megadetector 5.0.28__py3-none-any.whl → 10.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of megadetector might be problematic. Click here for more details.
- megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
- megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
- megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
- megadetector/classification/aggregate_classifier_probs.py +3 -3
- megadetector/classification/analyze_failed_images.py +5 -5
- megadetector/classification/cache_batchapi_outputs.py +5 -5
- megadetector/classification/create_classification_dataset.py +11 -12
- megadetector/classification/crop_detections.py +10 -10
- megadetector/classification/csv_to_json.py +8 -8
- megadetector/classification/detect_and_crop.py +13 -15
- megadetector/classification/efficientnet/model.py +8 -8
- megadetector/classification/efficientnet/utils.py +6 -5
- megadetector/classification/evaluate_model.py +7 -7
- megadetector/classification/identify_mislabeled_candidates.py +6 -6
- megadetector/classification/json_to_azcopy_list.py +1 -1
- megadetector/classification/json_validator.py +29 -32
- megadetector/classification/map_classification_categories.py +9 -9
- megadetector/classification/merge_classification_detection_output.py +12 -9
- megadetector/classification/prepare_classification_script.py +19 -19
- megadetector/classification/prepare_classification_script_mc.py +26 -26
- megadetector/classification/run_classifier.py +4 -4
- megadetector/classification/save_mislabeled.py +6 -6
- megadetector/classification/train_classifier.py +1 -1
- megadetector/classification/train_classifier_tf.py +9 -9
- megadetector/classification/train_utils.py +10 -10
- megadetector/data_management/annotations/annotation_constants.py +1 -2
- megadetector/data_management/camtrap_dp_to_coco.py +79 -46
- megadetector/data_management/cct_json_utils.py +103 -103
- megadetector/data_management/cct_to_md.py +49 -49
- megadetector/data_management/cct_to_wi.py +33 -33
- megadetector/data_management/coco_to_labelme.py +75 -75
- megadetector/data_management/coco_to_yolo.py +210 -193
- megadetector/data_management/databases/add_width_and_height_to_db.py +86 -12
- megadetector/data_management/databases/combine_coco_camera_traps_files.py +40 -40
- megadetector/data_management/databases/integrity_check_json_db.py +228 -200
- megadetector/data_management/databases/subset_json_db.py +33 -33
- megadetector/data_management/generate_crops_from_cct.py +88 -39
- megadetector/data_management/get_image_sizes.py +54 -49
- megadetector/data_management/labelme_to_coco.py +133 -125
- megadetector/data_management/labelme_to_yolo.py +159 -73
- megadetector/data_management/lila/create_lila_blank_set.py +81 -83
- megadetector/data_management/lila/create_lila_test_set.py +32 -31
- megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
- megadetector/data_management/lila/download_lila_subset.py +21 -24
- megadetector/data_management/lila/generate_lila_per_image_labels.py +365 -107
- megadetector/data_management/lila/get_lila_annotation_counts.py +35 -33
- megadetector/data_management/lila/get_lila_image_counts.py +22 -22
- megadetector/data_management/lila/lila_common.py +73 -70
- megadetector/data_management/lila/test_lila_metadata_urls.py +28 -19
- megadetector/data_management/mewc_to_md.py +344 -340
- megadetector/data_management/ocr_tools.py +262 -255
- megadetector/data_management/read_exif.py +249 -227
- megadetector/data_management/remap_coco_categories.py +90 -28
- megadetector/data_management/remove_exif.py +81 -21
- megadetector/data_management/rename_images.py +187 -187
- megadetector/data_management/resize_coco_dataset.py +588 -120
- megadetector/data_management/speciesnet_to_md.py +41 -41
- megadetector/data_management/wi_download_csv_to_coco.py +55 -55
- megadetector/data_management/yolo_output_to_md_output.py +248 -122
- megadetector/data_management/yolo_to_coco.py +333 -191
- megadetector/detection/change_detection.py +832 -0
- megadetector/detection/process_video.py +340 -337
- megadetector/detection/pytorch_detector.py +358 -278
- megadetector/detection/run_detector.py +399 -186
- megadetector/detection/run_detector_batch.py +404 -377
- megadetector/detection/run_inference_with_yolov5_val.py +340 -327
- megadetector/detection/run_tiled_inference.py +257 -249
- megadetector/detection/tf_detector.py +24 -24
- megadetector/detection/video_utils.py +332 -295
- megadetector/postprocessing/add_max_conf.py +19 -11
- megadetector/postprocessing/categorize_detections_by_size.py +45 -45
- megadetector/postprocessing/classification_postprocessing.py +468 -433
- megadetector/postprocessing/combine_batch_outputs.py +23 -23
- megadetector/postprocessing/compare_batch_results.py +590 -525
