \frac{1}{2}\exp(-|x|)
|
|
183
198
|
|
|
199
|
+
Note:
|
|
200
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
201
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
202
|
+
separate calls, the random number generated will not change.
|
|
203
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
204
|
+
to worry about which seed is more important.
|
|
205
|
+
|
|
184
206
|
Args:
|
|
185
|
-
seed (int):
|
|
186
|
-
|
|
207
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
208
|
+
must be non-negative. Default: ``0`` .
|
|
209
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
210
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
187
211
|
|
|
188
212
|
Inputs:
|
|
189
213
|
- **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed
|
|
@@ -203,6 +227,7 @@ class StandardLaplace(Primitive):
|
|
|
203
227
|
``Ascend`` ``GPU`` ``CPU``
|
|
204
228
|
|
|
205
229
|
Examples:
|
|
230
|
+
>>> from mindspore import ops
|
|
206
231
|
>>> shape = (4, 16)
|
|
207
232
|
>>> stdlaplace = ops.StandardLaplace(seed=2)
|
|
208
233
|
>>> output = stdlaplace(shape)
|
|
@@ -224,23 +249,18 @@ class RandomGamma(Primitive):
|
|
|
224
249
|
r"""
|
|
225
250
|
Produces random positive floating-point values x, distributed according to probability density function:
|
|
226
251
|
|
|
227
|
-
|
|
228
|
-
- Random seed:
|
|
229
|
-
and the random seed
|
|
230
|
-
number
|
|
231
|
-
-
|
|
232
|
-
|
|
233
|
-
with a randomly generated seed.
|
|
234
|
-
- Global random seed is not set, operator-level random seed is set: The default global random seed is used,
|
|
235
|
-
and splices with the operator-level random seed.
|
|
236
|
-
- Both Global random and operator-level random seed are set: The global random seed will splice with the
|
|
237
|
-
operator-level random seed.
|
|
252
|
+
Note:
|
|
253
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
254
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
255
|
+
separate calls, the random number generated will not change.
|
|
256
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
257
|
+
to worry about which seed is more important.
|
|
238
258
|
|
|
239
259
|
Args:
|
|
240
260
|
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
241
|
-
must be non-negative. Default: 0.
|
|
261
|
+
must be non-negative. Default: ``0`` .
|
|
242
262
|
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
243
|
-
random seed to determine the final generated random number, must be non-negative. Default: 0.
|
|
263
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
244
264
|
|
|
245
265
|
Inputs:
|
|
246
266
|
- **shape** (Tensor) - The shape of random tensor to be generated. It must be constant value.
|
|
@@ -261,6 +281,9 @@ class RandomGamma(Primitive):
|
|
|
261
281
|
``CPU``
|
|
262
282
|
|
|
263
283
|
Examples:
|
|
284
|
+
>>> import numpy as np
|
|
285
|
+
>>> from mindspore import Tensor, ops
|
|
286
|
+
>>> from mindspore import dtype as mstype
|
|
264
287
|
>>> shape = Tensor(np.array([3, 1, 2]), mstype.int32)
|
|
265
288
|
>>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mstype.float32)
|
|
266
289
|
>>> gamma = ops.RandomGamma(seed=3)
|
|
@@ -291,9 +314,9 @@ class LogNormalReverse(Primitive):
|
|
|
291
314
|
|
|
292
315
|
Args:
|
|
293
316
|
mean (float, optional): the mean of normal distribution. With float data type.
|
|
294
|
-
Default: 1.0.
|
|
317
|
+
Default: ``1.0`` .
|
|
295
318
|
std (float, optional): the std of normal distribution. With float data type.
|
|
296
|
-
Default: 2.0.
|
|
319
|
+
Default: ``2.0`` .
|
|
297
320
|
|
|
298
321
|
Inputs:
|
|
299
322
|
- **input** (Tensor) - The tensor to be generated with log-normal distribution.
|
|
@@ -335,22 +358,18 @@ class Gamma(PrimitiveWithInfer):
|
|
|
335
358
|
.. math::
|
|
336
359
|
\text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}
|
|
337
360
|
|
|
338
|
-
|
|
339
|
-
- Random seed:
|
|
340
|
-
and the random seed
|
|
341
|
-
number
|
|
342
|
-
-
|
|
343
|
-
|
|
344
|
-
with a randomly generated seed.
