mindspore 2.0.0rc1__cp38-cp38-manylinux1_x86_64.whl → 2.2.0__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (884) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +2 -2
  3. mindspore/__init__.py +5 -2
  4. mindspore/_akg/akg/build_module.py +5 -6
  5. mindspore/_akg/akg/composite/build_module.py +49 -16
  6. mindspore/_akg/akg/composite/split_stitch.py +10 -11
  7. mindspore/_akg/akg/config/repository.json +195 -0
  8. mindspore/_akg/akg/global_configs.py +5 -1
  9. mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
  10. mindspore/_akg/akg/tvm/api.py +4 -3
  11. mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
  12. mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
  13. mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
  14. mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
  15. mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
  16. mindspore/_akg/akg/tvm/build_module.py +16 -1
  17. mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
  18. mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
  19. mindspore/_akg/akg/tvm/ir_builder.py +1 -1
  20. mindspore/_akg/akg/tvm/module.py +1 -2
  21. mindspore/_akg/akg/tvm/stmt.py +2 -2
  22. mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
  23. mindspore/_akg/akg/utils/kernel_exec.py +58 -260
  24. mindspore/_akg/akg/utils/op_dsl.py +17 -1
  25. mindspore/_akg/akg/utils/result_analysis.py +4 -24
  26. mindspore/_akg/akg/utils/tbe_codegen_utils.py +198 -0
  27. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  28. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  29. mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
  30. mindspore/_check_jit_forbidden_api.py +5 -1
  31. mindspore/_checkparam.py +79 -62
  32. mindspore/_extends/graph_kernel/__init__.py +0 -1
  33. mindspore/_extends/graph_kernel/model/graph_split.py +2 -0
  34. mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
  35. mindspore/_extends/graph_kernel/splitter.py +1 -9
  36. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +128 -21
  37. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +2 -2
  38. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
  39. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +18 -13
  40. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +13 -9
  41. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
  42. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
  43. mindspore/_extends/parse/__init__.py +19 -17
  44. mindspore/_extends/parse/namespace.py +7 -36
  45. mindspore/_extends/parse/parser.py +375 -189
  46. mindspore/_extends/parse/resources.py +36 -41
  47. mindspore/_extends/parse/standard_method.py +350 -245
  48. mindspore/_extends/parse/trope.py +2 -12
  49. mindspore/_extends/remote/kernel_build_server.py +24 -7
  50. mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
  51. mindspore/_install_custom.py +43 -0
  52. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  53. mindspore/amp.py +85 -19
  54. mindspore/bin/cache_admin +0 -0
  55. mindspore/bin/cache_server +0 -0
  56. mindspore/boost/base.py +2 -2
  57. mindspore/boost/boost.py +27 -32
  58. mindspore/boost/boost_cell_wrapper.py +37 -13
  59. mindspore/boost/grad_accumulation.py +1 -1
  60. mindspore/boost/grad_freeze.py +34 -6
  61. mindspore/boost/group_loss_scale_manager.py +15 -14
  62. mindspore/boost/less_batch_normalization.py +28 -3
  63. mindspore/common/__init__.py +15 -11
  64. mindspore/common/_auto_dynamic.py +68 -0
  65. mindspore/common/_jit_fallback_utils.py +111 -0
  66. mindspore/common/_register_for_adapter.py +17 -5
  67. mindspore/common/_register_for_tensor.py +2 -2
  68. mindspore/common/_stub_tensor.py +18 -15
  69. mindspore/common/_utils.py +31 -7
  70. mindspore/common/api.py +269 -101
  71. mindspore/common/auto_dynamic_shape.py +498 -0
  72. mindspore/common/dtype.py +61 -21
  73. mindspore/common/dump.py +9 -7
  74. mindspore/common/initializer.py +106 -76
  75. mindspore/common/jit_config.py +35 -14
  76. mindspore/common/lazy_inline.py +187 -0
  77. mindspore/common/mindir_util.py +101 -0
  78. mindspore/common/mutable.py +10 -13
  79. mindspore/common/parameter.py +246 -55
  80. mindspore/common/seed.py +13 -7
  81. mindspore/common/sparse_tensor.py +29 -33
  82. mindspore/common/tensor.py +907 -251
  83. mindspore/communication/__init__.py +7 -4
  84. mindspore/communication/_comm_helper.py +84 -4
  85. mindspore/communication/management.py +160 -88
  86. mindspore/config/op_info.config +99 -75
  87. mindspore/config/super_bar_config.json +36 -4
  88. mindspore/context.py +526 -219
  89. mindspore/dataset/__init__.py +9 -46
  90. mindspore/dataset/audio/__init__.py +4 -19
  91. mindspore/dataset/audio/transforms.py +545 -233
  92. mindspore/dataset/audio/utils.py +21 -18
  93. mindspore/dataset/callback/ds_callback.py +42 -13
  94. mindspore/dataset/core/config.py +158 -100
  95. mindspore/dataset/core/validator_helpers.py +1 -63
  96. mindspore/dataset/debug/debug_hook.py +45 -13
  97. mindspore/dataset/debug/pre_defined_hook.py +5 -5
  98. mindspore/dataset/engine/__init__.py +0 -5
  99. mindspore/dataset/engine/cache_client.py +38 -15
  100. mindspore/dataset/engine/datasets.py +615 -278
  101. mindspore/dataset/engine/datasets_audio.py +154 -283
  102. mindspore/dataset/engine/datasets_standard_format.py +104 -116
  103. mindspore/dataset/engine/datasets_text.py +443 -326
  104. mindspore/dataset/engine/datasets_user_defined.py +251 -164
  105. mindspore/dataset/engine/datasets_vision.py +839 -1443
  106. mindspore/dataset/engine/iterators.py +11 -4
  107. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +7 -3
  108. mindspore/dataset/engine/obs/util.py +3 -0
  109. mindspore/dataset/engine/offload.py +6 -6
  110. mindspore/dataset/engine/queue.py +15 -14
  111. mindspore/dataset/engine/samplers.py +39 -23
  112. mindspore/dataset/engine/serializer_deserializer.py +22 -6
  113. mindspore/dataset/engine/validators.py +21 -331
  114. mindspore/dataset/text/__init__.py +5 -33
  115. mindspore/dataset/text/transforms.py +334 -165
  116. mindspore/dataset/text/utils.py +215 -145
  117. mindspore/dataset/transforms/__init__.py +1 -1
  118. mindspore/dataset/transforms/c_transforms.py +3 -2
  119. mindspore/dataset/transforms/py_transforms_util.py +40 -12
  120. mindspore/dataset/transforms/transforms.py +174 -71
  121. mindspore/dataset/utils/browse_dataset.py +25 -17
  122. mindspore/dataset/utils/line_reader.py +24 -21
  123. mindspore/dataset/vision/__init__.py +5 -26
  124. mindspore/dataset/vision/c_transforms.py +177 -165
  125. mindspore/dataset/vision/py_transforms.py +114 -119
  126. mindspore/dataset/vision/py_transforms_util.py +54 -51
  127. mindspore/dataset/vision/transforms.py +1127 -381
  128. mindspore/dataset/vision/utils.py +54 -38
  129. mindspore/dataset/vision/validators.py +12 -2
  130. mindspore/experimental/map_parameter.py +38 -4
  131. mindspore/{dataset/datapreprocess → experimental/optim}/__init__.py +14 -4
  132. mindspore/experimental/optim/adam.py +192 -0
  133. mindspore/experimental/optim/adamw.py +181 -0
  134. mindspore/experimental/optim/lr_scheduler.py +1427 -0
  135. mindspore/experimental/optim/optimizer.py +252 -0
  136. mindspore/experimental/optim/sgd.py +147 -0
  137. mindspore/gen_ops.py +273 -0
  138. mindspore/include/OWNERS +1 -2
  139. mindspore/include/api/context.h +21 -1
  140. mindspore/include/api/data_type.h +2 -1
  141. mindspore/include/api/graph.h +0 -15
  142. mindspore/include/api/kernel.h +2 -0
  143. mindspore/include/api/kernel_api.h +37 -12
  144. mindspore/include/api/model.h +29 -42
  145. mindspore/include/api/model_group.h +14 -3
  146. mindspore/include/api/model_parallel_runner.h +18 -2
  147. mindspore/include/api/serialization.h +26 -0
  148. mindspore/include/api/status.h +1 -0
  149. mindspore/include/api/types.h +38 -4
  150. mindspore/include/c_api/ms/abstract.h +67 -0
  151. mindspore/include/c_api/ms/attribute.h +197 -0
  152. mindspore/include/c_api/ms/base/handle_types.h +43 -0
  153. mindspore/include/c_api/ms/base/macros.h +32 -0
  154. mindspore/include/c_api/ms/base/status.h +33 -0
  155. mindspore/include/c_api/ms/base/types.h +282 -0
  156. mindspore/include/c_api/ms/context.h +102 -0
  157. mindspore/include/c_api/ms/graph.h +160 -0
  158. mindspore/include/c_api/ms/node.h +606 -0
  159. mindspore/include/c_api/ms/tensor.h +161 -0
  160. mindspore/include/c_api/ms/value.h +84 -0
  161. mindspore/include/c_api/status_c.h +3 -0
  162. mindspore/include/dataset/constants.h +6 -12
  163. mindspore/include/dataset/execute.h +23 -13
  164. mindspore/include/dataset/text.h +26 -26
  165. mindspore/include/dataset/transforms.h +25 -31
  166. mindspore/include/dataset/vision.h +60 -60
  167. mindspore/include/dataset/vision_ascend.h +5 -6
  168. mindspore/include/dataset/vision_lite.h +17 -17
  169. mindspore/include/mindapi/base/format.h +0 -1
  170. mindspore/include/mindapi/base/type_id.h +2 -1
  171. mindspore/include/mindapi/base/types.h +5 -1
  172. mindspore/lib/libdnnl.so.2 +0 -0
  173. mindspore/lib/libjemalloc.so.2 +0 -0
  174. mindspore/lib/libmindspore.so +0 -0
  175. mindspore/lib/libmindspore_backend.so +0 -0
  176. mindspore/lib/libmindspore_common.so +0 -0
  177. mindspore/lib/libmindspore_core.so +0 -0
  178. mindspore/lib/libmindspore_glog.so.0 +0 -0
  179. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  180. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  181. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  182. mindspore/lib/libmindspore_shared_lib.so +0 -0
  183. mindspore/lib/libmpi_adapter.so +0 -0
  184. mindspore/lib/libnnacl.so +0 -0
  185. mindspore/lib/libopencv_core.so.4.5 +0 -0
  186. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  187. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  188. mindspore/lib/libps_cache.so +0 -0
  189. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  190. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  191. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +9000 -0
  192. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  193. mindspore/lib/plugin/ascend/libakg.so +0 -0
  194. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  195. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  196. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  197. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  198. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  199. mindspore/lib/plugin/cpu/libakg.so +0 -0
  200. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  201. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  202. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  203. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  204. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  205. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  206. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  207. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  208. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  209. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  210. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  211. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  212. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  213. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  214. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  215. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  216. mindspore/log.py +9 -6
  217. mindspore/mindrecord/filereader.py +33 -4
  218. mindspore/mindrecord/filewriter.py +70 -35
  219. mindspore/mindrecord/mindpage.py +40 -34
  220. mindspore/mindrecord/shardreader.py +1 -1
  221. mindspore/mindrecord/shardsegment.py +1 -1
  222. mindspore/mindrecord/tools/cifar100_to_mr.py +25 -18
  223. mindspore/mindrecord/tools/cifar10_to_mr.py +25 -18
  224. mindspore/mindrecord/tools/csv_to_mr.py +29 -13
  225. mindspore/mindrecord/tools/imagenet_to_mr.py +24 -10
  226. mindspore/mindrecord/tools/mnist_to_mr.py +24 -11
  227. mindspore/mindrecord/tools/tfrecord_to_mr.py +31 -26
  228. mindspore/nn/cell.py +463 -169
  229. mindspore/nn/dynamic_lr.py +47 -43
  230. mindspore/nn/layer/activation.py +225 -82
  231. mindspore/nn/layer/basic.py +121 -79
  232. mindspore/nn/layer/channel_shuffle.py +21 -21
  233. mindspore/nn/layer/combined.py +33 -26
  234. mindspore/nn/layer/container.py +277 -22
  235. mindspore/nn/layer/conv.py +441 -304
  236. mindspore/nn/layer/dense.py +19 -13
  237. mindspore/nn/layer/embedding.py +62 -49
  238. mindspore/nn/layer/flash_attention.py +264 -0
  239. mindspore/nn/layer/image.py +50 -39
  240. mindspore/nn/layer/math.py +62 -51
