megadetector 5.0.28__py3-none-any.whl → 10.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (197) hide show
  1. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +2 -2
  2. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +1 -1
  3. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +1 -1
  4. megadetector/classification/aggregate_classifier_probs.py +3 -3
  5. megadetector/classification/analyze_failed_images.py +5 -5
  6. megadetector/classification/cache_batchapi_outputs.py +5 -5
  7. megadetector/classification/create_classification_dataset.py +11 -12
  8. megadetector/classification/crop_detections.py +10 -10
  9. megadetector/classification/csv_to_json.py +8 -8
  10. megadetector/classification/detect_and_crop.py +13 -15
  11. megadetector/classification/efficientnet/model.py +8 -8
  12. megadetector/classification/efficientnet/utils.py +6 -5
  13. megadetector/classification/evaluate_model.py +7 -7
  14. megadetector/classification/identify_mislabeled_candidates.py +6 -6
  15. megadetector/classification/json_to_azcopy_list.py +1 -1
  16. megadetector/classification/json_validator.py +29 -32
  17. megadetector/classification/map_classification_categories.py +9 -9
  18. megadetector/classification/merge_classification_detection_output.py +12 -9
  19. megadetector/classification/prepare_classification_script.py +19 -19
  20. megadetector/classification/prepare_classification_script_mc.py +26 -26
  21. megadetector/classification/run_classifier.py +4 -4
  22. megadetector/classification/save_mislabeled.py +6 -6
  23. megadetector/classification/train_classifier.py +1 -1
  24. megadetector/classification/train_classifier_tf.py +9 -9
  25. megadetector/classification/train_utils.py +10 -10
  26. megadetector/data_management/annotations/annotation_constants.py +1 -2
  27. megadetector/data_management/camtrap_dp_to_coco.py +79 -46
  28. megadetector/data_management/cct_json_utils.py +103 -103
  29. megadetector/data_management/cct_to_md.py +49 -49
  30. megadetector/data_management/cct_to_wi.py +33 -33
  31. megadetector/data_management/coco_to_labelme.py +75 -75
  32. megadetector/data_management/coco_to_yolo.py +210 -193
  33. megadetector/data_management/databases/add_width_and_height_to_db.py +86 -12
  34. megadetector/data_management/databases/combine_coco_camera_traps_files.py +40 -40
  35. megadetector/data_management/databases/integrity_check_json_db.py +228 -200
  36. megadetector/data_management/databases/subset_json_db.py +33 -33
  37. megadetector/data_management/generate_crops_from_cct.py +88 -39
  38. megadetector/data_management/get_image_sizes.py +54 -49
  39. megadetector/data_management/labelme_to_coco.py +133 -125
  40. megadetector/data_management/labelme_to_yolo.py +159 -73
  41. megadetector/data_management/lila/create_lila_blank_set.py +81 -83
  42. megadetector/data_management/lila/create_lila_test_set.py +32 -31
  43. megadetector/data_management/lila/create_links_to_md_results_files.py +18 -18
  44. megadetector/data_management/lila/download_lila_subset.py +21 -24
  45. megadetector/data_management/lila/generate_lila_per_image_labels.py +365 -107
  46. megadetector/data_management/lila/get_lila_annotation_counts.py +35 -33
  47. megadetector/data_management/lila/get_lila_image_counts.py +22 -22
  48. megadetector/data_management/lila/lila_common.py +73 -70
  49. megadetector/data_management/lila/test_lila_metadata_urls.py +28 -19
  50. megadetector/data_management/mewc_to_md.py +344 -340
  51. megadetector/data_management/ocr_tools.py +262 -255
  52. megadetector/data_management/read_exif.py +249 -227
  53. megadetector/data_management/remap_coco_categories.py +90 -28
  54. megadetector/data_management/remove_exif.py +81 -21
  55. megadetector/data_management/rename_images.py +187 -187
  56. megadetector/data_management/resize_coco_dataset.py +588 -120
  57. megadetector/data_management/speciesnet_to_md.py +41 -41
  58. megadetector/data_management/wi_download_csv_to_coco.py +55 -55
  59. megadetector/data_management/yolo_output_to_md_output.py +248 -122
  60. megadetector/data_management/yolo_to_coco.py +333 -191
  61. megadetector/detection/change_detection.py +832 -0
  62. megadetector/detection/process_video.py +340 -337
  63. megadetector/detection/pytorch_detector.py +358 -278
  64. megadetector/detection/run_detector.py +399 -186
  65. megadetector/detection/run_detector_batch.py +404 -377
  66. megadetector/detection/run_inference_with_yolov5_val.py +340 -327
  67. megadetector/detection/run_tiled_inference.py +257 -249
  68. megadetector/detection/tf_detector.py +24 -24
