megadetector 5.0.11__py3-none-any.whl → 5.0.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (201) hide show
  1. megadetector/api/__init__.py +0 -0
  2. megadetector/api/batch_processing/__init__.py +0 -0
  3. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  4. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
  6. megadetector/api/batch_processing/api_core/server.py +294 -0
  7. megadetector/api/batch_processing/api_core/server_api_config.py +98 -0
  8. megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
  9. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
  10. megadetector/api/batch_processing/api_core/server_job_status_table.py +152 -0
  11. megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
  12. megadetector/api/batch_processing/api_core/server_utils.py +92 -0
  13. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  14. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
  15. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  16. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
  17. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  18. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  19. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  20. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  21. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +126 -0
  22. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  23. megadetector/api/synchronous/__init__.py +0 -0
  24. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  25. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
  26. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -0
  27. megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
  28. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  29. megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
  30. megadetector/classification/__init__.py +0 -0
  31. megadetector/classification/aggregate_classifier_probs.py +108 -0
  32. megadetector/classification/analyze_failed_images.py +227 -0
  33. megadetector/classification/cache_batchapi_outputs.py +198 -0
  34. megadetector/classification/create_classification_dataset.py +627 -0
  35. megadetector/classification/crop_detections.py +516 -0
  36. megadetector/classification/csv_to_json.py +226 -0
  37. megadetector/classification/detect_and_crop.py +855 -0
  38. megadetector/classification/efficientnet/__init__.py +9 -0
  39. megadetector/classification/efficientnet/model.py +415 -0
  40. megadetector/classification/efficientnet/utils.py +610 -0
  41. megadetector/classification/evaluate_model.py +520 -0
  42. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  43. megadetector/classification/json_to_azcopy_list.py +63 -0
  44. megadetector/classification/json_validator.py +699 -0
  45. megadetector/classification/map_classification_categories.py +276 -0
  46. megadetector/classification/merge_classification_detection_output.py +506 -0
  47. megadetector/classification/prepare_classification_script.py +194 -0
  48. megadetector/classification/prepare_classification_script_mc.py +228 -0
  49. megadetector/classification/run_classifier.py +287 -0
  50. megadetector/classification/save_mislabeled.py +110 -0
  51. megadetector/classification/train_classifier.py +827 -0
  52. megadetector/classification/train_classifier_tf.py +725 -0
  53. megadetector/classification/train_utils.py +323 -0
  54. megadetector/data_management/__init__.py +0 -0
  55. megadetector/data_management/annotations/__init__.py +0 -0
  56. megadetector/data_management/annotations/annotation_constants.py +34 -0
  57. megadetector/data_management/camtrap_dp_to_coco.py +239 -0
  58. megadetector/data_management/cct_json_utils.py +395 -0
  59. megadetector/data_management/cct_to_md.py +176 -0
  60. megadetector/data_management/cct_to_wi.py +289 -0
  61. megadetector/data_management/coco_to_labelme.py +272 -0
  62. megadetector/data_management/coco_to_yolo.py +662 -0
  63. megadetector/data_management/databases/__init__.py +0 -0
  64. megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
  65. megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
  66. megadetector/data_management/databases/integrity_check_json_db.py +477 -0
  67. megadetector/data_management/databases/subset_json_db.py +115 -0
  68. megadetector/data_management/generate_crops_from_cct.py +149 -0
  69. megadetector/data_management/get_image_sizes.py +189 -0
  70. megadetector/data_management/importers/add_nacti_sizes.py +52 -0
  71. megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
  72. megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
  73. megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
  74. megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
  75. megadetector/data_management/importers/awc_to_json.py +191 -0
  76. megadetector/data_management/importers/bellevue_to_json.py +273 -0
  77. megadetector/data_management/importers/cacophony-thermal-importer.py +796 -0
  78. megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
  79. megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
  80. megadetector/data_management/importers/cct_field_adjustments.py +58 -0
  81. megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
  82. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