  241. mindspore/nn/layer/normalization.py +219 -167
  242. mindspore/nn/layer/padding.py +58 -70
  243. mindspore/nn/layer/pooling.py +334 -287
  244. mindspore/nn/layer/rnn_cells.py +53 -38
  245. mindspore/nn/layer/rnns.py +59 -56
  246. mindspore/nn/layer/thor_layer.py +52 -44
  247. mindspore/nn/layer/timedistributed.py +6 -4
  248. mindspore/nn/layer/transformer.py +284 -164
  249. mindspore/nn/learning_rate_schedule.py +34 -25
  250. mindspore/nn/loss/__init__.py +3 -2
  251. mindspore/nn/loss/loss.py +554 -311
  252. mindspore/nn/optim/ada_grad.py +12 -9
  253. mindspore/nn/optim/adadelta.py +14 -11
  254. mindspore/nn/optim/adafactor.py +19 -16
  255. mindspore/nn/optim/adam.py +62 -47
  256. mindspore/nn/optim/adamax.py +13 -10
  257. mindspore/nn/optim/adasum.py +12 -8
  258. mindspore/nn/optim/asgd.py +10 -9
  259. mindspore/nn/optim/ftrl.py +20 -17
  260. mindspore/nn/optim/lamb.py +16 -12
  261. mindspore/nn/optim/lars.py +8 -6
  262. mindspore/nn/optim/lazyadam.py +25 -20
  263. mindspore/nn/optim/momentum.py +10 -7
  264. mindspore/nn/optim/optimizer.py +61 -9
  265. mindspore/nn/optim/proximal_ada_grad.py +14 -13
  266. mindspore/nn/optim/rmsprop.py +17 -13
  267. mindspore/nn/optim/rprop.py +30 -17
  268. mindspore/nn/optim/sgd.py +40 -23
  269. mindspore/nn/optim/thor.py +24 -26
  270. mindspore/nn/probability/bijector/bijector.py +11 -11
  271. mindspore/nn/probability/bijector/exp.py +1 -1
  272. mindspore/nn/probability/bijector/gumbel_cdf.py +3 -3
  273. mindspore/nn/probability/bijector/invert.py +1 -1
  274. mindspore/nn/probability/bijector/power_transform.py +29 -29
  275. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  276. mindspore/nn/probability/bijector/softplus.py +5 -5
  277. mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +4 -2
  278. mindspore/nn/probability/bnn_layers/conv_variational.py +13 -13
  279. mindspore/nn/probability/bnn_layers/dense_variational.py +12 -12
  280. mindspore/nn/probability/bnn_layers/layer_distribution.py +9 -8
  281. mindspore/nn/probability/distribution/_utils/custom_ops.py +19 -3
  282. mindspore/nn/probability/distribution/_utils/utils.py +1 -1
  283. mindspore/nn/probability/distribution/bernoulli.py +9 -9
  284. mindspore/nn/probability/distribution/beta.py +8 -8
  285. mindspore/nn/probability/distribution/categorical.py +23 -15
  286. mindspore/nn/probability/distribution/cauchy.py +5 -6
  287. mindspore/nn/probability/distribution/distribution.py +3 -3
  288. mindspore/nn/probability/distribution/exponential.py +4 -4
  289. mindspore/nn/probability/distribution/gamma.py +10 -10
  290. mindspore/nn/probability/distribution/geometric.py +8 -8
  291. mindspore/nn/probability/distribution/gumbel.py +8 -9
  292. mindspore/nn/probability/distribution/half_normal.py +5 -5
  293. mindspore/nn/probability/distribution/laplace.py +5 -5
  294. mindspore/nn/probability/distribution/log_normal.py +12 -11
  295. mindspore/nn/probability/distribution/logistic.py +8 -8
  296. mindspore/nn/probability/distribution/normal.py +6 -5
  297. mindspore/nn/probability/distribution/poisson.py +10 -11
  298. mindspore/nn/probability/distribution/student_t.py +8 -9
  299. mindspore/nn/probability/distribution/transformed_distribution.py +5 -5
  300. mindspore/nn/probability/distribution/uniform.py +11 -11
  301. mindspore/nn/reinforcement/tensor_array.py +2 -2
  302. mindspore/nn/sparse/sparse.py +9 -9
  303. mindspore/nn/wrap/cell_wrapper.py +188 -63
  304. mindspore/nn/wrap/grad_reducer.py +21 -12
  305. mindspore/nn/wrap/loss_scale.py +136 -49
  306. mindspore/numpy/__init__.py +4 -4
  307. mindspore/numpy/array_creations.py +55 -56
  308. mindspore/numpy/array_ops.py +134 -35
  309. mindspore/numpy/logic_ops.py +66 -20
  310. mindspore/numpy/math_ops.py +142 -139
  311. mindspore/numpy/utils_const.py +2 -2
  312. mindspore/offline_debug/convert_async.py +2 -2
  313. mindspore/ops/_grad_experimental/__init__.py +7 -5
  314. mindspore/ops/_grad_experimental/grad_array_ops.py +231 -348
  315. mindspore/ops/{_grad → _grad_experimental}/grad_base.py +1 -33
  316. mindspore/ops/{_grad → _grad_experimental}/grad_comm_ops.py +25 -13
  317. mindspore/ops/{_grad/__init__.py → _grad_experimental/grad_debug_ops.py} +15 -7
  318. mindspore/ops/{_grad → _grad_experimental}/grad_implementations.py +17 -11
  319. mindspore/ops/_grad_experimental/grad_inner_ops.py +33 -52
  320. mindspore/ops/_grad_experimental/grad_math_ops.py +151 -1224
  321. mindspore/ops/_grad_experimental/grad_nn_ops.py +141 -414
  322. mindspore/ops/{_grad → _grad_experimental}/grad_quant_ops.py +10 -6
  323. mindspore/ops/_grad_experimental/grad_sparse.py +317 -2
  324. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -13
  325. mindspore/ops/{_grad → _grad_experimental}/taylor_rule.py +1 -1
  326. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
  327. mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
  328. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +406 -0
  329. mindspore/{_extends/graph_kernel/expanders/complex/__init__.py → ops/_op_impl/_custom_op/flash_attention/constants.py} +27 -8
  330. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +467 -0
  331. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +563 -0
  332. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +193 -0
  333. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +435 -0
  334. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  335. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +45 -0
  336. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +67 -0
  337. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +62 -0
  338. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  339. mindspore/ops/_op_impl/aicpu/__init__.py +41 -1
  340. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
  341. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
  342. mindspore/ops/_op_impl/aicpu/cast.py +52 -0
  343. mindspore/ops/_op_impl/aicpu/coalesce.py +2 -0
  344. mindspore/ops/_op_impl/aicpu/col2im.py +3 -1
  345. mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
  346. mindspore/ops/_op_impl/aicpu/dropout_genmask.py +6 -0
  347. mindspore/ops/_op_impl/aicpu/eps.py +32 -0
  348. mindspore/ops/_op_impl/aicpu/eye.py +4 -4
  349. mindspore/ops/_op_impl/aicpu/fft_with_size.py +6 -0
  350. mindspore/ops/_op_impl/aicpu/fill_diagonal.py +5 -0
  351. mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
  352. mindspore/ops/_op_impl/aicpu/im2col.py +3 -5
  353. mindspore/ops/_op_impl/aicpu/lgamma.py +1 -0
  354. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
  355. mindspore/ops/_op_impl/aicpu/lu.py +39 -0
  356. mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
  357. mindspore/ops/_op_impl/aicpu/masked_scatter.py +1 -0
  358. mindspore/ops/_op_impl/aicpu/masked_select_grad.py +3 -0
  359. mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
  360. mindspore/ops/_op_impl/aicpu/matrix_power.py +6 -1
  361. mindspore/ops/_op_impl/aicpu/median.py +1 -0
  362. mindspore/ops/_op_impl/aicpu/multinomial.py +9 -9
  363. mindspore/ops/_op_impl/aicpu/not_equal.py +0 -5
  364. mindspore/ops/_op_impl/aicpu/pad_v3.py +3 -1
  365. mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +2 -0
  366. mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
  367. mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
  368. mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
  369. mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
  370. mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
  371. mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +0 -1
  372. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +0 -6
  373. mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +0 -7
  374. mindspore/ops/_op_impl/aicpu/scatter_nd.py +2 -0
  375. mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
  376. mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
  377. mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
  378. mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
  379. mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -4
  380. mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -4
  381. mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
  382. mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
  383. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
  384. mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
  385. mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
  386. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +14 -6
  387. mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +22 -8
  388. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +11 -6
  389. mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +21 -10
  390. mindspore/ops/_op_impl/tbe/__init__.py +6 -4
  391. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  392. mindspore/ops/_op_impl/tbe/avg_pool.py +2 -2
  393. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +3 -3
  394. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +4 -4
  395. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +2 -2
  396. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +3 -3
  397. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +3 -3
  398. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  399. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +2 -2
  400. mindspore/ops/_op_impl/tbe/bn_infer.py +2 -2
  401. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +3 -2
  402. mindspore/ops/_op_impl/tbe/broadcast_to.py +1 -1
  403. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +3 -3
  404. mindspore/ops/_op_impl/tbe/expand_dims.py +1 -1
  405. mindspore/ops/_op_impl/tbe/gather_v2.py +56 -0
  406. mindspore/ops/_op_impl/tbe/im2col.py +4 -4
  407. mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
  408. mindspore/ops/_op_impl/tbe/mem_set.py +38 -0
  409. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +3 -0
  410. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +1 -1
  411. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  412. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +2 -2
  413. mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
  414. mindspore/ops/_primitive_cache.py +1 -1
  415. mindspore/ops/_tracefunc.py +241 -0
  416. mindspore/ops/_utils/utils.py +10 -2
  417. mindspore/ops/_vmap/vmap_array_ops.py +5 -3
  418. mindspore/ops/_vmap/vmap_base.py +5 -4
  419. mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
  420. mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
  421. mindspore/ops/_vmap/vmap_grad_nn_ops.py +11 -6
  422. mindspore/ops/_vmap/vmap_math_ops.py +5 -2
  423. mindspore/ops/_vmap/vmap_nn_ops.py +135 -11
  424. mindspore/ops/arg_dtype_cast.py +54 -0
  425. mindspore/ops/composite/__init__.py +7 -5
  426. mindspore/ops/composite/base.py +78 -34
  427. mindspore/ops/composite/math_ops.py +5 -695
  428. mindspore/ops/composite/multitype_ops/_compile_utils.py +403 -97
  429. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +28 -22
  430. mindspore/ops/composite/multitype_ops/add_impl.py +69 -7
  431. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  432. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  433. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -0
  434. mindspore/ops/composite/multitype_ops/div_impl.py +1 -0
  435. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -0
  436. mindspore/ops/composite/multitype_ops/getitem_impl.py +48 -10
  437. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +2 -0
  438. mindspore/ops/composite/multitype_ops/greater_impl.py +2 -0
  439. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -0
  440. mindspore/ops/composite/multitype_ops/less_equal_impl.py +2 -0
  441. mindspore/ops/composite/multitype_ops/less_impl.py +2 -0
  442. mindspore/ops/composite/multitype_ops/logic_not_impl.py +2 -2
  443. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -0
  444. mindspore/ops/composite/multitype_ops/mul_impl.py +1 -0
  445. mindspore/ops/composite/multitype_ops/negative_impl.py +1 -0
  446. mindspore/ops/composite/multitype_ops/not_in_impl.py +1 -0
  447. mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
  448. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  449. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -0
  450. mindspore/ops/composite/multitype_ops/setitem_impl.py +10 -7
  451. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -0
  452. mindspore/ops/composite/multitype_ops/uadd_impl.py +2 -0
  453. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
  454. mindspore/ops/deprecated.py +304 -0
  455. mindspore/ops/function/__init__.py +41 -4