  69. megadetector/detection/video_utils.py +332 -295
  70. megadetector/postprocessing/add_max_conf.py +19 -11
  71. megadetector/postprocessing/categorize_detections_by_size.py +45 -45
  72. megadetector/postprocessing/classification_postprocessing.py +468 -433
  73. megadetector/postprocessing/combine_batch_outputs.py +23 -23
  74. megadetector/postprocessing/compare_batch_results.py +590 -525
  75. megadetector/postprocessing/convert_output_format.py +106 -102
  76. megadetector/postprocessing/create_crop_folder.py +347 -147
  77. megadetector/postprocessing/detector_calibration.py +173 -168
  78. megadetector/postprocessing/generate_csv_report.py +508 -499
  79. megadetector/postprocessing/load_api_results.py +48 -27
  80. megadetector/postprocessing/md_to_coco.py +133 -102
  81. megadetector/postprocessing/md_to_labelme.py +107 -90
  82. megadetector/postprocessing/md_to_wi.py +40 -40
  83. megadetector/postprocessing/merge_detections.py +92 -114
  84. megadetector/postprocessing/postprocess_batch_results.py +319 -301
  85. megadetector/postprocessing/remap_detection_categories.py +91 -38
  86. megadetector/postprocessing/render_detection_confusion_matrix.py +214 -205
  87. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +57 -57
  88. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +27 -28
  89. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +704 -679
  90. megadetector/postprocessing/separate_detections_into_folders.py +226 -211
  91. megadetector/postprocessing/subset_json_detector_output.py +265 -262
  92. megadetector/postprocessing/top_folders_to_bottom.py +45 -45
  93. megadetector/postprocessing/validate_batch_results.py +70 -70
  94. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +52 -52
  95. megadetector/taxonomy_mapping/map_new_lila_datasets.py +18 -19
  96. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +54 -33
  97. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +67 -67
  98. megadetector/taxonomy_mapping/retrieve_sample_image.py +16 -16
  99. megadetector/taxonomy_mapping/simple_image_download.py +8 -8
  100. megadetector/taxonomy_mapping/species_lookup.py +156 -74
  101. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +14 -14
  102. megadetector/taxonomy_mapping/taxonomy_graph.py +10 -10
  103. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +13 -13
  104. megadetector/utils/ct_utils.py +1049 -211
  105. megadetector/utils/directory_listing.py +21 -77
  106. megadetector/utils/gpu_test.py +22 -22
  107. megadetector/utils/md_tests.py +632 -529
  108. megadetector/utils/path_utils.py +1520 -431
  109. megadetector/utils/process_utils.py +41 -41
  110. megadetector/utils/split_locations_into_train_val.py +62 -62
  111. megadetector/utils/string_utils.py +148 -27
  112. megadetector/utils/url_utils.py +489 -176
  113. megadetector/utils/wi_utils.py +2658 -2526
  114. megadetector/utils/write_html_image_list.py +137 -137
  115. megadetector/visualization/plot_utils.py +34 -30
  116. megadetector/visualization/render_images_with_thumbnails.py +39 -74
  117. megadetector/visualization/visualization_utils.py +487 -435
  118. megadetector/visualization/visualize_db.py +232 -198
  119. megadetector/visualization/visualize_detector_output.py +82 -76
  120. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/METADATA +5 -2
  121. megadetector-10.0.0.dist-info/RECORD +139 -0
  122. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/WHEEL +1 -1
  123. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  124. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  125. megadetector/api/batch_processing/api_core/batch_service/score.py +0 -439
  126. megadetector/api/batch_processing/api_core/server.py +0 -294
  127. megadetector/api/batch_processing/api_core/server_api_config.py +0 -97
  128. megadetector/api/batch_processing/api_core/server_app_config.py +0 -55
  129. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +0 -220
  130. megadetector/api/batch_processing/api_core/server_job_status_table.py +0 -149
  131. megadetector/api/batch_processing/api_core/server_orchestration.py +0 -360
  132. megadetector/api/batch_processing/api_core/server_utils.py +0 -88
  133. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  134. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +0 -46
  135. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  136. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +0 -152
  137. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  138. megadetector/api/synchronous/__init__.py +0 -0
