megadetector 5.0.28__py3-none-any.whl → 10.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (197) hide show
  1. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  2. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  3. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  4. megadetector/classification/aggregate_classifier_probs.py +3 -3
  5. megadetector/classification/analyze_failed_images.py +5 -5
  6. megadetector/classification/cache_batchapi_outputs.py +5 -5
  7. megadetector/classification/create_classification_dataset.py +11 -12
  8. megadetector/classification/crop_detections.py +10 -10
  9. megadetector/classification/csv_to_json.py +8 -8
  10. megadetector/classification/detect_and_crop.py +13 -15
  11. megadetector/classification/efficientnet/model.py +8 -8
  12. megadetector/classification/efficientnet/utils.py +6 -5
  13. megadetector/classification/evaluate_model.py +7 -7
  14. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  15. megadetector/classification/json_to_azcopy_list.py +1 -1
  16. megadetector/classification/json_validator.py +29 -32
  17. megadetector/classification/map_classification_categories.py +9 -9
  18. megadetector/classification/merge_classification_detection_output.py +12 -9
  19. megadetector/classification/prepare_classification_script.py +19 -19
  20. megadetector/classification/prepare_classification_script_mc.py +26 -26
  21. megadetector/classification/run_classifier.py +4 -4
  22. megadetector/classification/save_mislabeled.py +6 -6
  23. megadetector/classification/train_classifier.py +1 -1
  24. megadetector/classification/train_classifier_tf.py +9 -9
  25. megadetector/classification/train_utils.py +10 -10
  26. megadetector/data_management/annotations/annotation_constants.py +1 -2
  27. megadetector/data_management/camtrap_dp_to_coco.py +79 -46
  28. megadetector/data_management/cct_json_utils.py +103 -103
  29. megadetector/data_management/cct_to_md.py +49 -49
  30. megadetector/data_management/cct_to_wi.py +33 -33
  31. megadetector/data_management/coco_to_labelme.py +75 -75
  32. megadetector/data_management/coco_to_yolo.py +210 -193
  33. megadetector/data_management/databases/add_width_and_height_to_db.py +86 -12
  34. megadetector/data_management/databases/combine_coco_camera_traps_files.py +40 -40
  35. megadetector/data_management/databases/integrity_check_json_db.py +228 -200
  36. megadetector/data_management/databases/subset_json_db.py +33 -33
  37. megadetector/data_management/generate_crops_from_cct.py +88 -39
  38. megadetector/data_management/get_image_sizes.py +54 -49
  39. megadetector/data_management/labelme_to_coco.py +133 -125
  40. megadetector/data_management/labelme_to_yolo.py +159 -73
  41. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  42. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  43. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  44. megadetector/data_management/lila/download_lila_subset.py +21 -24
  45. megadetector/data_management/lila/generate_lila_per_image_labels.py +365 -107
  46. megadetector/data_management/lila/get_lila_annotation_counts.py +35 -33
  47. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  48. megadetector/data_management/lila/lila_common.py +73 -70
  49. megadetector/data_management/lila/test_lila_metadata_urls.py +28 -19
  50. megadetector/data_management/mewc_to_md.py +344 -340
  51. megadetector/data_management/ocr_tools.py +262 -255
  52. megadetector/data_management/read_exif.py +249 -227
  53. megadetector/data_management/remap_coco_categories.py +90 -28
  54. megadetector/data_management/remove_exif.py +81 -21
  55. megadetector/data_management/rename_images.py +187 -187
  56. megadetector/data_management/resize_coco_dataset.py +588 -120
  57. megadetector/data_management/speciesnet_to_md.py +41 -41
  58. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  59. megadetector/data_management/yolo_output_to_md_output.py +248 -122
  60. megadetector/data_management/yolo_to_coco.py +333 -191
  61. megadetector/detection/change_detection.py +832 -0
  62. megadetector/detection/process_video.py +340 -337
  63. megadetector/detection/pytorch_detector.py +358 -278
  64. megadetector/detection/run_detector.py +399 -186
  65. megadetector/detection/run_detector_batch.py +404 -377
  66. megadetector/detection/run_inference_with_yolov5_val.py +340 -327
  67. megadetector/detection/run_tiled_inference.py +257 -249
  68. megadetector/detection/tf_detector.py +24 -24
  69. megadetector/detection/video_utils.py +332 -295
  70. megadetector/postprocessing/add_max_conf.py +19 -11
  71. megadetector/postprocessing/categorize_detections_by_size.py +45 -45
  72. megadetector/postprocessing/classification_postprocessing.py +468 -433
  73. megadetector/postprocessing/combine_batch_outputs.py +23 -23
  74. megadetector/postprocessing/compare_batch_results.py +590 -525
  75. megadetector/postprocessing/convert_output_format.py +106 -102