- megadetector/postprocessing/convert_output_format.py +106 -102
- megadetector/postprocessing/create_crop_folder.py +347 -147
- megadetector/postprocessing/detector_calibration.py +173 -168
- megadetector/postprocessing/generate_csv_report.py +508 -499
- megadetector/postprocessing/load_api_results.py +48 -27
- megadetector/postprocessing/md_to_coco.py +133 -102
- megadetector/postprocessing/md_to_labelme.py +107 -90
- megadetector/postprocessing/md_to_wi.py +40 -40
- megadetector/postprocessing/merge_detections.py +92 -114
- megadetector/postprocessing/postprocess_batch_results.py +319 -301
- megadetector/postprocessing/remap_detection_categories.py +91 -38
- megadetector/postprocessing/render_detection_confusion_matrix.py +214 -205
- megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
- megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
- megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +704 -679
- megadetector/postprocessing/separate_detections_into_folders.py +226 -211
- megadetector/postprocessing/subset_json_detector_output.py +265 -262
- megadetector/postprocessing/top_folders_to_bottom.py +45 -45
- megadetector/postprocessing/validate_batch_results.py +70 -70
- megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
- megadetector/taxonomy_mapping/map_new_lila_datasets.py +18 -19
- megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +54 -33
- megadetector/taxonomy_mapping/preview_lila_taxonomy.py +67 -67
- megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
- megadetector/taxonomy_mapping/simple_image_download.py +8 -8
- megadetector/taxonomy_mapping/species_lookup.py +156 -74
- megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
- megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
- megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
- megadetector/utils/ct_utils.py +1049 -211
- megadetector/utils/directory_listing.py +21 -77
- megadetector/utils/gpu_test.py +22 -22
- megadetector/utils/md_tests.py +632 -529
- megadetector/utils/path_utils.py +1520 -431
- megadetector/utils/process_utils.py +41 -41
- megadetector/utils/split_locations_into_train_val.py +62 -62
- megadetector/utils/string_utils.py +148 -27
- megadetector/utils/url_utils.py +489 -176
- megadetector/utils/wi_utils.py +2658 -2526
- megadetector/utils/write_html_image_list.py +137 -137
- megadetector/visualization/plot_utils.py +34 -30
- megadetector/visualization/render_images_with_thumbnails.py +39 -74
- megadetector/visualization/visualization_utils.py +487 -435
- megadetector/visualization/visualize_db.py +232 -198
- megadetector/visualization/visualize_detector_output.py +82 -76
- {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/METADATA +5 -2
- megadetector-10.0.0.dist-info/RECORD +139 -0
- {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/WHEEL +1 -1
- megadetector/api/batch_processing/api_core/__init__.py +0 -0
- megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
- megadetector/api/batch_processing/api_core/batch_service/score.py +0 -439
- megadetector/api/batch_processing/api_core/server.py +0 -294
- megadetector/api/batch_processing/api_core/server_api_config.py +0 -97
- megadetector/api/batch_processing/api_core/server_app_config.py +0 -55
- megadetector/api/batch_processing/api_core/server_batch_job_manager.py +0 -220
- megadetector/api/batch_processing/api_core/server_job_status_table.py +0 -149
- megadetector/api/batch_processing/api_core/server_orchestration.py +0 -360
- megadetector/api/batch_processing/api_core/server_utils.py +0 -88
- megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
- megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
- megadetector/api/batch_processing/api_support/__init__.py +0 -0
- megadetector/api/batch_processing/api_support/summarize_daily_activity.py +0 -152
- megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
- megadetector/api/synchronous/__init__.py +0 -0
- megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
- megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +0 -151
- megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -263
- megadetector/api/synchronous/api_core/animal_detection_api/config.py +0 -35
- megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
- megadetector/api/synchronous/api_core/tests/load_test.py +0 -110
- megadetector/data_management/importers/add_nacti_sizes.py +0 -52
- megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
- megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
- megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
- megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
- megadetector/data_management/importers/awc_to_json.py +0 -191