|
|
345
|
-
- Global random seed is not set, operator-level random seed is set: The default global random seed is used,
|
|
346
|
-
and splices with the operator-level random seed.
|
|
347
|
-
- Both Global random and operator-level random seed are set: The global random seed will splice with the
|
|
348
|
-
operator-level random seed.
|
|
361
|
+
Note:
|
|
362
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
363
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
364
|
+
separate calls, the random number generated will not change.
|
|
365
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
366
|
+
to worry about which seed is more important.
|
|
349
367
|
|
|
350
368
|
Args:
|
|
351
|
-
seed (int): The operator-level random seed, used to generate random numbers,
|
|
352
|
-
|
|
353
|
-
|
|
369
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
370
|
+
must be non-negative. Default: ``0`` .
|
|
371
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
372
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
354
373
|
|
|
355
374
|
Inputs:
|
|
356
375
|
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
@@ -373,6 +392,9 @@ class Gamma(PrimitiveWithInfer):
|
|
|
373
392
|
``Ascend``
|
|
374
393
|
|
|
375
394
|
Examples:
|
|
395
|
+
>>> import numpy as np
|
|
396
|
+
>>> from mindspore import Tensor, ops
|
|
397
|
+
>>> from mindspore import dtype as mstype
|
|
376
398
|
>>> shape = (3, 1, 2)
|
|
377
399
|
>>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mstype.float32)
|
|
378
400
|
>>> beta = Tensor(np.array([1.0]), mstype.float32)
|
|
@@ -420,12 +442,17 @@ class ParameterizedTruncatedNormal(Primitive):
|
|
|
420
442
|
|
|
421
443
|
Note:
|
|
422
444
|
- The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
|
|
423
|
-
-
|
|
424
|
-
|
|
445
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
446
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
447
|
+
separate calls, the random number generated will not change.
|
|
448
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
449
|
+
to worry about which seed is more important.
|
|
425
450
|
|
|
426
451
|
Args:
|
|
427
|
-
seed (int, optional):
|
|
428
|
-
|
|
452
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
453
|
+
must be non-negative. Default: ``0`` .
|
|
454
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
455
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
429
456
|
|
|
430
457
|
Inputs:
|
|
431
458
|
- **shape** (Tensor) - The shape of random tensor to be generated.
|
|
@@ -492,9 +519,18 @@ class Poisson(PrimitiveWithInfer):
|
|
|
492
519
|
.. math::
|
|
493
520
|
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
494
521
|
|
|
522
|
+
Note:
|
|
523
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
524
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
525
|
+
separate calls, the random number generated will not change.
|
|
526
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
527
|
+
to worry about which seed is more important.
|
|
528
|
+
|
|
495
529
|
Args:
|
|
496
|
-
seed (int):
|
|
497
|
-
|
|
530
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
531
|
+
must be non-negative. Default: ``0`` .
|
|
532
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
533
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
498
534
|
|
|
499
535
|
Inputs:
|
|
500
536
|
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
@@ -557,12 +593,19 @@ class RandomPoisson(Primitive):
|
|
|
557
593
|
.. math::
|
|
558
594
|
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
|
559
595
|
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
596
|
+
Note:
|
|
597
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
598
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
599
|
+
separate calls, the random number generated will not change.
|
|
600
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
601
|
+
to worry about which seed is more important.
|
|
564
602
|
|
|
565
|
-
|
|
603
|
+
Args:
|
|
604
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
605
|
+
must be non-negative. Default: ``0`` .
|
|
606
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
607
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
608
|
+
dtype (mindspore.dtype, optional): The type of output. Default: ``mstype.int64`` .