  76. megadetector/postprocessing/create_crop_folder.py +347 -147
  77. megadetector/postprocessing/detector_calibration.py +173 -168
  78. megadetector/postprocessing/generate_csv_report.py +508 -499
  79. megadetector/postprocessing/load_api_results.py +48 -27
  80. megadetector/postprocessing/md_to_coco.py +133 -102
  81. megadetector/postprocessing/md_to_labelme.py +107 -90
  82. megadetector/postprocessing/md_to_wi.py +40 -40
  83. megadetector/postprocessing/merge_detections.py +92 -114
  84. megadetector/postprocessing/postprocess_batch_results.py +319 -301
  85. megadetector/postprocessing/remap_detection_categories.py +91 -38
  86. megadetector/postprocessing/render_detection_confusion_matrix.py +214 -205
  87. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  88. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  89. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +704 -679
  90. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  91. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  92. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  93. megadetector/postprocessing/validate_batch_results.py +70 -70
  94. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  95. megadetector/taxonomy_mapping/map_new_lila_datasets.py +18 -19
  96. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +54 -33
  97. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +67 -67
  98. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  99. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  100. megadetector/taxonomy_mapping/species_lookup.py +156 -74
  101. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  102. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  103. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  104. megadetector/utils/ct_utils.py +1049 -211
  105. megadetector/utils/directory_listing.py +21 -77
  106. megadetector/utils/gpu_test.py +22 -22
  107. megadetector/utils/md_tests.py +632 -529
  108. megadetector/utils/path_utils.py +1520 -431
  109. megadetector/utils/process_utils.py +41 -41
  110. megadetector/utils/split_locations_into_train_val.py +62 -62
  111. megadetector/utils/string_utils.py +148 -27
  112. megadetector/utils/url_utils.py +489 -176
  113. megadetector/utils/wi_utils.py +2658 -2526
  114. megadetector/utils/write_html_image_list.py +137 -137
  115. megadetector/visualization/plot_utils.py +34 -30
  116. megadetector/visualization/render_images_with_thumbnails.py +39 -74
  117. megadetector/visualization/visualization_utils.py +487 -435
  118. megadetector/visualization/visualize_db.py +232 -198
  119. megadetector/visualization/visualize_detector_output.py +82 -76
  120. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/METADATA +5 -2
  121. megadetector-10.0.0.dist-info/RECORD +139 -0
  122. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/WHEEL +1 -1
  123. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  124. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  125. megadetector/api/batch_processing/api_core/batch_service/score.py +0 -439
  126. megadetector/api/batch_processing/api_core/server.py +0 -294
  127. megadetector/api/batch_processing/api_core/server_api_config.py +0 -97
  128. megadetector/api/batch_processing/api_core/server_app_config.py +0 -55
  129. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  130. megadetector/api/batch_processing/api_core/server_job_status_table.py +0 -149
  131. megadetector/api/batch_processing/api_core/server_orchestration.py +0 -360
  132. megadetector/api/batch_processing/api_core/server_utils.py +0 -88
  133. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  134. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  135. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  136. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  137. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  138. megadetector/api/synchronous/__init__.py +0 -0
  139. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  140. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +0 -151
  141. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -263
  142. megadetector/api/synchronous/api_core/animal_detection_api/config.py +0 -35
  143. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  144. megadetector/api/synchronous/api_core/tests/load_test.py +0 -110
  145. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  146. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  147. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  148. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  149. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  150. megadetector/data_management/importers/awc_to_json.py +0 -191