  456. mindspore/ops/function/array_func.py +1108 -467
  457. mindspore/ops/function/clip_func.py +94 -27
  458. mindspore/ops/function/debug_func.py +3 -1
  459. mindspore/ops/function/grad/grad_func.py +82 -73
  460. mindspore/ops/function/image_func.py +28 -12
  461. mindspore/ops/function/linalg_func.py +135 -39
  462. mindspore/ops/function/math_func.py +3779 -894
  463. mindspore/ops/function/nn_func.py +1584 -657
  464. mindspore/ops/function/parameter_func.py +13 -3
  465. mindspore/ops/function/random_func.py +247 -153
  466. mindspore/ops/function/sparse_func.py +14 -11
  467. mindspore/ops/function/sparse_unary_func.py +173 -47
  468. mindspore/ops/function/spectral_func.py +8 -4
  469. mindspore/ops/function/vmap_func.py +8 -7
  470. mindspore/ops/functional.py +47 -16
  471. mindspore/ops/op_info_register.py +346 -86
  472. mindspore/ops/operations/__init__.py +38 -22
  473. mindspore/ops/operations/_grad_ops.py +145 -149
  474. mindspore/ops/operations/_inner_ops.py +298 -56
  475. mindspore/ops/operations/_ms_kernel.py +3 -3
  476. mindspore/ops/operations/_quant_ops.py +24 -28
  477. mindspore/ops/operations/_rl_inner_ops.py +9 -7
  478. mindspore/ops/operations/_scalar_ops.py +115 -0
  479. mindspore/ops/operations/_sequence_ops.py +148 -10
  480. mindspore/ops/operations/_tensor_array.py +1 -1
  481. mindspore/ops/operations/_thor_ops.py +2 -2
  482. mindspore/ops/operations/array_ops.py +1239 -561
  483. mindspore/ops/operations/comm_ops.py +166 -90
  484. mindspore/ops/operations/control_ops.py +3 -3
  485. mindspore/ops/operations/custom_ops.py +124 -102
  486. mindspore/ops/operations/debug_ops.py +24 -11
  487. mindspore/ops/operations/image_ops.py +86 -71
  488. mindspore/ops/operations/inner_ops.py +18 -13
  489. mindspore/ops/operations/linalg_ops.py +30 -11
  490. mindspore/ops/operations/math_ops.py +1730 -435
  491. mindspore/ops/operations/nn_ops.py +1953 -943
  492. mindspore/ops/operations/other_ops.py +65 -43
  493. mindspore/ops/operations/random_ops.py +258 -98
  494. mindspore/ops/operations/rl_ops.py +4 -36
  495. mindspore/ops/operations/sparse_ops.py +38 -33
  496. mindspore/ops/operations/spectral_ops.py +8 -4
  497. mindspore/ops/primitive.py +66 -44
  498. mindspore/ops/signature.py +5 -5
  499. mindspore/parallel/_auto_parallel_context.py +80 -19
  500. mindspore/parallel/_cost_model_context.py +42 -0
  501. mindspore/parallel/_offload_context.py +162 -72
  502. mindspore/parallel/_parallel_serialization.py +2 -2
  503. mindspore/parallel/_ps_context.py +16 -4
  504. mindspore/parallel/_recovery_context.py +2 -1
  505. mindspore/parallel/_tensor.py +15 -13
  506. mindspore/parallel/_transformer/layers.py +8 -6
  507. mindspore/parallel/_transformer/loss.py +1 -0
  508. mindspore/parallel/_transformer/moe.py +7 -7
  509. mindspore/parallel/_transformer/op_parallel_config.py +12 -1
  510. mindspore/parallel/_transformer/transformer.py +34 -14
  511. mindspore/parallel/_utils.py +36 -14
  512. mindspore/parallel/algo_parameter_config.py +114 -20
  513. mindspore/parallel/checkpoint_transform.py +16 -18
  514. mindspore/parallel/shard.py +16 -13
  515. mindspore/profiler/__init__.py +1 -1
  516. mindspore/profiler/common/struct_type.py +3 -3
  517. mindspore/profiler/common/util.py +3 -2
  518. mindspore/profiler/envprofiling.py +11 -4
  519. mindspore/profiler/parser/aicpu_data_parser.py +5 -3
  520. mindspore/profiler/parser/ascend_flops_generator.py +94 -0
  521. mindspore/profiler/parser/ascend_fpbp_generator.py +76 -0
  522. mindspore/profiler/parser/ascend_hccl_generator.py +288 -0
  523. mindspore/profiler/parser/ascend_msprof_exporter.py +213 -0
  524. mindspore/profiler/parser/ascend_msprof_generator.py +199 -0
  525. mindspore/profiler/parser/ascend_op_generator.py +276 -0
  526. mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
  527. mindspore/profiler/parser/ascend_timeline_generator.py +110 -54
  528. mindspore/profiler/parser/base_timeline_generator.py +11 -7
  529. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +45 -46
  530. mindspore/profiler/parser/flops_parser.py +15 -11
  531. mindspore/profiler/parser/framework_parser.py +92 -73
  532. mindspore/profiler/parser/hccl_parser.py +16 -12
  533. mindspore/profiler/parser/integrator.py +22 -11
  534. mindspore/profiler/parser/memory_usage_parser.py +36 -11
  535. mindspore/profiler/parser/minddata_analyzer.py +12 -14
  536. mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
  537. mindspore/profiler/parser/msadvisor_parser.py +8 -4
  538. mindspore/profiler/parser/op_intermediate_parser.py +5 -2
  539. mindspore/profiler/parser/optime_parser.py +1 -1
  540. mindspore/profiler/parser/profiler_info.py +4 -5
  541. mindspore/profiler/parser/step_trace_parser.py +11 -14
  542. mindspore/profiler/profiling.py +678 -377
  543. mindspore/rewrite/api/node.py +211 -54
  544. mindspore/rewrite/api/node_type.py +5 -0
  545. mindspore/rewrite/api/pattern_engine.py +22 -23
  546. mindspore/rewrite/api/scoped_value.py +20 -17
  547. mindspore/rewrite/api/symbol_tree.py +252 -106
  548. mindspore/rewrite/api/tree_node_helper.py +3 -0
  549. mindspore/rewrite/ast_helpers/__init__.py +2 -1
  550. mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
  551. mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
  552. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +97 -46
  553. mindspore/rewrite/common/rewrite_elog.py +5 -1
  554. mindspore/rewrite/namer.py +51 -51
  555. mindspore/rewrite/namespace.py +14 -5
  556. mindspore/{ops/bprop_mindir → rewrite/node}/__init__.py +9 -4
  557. mindspore/rewrite/node/call_function.py +79 -0
  558. mindspore/rewrite/node/cell_container.py +135 -0
  559. mindspore/rewrite/node/control_flow.py +88 -0
  560. mindspore/rewrite/{node.py → node/node.py} +313 -247
  561. mindspore/rewrite/node/node_manager.py +254 -0
  562. mindspore/rewrite/node/node_topological_manager.py +243 -0
  563. mindspore/rewrite/parsers/arguments_parser.py +22 -21
  564. mindspore/rewrite/parsers/assign_parser.py +225 -239
  565. mindspore/rewrite/parsers/attribute_parser.py +9 -7
  566. mindspore/rewrite/parsers/class_def_parser.py +179 -218
  567. mindspore/rewrite/parsers/constant_parser.py +9 -6
  568. mindspore/rewrite/parsers/container_parser.py +9 -7
  569. mindspore/rewrite/parsers/for_parser.py +36 -15
  570. mindspore/rewrite/parsers/function_def_parser.py +23 -20
  571. mindspore/rewrite/parsers/if_parser.py +28 -24
  572. mindspore/rewrite/parsers/module_parser.py +202 -25
  573. mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
  574. mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
  575. mindspore/rewrite/parsers/return_parser.py +6 -6
  576. mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
  577. mindspore/rewrite/sparsify/sparsify.py +4 -1
  578. mindspore/rewrite/sparsify/utils.py +11 -5
  579. mindspore/rewrite/symbol_tree.py +577 -732
  580. mindspore/rewrite/symbol_tree_builder.py +9 -175
  581. mindspore/rewrite/symbol_tree_dumper.py +2 -2
  582. mindspore/run_check/_check_version.py +46 -39
  583. mindspore/run_check/run_check.py +3 -2
  584. mindspore/{scipy/sparse → safeguard}/__init__.py +4 -5
  585. mindspore/safeguard/rewrite_obfuscation.py +517 -0
  586. mindspore/scipy/__init__.py +1 -1
  587. mindspore/scipy/linalg.py +67 -61
  588. mindspore/scipy/ops.py +5 -41
  589. mindspore/scipy/ops_grad.py +3 -2
  590. mindspore/scipy/ops_wrapper.py +5 -5
  591. mindspore/scipy/optimize/line_search.py +8 -8
  592. mindspore/scipy/optimize/linear_sum_assignment.py +4 -4
  593. mindspore/scipy/optimize/minimize.py +16 -12
  594. mindspore/scipy/utils.py +1 -52
  595. mindspore/scipy/utils_const.py +4 -4
  596. mindspore/train/__init__.py +4 -4
  597. mindspore/train/_utils.py +13 -5
  598. mindspore/train/amp.py +410 -148
  599. mindspore/train/anf_ir_pb2.py +16 -4
  600. mindspore/train/callback/_backup_and_restore.py +8 -11
  601. mindspore/train/callback/_callback.py +80 -3
  602. mindspore/train/callback/_checkpoint.py +82 -51
  603. mindspore/train/callback/_early_stop.py +12 -15
  604. mindspore/train/callback/_history.py +1 -1
  605. mindspore/train/callback/_lambda_callback.py +13 -13
  606. mindspore/train/callback/_landscape.py +21 -17
  607. mindspore/train/callback/_loss_monitor.py +9 -10
  608. mindspore/train/callback/_on_request_exit.py +16 -33
  609. mindspore/train/callback/_reduce_lr_on_plateau.py +21 -24
  610. mindspore/train/callback/_summary_collector.py +44 -30
  611. mindspore/train/callback/_time_monitor.py +62 -12
  612. mindspore/train/data_sink.py +10 -16
  613. mindspore/train/dataset_helper.py +154 -86
  614. mindspore/train/loss_scale_manager.py +14 -9
  615. mindspore/train/metrics/__init__.py +10 -2
  616. mindspore/train/metrics/accuracy.py +1 -1
  617. mindspore/train/metrics/auc.py +1 -1
  618. mindspore/train/metrics/bleu_score.py +2 -2
  619. mindspore/train/metrics/confusion_matrix.py +14 -14
  620. mindspore/train/metrics/cosine_similarity.py +3 -3
  621. mindspore/train/metrics/dice.py +1 -1
  622. mindspore/train/metrics/fbeta.py +1 -1
  623. mindspore/train/metrics/hausdorff_distance.py +8 -6
  624. mindspore/train/metrics/mean_surface_distance.py +5 -4
  625. mindspore/train/metrics/metric.py +49 -17
  626. mindspore/train/metrics/occlusion_sensitivity.py +4 -4
  627. mindspore/train/metrics/perplexity.py +1 -1
  628. mindspore/train/metrics/precision.py +2 -2
  629. mindspore/train/metrics/recall.py +2 -3
  630. mindspore/train/metrics/roc.py +7 -7
  631. mindspore/train/metrics/root_mean_square_surface_distance.py +5 -4
  632. mindspore/train/metrics/topk.py +7 -4
  633. mindspore/train/mind_ir_pb2.py +193 -48
  634. mindspore/train/model.py +377 -133
  635. mindspore/train/serialization.py +697 -245
  636. mindspore/train/summary/_summary_adapter.py +5 -2
  637. mindspore/train/summary/_writer_pool.py +4 -3
  638. mindspore/train/summary/summary_record.py +25 -23
  639. mindspore/train/train_thor/convert_utils.py +39 -23
  640. mindspore/train/train_thor/dataset_helper.py +4 -3
  641. mindspore/train/train_thor/model_thor.py +8 -8
  642. mindspore/version.py +1 -1
  643. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/METADATA +7 -8
  644. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/RECORD +647 -818
  645. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/entry_points.txt +0 -1
  646. mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
  647. mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
  648. mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
  649. mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
  650. mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
  651. mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
  652. mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
  653. mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
  654. mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
  655. mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
  656. mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
  657. mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
  658. mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
  659. mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
  660. mindspore/_akg/akg/tvm/rpc/base.py +0 -182
  661. mindspore/_akg/akg/tvm/rpc/client.py +0 -436
  662. mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
  663. mindspore/_akg/akg/tvm/rpc/server.py +0 -413
  664. mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
  665. mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
  666. mindspore/_extends/graph_kernel/expander.py +0 -80
  667. mindspore/_extends/graph_kernel/expanders/__init__.py +0 -57
  668. mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
  669. mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
  670. mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
  671. mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
  672. mindspore/_extends/graph_kernel/expanders/bias_add_grad.py +0 -49
  673. mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
  674. mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
  675. mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
  676. mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
  677. mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
  678. mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
  679. mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
  680. mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
  681. mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
  682. mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