  139. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  140. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +0 -151
  141. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +0 -263
  142. megadetector/api/synchronous/api_core/animal_detection_api/config.py +0 -35
  143. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  144. megadetector/api/synchronous/api_core/tests/load_test.py +0 -110
  145. megadetector/data_management/importers/add_nacti_sizes.py +0 -52
  146. megadetector/data_management/importers/add_timestamps_to_icct.py +0 -79
  147. megadetector/data_management/importers/animl_results_to_md_results.py +0 -158
  148. megadetector/data_management/importers/auckland_doc_test_to_json.py +0 -373
  149. megadetector/data_management/importers/auckland_doc_to_json.py +0 -201
  150. megadetector/data_management/importers/awc_to_json.py +0 -191
  151. megadetector/data_management/importers/bellevue_to_json.py +0 -272
  152. megadetector/data_management/importers/cacophony-thermal-importer.py +0 -793
  153. megadetector/data_management/importers/carrizo_shrubfree_2018.py +0 -269
  154. megadetector/data_management/importers/carrizo_trail_cam_2017.py +0 -289
  155. megadetector/data_management/importers/cct_field_adjustments.py +0 -58
  156. megadetector/data_management/importers/channel_islands_to_cct.py +0 -913
  157. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +0 -180
  158. megadetector/data_management/importers/eMammal/eMammal_helpers.py +0 -249
  159. megadetector/data_management/importers/eMammal/make_eMammal_json.py +0 -223
  160. megadetector/data_management/importers/ena24_to_json.py +0 -276
  161. megadetector/data_management/importers/filenames_to_json.py +0 -386
  162. megadetector/data_management/importers/helena_to_cct.py +0 -283
  163. megadetector/data_management/importers/idaho-camera-traps.py +0 -1407
  164. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +0 -294
  165. megadetector/data_management/importers/import_desert_lion_conservation_camera_traps.py +0 -387
  166. megadetector/data_management/importers/jb_csv_to_json.py +0 -150
  167. megadetector/data_management/importers/mcgill_to_json.py +0 -250
  168. megadetector/data_management/importers/missouri_to_json.py +0 -490
  169. megadetector/data_management/importers/nacti_fieldname_adjustments.py +0 -79
  170. megadetector/data_management/importers/noaa_seals_2019.py +0 -181
  171. megadetector/data_management/importers/osu-small-animals-to-json.py +0 -364
  172. megadetector/data_management/importers/pc_to_json.py +0 -365
  173. megadetector/data_management/importers/plot_wni_giraffes.py +0 -123
  174. megadetector/data_management/importers/prepare_zsl_imerit.py +0 -131
  175. megadetector/data_management/importers/raic_csv_to_md_results.py +0 -416
  176. megadetector/data_management/importers/rspb_to_json.py +0 -356
  177. megadetector/data_management/importers/save_the_elephants_survey_A.py +0 -320
  178. megadetector/data_management/importers/save_the_elephants_survey_B.py +0 -329
  179. megadetector/data_management/importers/snapshot_safari_importer.py +0 -758
  180. megadetector/data_management/importers/snapshot_serengeti_lila.py +0 -1067
  181. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +0 -150
  182. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +0 -153
  183. megadetector/data_management/importers/sulross_get_exif.py +0 -65
  184. megadetector/data_management/importers/timelapse_csv_set_to_json.py +0 -490
  185. megadetector/data_management/importers/ubc_to_json.py +0 -399
  186. megadetector/data_management/importers/umn_to_json.py +0 -507
  187. megadetector/data_management/importers/wellington_to_json.py +0 -263
  188. megadetector/data_management/importers/wi_to_json.py +0 -442
  189. megadetector/data_management/importers/zamba_results_to_md_results.py +0 -180
  190. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +0 -101
  191. megadetector/data_management/lila/add_locations_to_nacti.py +0 -151
  192. megadetector/utils/azure_utils.py +0 -178
  193. megadetector/utils/sas_blob_utils.py +0 -509
  194. megadetector-5.0.28.dist-info/RECORD +0 -209
  195. /megadetector/{api/batch_processing/__init__.py → __init__.py} +0 -0
  196. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/licenses/LICENSE +0 -0
  197. {megadetector-5.0.28.dist-info → megadetector-10.0.0.dist-info}/top_level.txt +0 -0
@@ -1,150 +0,0 @@
1
- """
2
-
3
- jb_csv_to_json.py
4
-
5
- Convert a particular .csv file to CCT format. Images were not available at
6
- the time I wrote this script, so this is much shorter than other scripts
7
- in this folder.