  151. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  152. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  153. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  154. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  155. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  156. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  157. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  158. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  159. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  160. megadetector/data_management/importers/ena24_to_json.py +0 -276
  161. megadetector/data_management/importers/filenames_to_json.py +0 -386
  162. megadetector/data_management/importers/helena_to_cct.py +0 -283
  163. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  164. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  165. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  166. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  167. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  168. megadetector/data_management/importers/missouri_to_json.py +0 -490
  169. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  170. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  171. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  172. megadetector/data_management/importers/pc_to_json.py +0 -365
  173. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  174. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  175. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  176. megadetector/data_management/importers/rspb_to_json.py +0 -356
  177. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  178. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  179. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  180. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  181. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  182. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  183. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  184. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  185. megadetector/data_management/importers/ubc_to_json.py +0 -399
  186. megadetector/data_management/importers/umn_to_json.py +0 -507
  187. megadetector/data_management/importers/wellington_to_json.py +0 -263
  188. megadetector/data_management/importers/wi_to_json.py +0 -442
  189. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  190. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  191. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  192. megadetector/utils/azure_utils.py +0 -178
  193. megadetector/utils/sas_blob_utils.py +0 -509
  194. megadetector-5.0.28.dist-info/RECORD +0 -209
  195. /megadetector/{api/batch_processing/__init__.py → __init__.py} +0 -0
  196. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/licenses/LICENSE +0 -0
  197. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/top_level.txt +0 -0
@@ -1,507 +0,0 @@
1
- """
2
-
3
- umn_to_json.py
4
-
5
- Prepare images and metadata for the Orinoquía Camera Traps dataset.
6
-
7
- """
8
-
9
- #%% Imports and constants
10
-
11
- import os
12
- import json
13
- import pandas as pd
14
- import shutil
15
- import uuid
16
- import datetime
17
- import dateutil.parser
18
-
19
- from collections import defaultdict
20
- from tqdm import tqdm
21
- from pathlib import Path
22
- from multiprocessing.pool import ThreadPool
23
-
24
- input_base = "f:\\"
25
- image_base = os.path.join(input_base,'2021.11.24-images\jan2020')
26
- ground_truth_file = os.path.join(input_base,'images_hv_jan2020_reviewed_force_nonblank.csv')
27
-
28
- # For two deployments, we're only processing imagse in the "detections" subfolder
29
- detection_only_deployments = ['N23','N32']
30
- deployments_to_ignore = ['N18','N28']
31
-
32
- MISSING_COMMON_NAME_TOKEN = 'MISSING'
33
-
34
- assert os.path.isfile(ground_truth_file)
35
- assert os.path.isdir(image_base)
36
-
37
-
38
- #%% Enumerate deployment folders
39
-
40
- deployment_folders = os.listdir(image_base)
41
- deployment_folders = [s for s in deployment_folders if os.path.isdir(os.path.join(image_base,s))]
42
- deployment_folders = set(deployment_folders)
43
- print('Listed {} deployment folders'.format(len(deployment_folders)))
44
-
45
-
46
- #%% Load ground truth
47
-
48
- ground_truth_df = pd.read_csv(ground_truth_file)
49
-
50
- print('Loaded {} ground truth annotations'.format(
51
- len(ground_truth_df)))
52
-
53
- # i_row = 0; row = ground_truth_df.iloc[i_row]
54
- for i_row,row in tqdm(ground_truth_df.iterrows()):
55
- if not isinstance(row['common_name'],str):
56
- print('Warning: missing common name for {}'.format(row['filename']))
57
- row['common_name'] = MISSING_COMMON_NAME_TOKEN
58
-
59
-
60
- #%% Create relative paths for ground truth data
61
-
62
- # Some deployment folders have no subfolders, e.g. this is a valid file name:
63
- #
64
- # M00/01010132.JPG
65
- #
66
- # But some deployment folders have subfolders, e.g. this is also a valid file name:
67
- #
68
- # N17/100EK113/07160020.JPG
69
- #
70
- # So we can't find files by just concatenating folder and file names, we have to enumerate and explicitly
71
- # map what will appear in the ground truth as "folder/filename" to complete relative paths.