  683. mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
  684. mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
  685. mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
  686. mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
  687. mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
  688. mindspore/_extends/graph_kernel/expanders/gather.py +0 -43
  689. mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
  690. mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
  691. mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
  692. mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
  693. mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
  694. mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
  695. mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
  696. mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
  697. mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
  698. mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
  699. mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
  700. mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
  701. mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
  702. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
  703. mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
  704. mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
  705. mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
  706. mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
  707. mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
  708. mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
  709. mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
  710. mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
  711. mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
  712. mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
  713. mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
  714. mindspore/_extends/graph_kernel/expanders/tile.py +0 -54
  715. mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
  716. mindspore/_extends/parse/jit_fallback_modules.py +0 -51
  717. mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
  718. mindspore/dataset/engine/graphdata.py +0 -1586
  719. mindspore/include/api/net.h +0 -142
  720. mindspore/ops/_grad/grad_array_ops.py +0 -1347
  721. mindspore/ops/_grad/grad_clip_ops.py +0 -84
  722. mindspore/ops/_grad/grad_debug_ops.py +0 -68
  723. mindspore/ops/_grad/grad_inner_ops.py +0 -235
  724. mindspore/ops/_grad/grad_math_ops.py +0 -1684
  725. mindspore/ops/_grad/grad_nn_ops.py +0 -1529
  726. mindspore/ops/_grad/grad_other_ops.py +0 -89
  727. mindspore/ops/_grad/grad_sequence_ops.py +0 -296
  728. mindspore/ops/_grad/grad_sparse.py +0 -323
  729. mindspore/ops/_grad_experimental/grad_image_ops.py +0 -249
  730. mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -195
  731. mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
  732. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  733. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  734. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +0 -19
  735. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +0 -15
  736. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +0 -15
  737. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +0 -19
  738. mindspore/ops/bprop_mindir/Assign_bprop.mindir +0 -17
  739. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +0 -150
  740. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +0 -66
  741. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  742. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -15
  743. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  744. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +0 -28
  745. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  746. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +0 -33
  747. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +0 -306
  748. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -13
  749. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  750. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  751. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +0 -240
  752. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +0 -247
  753. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +0 -247
  754. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +0 -315
  755. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +0 -278
  756. mindspore/ops/bprop_mindir/DType_bprop.mindir +0 -14
  757. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +0 -58
  758. mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -13
  759. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +0 -23
  760. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
  761. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +0 -15
  762. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  763. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  764. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +0 -25
  765. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +0 -18
  766. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +0 -27
  767. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  768. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  769. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  770. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +0 -14
  771. mindspore/ops/bprop_mindir/Elu_bprop.mindir +0 -16
  772. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  773. mindspore/ops/bprop_mindir/Equal_bprop.mindir +0 -19
  774. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +0 -58
  775. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +0 -16
  776. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +0 -54
  777. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +0 -19
  778. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +0 -26
  779. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +0 -57
  780. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  781. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +0 -19
  782. mindspore/ops/bprop_mindir/Greater_bprop.mindir +0 -19
  783. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +0 -16
  784. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +0 -16
  785. mindspore/ops/bprop_mindir/IOU_bprop.mindir +0 -19
  786. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  787. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +0 -15
  788. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +0 -15
  789. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +0 -15
  790. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +0 -126
  791. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +0 -15
  792. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +0 -30
  793. mindspore/ops/bprop_mindir/LRN_bprop.mindir +0 -43
  794. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  795. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +0 -19
  796. mindspore/ops/bprop_mindir/Less_bprop.mindir +0 -19
  797. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +0 -23
  798. mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -13
  799. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +0 -23
  800. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +0 -19
  801. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +0 -15
  802. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +0 -21
  803. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +0 -74
  804. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +0 -74
  805. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +0 -75
  806. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +0 -65
  807. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  808. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  809. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  810. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +0 -27
  811. mindspore/ops/bprop_mindir/Mish_bprop.mindir +0 -35
  812. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  813. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  814. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +0 -14
  815. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +0 -19
  816. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +0 -26
  817. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +0 -14
  818. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  819. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  820. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  821. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +0 -29
  822. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +0 -82
  823. mindspore/ops/bprop_mindir/Range_bprop.mindir +0 -22
  824. mindspore/ops/bprop_mindir/Rank_bprop.mindir +0 -14
  825. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +0 -16
  826. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  827. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +0 -19
  828. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +0 -19
  829. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +0 -20
  830. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +0 -60
  831. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +0 -29
  832. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +0 -89
  833. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +0 -52
  834. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +0 -22
  835. mindspore/ops/bprop_mindir/Round_bprop.mindir +0 -15
  836. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  837. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  838. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +0 -22
  839. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +0 -24
  840. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -22
  841. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  842. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +0 -21
  843. mindspore/ops/bprop_mindir/Select_bprop.mindir +0 -31
  844. mindspore/ops/bprop_mindir/Shape_bprop.mindir +0 -14
  845. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +0 -21
  846. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  847. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +0 -16
  848. mindspore/ops/bprop_mindir/Sign_bprop.mindir +0 -15
  849. mindspore/ops/bprop_mindir/Slice_bprop.mindir +0 -26
  850. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +0 -36
  851. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  852. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +0 -16
  853. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +0 -33
  854. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  855. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +0 -28
  856. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +0 -23
  857. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  858. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  859. mindspore/ops/bprop_mindir/Split_bprop.mindir +0 -22
  860. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +0 -54
  861. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +0 -95
  862. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +0 -98
  863. mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -29
  864. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  865. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +0 -66
  866. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +0 -22
  867. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +0 -29
  868. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +0 -14
  869. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  870. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  871. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -23
  872. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +0 -19
  873. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -20
  874. mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -16
  875. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -22
  876. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +0 -32
  877. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +0 -38
  878. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +0 -15
  879. mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
  880. mindspore/rewrite/node_visitor.py +0 -44
  881. mindspore/rewrite/topological_manager.py +0 -203
  882. mindspore/scipy/sparse/linalg.py +0 -192
  883. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/WHEEL +0 -0
  884. {mindspore-2.0.0rc1.dist-info → mindspore-2.2.0.dist-info}/top_level.txt +0 -0
@@ -82,12 +82,17 @@ class TruncatedNormal(Primitive):
82
82
 