- megadetector/data_management/importers/bellevue_to_json.py +0 -272
- megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
- megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
- megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
- megadetector/data_management/importers/cct_field_adjustments.py +0 -58
- megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
- megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
- megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
- megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
- megadetector/data_management/importers/ena24_to_json.py +0 -276
- megadetector/data_management/importers/filenames_to_json.py +0 -386
- megadetector/data_management/importers/helena_to_cct.py +0 -283
- megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
- megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
- megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
- megadetector/data_management/importers/jb_csv_to_json.py +0 -150
- megadetector/data_management/importers/mcgill_to_json.py +0 -250
- megadetector/data_management/importers/missouri_to_json.py +0 -490
- megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
- megadetector/data_management/importers/noaa_seals_2019.py +0 -181
- megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
- megadetector/data_management/importers/pc_to_json.py +0 -365
- megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
- megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
- megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
- megadetector/data_management/importers/rspb_to_json.py +0 -356
- megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
- megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
- megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
- megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
- megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
- megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
- megadetector/data_management/importers/sulross_get_exif.py +0 -65
- megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
- megadetector/data_management/importers/ubc_to_json.py +0 -399
- megadetector/data_management/importers/umn_to_json.py +0 -507
- megadetector/data_management/importers/wellington_to_json.py +0 -263
- megadetector/data_management/importers/wi_to_json.py +0 -442
- megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
- megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
- megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
- megadetector/utils/azure_utils.py +0 -178
- megadetector/utils/sas_blob_utils.py +0 -509
- megadetector-5.0.28.dist-info/RECORD +0 -209
- /megadetector/{api/batch_processing/__init__.py → __init__.py} +0 -0
- {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/licenses/LICENSE +0 -0
- {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/top_level.txt +0 -0
|
@@ -2,7 +2,9 @@
|
|
|
2
2
|
|
|
3
3
|
remap_coco_categories.py
|
|
4
4
|
|
|
5
|
-
Given a COCO-formatted dataset, remap the categories to a new mapping.
|
|
5
|
+
Given a COCO-formatted dataset, remap the categories to a new mapping. A common use
|
|
6
|
+
case is to take a fine-grained dataset (e.g. with species-level categories) and
|
|
7
|
+
map them to coarse categories (typically MD categories).
|
|
6
8
|
|
|
7
9
|
"""
|
|
8
10
|
|
|
@@ -10,6 +12,7 @@ Given a COCO-formatted dataset, remap the categories to a new mapping.
|
|
|
10
12
|
|
|
11
13
|
import os
|
|
12
14
|
import json
|
|
15
|
+
import argparse
|
|
13
16
|
|
|
14
17
|
from copy import deepcopy
|
|
15
18
|
from megadetector.utils.ct_utils import invert_dictionary
|
|
@@ -25,24 +28,24 @@ def remap_coco_categories(input_data,
|
|
|
25
28
|
"""
|
|
26
29
|
Given a COCO-formatted dataset, remap the categories to a new categories mapping, optionally
|
|
27
30
|
writing the results to a new file.
|
|
28
|
-
|
|
31
|
+
|
|
29
32
|
Args:
|
|
30
|
-
input_data (str or dict): a COCO-formatted dict or a filename. If it's a dict, it will
|
|
33
|
+
input_data (str or dict): a COCO-formatted dict or a filename. If it's a dict, it will
|
|
31
34
|
be copied, not modified in place.
|
|
32
|
-
output_category_name_to_id (dict) a dict mapping strings to ints. Categories not in
|
|
35
|
+
output_category_name_to_id (dict): a dict mapping strings to ints. Categories not in
|
|
33
36
|
this dict will be ignored or will result in errors, depending on allow_unused_categories.
|
|
34
|
-
input_category_name_to_output_category_name: a dict mapping strings to strings.
|
|
35
|
-
Annotations using categories not in this dict will be omitted or will result in
|
|
37
|
+
input_category_name_to_output_category_name (dict): a dict mapping strings to strings.