72
-
73
- deployment_name_to_file_mappings = {}
74
-
75
- n_filenames_ignored = 0
76
- n_deployments_ignored = 0
77
-
78
- # deployment_name = list(deployment_folders)[0]
79
- for deployment_name in tqdm(deployment_folders):
80
-
81
- file_mappings = {}
82
-
83
- if deployment_name in deployments_to_ignore:
84
- print('Ignoring deployment {}'.format(deployment_name))
85
- n_deployments_ignored += 1
86
- continue
87
-
88
- # Enumerate all files in this folder
89
- absolute_deployment_folder = os.path.join(image_base,deployment_name)
90
- assert os.path.isdir(absolute_deployment_folder)
91
-
92
- files = list(Path(absolute_deployment_folder).rglob('*'))
93
- files = [p for p in files if not p.is_dir()]
94
- files = [str(s) for s in files]
95
- files = [s.replace('\\','/') for s in files]
96
- # print('Enumerated {} files for deployment {}'.format(len(files),deployment_name))
97
-
98
- # filename = files[100]
99
- for filename in files:
100
-
101
- if deployment_name in detection_only_deployments and 'detection' not in filename:
102
- n_filenames_ignored += 1
103
- continue
104
-
105
- if '.DS_Store' in filename:
106
- n_filenames_ignored += 1
107
- continue
108
-
109
- relative_path = os.path.relpath(filename,absolute_deployment_folder).replace('\\','/')
110
- image_name = relative_path.split('/')[-1]
111
- assert image_name not in file_mappings, 'Redundant image name {} in deployment {}'.format(
112
- image_name,deployment_name)
113
- assert '\\' not in relative_path
114
- file_mappings[image_name] = relative_path
115
-
116
- # ...for each file in this deployment
117
-
118
- deployment_name_to_file_mappings[deployment_name] = file_mappings
119
-
120
- # ...for each deployment
121
-
122
- print('Processed deployments, ignored {} deployments and {} files'.format(
123
- n_deployments_ignored,n_filenames_ignored))
124
-
125
-
126
- #%% Add relative paths to our ground truth table
127
-
128
- ground_truth_df['relative_path'] = None
129
-
130
- # i_row = 0; row = ground_truth_df.iloc[i_row]
131
- for i_row,row in tqdm(ground_truth_df.iterrows(),total=len(ground_truth_df)):
132
-
133
- # row['filename'] looks like, e.g. A01/01080001.JPG. This is not actually a path, it's
134
- # just the deployment ID and the image name, separated by a slash.
135
-
136
- deployment_name = row['filename'].split('/')[0]
137
-
138
- assert deployment_name in deployment_folders, 'Could not find deployment folder {}'.format(deployment_name)
139
- assert deployment_name in deployment_name_to_file_mappings, 'Could not find deployment folder {}'.format(deployment_name)
140
-
141
- file_mappings = deployment_name_to_file_mappings[deployment_name]
142
-
143
- # Find the relative path for this image
144
- image_name = row['filename'].split('/')[-1]
145
- assert image_name in file_mappings, 'No mappings for image {} in deployment {}'.format(
146
- image_name,deployment_name)
147
- relative_path = os.path.join(deployment_name,file_mappings[image_name]).replace('\\','/')
148
-
149
- # Make sure this image file exists
150
- absolute_path = os.path.join(image_base,relative_path)
151
- assert os.path.isfile(absolute_path), 'Could not find file {}'.format(absolute_path)
152
-
153
- ground_truth_df.loc[i_row,'relative_path'] = relative_path
154
-
155
- # ...for each row in the ground truth table
156
-
157
-
158
- #%% Take everything out of Pandas
159
-
160
- ground_truth_dicts = ground_truth_df.to_dict('records')
161
-
162
-
163
- #%% Convert string timestamps to Python datetimes
164
-
165
- all_locations = set()
166
-
167
- # im = ground_truth_dicts[0]
168
- for im in tqdm(ground_truth_dicts):
169
- dt = dateutil.parser.isoparse(im['timestamp'])