8
-
9
- """
10
-
11
- #%% Constants and environment
12
-
13
- import pandas as pd
14
- import uuid
15
- import json
16
-
17
- input_metadata_file = r'd:\temp\pre_bounding_box.csv'
18
- output_file = r'd:\temp\pre_bounding_box.json'
19
- filename_col = 'filename'
20
- label_col = 'category'
21
-
22
-
23
- #%% Read source data
24
-
25
- input_metadata = pd.read_csv(input_metadata_file)
26
-
27
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
28
- len(input_metadata)))
29
-
30
-
31
- #%% Confirm filename uniqueness (this data set has one label per image)
32
-
33
- imageFilenames = input_metadata[filename_col]
34
-
35
- duplicateRows = []
36
- filenamesToRows = {}
37
-
38
- # Build up a map from filenames to a list of rows, checking image existence as we go
39
- for iFile,fn in enumerate(imageFilenames):
40
-
41
- if (fn in filenamesToRows):
42
- duplicateRows.append(iFile)
43
- filenamesToRows[fn].append(iFile)
44
- else:
45
- filenamesToRows[fn] = [iFile]
46
-
47
- assert(len(duplicateRows) == 0)
48
-
49
-
50
- #%% Create CCT dictionaries
51
-
52
- images = []
53
- annotations = []
54
-
55
- # Map categories to integer IDs (that's what COCO likes)
56
- nextCategoryID = 1
57
- categories = []
58
- categoryNamesToCategories = {}
59
-
60
- cat = {}
61
- cat['name'] = 'empty'
62
- cat['id'] = 0
63
- categories.append(cat)
64
- categoryNamesToCategories['empty'] = cat
65
-
66
- # For each image
67
- #
68
- # Because in practice images are 1:1 with annotations in this data set,
69
- # this is also a loop over annotations.
70
-
71
- # imageName = imageFilenames[0]
72
- for imageName in imageFilenames:
73
-
74
- rows = filenamesToRows[imageName]
75
-
76
- # As per above, this is convenient and appears to be true; asserting to be safe
77
- assert(len(rows) == 1)
78
- iRow = rows[0]
79
-
80
- row = input_metadata.iloc[iRow]
81
-
82
- im = {}
83
- # Filenames look like "290716114012001a1116.jpg"
84
- im['id'] = imageName.split('.')[0]
85
- im['file_name'] = imageName
86
- im['seq_id'] = '-1'
87
-
88
- images.append(im)
89
-
90
- categoryName = row[label_col].lower()
91
-
92
- # Have we seen this category before?
93
- if categoryName in categoryNamesToCategories:
94
- categoryID = categoryNamesToCategories[categoryName]['id']
95
- else:
96
- cat = {}
97
- categoryID = nextCategoryID
98
- cat['name'] = categoryName
99
- cat['id'] = nextCategoryID
100
- categories.append(cat)
101
- categoryNamesToCategories[categoryName] = cat
102
- nextCategoryID += 1
103
-
104
- # Create an annotation
105
- ann = {}
106
-
107
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
108
- # beyond the sheer improbability of collisions.