83
83
  Note:
84
84
  - The value of `shape` must be greater than zero. The output length can not exceed 1000000.
85
- - When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
86
- Otherwise, a random seed will be used instead.
85
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
86
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
87
+ separate calls, the random number generated will not change.
88
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
89
+ to worry about which seed is more important.
87
90
 
88
91
  Args:
89
- seed (int, optional): Random number seed. Default: 0.
90
- seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
92
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
93
+ must be non-negative. Default: ``0`` .
94
+ seed2 (int, optional): The global random seed, which combines with the operator-level
95
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
91
96
  dtype (mindspore.dtype, optional): Specified output data type. Must be one of the following types:
92
97
  mindspore.float16, mindspore.float32 and mindspore.float64. Default: mindspore.float32.
93
98
 
@@ -140,12 +145,22 @@ class StandardNormal(Primitive):
140
145
 
141
146
  Refer to :func:`mindspore.ops.standard_normal` for more details.
142
147
 
148
+ Note:
149
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
150
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
151
+ separate calls, the random number generated will not change.
152
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
153
+ to worry about which seed is more important.
154
+
143
155
  Args:
144
- seed (int): Random seed, must be non-negative. Default: 0.
145
- seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
156
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
157
+ must be non-negative. Default: ``0`` .
158
+ seed2 (int, optional): The global random seed, which combines with the operator-level
159
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
146
160
 
147
161
  Inputs:
148
162
  - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
163
+ Supported dtypes: int32, int64.
149
164
 
150
165
  Outputs:
151
166
  Tensor. The shape is the same as the input `shape`. The dtype is float32.
@@ -181,9 +196,18 @@ class StandardLaplace(Primitive):
181
196
  .. math::
182
197
  \text{f}(x) = \frac{1}{2}\exp(-|x|)
183
198
 
199
+ Note:
200
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
201
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
202
+ separate calls, the random number generated will not change.
203
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
204
+ to worry about which seed is more important.
205
+
184
206
  Args:
185
- seed (int): Random seed. Default: 0.
186
- seed2 (int): Random seed2. Default: 0.
207
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
208
+ must be non-negative. Default: ``0`` .
209
+ seed2 (int, optional): The global random seed, which combines with the operator-level
210
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
187
211
 
188
212
  Inputs:
189
213
  - **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed
@@ -203,6 +227,7 @@ class StandardLaplace(Primitive):
203
227
  ``Ascend`` ``GPU`` ``CPU``
204
228
 
205
229
  Examples:
230
+ >>> from mindspore import ops
206
231
  >>> shape = (4, 16)
207
232
  >>> stdlaplace = ops.StandardLaplace(seed=2)
208
233
  >>> output = stdlaplace(shape)
@@ -224,23 +249,18 @@ class RandomGamma(Primitive):
224
249
  r"""
225
250
  Produces random positive floating-point values x, distributed according to probability density function:
226
251
 
227
- .. note::
228
- - Random seed: A set of regular random numbers can be obtained through some complex mathematical algorithms,
229
- and the random seed is the initial value of this random number. If the random seed is the same, the random
230
- number obtained will not change.
231
- - Global random seed and operator-level random seed are not set: Use the default value as the random seed.
232
- - Global random seed is set, but operator-level random seed is not set: A global random seed will splice
233
- with a randomly generated seed.
234
- - Global random seed is not set, operator-level random seed is set: The default global random seed is used,
235
- and splices with the operator-level random seed.
236
- - Both Global random and operator-level random seed are set: The global random seed will splice with the
237
- operator-level random seed.
252
+ Note:
253
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
254
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
255
+ separate calls, the random number generated will not change.
256
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
257
+ to worry about which seed is more important.
238
258
 