|
|
38
|
+
Annotations using categories not in this dict will be omitted or will result in
|
|
36
39
|
errors, depending on allow_unused_categories.
|
|
37
40
|
output_file (str, optional): output file to which we should write remapped COCO data
|
|
38
41
|
allow_unused_categories (bool, optional): should we ignore categories not present in the
|
|
39
42
|
input/output mappings? If this is False and we encounter an unmapped category, we'll
|
|
40
43
|
error.
|
|
41
|
-
|
|
44
|
+
|
|
42
45
|
Returns:
|
|
43
46
|
dict: COCO-formatted dict
|
|
44
47
|
"""
|
|
45
|
-
|
|
48
|
+
|
|
46
49
|
if isinstance(input_data,str):
|
|
47
50
|
assert os.path.isfile(input_data), "Can't find file {}".format(input_data)
|
|
48
51
|
with open(input_data,'r') as f:
|
|
@@ -51,45 +54,45 @@ def remap_coco_categories(input_data,
|
|
|
51
54
|
else:
|
|
52
55
|
assert isinstance(input_data,dict), 'Illegal COCO input data'
|
|
53
56
|
input_data = deepcopy(input_data)
|
|
54
|
-
|
|
57
|
+
|
|
55
58
|
# It's safe to modify in-place now
|
|
56
59
|
output_data = input_data
|
|
57
|
-
|
|
60
|
+
|
|
58
61
|
# Read input name --> ID mapping
|
|
59
62
|
input_category_name_to_input_category_id = {}
|
|
60
63
|
for c in input_data['categories']:
|
|
61
64
|
input_category_name_to_input_category_id[c['name']] = c['id']
|
|
62
65
|
input_category_id_to_input_category_name = \
|
|
63
66
|
invert_dictionary(input_category_name_to_input_category_id)
|
|
64
|
-
|
|
67
|
+
|
|
65
68
|
# Map input IDs --> output IDs
|
|
66
69
|
input_category_id_to_output_category_id = {}
|
|
67
70
|
input_category_names = list(input_category_name_to_output_category_name.keys())
|
|
68
|
-
|
|
71
|
+
|
|
69
72
|
# input_name = input_category_names[0]
|
|
70
73
|
for input_name in input_category_names:
|
|
71
|
-
|
|
74
|
+
|
|
72
75
|
output_name = input_category_name_to_output_category_name[input_name]
|
|
73
76
|
assert output_name in output_category_name_to_id, \
|
|
74
77
|
'No output ID for {} --> {}'.format(input_name,output_name)
|
|
75
78
|
input_id = input_category_name_to_input_category_id[input_name]
|
|
76
79
|
output_id = output_category_name_to_id[output_name]
|
|
77
80
|
input_category_id_to_output_category_id[input_id] = output_id
|
|
78
|
-
|
|
81
|
+
|
|
79
82
|
# ...for each category we want to keep
|
|
80
|
-
|
|
83
|
+
|
|
81
84
|
printed_unused_category_warnings = set()
|
|
82
|
-
|
|
85
|
+
|
|
83
86
|
valid_annotations = []
|
|
84
|
-
|
|
87
|
+
|
|
85
88
|
# Map annotations
|
|
86
89
|
for ann in output_data['annotations']:
|
|
87
|
-
|
|
90
|
+
|
|
88
91
|
input_category_id = ann['category_id']
|
|
89
92
|
if input_category_id not in input_category_id_to_output_category_id:
|
|
90
93
|
if allow_unused_categories:
|
|
91
94
|
if input_category_id not in printed_unused_category_warnings:
|
|
92
|
-
printed_unused_category_warnings.add(input_category_id)
|
|
95
|
+
printed_unused_category_warnings.add(input_category_id)
|
|
93
96
|
input_category_name = \
|
|
94
97
|
input_category_id_to_input_category_name[input_category_id]
|
|
95
98
|
s = 'Skipping unmapped category ID {} ({})'.format(
|
|
@@ -98,31 +101,31 @@ def remap_coco_categories(input_data,
|
|
|
98
101
|
continue
|
|
99
102
|
else:
|
|
100
103
|
s = 'Unmapped category ID {}'.format(input_category_id)
|
|
101
|
-
raise ValueError(s)
|
|
104
|
+
raise ValueError(s)
|
|
102
105
|
output_category_id = input_category_id_to_output_category_id[input_category_id]
|
|
103
106
|
ann['category_id'] = output_category_id
|
|
104
|
-
valid_annotations.append(ann)
|
|
105
|
-
|
|
107
|
+
valid_annotations.append(ann)
|
|
108
|
+
|
|
106
109
|
# ...for each annotation
|
|
107
|
-
|
|
110
|
+
|
|
108
111
|
# The only reason annotations should get excluded is the case where we allow
|