170
- assert dt.year == 2020
171
- im['datetime'] = dt
172
-
173
- # Filenames look like, e.g., N36/100EK113/06040726.JPG
174
- im['location'] = im['relative_path'].split('/')[0]
175
- assert len(im['location']) == 3
176
- all_locations.add(im['location'])
177
-
178
-
179
- #%% Synthesize sequence information
180
-
181
- locations = all_locations
182
- print('Found {} locations'.format(len(locations)))
183
-
184
- locations = list(locations)
185
-
186
- sequences = set()
187
- sequence_to_images = defaultdict(list)
188
- images = ground_truth_dicts
189
- max_seconds_within_sequence = 10
190
-
191
- # Sort images by time within each location
192
- # i_location=0; location = locations[i_location]
193
- for i_location,location in tqdm(enumerate(locations)):
194
-
195
- images_this_location = [im for im in images if im['location'] == location]
196
- sorted_images_this_location = sorted(images_this_location, key = lambda im: im['datetime'])
197
-
198
- current_sequence_id = None
199
- next_frame_number = 0
200
- previous_datetime = None
201
-
202
- # previous_datetime = sorted_images_this_location[0]['datetime']
203
- # im = sorted_images_this_camera[1]
204
- for i_image,im in enumerate(sorted_images_this_location):
205
-
206
- # Timestamp for this image, may be None
207
- dt = im['datetime']
208
-
209
- # Start a new sequence if:
210
- #
211
- # * This image has no timestamp
212
- # * This image has a frame number of zero
213
- # * We have no previous image timestamp
214
- #
215
- if dt is None:
216
- delta = None
217
- elif previous_datetime is None:
218
- delta = None
219
- else:
220
- assert isinstance(dt,datetime.datetime)
221
- delta = (dt - previous_datetime).total_seconds()
222
-
223
- # Start a new sequence if necessary
224
- if delta is None or delta > max_seconds_within_sequence:
225
- next_frame_number = 0
226
- current_sequence_id = str(uuid.uuid1())
227
- sequences.add(current_sequence_id)
228
- assert current_sequence_id is not None
229
-
230
- im['seq_id'] = current_sequence_id
231
- im['synthetic_frame_number'] = next_frame_number
232
- next_frame_number = next_frame_number + 1
233
- previous_datetime = dt
234
- sequence_to_images[im['seq_id']].append(im)
235
-
236
- # ...for each image in this location
237
-
238
- # ...for each location
239
-
240
-
241
- #%% Create category dict and category IDs
242
-
243
- categories_to_counts = defaultdict(int)
244
- category_mappings = {'blank':'empty',
245
- 'mammal':'unknown_mammal',
246
- 'dasypus_species':'unknown_armadillo',
247
- 'bird':'unknown_bird',
248
- 'bos_species':'cattle',
249
- 'possum_family':'unknown_possum',
250
- 'cervidae_family':'unknown_cervid',
251
- 'unknown_species':'unknown',
252
- 'lizards_and_snakes':'unknown_reptile',
253
- 'caprimulgidae_family':'unknown_nightjar',
254
- 'turtle_order':'unknown_turtle',
255
- 'ornate_tití_monkey':'ornate_titi_monkey',
256
- 'saimiri_species':'unknown_squirrel_monkey',
257
- 'peccary_family':'unknown_peccary',
258
- 'pecari_species':'unknown_peccary',
259
- 'alouatta_species':'unknown_howler_monkey',
260
- 'human-camera_trapper':'human',
261
- 'weasel_family':'unknown_weasel',
262
- 'motorcycle':'human',
263
- 'eira_species':'unknown_tayra',
264
- 'sapajus_species':'unknown_capuchin_monkey',
265
- 'red_brocket':'red_brocket_deer'
266
- }
267
-
268
- for c in category_mappings.values():
269
- assert ' ' not in c
270
-
271
- # im = images[0]
272
- for im in tqdm(images):
273
-
274
- category_name = im['common_name'].lower().replace("'",'').replace(' ','_')
275
- if category_name in category_mappings:
276
- category_name = category_mappings[category_name]
277
- categories_to_counts[category_name] += 1