109
- ann['id'] = str(uuid.uuid1())
110
- ann['image_id'] = im['id']
111
- ann['category_id'] = categoryID
112
-
113
- annotations.append(ann)
114
-
115
- # ...for each image
116
-
117
- print('Finished creating dictionaries')
118
-
119
-
120
- #%% Create info struct
121
-
122
- info = {}
123
- info['year'] = 2019
124
- info['version'] = 1
125
- info['description'] = 'COCO style database'
126
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
127
- info['contributor'] = ''
128
-
129
-
130
- #%% Write output
131
-
132
- json_data = {}
133
- json_data['images'] = images
134
- json_data['annotations'] = annotations
135
- json_data['categories'] = categories
136
- json_data['info'] = info
137
- json.dump(json_data, open(output_file,'w'), indent=4)
138
-
139
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
140
- len(images),len(annotations),len(categories)))
141
-
142
-
143
- #%% Validate
144
-
145
- from megadetector.data_management.databases import integrity_check_json_db
146
-
147
- options = integrity_check_json_db.IntegrityCheckOptions()
148
- sortedCategories,data = integrity_check_json_db.integrity_check_json_db(output_file, options)
149
-
150
-
@@ -1,250 +0,0 @@
1
- """
2
-
3
- mcgill_to_json.py
4
-
5
- Convert the .csv file provided for the McGill test data set to a
6
- COCO-camera-traps .json file
7
-
8
- """
9
-
10
- #%% Constants and environment
11
-
12
- import pandas as pd
13
- import os
14
- import glob
15
- import json
16
- import uuid
17
- import time
18
- import ntpath
19
- import humanfriendly
20
- import PIL
21
- import math
22
-
23
- baseDir = r'D:\wildlife_data\mcgill_test'
24
- input_metadata_file = os.path.join(baseDir, 'dan_500_photos_metadata.csv')
25
- output_file = os.path.join(baseDir, 'mcgill_test.json')
26
- image_directory = baseDir
27
-
28
- assert(os.path.isdir(image_directory))
29
- assert(os.path.isfile(input_metadata_file))
30
-
31
-
32
- #%% Read source data
33
-
34
- input_metadata = pd.read_csv(input_metadata_file)
35
-
36
- print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
37
- len(input_metadata)))
38
-
39
-
40
- #%% Map filenames to rows, verify image existence
41
-
42
- # Create an additional column for concatenated filenames
43
- input_metadata['relative_path'] = ''
44
- input_metadata['full_path'] = ''
45
-
46
- startTime = time.time()
47
-
48
- # Maps relative filenames to rows
49
- filenamesToRows = {}
50
-
51
- duplicateRows = []
52
-
53
- # Build up a map from filenames to a list of rows, checking image existence as we go
54
- # row = input_metadata.iloc[0]
55
- for iFile,row in input_metadata.iterrows():
56
-
57
- relativePath = os.path.join(row['site'],row['date_range'],str(row['camera']),
58
- str(row['folder']),row['filename'])
59
- fullPath = os.path.join(baseDir,relativePath)
60
-
61
- if (relativePath in filenamesToRows):
62
- duplicateRows.append(iFile)
63
- filenamesToRows[relativePath].append(iFile)
64
- else:
65
- filenamesToRows[relativePath] = [iFile]
66
- assert(os.path.isfile(fullPath))
67
-
68
- row['relative_path'] = relativePath
69
- row['full_path'] = fullPath
70
-
71
- input_metadata.iloc[iFile] = row
72
-
73
- elapsed = time.time() - startTime
74
- print('Finished verifying image existence in {}, found {} filenames with multiple labels'.format(
75
- humanfriendly.format_timespan(elapsed),len(duplicateRows)))
76
-
77
- # I didn't expect this to be true a priori, but it appears to be true, and
78
- # it saves us the trouble of checking consistency across multiple occurrences
79
- # of an image.
80
- assert(len(duplicateRows) == 0)
81
-
82
-
83
- #%% Check for images that aren't included in the metadata file
84
-
85
- # Enumerate all images
86
- imageFullPaths = glob.glob(os.path.join(image_directory,'**/*.JPG'), recursive=True)
87
-
88
- for iImage,imagePath in enumerate(imageFullPaths):
89
-
90
- imageRelPath = ntpath.relpath(imagePath, image_directory)
91
- assert(imageRelPath in filenamesToRows)
92
-
93
- print('Finished checking {} images to make sure they\'re in the metadata'.format(
94
- len(imageFullPaths)))
95
-
96
-
97
- #%% Create CCT dictionaries
98
-
99
- # Also gets image sizes, so this takes ~6 minutes
100
- #
101
- # Implicitly checks images for overt corruptness, i.e. by not crashing.
102
-
103
- images = []
104
- annotations = []
105
- categories = []
106
-
107
- emptyCategory = {}
108
- emptyCategory['id'] = 0
109
- emptyCategory['name'] = 'empty'
110
- emptyCategory['latin'] = 'empty'
111
- emptyCategory['count'] = 0
112
- categories.append(emptyCategory)
113
-
114
- # Map categories to integer IDs (that's what COCO likes)
115
- nextCategoryID = 1
116
- labelToCategory = {'empty':emptyCategory}
117
-
118
- # For each image
119
- #
120
- # Because in practice images are 1:1 with annotations in this data set,
121
- # this is also a loop over annotations.