|
|
566
609
|
|
|
567
610
|
Inputs:
|
|
568
611
|
- **shape** (Tensor) - The shape of random tensor to be generated, 1-D Tensor, whose dtype must be in
|
|
@@ -583,6 +626,9 @@ class RandomPoisson(Primitive):
|
|
|
583
626
|
``GPU`` ``CPU``
|
|
584
627
|
|
|
585
628
|
Examples:
|
|
629
|
+
>>> import numpy as np
|
|
630
|
+
>>> from mindspore import Tensor, ops
|
|
631
|
+
>>> from mindspore import dtype as mstype
|
|
586
632
|
>>> shape = Tensor(np.array([2, 3]), mstype.int32)
|
|
587
633
|
>>> rate = Tensor(np.array([2, 2]), mstype.int32)
|
|
588
634
|
>>> seed = 0
|
|
@@ -618,11 +664,17 @@ class UniformInt(Primitive):
|
|
|
618
664
|
|
|
619
665
|
Note:
|
|
620
666
|
- The number in tensor minval must be strictly less than maxval at any position after broadcasting.
|
|
621
|
-
-
|
|
667
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
668
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
669
|
+
separate calls, the random number generated will not change.
|
|
670
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
671
|
+
to worry about which seed is more important.
|
|
622
672
|
|
|
623
673
|
Args:
|
|
624
|
-
seed (int):
|
|
625
|
-
|
|
674
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
675
|
+
must be non-negative. Default: ``0`` .
|
|
676
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
677
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
626
678
|
|
|
627
679
|
Inputs:
|
|
628
680
|
- **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed.
|
|
@@ -644,6 +696,8 @@ class UniformInt(Primitive):
|
|
|
644
696
|
``Ascend`` ``GPU`` ``CPU``
|
|
645
697
|
|
|
646
698
|
Examples:
|
|
699
|
+
>>> from mindspore import Tensor, ops
|
|
700
|
+
>>> from mindspore import dtype as mstype
|
|
647
701
|
>>> shape = (2, 4)
|
|
648
702
|
>>> minval = Tensor(1, mstype.int32)
|
|
649
703
|
>>> maxval = Tensor(5, mstype.int32)
|
|
@@ -668,19 +722,24 @@ class UniformReal(Primitive):
|
|
|
668
722
|
r"""
|
|
669
723
|
Produces random floating-point values, uniformly distributed to the interval [0, 1).
|
|
670
724
|
|
|
725
|
+
Note:
|
|
726
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
727
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
728
|
+
separate calls, the random number generated will not change.
|
|
729
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
730
|
+
to worry about which seed is more important.
|
|
731
|
+
- Currently, on the Ascend platform, `shape` as a Tensor is not supported.
|
|
732
|
+
This is supported on CPU/GPU platforms. When the input is a Tensor,
|
|
733
|
+
the supported data types are as follows:
|
|
734
|
+
|
|
735
|
+
- GPU: int32, int64.
|
|
736
|
+
- CPU: int16, int32, int64.
|
|
737
|
+
|
|
671
738
|
Args:
|
|
672
|
-
seed (int): The operator-level random seed, used to generate random numbers,
|
|
673
|
-
|
|
674
|
-
|
|
675
|
-
|
|
676
|
-
.. note::
|
|
677
|
-
- Global random seed and operator-level random seed are not set: Use a randomly generated seed.
|
|
678
|
-
- Global random seed is set, but operator-level random seed is not set: A global random seed will splice
|
|
679
|
-
with a randomly generated seed.
|
|
680
|
-
- Global random seed is not set, operator-level random seed is set: The default global random seed is used,
|
|
681
|
-
and splices with the operator-level random seed.
|
|
682
|
-
- Both Global random and operator-level random seed are set: The global random seed will splice with the
|
|
683
|
-
operator-level random seed.
|
|
739
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
740
|
+
must be non-negative. Default: ``0`` .
|
|
741
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
742
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
684
743
|
|
|
685
744
|
Inputs:
|
|
686
745
|
- **shape** (Union[tuple, Tensor]) - The shape of tensor to be generated. Only constant value is allowed.