|
109
112
|
# unused categories
|
|
110
113
|
if not allow_unused_categories:
|
|
111
114
|
assert len(valid_annotations) == len(output_data['annotations'])
|
|
112
|
-
|
|
115
|
+
|
|
113
116
|
output_data['annotations'] = valid_annotations
|
|
114
|
-
|
|
117
|
+
|
|
115
118
|
# Update the category list
|
|
116
119
|
output_categories = []
|
|
117
120
|
for output_name in output_category_name_to_id:
|
|
118
121
|
category = {'name':output_name,'id':output_category_name_to_id[output_name]}
|
|
119
122
|
output_categories.append(category)
|
|
120
123
|
output_data['categories'] = output_categories
|
|
121
|
-
|
|
124
|
+
|
|
122
125
|
if output_file is not None:
|
|
123
126
|
with open(output_file,'w') as f:
|
|
124
127
|
json.dump(output_data,f,indent=1)
|
|
125
|
-
|
|
128
|
+
|
|
126
129
|
return input_data
|
|
127
130
|
|
|
128
131
|
# ...def remap_coco_categories(...)
|
|
@@ -130,4 +133,63 @@ def remap_coco_categories(input_data,
|
|
|
130
133
|
|
|
131
134
|
#%% Command-line driver
|
|
132
135
|
|
|
133
|
-
|
|
136
|
+
def main():
|
|
137
|
+
"""
|
|
138
|
+
Command-line interface to remap COCO categories.
|
|
139
|
+
"""
|
|
140
|
+
|
|
141
|
+
parser = argparse.ArgumentParser(
|
|
142
|
+
description='Remap categories in a COCO-formatted dataset'
|
|
143
|
+
)
|
|
144
|
+
parser.add_argument(
|
|
145
|
+
'input_coco_file',
|
|
146
|
+
type=str,
|
|
147
|
+
help='Path to the input COCO .json file'
|
|
148
|
+
)
|
|
149
|
+
parser.add_argument(
|
|
150
|
+
'output_category_map_file',
|
|
151
|
+
type=str,
|
|
152
|
+
help="Path to a .json file mapping output category names to integer IDs (e.g., {'cat':0, 'dog':1})"
|
|
153
|
+
)
|
|
154
|
+
parser.add_argument(
|
|
155
|
+
'input_to_output_category_map_file',
|
|
156
|
+
type=str,
|
|
157
|
+
help="Path to a .json file mapping input category names to output category names" + \
|
|
158
|
+
" (e.g., {'old_cat_name':'cat', 'old_dog_name':'dog'})"
|
|
159
|
+
)
|
|
160
|
+
parser.add_argument(
|
|
161
|
+
'output_coco_file',
|
|
162
|
+
type=str,
|
|
163
|
+
help='Path to save the remapped COCO .json file'
|
|
164
|
+
)
|
|
165
|
+
parser.add_argument(
|
|
166
|
+
'--allow_unused_categories',
|
|
167
|
+
action='store_true',
|
|
168
|
+
help='Allow unmapped categories (by default, errors on unmapped categories)'
|
|
169
|
+
)
|
|
170
|
+
|
|
171
|
+
args = parser.parse_args()
|
|
172
|
+
|
|
173
|
+
# Load category mappings
|
|
174
|
+
with open(args.output_category_map_file, 'r') as f:
|
|
175
|
+
output_category_name_to_id = json.load(f)
|
|
176
|
+
|
|
177
|
+
with open(args.input_to_output_category_map_file, 'r') as f:
|
|
178
|
+
input_category_name_to_output_category_name = json.load(f)
|
|
179
|
+
|
|
180
|
+
# Load COCO data
|
|
181
|
+
with open(args.input_coco_file, 'r') as f:
|
|
182
|
+
input_data = json.load(f)
|
|
183
|
+
|
|
184
|
+
remap_coco_categories(
|
|
185
|
+
input_data=input_data,
|
|
186
|
+
output_category_name_to_id=output_category_name_to_id,
|
|
187
|
+
input_category_name_to_output_category_name=input_category_name_to_output_category_name,
|
|
188
|
+
output_file=args.output_coco_file,
|
|
189
|
+
allow_unused_categories=args.allow_unused_categories
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
print(f'Successfully remapped categories and saved to {args.output_coco_file}')
|
|
193
|
+
|
|
194
|
+
if __name__ == '__main__':
|
|
195
|
+
main()
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
|
|
3
3
|
remove_exif.py
|
|
4
4
|
|
|
5
|
-
Removes all EXIF/IPTC/XMP metadata from a folder of images, without making
|
|
5
|
+
Removes all EXIF/IPTC/XMP metadata from a folder of images, without making
|
|
6
6
|
backup copies, using pyexiv2. Ignores non-jpeg images.