278
- im['category_name'] = category_name
279
-
280
-
281
- categories_to_counts_sorted = {k: v for k, v in sorted(categories_to_counts.items(),
282
- key=lambda item: item[1],reverse=True)}
283
-
284
- for s in categories_to_counts_sorted.keys():
285
- print('{}: {}'.format(s,categories_to_counts_sorted[s]))
286
-
287
-
288
- #%% Imports and constants (.json generation)
289
-
290
- import os
291
- import uuid
292
- import datetime
293
- from tqdm import tqdm
294
-
295
- from megadetector.data_management.databases import integrity_check_json_db
296
-
297
- output_base = 'f:\orinoquia_camera_traps'
298
- output_image_base = os.path.join(output_base,'images')
299
- os.makedirs(output_image_base,exist_ok=True)
300
-
301
- output_json_filename = os.path.join(output_base, 'orinoquia_camera_traps.json')
302
- output_encoding = 'utf-8'
303
- read_image_sizes = False
304
-
305
- info = {}
306
- info['year'] = 2020
307
- info['version'] = '1.0'
308
- info['description'] = 'Orinoquia Camera Traps'
309
- info['contributor'] = 'University of Minnesota'
310
- info['date_created'] = str(datetime.date.today())
311
-
312
-
313
- #%% Count frames in each sequence
314
-
315
- sequence_id_to_n_frames = defaultdict(int)
316
-
317
- for im in tqdm(images):
318
- seq_id = im['seq_id']
319
- sequence_id_to_n_frames[seq_id] = sequence_id_to_n_frames[seq_id] + 1
320
-
321
- for im in tqdm(images):
322
- seq_id = im['seq_id']
323
- im['seq_num_frames'] = sequence_id_to_n_frames[seq_id]
324
-
325
-
326
- #%% Double check images with multiple annotations
327
-
328
- filename_to_images = defaultdict(list)
329
-
330
- # im = images[0]
331
- for im in tqdm(images):
332
- fn = im['relative_path']
333
- filename_to_images[fn].append(im)
334
-
335
- filenames_with_multiple_annotations = [fn for fn in filename_to_images.keys() if len(filename_to_images[fn]) > 1]
336
-
337
- print('Found {} filenames with multiple annotations'.format(len(filenames_with_multiple_annotations)))
338
-
339
- for fn in filenames_with_multiple_annotations:
340
- images_this_file = filename_to_images[fn]
341
- print(fn + ': ')
342
- for im in images_this_file:
343
- print(im['category_name'])
344
- print('')
345
-
346
-
347
- #%% Assemble dictionaries
348
-
349
- images_out = []
350
- image_id_to_image = {}
351
- annotations = []
352
- categories = []
353
-
354
- category_name_to_category = {}
355
- category_id_to_category = {}
356
-
357
- # Force the empty category to be ID 0
358
- empty_category = {}
359
- empty_category['name'] = 'empty'
360
- empty_category['id'] = 0
361
- empty_category['count'] = 0
362
-
363
- category_id_to_category[0] = empty_category
364
- category_name_to_category['empty'] = empty_category
365
- categories.append(empty_category)
366
- next_id = 1
367
-
368
- # input_im = images[0]
369
- for input_im in tqdm(images):
370
-
371
- category_name = input_im['category_name'].lower().strip()
372
-
373
- if category_name not in category_name_to_category:
374
-
375
- category_id = next_id
376
- next_id += 1
377
- category = {}
378
- category['id'] = category_id
379
- category['name'] = category_name
380
- category['count'] = 0
381
- categories.append(category)
382
- category_name_to_category[category_name] = category
383
- category_id_to_category[category_id] = category
384
-
385
- else:
386
-
387
- category = category_name_to_category[category_name]
388
-
389
- category_id = category['id']
390
- category['count'] += 1
391
-
392
- im = {}
393
- im['id'] = input_im['relative_path'].replace('/','_')
394
- im['datetime'] = str(input_im['datetime'])
395
- im['file_name'] = input_im['relative_path']
396
- im['seq_id'] = input_im['seq_id']