|
|
@@ -697,6 +756,7 @@ class UniformReal(Primitive):
|
|
|
697
756
|
``Ascend`` ``GPU`` ``CPU``
|
|
698
757
|
|
|
699
758
|
Examples:
|
|
759
|
+
>>> from mindspore import ops
|
|
700
760
|
>>> shape = (2, 2)
|
|
701
761
|
>>> uniformreal = ops.UniformReal(seed=2)
|
|
702
762
|
>>> output = uniformreal(shape)
|
|
@@ -704,6 +764,7 @@ class UniformReal(Primitive):
|
|
|
704
764
|
>>> print(result)
|
|
705
765
|
(2, 2)
|
|
706
766
|
"""
|
|
767
|
+
|
|
707
768
|
@prim_attr_register
|
|
708
769
|
def __init__(self, seed=0, seed2=0):
|
|
709
770
|
"""Initialize UniformReal"""
|
|
@@ -719,11 +780,19 @@ class RandomChoiceWithMask(Primitive):
|
|
|
719
780
|
|
|
720
781
|
Refer to :func:`mindspore.ops.choice_with_mask` for more details.
|
|
721
782
|
|
|
783
|
+
Note:
|
|
784
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
785
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
786
|
+
separate calls, the random number generated will not change.
|
|
787
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
788
|
+
to worry about which seed is more important.
|
|
789
|
+
|
|
722
790
|
Args:
|
|
723
|
-
count (int, optional): Number of items expected to get and the number must be greater than 0. Default: 256.
|
|
724
|
-
seed (int, optional):
|
|
725
|
-
|
|
726
|
-
seed2 (int, optional):
|
|
791
|
+
count (int, optional): Number of items expected to get and the number must be greater than 0. Default: ``256`` .
|
|
792
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
793
|
+
must be non-negative. Default: ``0`` .
|
|
794
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
795
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
727
796
|
|
|
728
797
|
Inputs:
|
|
729
798
|
- **input_x** (Tensor[bool]) - The input tensor.
|
|
@@ -732,13 +801,15 @@ class RandomChoiceWithMask(Primitive):
|
|
|
732
801
|
Outputs:
|
|
733
802
|
Two tensors, the first one is the index tensor and the other one is the mask tensor.
|
|
734
803
|
|
|
735
|
-
- **index** (Tensor) - The output shape is 2-D
|
|
736
|
-
- **mask** (Tensor) - The output shape is 1-D
|
|
804
|
+
- **index** (Tensor) - The output shape is 2-D, its shape is :math:`(count, rank of input_x)`.
|
|
805
|
+
- **mask** (Tensor) - The output shape is 1-D, its shape is :math:`(count)`.
|
|
737
806
|
|
|
738
807
|
Supported Platforms:
|
|
739
808
|
``Ascend`` ``GPU`` ``CPU``
|
|
740
809
|
|
|
741
810
|
Examples:
|
|
811
|
+
>>> import numpy as np
|
|
812
|
+
>>> from mindspore import Tensor, ops
|
|
742
813
|
>>> rnd_choice_mask = ops.RandomChoiceWithMask()
|
|
743
814
|
>>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool))
|
|
744
815
|
>>> output_y, output_mask = rnd_choice_mask(input_x)
|
|
@@ -765,19 +836,19 @@ class RandomCategorical(PrimitiveWithInfer):
|
|
|
765
836
|
Generates random samples from a given categorical distribution tensor.
|
|
766
837
|
|
|
767
838
|
Args:
|
|
768
|
-
dtype (mindspore.dtype): The type of output. Its value must be one of
|
|
769
|
-
|
|
839
|
+
dtype (mindspore.dtype): The type of output. Its value must be one of mstype.int16,
|
|
840
|
+
mstype.int32 and mstype.int64. Default: ``mstype.int64`` .
|
|
770
841
|
|
|
771
842
|
Inputs:
|
|
772
843
|
- **logits** (Tensor) - The input tensor. 2-D Tensor with shape :math:`(batch\_size, num\_classes)`.
|
|
773
844
|
- **num_sample** (int) - Number of sample to be drawn. Only constant values is allowed.
|
|
774
|
-
- **seed** (int) - Random seed. Default: 0. Only constant values is allowed.
|
|
845
|
+
- **seed** (int) - Random seed. Default: ``0`` . Only constant values is allowed.
|
|
775
846
|
|
|
776
847
|
Outputs:
|
|
777
|
-
- **output** (Tensor) - The output Tensor with shape :math:`(
|
|
848
|
+
- **output** (Tensor) - The output Tensor with shape :math:`(batch\_size, num\_samples)`.