|
|
7
7
|
|
|
8
8
|
This module is rarely used, and pyexiv2 is not thread-safe, so pyexiv2 is not
|
|
@@ -14,6 +14,7 @@ included in package-level dependency lists. YMMV.
|
|
|
14
14
|
|
|
15
15
|
import os
|
|
16
16
|
import glob
|
|
17
|
+
import argparse
|
|
17
18
|
|
|
18
19
|
from multiprocessing.pool import Pool as Pool
|
|
19
20
|
from tqdm import tqdm
|
|
@@ -21,22 +22,33 @@ from tqdm import tqdm
|
|
|
21
22
|
|
|
22
23
|
#%% Support functions
|
|
23
24
|
|
|
24
|
-
# Pyexif2 is not thread safe, do not call this function in parallel within a process
|
|
25
|
-
#
|
|
26
|
-
# Parallelizing across processes is fine.
|
|
27
25
|
def remove_exif_from_image(fn):
|
|
26
|
+
"""
|
|
27
|
+
Remove EXIF information from a single image
|
|
28
|
+
|
|
29
|
+
pyexiv2 is not thread safe, do not call this function in parallel within a process.
|
|
30
|
+
|
|
31
|
+
Parallelizing across processes is fine.
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
fn (str): image file from which we should remove EXIF information
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
bool: whether EXIF removal succeeded
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
import pyexiv2 # type: ignore
|
|
28
41
|
|
|
29
|
-
import pyexiv2
|
|
30
|
-
|
|
31
42
|
try:
|
|
32
43
|
img = pyexiv2.Image(fn)
|
|
33
44
|
img.clear_exif()
|
|
34
45
|
img.clear_iptc()
|
|
35
46
|
img.clear_xmp()
|
|
36
|
-
img.close()
|
|
47
|
+
img.close()
|
|
37
48
|
except Exception as e:
|
|
38
49
|
print('EXIF error on {}: {}'.format(fn,str(e)))
|
|
39
|
-
|
|
50
|
+
return False
|
|
51
|
+
|
|
40
52
|
return True
|
|
41
53
|
|
|
42
54
|
|
|
@@ -44,22 +56,23 @@ def remove_exif_from_image(fn):
|
|
|
44
56
|
|
|
45
57
|
def remove_exif(image_base_folder,recursive=True,n_processes=1):
|
|
46
58
|
"""
|
|
47
|
-
Removes all EXIF/IPTC/XMP metadata from a folder of images, without making
|
|
59
|
+
Removes all EXIF/IPTC/XMP metadata from a folder of images, without making
|
|
48
60
|
backup copies, using pyexiv2. Ignores non-jpeg images.
|
|
49
|
-
|
|
61
|
+
|
|
50
62
|
Args:
|
|
51
63
|
image_base_folder (str): the folder from which we should remove EXIF data
|
|
52
64
|
recursive (bool, optional): whether to process [image_base_folder] recursively
|
|
53
65
|
n_processes (int, optional): number of concurrent workers. Because pyexiv2 is not
|
|
54
|
-
thread-safe, only process-based parallelism is supported.
|
|
66
|
+
thread-safe, only process-based parallelism is supported.