239
259
  Args:
240
260
  seed (int, optional): The operator-level random seed, used to generate random numbers,
241
- must be non-negative. Default: 0.
261
+ must be non-negative. Default: ``0`` .
242
262
  seed2 (int, optional): The global random seed, which combines with the operator-level
243
- random seed to determine the final generated random number, must be non-negative. Default: 0.
263
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
244
264
 
245
265
  Inputs:
246
266
  - **shape** (Tensor) - The shape of random tensor to be generated. It must be constant value.
@@ -261,6 +281,9 @@ class RandomGamma(Primitive):
261
281
  ``CPU``
262
282
 
263
283
  Examples:
284
+ >>> import numpy as np
285
+ >>> from mindspore import Tensor, ops
286
+ >>> from mindspore import dtype as mstype
264
287
  >>> shape = Tensor(np.array([3, 1, 2]), mstype.int32)
265
288
  >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mstype.float32)
266
289
  >>> gamma = ops.RandomGamma(seed=3)
@@ -291,9 +314,9 @@ class LogNormalReverse(Primitive):
291
314
 
292
315
  Args:
293
316
  mean (float, optional): the mean of normal distribution. With float data type.
294
- Default: 1.0.
317
+ Default: ``1.0`` .
295
318
  std (float, optional): the std of normal distribution. With float data type.
296
- Default: 2.0.
319
+ Default: ``2.0`` .
297
320
 
298
321
  Inputs:
299
322
  - **input** (Tensor) - The tensor to be generated with log-normal distribution.
@@ -335,22 +358,18 @@ class Gamma(PrimitiveWithInfer):
335
358
  .. math::
336
359
  \text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}
337
360
 
338
- .. note::
339
- - Random seed: A set of regular random numbers can be obtained through some complex mathematical algorithms,
340
- and the random seed is the initial value of this random number. If the random seed is the same, the random
341
- number obtained will not change.
342
- - Global random seed and operator-level random seed are not set: Use the default value as the random seed.
343
- - Global random seed is set, but operator-level random seed is not set: A global random seed will splice
344
- with a randomly generated seed.
345
- - Global random seed is not set, operator-level random seed is set: The default global random seed is used,
346
- and splices with the operator-level random seed.
347
- - Both Global random and operator-level random seed are set: The global random seed will splice with the
348
- operator-level random seed.
361
+ Note:
362
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
363
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
364
+ separate calls, the random number generated will not change.
365
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
366
+ to worry about which seed is more important.
349
367
 
350
368
  Args:
351
- seed (int): The operator-level random seed, used to generate random numbers, must be non-negative. Default: 0.
352
- seed2 (int): The global random seed and it will combile with the operator-level random seed to determine the
353
- final generated random number, must be non-negative. Default: 0.
369
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
370
+ must be non-negative. Default: ``0`` .
371
+ seed2 (int, optional): The global random seed, which combines with the operator-level
372
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
354
373
 
355
374
  Inputs:
356
375
  - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
@@ -373,6 +392,9 @@ class Gamma(PrimitiveWithInfer):
373
392
  ``Ascend``
374
393
 
375
394
  Examples:
395
+ >>> import numpy as np
396
+ >>> from mindspore import Tensor, ops
397
+ >>> from mindspore import dtype as mstype
376
398
  >>> shape = (3, 1, 2)
377
399
  >>> alpha = Tensor(np.array([[3, 4], [5, 6]]), mstype.float32)
378
400
  >>> beta = Tensor(np.array([1.0]), mstype.float32)
@@ -420,12 +442,17 @@ class ParameterizedTruncatedNormal(Primitive):
420
442
 
421
443
  Note:
422
444
  - The value in tensor `min` must be strictly less than `max` at any position after broadcasting.
423
- - When `seed` or `seed2` is assigned a non-zero value, that value will be used as the seed.
424
- Otherwise, a random seed will be used instead.
445
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
446
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
447
+ separate calls, the random number generated will not change.
448
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
449
+ to worry about which seed is more important.
425
450
 
426
451
  Args:
427
- seed (int, optional): Random number seed. Default: 0.
428
- seed2 (int, optional): The second seed to avoid seed collision. Default: 0.
452
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
453
+ must be non-negative. Default: ``0`` .
454
+ seed2 (int, optional): The global random seed, which combines with the operator-level
455
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
429
456
 
430
457
  Inputs:
431
458
  - **shape** (Tensor) - The shape of random tensor to be generated.
@@ -492,9 +519,18 @@ class Poisson(PrimitiveWithInfer):
492
519
  .. math::
493
520
  \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
494
521
 
522
+ Note:
523
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
524
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
525
+ separate calls, the random number generated will not change.
526
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
527
+ to worry about which seed is more important.
528
+
495
529
  Args:
496
- seed (int): Random seed, must be non-negative. Default: 0.
497
- seed2 (int): Random seed2, must be non-negative. Default: 0.
530
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
531
+ must be non-negative. Default: ``0`` .
532
+ seed2 (int, optional): The global random seed, which combines with the operator-level
533
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
498
534
 
499
535
  Inputs:
500
536
  - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
@@ -557,12 +593,19 @@ class RandomPoisson(Primitive):
557
593
  .. math::
558
594
  \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
559
595
 
560
- Args:
561
- seed (int, optional): Random number seed. If either `seed` or `seed2` are set to be non-zero,
562
- the seed is set by the given seed. Otherwise, it is seeded by a random seed. Default: 0.
563
- seed2 (int, optional): A second seed to avoid seed collision. Default: 0.
596
+ Note:
597
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
598
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
599
+ separate calls, the random number generated will not change.
600
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
601
+ to worry about which seed is more important.
564
602
 
565
- dtype (mindspore.dtype, optional): The type of output. Default: mstype.int64.
603
+ Args:
604
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
605
+ must be non-negative. Default: ``0`` .
606
+ seed2 (int, optional): The global random seed, which combines with the operator-level
607
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
608
+ dtype (mindspore.dtype, optional): The type of output. Default: ``mstype.int64`` .
566
609
 
567
610
  Inputs:
568
611
  - **shape** (Tensor) - The shape of random tensor to be generated, 1-D Tensor, whose dtype must be in
@@ -583,6 +626,9 @@ class RandomPoisson(Primitive):
583
626
  ``GPU`` ``CPU``
584
627
 
585
628
  Examples:
629
+ >>> import numpy as np
630
+ >>> from mindspore import Tensor, ops
631
+ >>> from mindspore import dtype as mstype
586
632
  >>> shape = Tensor(np.array([2, 3]), mstype.int32)
587
633
  >>> rate = Tensor(np.array([2, 2]), mstype.int32)
588
634
  >>> seed = 0
@@ -618,11 +664,17 @@ class UniformInt(Primitive):
618
664
 
619
665
  Note:
620
666
  - The number in tensor minval must be strictly less than maxval at any position after broadcasting.
621
- - If neither `seed` nor `seed2` is assigned a non-zero value, a randomly generated seed is used instead.
667
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
668
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
669
+ separate calls, the random number generated will not change.
670
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
671
+ to worry about which seed is more important.
622
672
 
623
673
  Args:
624
- seed (int): Random seed, must be non-negative. Default: 0.
625
- seed2 (int): Random seed2, must be non-negative. A second seed to avoid seed collision. Default: 0.
674
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
675
+ must be non-negative. Default: ``0`` .
676
+ seed2 (int, optional): The global random seed, which combines with the operator-level
677
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
626
678
 
627
679
  Inputs:
628
680
  - **shape** (Union[tuple, Tensor]) - The shape of random tensor to be generated. Only constant value is allowed.
@@ -644,6 +696,8 @@ class UniformInt(Primitive):
644
696
  ``Ascend`` ``GPU`` ``CPU``
645
697
 
646
698
  Examples:
699
+ >>> from mindspore import Tensor, ops
700
+ >>> from mindspore import dtype as mstype
647
701
  >>> shape = (2, 4)
648
702
  >>> minval = Tensor(1, mstype.int32)
649
703
  >>> maxval = Tensor(5, mstype.int32)
@@ -668,19 +722,24 @@ class UniformReal(Primitive):
668
722
  r"""
669
723
  Produces random floating-point values, uniformly distributed to the interval [0, 1).
670
724
 
725
+ Note:
726
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
727
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
728
+ separate calls, the random number generated will not change.
729
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
730
+ to worry about which seed is more important.
731
+ - Currently, on the Ascend platform, `shape` as a Tensor is not supported.
732
+ This is supported on CPU/GPU platforms. When the input is a Tensor,
733
+ the supported data types are as follows:
734
+
735
+ - GPU: int32, int64.
736
+ - CPU: int16, int32, int64.
737
+
671
738
  Args:
672
- seed (int): The operator-level random seed, used to generate random numbers, must be non-negative. Default: 0.
673
- seed2 (int): The global random seed and it will combile with the operator-level random seed to determine the
674
- final generated random number, must be non-negative. Default: 0.
675
-
676
- .. note::
677
- - Global random seed and operator-level random seed are not set: Use a randomly generated seed.
678
- - Global random seed is set, but operator-level random seed is not set: A global random seed will splice
679
- with a randomly generated seed.
680
- - Global random seed is not set, operator-level random seed is set: The default global random seed is used,
681
- and splices with the operator-level random seed.
682
- - Both Global random and operator-level random seed are set: The global random seed will splice with the
683
- operator-level random seed.
739
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
740
+ must be non-negative. Default: ``0`` .
741
+ seed2 (int, optional): The global random seed, which combines with the operator-level
742
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
684
743
 