|
|
778
849
|
|
|
779
850
|
Raises:
|
|
780
|
-
TypeError: If `dtype` is not one of the following:
|
|
851
|
+
TypeError: If `dtype` is not one of the following: mstype.int16, mstype.int32, mstype.int64.
|
|
781
852
|
TypeError: If `logits` is not a Tensor.
|
|
782
853
|
TypeError: If neither `num_sample` nor `seed` is an int.
|
|
783
854
|
|
|
@@ -785,6 +856,9 @@ class RandomCategorical(PrimitiveWithInfer):
|
|
|
785
856
|
``Ascend`` ``GPU`` ``CPU``
|
|
786
857
|
|
|
787
858
|
Examples:
|
|
859
|
+
>>> import mindspore
|
|
860
|
+
>>> import numpy as np
|
|
861
|
+
>>> from mindspore import nn, ops, Tensor
|
|
788
862
|
>>> class Net(nn.Cell):
|
|
789
863
|
... def __init__(self, num_sample):
|
|
790
864
|
... super(Net, self).__init__()
|
|
@@ -819,13 +893,21 @@ class Multinomial(Primitive):
|
|
|
819
893
|
row of tensor input.
|
|
820
894
|
|
|
821
895
|
Note:
|
|
822
|
-
The rows of input do not need to sum to one (in which case we use the values as weights),
|
|
823
|
-
|
|
896
|
+
- The rows of input do not need to sum to one (in which case we use the values as weights),
|
|
897
|
+
but must be non-negative, finite and have a non-zero sum.
|
|
898
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
899
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
900
|
+
separate calls, the random number generated will not change.
|
|
901
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
902
|
+
to worry about which seed is more important.
|
|
824
903
|
|
|
825
904
|
Args:
|
|
826
|
-
seed (int):
|
|
827
|
-
|
|
828
|
-
|
|
905
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
906
|
+
must be non-negative. Default: ``0`` .
|
|
907
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
908
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
909
|
+
dtype(mindspore.dtype, optional): The type of output, must be ``mstype.int32`` or ``mstype.int64``.
|
|
910
|
+
Default: ``mstype.int32``.
|
|
829
911
|
|
|
830
912
|
Inputs:
|
|
831
913
|
- **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
|
|
@@ -838,13 +920,15 @@ class Multinomial(Primitive):
|
|
|
838
920
|
Raises:
|
|
839
921
|
TypeError: If neither `seed` nor `seed2` is an int.
|
|
840
922
|
TypeError: If dtype of `num_samples` is not int.
|
|
841
|
-
TypeError: If `dtype` is not int32 or int64.
|
|
923
|
+
TypeError: If `dtype` is not mstype.int32 or mstype.int64.
|
|
842
924
|
ValueError: If `seed` or `seed2` is less than 0.
|
|
843
925
|
|
|
844
926
|
Supported Platforms:
|
|
845
927
|
``Ascend`` ``GPU`` ``CPU``
|
|
846
928
|
|
|
847
929
|
Examples:
|
|
930
|
+
>>> from mindspore import Tensor, ops
|
|
931
|
+
>>> from mindspore import dtype as mstype
|
|
848
932
|
>>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
|
|
849
933
|
>>> multinomial = ops.Multinomial(seed=10)
|
|
850
934
|
>>> output = multinomial(x, 2)
|
|
@@ -881,13 +965,13 @@ class MultinomialWithReplacement(Primitive):
|
|
|
881
965
|
|
|
882
966
|
Args:
|
|
883
967
|
numsamples (int): number of samples to draw, must be a nonnegative number.
|
|
884
|
-
replacement (bool, optional): Whether to draw with replacement or not. Default: False.
|
|
968
|
+
replacement (bool, optional): Whether to draw with replacement or not. Default: ``False`` .
|
|
885
969
|
|
|
886
970
|
Inputs:
|
|
887
971
|
- **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
|
|
888
972
|
dimensions.
|
|
889
|
-
- **seed** (Tensor) - If `seed`
|
|
890
|
-
|
|
973
|
+
- **seed** (Tensor) - If `seed` and 'offset' are both set to 0, the random number generator
|
|
974
|
+
is seeded by a random seed. Otherwise, it is seeded by the given seed and offset.
|
|
891
975
|
Supported dtype: int64.