397
- im['frame_num'] = input_im['synthetic_frame_number']
398
- im['seq_num_frames'] = input_im['seq_num_frames']
399
- im['location'] = input_im['location']
400
-
401
- if im['id'] in image_id_to_image:
402
- print('Warning: image ID {} ({}) has multiple annotations'.format(im['id'],im['id'].replace('_','/')))
403
- else:
404
- image_id_to_image[im['id']] = im
405
- images_out.append(im)
406
-
407
- ann = {}
408
-
409
- ann['id'] = str(uuid.uuid1())
410
- ann['image_id'] = im['id']
411
- ann['category_id'] = category_id
412
- ann['sequence_level_annotation'] = False
413
- annotations.append(ann)
414
-
415
- # ...for each image
416
-
417
-
418
- #%% Write output .json
419
-
420
- data = {}
421
- data['info'] = info
422
- data['images'] = images_out
423
- data['annotations'] = annotations
424
- data['categories'] = categories
425
-
426
- with open(output_json_filename, 'w') as f:
427
- json.dump(data, f, indent=1)
428
-
429
- print('Finished writing json to {}'.format(output_json_filename))
430
-
431
-
432
- #%% Validate .json file
433
-
434
- options = integrity_check_json_db.IntegrityCheckOptions()
435
- options.baseDir = output_base
436
- options.bCheckImageSizes = False
437
- options.bCheckImageExistence = False
438
- options.bFindUnusedImages = False
439
-
440
- _, _, _ = integrity_check_json_db.integrity_check_json_db(output_json_filename, options)
441
-
442
-
443
- #%% Map relative paths to annotation categories
444
-
445
- category_id_to_category_names = {c['id']:c['name'] for c in data['categories']}
446
- image_id_to_category_names = defaultdict(list)
447
-
448
- # ann = data['annotations'][0]
449
- for ann in data['annotations']:
450
- category_name = category_id_to_category_names[ann['category_id']]
451
- image_id_to_category_names[ann['image_id']].append(category_name)
452
-
453
-
454
- #%% Copy images to output
455
-
456
- # EXCLUDE HUMAN AND MISSING
457
-
458
- # im = data['images'][0]
459
- def copy_image(im):
460
-
461
- image_id = im['id']
462
- category_names_this_image = image_id_to_category_names[image_id]
463
- assert len(category_names_this_image) > 0
464
- if ('human' in category_names_this_image) or ('missing' in category_names_this_image):
465
- prefix = 'private'
466
- else:
467
- prefix = 'public'
468
- input_fn_absolute = os.path.join(image_base,im['file_name'])
469
- output_fn_absolute = os.path.join(output_image_base,prefix,im['file_name'])
470
- dirname = os.path.dirname(output_fn_absolute)
471
- os.makedirs(dirname,exist_ok=True)
472
- shutil.copy(input_fn_absolute,output_fn_absolute)
473
-
474
- n_threads = 10
475
-
476
- # im = images[0]
477
- if n_threads == 1:
478
- for im in tqdm(data['images']):
479
- copy_image(im)
480
- else:
481
- pool = ThreadPool(n_threads)
482
- with tqdm(total=len(data['images'])) as pbar:
483
- for i,_ in enumerate(pool.imap_unordered(copy_image,data['images'])):
484
- pbar.update()
485
-
486
-
487
- #%% Preview labels
488
-
489
- from megadetector.visualization import visualize_db
490
-
491
- viz_options = visualize_db.DbVizOptions()
492
- viz_options.num_to_visualize = 100
493
- viz_options.trim_to_images_with_bboxes = False
494
- viz_options.add_search_links = False
495
- viz_options.sort_by_filename = False
496
- viz_options.parallelize_rendering = True
497
- viz_options.include_filename_links = True
498
-
499
- # viz_options.classes_to_exclude = ['test']
500
- html_output_file, _ = visualize_db.visualize_db(db_path=output_json_filename,
501
- output_dir=os.path.join(
502
- output_base,'preview'),
503
- image_base_dir=os.path.join(output_image_base,'public'),
504
- options=viz_options)
505
- os.startfile(html_output_file)
506
-
507
-