685
744
  Inputs:
686
745
  - **shape** (Union[tuple, Tensor]) - The shape of tensor to be generated. Only constant value is allowed.
@@ -697,6 +756,7 @@ class UniformReal(Primitive):
697
756
  ``Ascend`` ``GPU`` ``CPU``
698
757
 
699
758
  Examples:
759
+ >>> from mindspore import ops
700
760
  >>> shape = (2, 2)
701
761
  >>> uniformreal = ops.UniformReal(seed=2)
702
762
  >>> output = uniformreal(shape)
@@ -704,6 +764,7 @@ class UniformReal(Primitive):
704
764
  >>> print(result)
705
765
  (2, 2)
706
766
  """
767
+
707
768
  @prim_attr_register
708
769
  def __init__(self, seed=0, seed2=0):
709
770
  """Initialize UniformReal"""
@@ -719,11 +780,19 @@ class RandomChoiceWithMask(Primitive):
719
780
 
720
781
  Refer to :func:`mindspore.ops.choice_with_mask` for more details.
721
782
 
783
+ Note:
784
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
785
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
786
+ separate calls, the random number generated will not change.
787
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
788
+ to worry about which seed is more important.
789
+
722
790
  Args:
723
- count (int, optional): Number of items expected to get and the number must be greater than 0. Default: 256.
724
- seed (int, optional): Seed is used as entropy source for Random number engines generating
725
- pseudo-random numbers. Default: 0.
726
- seed2 (int, optional): Second seed to avoid collision. Default: 0.
791
+ count (int, optional): Number of items expected to get and the number must be greater than 0. Default: ``256`` .
792
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
793
+ must be non-negative. Default: ``0`` .
794
+ seed2 (int, optional): The global random seed, which combines with the operator-level
795
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
727
796
 
728
797
  Inputs:
729
798
  - **input_x** (Tensor[bool]) - The input tensor.
@@ -732,13 +801,15 @@ class RandomChoiceWithMask(Primitive):
732
801
  Outputs:
733
802
  Two tensors, the first one is the index tensor and the other one is the mask tensor.
734
803
 
735
- - **index** (Tensor) - The output shape is 2-D.
736
- - **mask** (Tensor) - The output shape is 1-D.
804
+ - **index** (Tensor) - The output shape is 2-D, its shape is :math:`(count, rank of input_x)`.
805
+ - **mask** (Tensor) - The output shape is 1-D, its shape is :math:`(count)`.
737
806
 
738
807
  Supported Platforms:
739
808
  ``Ascend`` ``GPU`` ``CPU``
740
809
 
741
810
  Examples:
811
+ >>> import numpy as np
812
+ >>> from mindspore import Tensor, ops
742
813
  >>> rnd_choice_mask = ops.RandomChoiceWithMask()
743
814
  >>> input_x = Tensor(np.ones(shape=[240000, 4]).astype(np.bool))
744
815
  >>> output_y, output_mask = rnd_choice_mask(input_x)
@@ -765,19 +836,19 @@ class RandomCategorical(PrimitiveWithInfer):
765
836
  Generates random samples from a given categorical distribution tensor.
766
837
 
767
838
  Args:
768
- dtype (mindspore.dtype): The type of output. Its value must be one of mindspore.int16,
769
- mindspore.int32 and mindspore.int64. Default: mindspore.int64.
839
+ dtype (mindspore.dtype): The type of output. Its value must be one of mstype.int16,
840
+ mstype.int32 and mstype.int64. Default: ``mstype.int64`` .
770
841
 
771
842
  Inputs:
772
843
  - **logits** (Tensor) - The input tensor. 2-D Tensor with shape :math:`(batch\_size, num\_classes)`.
773
844
  - **num_sample** (int) - Number of sample to be drawn. Only constant values is allowed.
774
- - **seed** (int) - Random seed. Default: 0. Only constant values is allowed.
845
+ - **seed** (int) - Random seed. Default: ``0`` . Only constant values is allowed.
775
846
 
776
847
  Outputs:
777
- - **output** (Tensor) - The output Tensor with shape :math:`(batch_size, num_samples)`.
848
+ - **output** (Tensor) - The output Tensor with shape :math:`(batch\_size, num\_samples)`.
778
849
 
779
850
  Raises:
780
- TypeError: If `dtype` is not one of the following: mindspore.int16, mindspore.int32, mindspore.int64.
851
+ TypeError: If `dtype` is not one of the following: mstype.int16, mstype.int32, mstype.int64.
781
852
  TypeError: If `logits` is not a Tensor.
782
853
  TypeError: If neither `num_sample` nor `seed` is an int.
783
854
 
@@ -785,6 +856,9 @@ class RandomCategorical(PrimitiveWithInfer):
785
856
  ``Ascend`` ``GPU`` ``CPU``
786
857
 
787
858
  Examples:
859
+ >>> import mindspore
860
+ >>> import numpy as np
861
+ >>> from mindspore import nn, ops, Tensor
788
862
  >>> class Net(nn.Cell):
789
863
  ... def __init__(self, num_sample):
790
864
  ... super(Net, self).__init__()
@@ -819,13 +893,21 @@ class Multinomial(Primitive):
819
893
  row of tensor input.
820
894
 
821
895
  Note:
822
- The rows of input do not need to sum to one (in which case we use the values as weights),
823
- but must be non-negative, finite and have a non-zero sum.
896
+ - The rows of input do not need to sum to one (in which case we use the values as weights),
897
+ but must be non-negative, finite and have a non-zero sum.
898
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
899
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
900
+ separate calls, the random number generated will not change.
901
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
902
+ to worry about which seed is more important.
824
903
 
825
904
  Args:
826
- seed (int): Random seed, must be non-negative. Default: 0.
827
- seed2 (int): Random seed2, must be non-negative. Default: 0.
828
- dtype(dtype): The type of output, must be int32 or int64. Default: int32.
905
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
906
+ must be non-negative. Default: ``0`` .
907
+ seed2 (int, optional): The global random seed, which combines with the operator-level
908
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
909
+ dtype(mindspore.dtype, optional): The type of output, must be ``mstype.int32`` or ``mstype.int64``.
910
+ Default: ``mstype.int32``.
829
911
 
830
912
  Inputs:
831
913
  - **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
@@ -838,13 +920,15 @@ class Multinomial(Primitive):
838
920
  Raises:
839
921
  TypeError: If neither `seed` nor `seed2` is an int.
840
922
  TypeError: If dtype of `num_samples` is not int.
841
- TypeError: If `dtype` is not int32 or int64.
923
+ TypeError: If `dtype` is not mstype.int32 or mstype.int64.
842
924
  ValueError: If `seed` or `seed2` is less than 0.
843
925
 
844
926
  Supported Platforms:
845
927
  ``Ascend`` ``GPU`` ``CPU``
846
928
 
847
929
  Examples:
930
+ >>> from mindspore import Tensor, ops
931
+ >>> from mindspore import dtype as mstype
848
932
  >>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
849
933
  >>> multinomial = ops.Multinomial(seed=10)
850
934
  >>> output = multinomial(x, 2)
@@ -881,13 +965,13 @@ class MultinomialWithReplacement(Primitive):
881
965
 
882
966
  Args:
883
967
  numsamples (int): number of samples to draw, must be a nonnegative number.
884
- replacement (bool, optional): Whether to draw with replacement or not. Default: False.
968
+ replacement (bool, optional): Whether to draw with replacement or not. Default: ``False`` .
885
969
 
886
970
  Inputs:
887
971
  - **x** (Tensor) - the input tensor containing the cumsum of probabilities, must be 1 or 2
888
972
  dimensions.
889
- - **seed** (Tensor) - If `seed` is set to -1, and `offset` is set to 0, the random number
890
- generator is seeded by a random seed. Otherwise, it is seeded by the given seed.
973
+ - **seed** (Tensor) - If `seed` and 'offset' are both set to 0, the random number generator
974
+ is seeded by a random seed. Otherwise, it is seeded by the given seed and offset.
891
975
  Supported dtype: int64.
892
976
  - **offset** (Tensor) - Offset used to avoid seed collision. Supported dtype: int64.
893
977
 
@@ -898,6 +982,8 @@ class MultinomialWithReplacement(Primitive):
898
982
  ``CPU``
899
983
 
900
984
  Examples:
985
+ >>> from mindspore import Tensor, ops
986
+ >>> from mindspore import dtype as mstype
901
987
  >>> x = Tensor([[0., 9., 4., 0.]], mstype.float32)
902
988
  >>> seed = Tensor(2, mstype.int64)
903
989
  >>> offset = Tensor(5, mstype.int64)
@@ -924,10 +1010,36 @@ class UniformCandidateSampler(Primitive):
924
1010
 
925
1011
  Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more details.
926
1012
 