122
-
123
- startTime = time.time()
124
-
125
- # row = input_metadata.iloc[0]
126
- for iFile,row in input_metadata.iterrows():
127
-
128
- relPath = row['relative_path'].replace('\\','/')
129
- im = {}
130
- # Filenames look like "290716114012001a1116.jpg"
131
- im['id'] = relPath.replace('/','_').replace(' ','_')
132
-
133
- im['file_name'] = relPath
134
-
135
- im['seq_id'] = -1
136
- im['frame_num'] = -1
137
-
138
- # In the form "001a"
139
- im['site']= row['site']
140
-
141
- # Can be in the form '111' or 's46'
142
- im['camera'] = row['camera']
143
-
144
- # In the form "7/29/2016 11:40"
145
- im['datetime'] = row['timestamp']
146
-
147
- otherFields = ['motion','temp_F','n_present','n_waterhole','n_contact','notes']
148
-
149
- for s in otherFields:
150
- im[s] = row[s]
151
-
152
- # Check image height and width
153
- fullPath = row['full_path']
154
- assert(os.path.isfile(fullPath))
155
- pilImage = PIL.Image.open(fullPath)
156
- width, height = pilImage.size
157
- im['width'] = width
158
- im['height'] = height
159
-
160
- images.append(im)
161
-
162
- label = row['species']
163
- if not isinstance(label,str):
164
- # NaN is the only thing we should see that's not a string
165
- assert math.isnan(label)
166
- label = 'empty'
167
- else:
168
- label = label.lower()
169
-
170
- latin = row['binomial']
171
- if not isinstance(latin,str):
172
- # NaN is the only thing we should see that's not a string
173
- assert math.isnan(latin)
174
- latin = 'empty'
175
- else:
176
- latin = latin.lower()
177
-
178
- if label == 'empty':
179
- if latin != 'empty':
180
- latin = 'empty'
181
-
182
- if label == 'unknown':
183
- if latin != 'unknown':
184
- latin = 'unknown'
185
-
186
- if label not in labelToCategory:
187
- print('Adding category {} ({})'.format(label,latin))
188
- category = {}
189
- categoryID = nextCategoryID
190
- category['id'] = categoryID
191
- nextCategoryID += 1
192
- category['name'] = label
193
- category['latin'] = latin
194
- category['count'] = 1
195
- labelToCategory[label] = category
196
- categories.append(category)
197
- else:
198
- category = labelToCategory[label]
199
- category['count'] = category['count'] + 1
200
- categoryID = category['id']
201
-
202
- # Create an annotation
203
- ann = {}
204
-
205
- # The Internet tells me this guarantees uniqueness to a reasonable extent, even
206
- # beyond the sheer improbability of collisions.
207
- ann['id'] = str(uuid.uuid1())
208
- ann['image_id'] = im['id']
209
- ann['category_id'] = categoryID
210
-
211
- annotations.append(ann)
212
-
213
- # ...for each image
214
-
215
- # Convert categories to a CCT-style dictionary
216
-
217
-
218
- for category in categories:
219
- print('Category {}, count {}'.format(category['name'],category['count']))
220
-
221
- elapsed = time.time() - startTime
222
- print('Finished creating CCT dictionaries in {}'.format(
223
- humanfriendly.format_timespan(elapsed)))
224
-
225
-
226
- #%% Create info struct
227
-
228
- info = {}
229
- info['year'] = 2019
230
- info['version'] = 1
231
- info['description'] = 'COCO style database'
232
- info['secondary_contributor'] = 'Converted to COCO .json by Dan Morris'
233
- info['contributor'] = 'McGill University'
234
-
235
-
236
- #%% Write output
237
-
238
- json_data = {}
239
- json_data['images'] = images
240
- json_data['annotations'] = annotations
241
- json_data['categories'] = categories
242
- json_data['info'] = info
243
- json.dump(json_data, open(output_file,'w'), indent=4)
244
-
245
- print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
246
- len(images),len(annotations),len(categories)))
247
-
248
-
249
-
250
-