|
|
892
976
|
- **offset** (Tensor) - Offset used to avoid seed collision. Supported dtype: int64.
|
|
893
977
|
|
|
@@ -898,6 +982,8 @@ class MultinomialWithReplacement(Primitive):
|
|
|
898
982
|
``CPU``
|
|
899
983
|
|
|
900
984
|
Examples:
|
|
985
|
+
>>> from mindspore import Tensor, ops
|
|
986
|
+
>>> from mindspore import dtype as mstype
|
|
901
987
|
>>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
|
|
902
988
|
>>> seed = Tensor(2, mstype.int64)
|
|
903
989
|
>>> offset = Tensor(5, mstype.int64)
|
|
@@ -924,10 +1010,36 @@ class UniformCandidateSampler(Primitive):
|
|
|
924
1010
|
|
|
925
1011
|
Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more details.
|
|
926
1012
|
|
|
1013
|
+
Args:
|
|
1014
|
+
num_true (int): The number of target classes in each training example.
|
|
1015
|
+
num_sampled (int): The number of classes to randomly sample. The sampled_candidates will have a shape
|
|
1016
|
+
of num_sampled. If unique=True, num_sampled must be less than or equal to range_max.
|
|
1017
|
+
unique (bool): Whether all sampled classes in a batch are unique.
|
|
1018
|
+
range_max (int): The number of possible classes, must be non-negative.
|
|
1019
|
+
seed (int, optional): Used for random number generation, must be non-negative. If seed has a value of 0,
|
|
1020
|
+
the seed will be replaced with a randomly generated value. Default: ``0`` .
|
|
1021
|
+
remove_accidental_hits (bool, optional): Whether accidental hit is removed.
|
|
1022
|
+
Accidental hit is when one of the true classes matches one of the sample classes.
|
|
1023
|
+
Set ``True`` to remove which accidentally sampling the true class as sample class. Default: ``False`` .
|
|
1024
|
+
|
|
1025
|
+
Inputs:
|
|
1026
|
+
- **true_classes** (Tensor) - A Tensor. The target classes with a Tensor shape of
|
|
1027
|
+
:math:`(batch\_size, num\_true)`.
|
|
1028
|
+
|
|
1029
|
+
Outputs:
|
|
1030
|
+
- **sampled_candidates** (Tensor) - The sampled_candidates is independent of the true classes.
|
|
1031
|
+
Shape: :math:`(num\_sampled, )`.
|
|
1032
|
+
- **true_expected_count** (Tensor) - The expected counts under the sampling distribution of each
|
|
1033
|
+
of true_classes. Shape: :math:`(batch\_size, num\_true)`.
|
|
1034
|
+
- **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of
|
|
1035
|
+
each of sampled_candidates. Shape: :math:`(num\_sampled, )`.
|
|
1036
|
+
|
|
927
1037
|
Supported Platforms:
|
|
928
1038
|
``Ascend`` ``GPU`` ``CPU``
|
|
929
1039
|
|
|
930
1040
|
Examples:
|
|
1041
|
+
>>> import numpy as np
|
|
1042
|
+
>>> from mindspore import Tensor, ops
|
|
931
1043
|
>>> sampler = ops.UniformCandidateSampler(1, 3, False, 4, 1)
|
|
932
1044
|
>>> output1, output2, output3 = sampler(Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int64)))
|
|
933
1045
|
>>> print(output1.shape)
|
|
@@ -964,7 +1076,6 @@ class UniformCandidateSampler(Primitive):
|
|
|
964
1076
|
self.add_prim_attr("side_effect_hidden", True)
|
|
965
1077
|
|
|
966
1078
|
|
|
967
|
-
|
|
968
1079
|
class LogUniformCandidateSampler(Primitive):
|
|
969
1080
|
r"""
|
|
970
1081
|
Generates random labels with a log-uniform distribution for sampled_candidates.
|
|
@@ -973,10 +1084,33 @@ class LogUniformCandidateSampler(Primitive):
|
|
|
973
1084
|
|
|
974
1085
|
Refer to :func:`mindspore.ops.log_uniform_candidate_sampler` for more details.
|
|
975
1086
|
|
|
1087
|
+
Args:
|
|
1088
|
+
num_true (int, optional): The number of target classes per training example. Default: ``1`` .