|
|
55
67
|
"""
|
|
68
|
+
|
|
56
69
|
try:
|
|
57
|
-
import pyexiv2 #noqa
|
|
70
|
+
import pyexiv2 # type: ignore #noqa
|
|
58
71
|
except:
|
|
59
72
|
print('pyexiv2 not available; try "pip install pyexiv2"')
|
|
60
73
|
raise
|
|
61
74
|
|
|
62
|
-
|
|
75
|
+
|
|
63
76
|
##%% List files
|
|
64
77
|
|
|
65
78
|
assert os.path.isdir(image_base_folder), \
|
|
@@ -67,25 +80,72 @@ def remove_exif(image_base_folder,recursive=True,n_processes=1):
|
|
|
67
80
|
all_files = [f for f in glob.glob(image_base_folder+ "*/**", recursive=recursive)]
|
|
68
81
|
image_files = [s for s in all_files if \
|
|
69
82
|
(s.lower().endswith('.jpg') or s.lower().endswith('.jpeg'))]
|
|
70
|
-
|
|
83
|
+
|
|
71
84
|
|
|
72
85
|
##%% Remove EXIF data (execution)
|
|
73
86
|
|
|
74
87
|
if n_processes == 1:
|
|
75
|
-
|
|
88
|
+
|
|
76
89
|
# fn = image_files[0]
|
|
77
90
|
for fn in tqdm(image_files):
|
|
78
91
|
remove_exif_from_image(fn)
|
|
79
|
-
|
|
92
|
+
|
|
80
93
|
else:
|
|
81
94
|
# pyexiv2 is not thread-safe, so we need to use processes
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
95
|
+
pool = None
|
|
96
|
+
try:
|
|
97
|
+
print('Starting parallel process pool with {} workers'.format(n_processes))
|
|
98
|
+
pool = Pool(n_processes)
|
|
99
|
+
_ = list(tqdm(pool.imap(remove_exif_from_image,image_files),total=len(image_files)))
|
|
100
|
+
finally:
|
|
101
|
+
pool.close()
|
|
102
|
+
pool.join()
|
|
103
|
+
print("Pool closed and joined for EXIF removal")
|
|
104
|
+
|
|
86
105
|
# ...remove_exif(...)
|
|
87
106
|
|
|
88
107
|
|
|
89
108
|
#%% Command-line driver
|
|
90
109
|
|
|
91
|
-
|
|
110
|
+
def main():
|
|
111
|
+
"""
|
|
112
|
+
Command-line interface to remove EXIF data from images.
|
|
113
|
+
"""
|
|
114
|
+
|
|
115
|
+
parser = argparse.ArgumentParser(
|
|
116
|
+
description='Removes EXIF/IPTC/XMP metadata from images in a folder'
|
|
117
|
+
)
|
|
118
|
+
parser.add_argument(
|
|
119
|
+
'image_base_folder',
|
|
120
|
+
type=str,
|
|
121
|
+
help='Folder to process for EXIF removal'
|
|
122
|
+
)
|
|
123
|
+
parser.add_argument(
|
|
124
|
+
'--nonrecursive',
|
|
125
|
+
action='store_true',
|
|
126
|
+
help="Don't recurse into [image_base_folder] (default is recursive)"
|
|
127
|
+
)
|
|
128
|
+
parser.add_argument(
|
|
129
|
+
'--n_processes',
|
|
130
|
+
type=int,
|
|
131
|
+
default=1,
|
|
132
|
+
help='Number of concurrent processes for EXIF removal (default: 1)'
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
args = parser.parse_args()
|
|
136
|
+
|
|
137
|
+
recursive = (not args.nonrecursive)
|
|
138
|
+
|
|
139
|
+
print('Processing folder: {}'.format(args.image_base_folder))
|
|
140
|
+
if not os.path.isdir(args.image_base_folder):
|
|
141
|
+
raise ValueError('Folder not found at {}'.format(args.image_base_folder))
|
|
142
|
+
|
|
143
|
+
remove_exif(
|
|
144
|
+
image_base_folder=args.image_base_folder,
|
|
145
|
+
recursive=recursive,
|
|
146
|
+
n_processes=args.n_processes
|
|
147
|
+
)
|
|
148
|
+
print('Finished removing EXIF data')
|
|
149
|
+
|
|
150
|
+
if __name__ == '__main__':
|
|
151
|
+
main()
|