1013
+ Args:
1014
+ num_true (int): The number of target classes in each training example.
1015
+ num_sampled (int): The number of classes to randomly sample. The sampled_candidates will have a shape
1016
+ of num_sampled. If unique=True, num_sampled must be less than or equal to range_max.
1017
+ unique (bool): Whether all sampled classes in a batch are unique.
1018
+ range_max (int): The number of possible classes, must be non-negative.
1019
+ seed (int, optional): Used for random number generation, must be non-negative. If seed has a value of 0,
1020
+ the seed will be replaced with a randomly generated value. Default: ``0`` .
1021
+ remove_accidental_hits (bool, optional): Whether accidental hit is removed.
1022
+ Accidental hit is when one of the true classes matches one of the sample classes.
1023
+ Set ``True`` to remove which accidentally sampling the true class as sample class. Default: ``False`` .
1024
+
1025
+ Inputs:
1026
+ - **true_classes** (Tensor) - A Tensor. The target classes with a Tensor shape of
1027
+ :math:`(batch\_size, num\_true)`.
1028
+
1029
+ Outputs:
1030
+ - **sampled_candidates** (Tensor) - The sampled_candidates is independent of the true classes.
1031
+ Shape: :math:`(num\_sampled, )`.
1032
+ - **true_expected_count** (Tensor) - The expected counts under the sampling distribution of each
1033
+ of true_classes. Shape: :math:`(batch\_size, num\_true)`.
1034
+ - **sampled_expected_count** (Tensor) - The expected counts under the sampling distribution of
1035
+ each of sampled_candidates. Shape: :math:`(num\_sampled, )`.
1036
+
927
1037
  Supported Platforms:
928
1038
  ``Ascend`` ``GPU`` ``CPU``
929
1039
 
930
1040
  Examples:
1041
+ >>> import numpy as np
1042
+ >>> from mindspore import Tensor, ops
931
1043
  >>> sampler = ops.UniformCandidateSampler(1, 3, False, 4, 1)
932
1044
  >>> output1, output2, output3 = sampler(Tensor(np.array([[1], [3], [4], [6], [3]], dtype=np.int64)))
933
1045
  >>> print(output1.shape)
@@ -964,7 +1076,6 @@ class UniformCandidateSampler(Primitive):
964
1076
  self.add_prim_attr("side_effect_hidden", True)
965
1077
 
966
1078
 
967
-
968
1079
  class LogUniformCandidateSampler(Primitive):
969
1080
  r"""
970
1081
  Generates random labels with a log-uniform distribution for sampled_candidates.
@@ -973,10 +1084,33 @@ class LogUniformCandidateSampler(Primitive):
973
1084
 
974
1085
  Refer to :func:`mindspore.ops.log_uniform_candidate_sampler` for more details.
975
1086
 
1087
+ Args:
1088
+ num_true (int, optional): The number of target classes per training example. Default: ``1`` .
1089
+ num_sampled (int, optional): The number of classes to randomly sample. Default: ``5`` .
1090
+ unique (bool, optional): Determines whether sample with rejection. If `unique` is ``True`` ,
1091
+ all sampled classes in a batch are unique. Default: ``True`` .
1092
+ range_max (int, optional): The number of possible classes. When `unique` is ``True`` ,
1093
+ `range_max` must be greater than or equal to `num_sampled`. Default: ``5`` .
1094
+ seed (int, optional): Random seed, must be non-negative. Default: ``0`` .
1095
+
1096
+ Inputs:
1097
+ - **true_classes** (Tensor) - The target classes. With data type of int64 and
1098
+ shape :math:`(batch\_size, num\_true)` .
1099
+
1100
+ Outputs:
1101
+ Tuple of 3 Tensors.
1102
+
1103
+ - **sampled_candidates** (Tensor) - A Tensor with shape :math:`(num\_sampled,)`
1104
+ and the same type as `true_classes`.
1105
+ - **true_expected_count** (Tensor) - A Tensor with the same shape as `true_classes and` type float32.
1106
+ - **sampled_expected_count** (Tensor) - A Tensor with the same shape as `sampled_candidates` and type float32.
1107
+
976
1108
  Supported Platforms:
977
1109
  ``Ascend`` ``CPU``
978
1110
 
979
1111
  Examples:
1112
+ >>> import numpy as np
1113
+ >>> from mindspore import Tensor, ops
980
1114
  >>> sampler = ops.LogUniformCandidateSampler(2, 5, True, 5)
981
1115
  >>> output1, output2, output3 = sampler(Tensor(np.array([[1, 7], [0, 4], [3, 3]])))
982
1116
  >>> print(output1, output2, output3)
@@ -1017,12 +1151,18 @@ class RandomShuffle(Primitive):
1017
1151
  r"""
1018
1152
  Randomly shuffles a Tensor along its first dimension.
1019
1153
 
1154
+ Note:
1155
+ - Random seed: a set of regular random numbers can be obtained through some complex mathematical algorithms,
1156
+ and the random seed determines the initial value of this random number. If the random seed is the same in two
1157
+ separate calls, the random number generated will not change.
1158
+ - Using the Philox algorithm to scramble seed and seed2 to obtain random seed so that the user doesn't need
1159
+ to worry about which seed is more important.
1160
+
1020
1161
  Args:
1021
- seed (int, optional): Random seed. If `seed` or `seed2` is set to non-zero, the random number generator
1022
- will be seeded by the given seed. Otherwise, it will be seeded randomly.
1023
- The `seed` must be non-negative. Default: 0.
1024
- seed2 (int, optional): A second seed to avoid seed collision. If `seed` is 0, the `seed2` will be used as
1025
- the seed of the random generator. It must be non-negative. Default: 0.
1162
+ seed (int, optional): The operator-level random seed, used to generate random numbers,
1163
+ must be non-negative. Default: ``0`` .
1164
+ seed2 (int, optional): The global random seed, which combines with the operator-level
1165
+ random seed to determine the final generated random number, must be non-negative. Default: ``0`` .
1026
1166
 
1027
1167
  Inputs:
1028
1168
  - **x** (Tensor) - The Tensor need be shuffled.
@@ -1037,6 +1177,9 @@ class RandomShuffle(Primitive):
1037
1177
  ``Ascend`` ``GPU`` ``CPU``
1038
1178
 
1039
1179
  Examples:
1180
+ >>> import numpy as np
1181
+ >>> from mindspore import Tensor, ops
1182
+ >>> from mindspore import dtype as mstype
1040
1183
  >>> x = Tensor(np.array([1, 2, 3, 4]), mstype.float32)
1041
1184
  >>> shuffle = ops.RandomShuffle(seed=1, seed2=1)
1042
1185
  >>> output = shuffle(x)
@@ -1058,8 +1201,8 @@ class Uniform(Primitive):
1058
1201
  Generates random numbers according to the Uniform random number distribution.
1059
1202
 
1060
1203
  Args:
1061
- minval(float):must be non-negative. Default: 0.0.
1062
- maxval(float):must be non-negative. Default: 1.0.
1204
+ minval(float):must be non-negative. Default: ``0.0`` .
1205
+ maxval(float):must be non-negative. Default: ``1.0`` .
1063
1206
 
1064
1207
  Inputs:
1065
1208
  - **x** (Tensor) - The x of random tensor to be generated.
@@ -1102,28 +1245,45 @@ class RandpermV2(Primitive):
1102
1245
  r"""
1103
1246
  Generates random permutation of integers from 0 to n-1 without repeating.
1104
1247
 
1105
- Refer to :func:`mindspore.ops.randperm` for more detail.
1248
+ Refer to :func:`mindspore.ops.randperm` for more details.
1249
+
1250
+ .. warning::
1251
+ This is an experimental API that is subject to change or deletion.
1252
+
1253
+ Args:
1254
+ dtype (mindspore.dtype, optional): The type of output.
1255
+ Its value must be one of the following types: int32, int16, int8,
1256
+ uint8, int64, float64, float32, float16. Default: mstype.int64.
1257
+
1258
+ Inputs:
1259
+ - **n** (Union[Tensor, int]) - The input n Tensor with shape :math:`()` or :math:`(1,)`
1260
+ and with data type of int64.
1261
+ - **seed** (int, optional) - Random seed. Default: ``0`` . When `seed` is ``-1`` (only negative value),
1262
+ `offset` is ``0``, it's determined by time.
1263
+ - **offset** (int, optional) - Offset to generate random numbers. Priority is higher than random seed.
1264
+ Default: ``0`` . It must be non-negative.
1265
+
1266
+ Outputs:
1267
+ Tensor. Its shape is specified by the required args `n`. Its type is specified by `dtype`.
1268
+ Otherwise is default.
1106
1269
 
1107
1270
  Supported Platforms:
1108
- ``CPU``
1271
+ ``Ascend`` ``CPU``
1109
1272
 
1110
1273
  Examples:
1111
1274
  >>> n = Tensor([4], mstype.int64)
1112
1275
  >>> seed = 0
1113
1276
  >>> offset = 0
1114
- >>> randperm = ops.RandpermV2(layout=0, dtype=mstype.int64)
1277
+ >>> randperm = ops.RandpermV2(dtype=mstype.int64)
1115
1278
  >>> output = randperm(n, seed, offset)
1116
1279
  >>> print(output)
1117
1280
  [1 0 2 3]
1118
1281
  """
1119
1282
 
1120
1283
  @prim_attr_register
1121
- def __init__(self, layout=0, dtype=mstype.int64):
1284
+ def __init__(self, dtype=mstype.int64):
1122
1285
  """Initialize RandpermV2"""
1123
1286
  self.dtype = dtype
1124
- self.layout = layout
1125
- Validator.check_value_type('layout', layout, [int], self.name)
1126
- Validator.check_non_negative_int(layout, 'layout', self.name)
1127
1287
  valid_values = (mstype.int32, mstype.int64, mstype.int16, mstype.int8, mstype.uint8, mstype.float64
1128
1288
  , mstype.float32, mstype.float16)
1129
1289
  Validator.check_type_name("dtype", dtype, valid_values, self.name)