|
|
1089
|
+
num_sampled (int, optional): The number of classes to randomly sample. Default: ``5`` .
|
|
1090
|
+
unique (bool, optional): Determines whether sample with rejection. If `unique` is ``True`` ,
|
|
1091
|
+
all sampled classes in a batch are unique. Default: ``True`` .
|
|
1092
|
+
range_max (int, optional): The number of possible classes. When `unique` is ``True`` ,
|
|
1093
|
+
`range_max` must be greater than or equal to `num_sampled`. Default: ``5`` .
|
|
1094
|
+
seed (int, optional): Random seed, must be non-negative. Default: ``0`` .
|
|
1095
|
+
|
|
1096
|
+
Inputs:
|
|
1097
|
+
- **true_classes** (Tensor) - The target classes. With data type of int64 and
|
|
1098
|
+
shape :math:`(batch\_size, num\_true)` .
|
|
1099
|
+
|
|
1100
|
+
Outputs:
|
|
1101
|
+
Tuple of 3 Tensors.
|
|
1102
|
+
|
|
1103
|
+
- **sampled_candidates** (Tensor) - A Tensor with shape :math:`(num\_sampled,)`
|
|
1104
|
+
and the same type as `true_classes`.
|
|
1105
|
+
- **true_expected_count** (Tensor) - A Tensor with the same shape as `true_classes and` type float32.
|
|
1106
|
+
- **sampled_expected_count** (Tensor) - A Tensor with the same shape as `sampled_candidates` and type float32.
|
|
1107
|
+
|
|
976
1108
|
Supported Platforms:
|
|
977
1109
|
``Ascend`` ``CPU``
|
|
978
1110
|
|
|
979
1111
|
Examples:
|
|
1112
|
+
>>> import numpy as np
|
|
1113
|
+
>>> from mindspore import Tensor, ops
|
|
980
1114
|
>>> sampler = ops.LogUniformCandidateSampler(2, 5, True, 5)
|
|
981
1115
|
>>> output1, output2, output3 = sampler(Tensor(np.array([[1, 7], [0, 4], [3, 3]])))
|
|
982
1116
|
>>> print(output1, output2, output3)
|
|
@@ -1017,12 +1151,18 @@ class RandomShuffle(Primitive):
|
|
|
1017
1151
|
r"""
|
|
1018
1152
|
Randomly shuffles a Tensor along its first dimension.
|
|
1019
1153
|
|
|
1154
|
+
Note:
|
|
1155
|
+
- Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
|
|
1156
|
+
and the random seed determines the initial value of this random number. If the random seed is the same in two
|
|
1157
|
+
separate calls, the random number generated will not change.
|
|
1158
|
+
- Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
|
|
1159
|
+
to worry about which seed is more important.
|
|
1160
|
+
|
|
1020
1161
|
Args:
|
|
1021
|
-
seed (int, optional):
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
the seed of the random generator. It must be non-negative. Default: 0.
|
|
1162
|
+
seed (int, optional): The operator-level random seed, used to generate random numbers,
|
|
1163
|
+
must be non-negative. Default: ``0`` .
|
|
1164
|
+
seed2 (int, optional): The global random seed, which combines with the operator-level
|
|
1165
|
+
random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
|
|
1026
1166
|
|
|
1027
1167
|
Inputs:
|
|
1028
1168
|
- **x** (Tensor) - The Tensor need be shuffled.
|
|
@@ -1037,6 +1177,9 @@ class RandomShuffle(Primitive):
|
|
|
1037
1177
|
``Ascend`` ``GPU`` ``CPU``
|
|
1038
1178
|
|
|
1039
1179
|
Examples:
|
|
1180
|
+
>>> import numpy as np
|
|
1181
|
+
>>> from mindspore import Tensor, ops
|
|
1182
|
+
>>> from mindspore import dtype as mstype
|
|
1040
1183
|
>>> x = Tensor(np.array([1, 2, 3, 4]), mstype.float32)
|
|
1041
1184
|
>>> shuffle = ops.RandomShuffle(seed=1, seed2=1)
|
|
1042
1185
|
>>> output = shuffle(x)
|
|
@@ -1058,8 +1201,8 @@ class Uniform(Primitive):
|
|
|
1058
1201
|
Generates random numbers according to the Uniform random number distribution.
|
|
1059
1202
|
|
|
1060
1203
|
Args:
|
|
1061
|
-
minval(float):must be non-negative. Default: 0.0.
|
|
1062
|
-
maxval(float):must be non-negative. Default: 1.0.
|
|
1204
|
+
minval(float):must be non-negative. Default: ``0.0`` .
|
|
1205
|
+
maxval(float):must be non-negative. Default: ``1.0`` .
|
|
1063
1206
|
|
|
1064
1207
|
Inputs:
|
|
1065
1208
|
- **x** (Tensor) - The x of random tensor to be generated.
|
|
@@ -1102,28 +1245,45 @@ class RandpermV2(Primitive):
|
|
|
1102
1245
|
r"""
|
|
1103
1246
|
Generates random permutation of integers from 0 to n-1 without repeating.
|
|
1104
1247
|
|
|
1105
|
-
Refer to :func:`mindspore.ops.randperm` for more
|
|
1248
|
+
Refer to :func:`mindspore.ops.randperm` for more details.
|
|
1249
|
+
|
|
1250
|
+
.. warning::
|
|
1251
|
+
This is an experimental API that is subject to change or deletion.
|
|
1252
|
+
|
|
1253
|
+
Args:
|
|
1254
|
+
dtype (mindspore.dtype, optional): The type of output.
|
|
1255
|
+
Its value must be one of the following types: int32, int16, int8,
|
|
1256
|
+
uint8, int64, float64, float32, float16. Default: mstype.int64.
|
|
1257
|
+
|
|
1258
|
+
Inputs:
|
|
1259
|
+
- **n** (Union[Tensor, int]) - The input n Tensor with shape :math:`()` or :math:`(1,)`
|
|
1260
|
+
and with data type of int64.
|
|
1261
|
+
- **seed** (int, optional) - Random seed. Default: ``0`` . When `seed` is ``-1`` (only negative value),
|
|
1262
|
+
`offset` is ``0``, it's determined by time.
|
|
1263
|
+
- **offset** (int, optional) - Offset to generate random numbers. Priority is higher than random seed.
|
|
1264
|
+
Default: ``0`` . It must be non-negative.
|
|
1265
|
+
|
|
1266
|
+
Outputs:
|
|
1267
|
+
Tensor. Its shape is specified by the required args `n`. Its type is specified by `dtype`.
|
|
1268
|
+
Otherwise is default.
|
|
1106
1269
|
|
|
1107
1270
|
Supported Platforms:
|
|
1108
|
-
``CPU``
|
|
1271
|
+
``Ascend`` ``CPU``
|
|
1109
1272
|
|
|
1110
1273
|
Examples:
|
|
1111
1274
|
>>> n = Tensor([4], mstype.int64)
|
|
1112
1275
|
>>> seed = 0
|
|
1113
1276
|
>>> offset = 0
|
|
1114
|
-
>>> randperm = ops.RandpermV2(
|
|
1277
|
+
>>> randperm = ops.RandpermV2(dtype=mstype.int64)
|
|
1115
1278
|
>>> output = randperm(n, seed, offset)
|
|
1116
1279
|
>>> print(output)
|
|
1117
1280
|
[1 0 2 3]
|
|
1118
1281
|
"""
|
|
1119
1282
|
|
|
1120
1283
|
@prim_attr_register
|
|
1121
|
-
def __init__(self,
|
|
1284
|
+
def __init__(self, dtype=mstype.int64):
|
|
1122
1285
|
"""Initialize RandpermV2"""
|
|
1123
1286
|
self.dtype = dtype
|
|
1124
|
-
self.layout = layout
|
|
1125
|
-
Validator.check_value_type('layout', layout, [int], self.name)
|
|
1126
|
-
Validator.check_non_negative_int(layout, 'layout', self.name)
|
|
1127
1287
|
valid_values = (mstype.int32, mstype.int64, mstype.int16, mstype.int8, mstype.uint8, mstype.float64
|
|
1128
1288
|
, mstype.float32, mstype.float16)
|
|
1129
1289
|
Validator.check_type_name("dtype", dtype, valid_values, self.name)
|