  83. megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
  84. megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
  85. megadetector/data_management/importers/ena24_to_json.py +276 -0
  86. megadetector/data_management/importers/filenames_to_json.py +386 -0
  87. megadetector/data_management/importers/helena_to_cct.py +283 -0
  88. megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
  89. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
  90. megadetector/data_management/importers/jb_csv_to_json.py +150 -0
  91. megadetector/data_management/importers/mcgill_to_json.py +250 -0
  92. megadetector/data_management/importers/missouri_to_json.py +490 -0
  93. megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
  94. megadetector/data_management/importers/noaa_seals_2019.py +181 -0
  95. megadetector/data_management/importers/pc_to_json.py +365 -0
  96. megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
  97. megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
  98. megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
  99. megadetector/data_management/importers/rspb_to_json.py +356 -0
  100. megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
  101. megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
  102. megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
  103. megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
  104. megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
  105. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
  106. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
  107. megadetector/data_management/importers/sulross_get_exif.py +65 -0
  108. megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
  109. megadetector/data_management/importers/ubc_to_json.py +399 -0
  110. megadetector/data_management/importers/umn_to_json.py +507 -0
  111. megadetector/data_management/importers/wellington_to_json.py +263 -0
  112. megadetector/data_management/importers/wi_to_json.py +442 -0
  113. megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
  114. megadetector/data_management/labelme_to_coco.py +547 -0
  115. megadetector/data_management/labelme_to_yolo.py +272 -0
  116. megadetector/data_management/lila/__init__.py +0 -0
  117. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
  118. megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
  119. megadetector/data_management/lila/create_lila_blank_set.py +558 -0
  120. megadetector/data_management/lila/create_lila_test_set.py +152 -0
  121. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  122. megadetector/data_management/lila/download_lila_subset.py +178 -0
  123. megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
  124. megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
  125. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  126. megadetector/data_management/lila/lila_common.py +300 -0
  127. megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
  128. megadetector/data_management/ocr_tools.py +874 -0
  129. megadetector/data_management/read_exif.py +681 -0
  130. megadetector/data_management/remap_coco_categories.py +84 -0
  131. megadetector/data_management/remove_exif.py +66 -0
  132. megadetector/data_management/resize_coco_dataset.py +189 -0
  133. megadetector/data_management/wi_download_csv_to_coco.py +246 -0
  134. megadetector/data_management/yolo_output_to_md_output.py +441 -0
  135. megadetector/data_management/yolo_to_coco.py +676 -0
  136. megadetector/detection/__init__.py +0 -0
  137. megadetector/detection/detector_training/__init__.py +0 -0
  138. megadetector/detection/detector_training/model_main_tf2.py +114 -0
  139. megadetector/detection/process_video.py +702 -0
  140. megadetector/detection/pytorch_detector.py +341 -0
  141. megadetector/detection/run_detector.py +779 -0
  142. megadetector/detection/run_detector_batch.py +1219 -0
  143. megadetector/detection/run_inference_with_yolov5_val.py +917 -0
  144. megadetector/detection/run_tiled_inference.py +934 -0
  145. megadetector/detection/tf_detector.py +189 -0
  146. megadetector/detection/video_utils.py +606 -0
  147. megadetector/postprocessing/__init__.py +0 -0
  148. megadetector/postprocessing/add_max_conf.py +64 -0
  149. megadetector/postprocessing/categorize_detections_by_size.py +163 -0
  150. megadetector/postprocessing/combine_api_outputs.py +249 -0
  151. megadetector/postprocessing/compare_batch_results.py +958 -0
  152. megadetector/postprocessing/convert_output_format.py +396 -0
  153. megadetector/postprocessing/load_api_results.py +195 -0
  154. megadetector/postprocessing/md_to_coco.py +310 -0
  155. megadetector/postprocessing/md_to_labelme.py +330 -0
  156. megadetector/postprocessing/merge_detections.py +401 -0
  157. megadetector/postprocessing/postprocess_batch_results.py +1902 -0
  158. megadetector/postprocessing/remap_detection_categories.py +170 -0
  159. megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
  160. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
  161. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
  162. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1631 -0
  163. megadetector/postprocessing/separate_detections_into_folders.py +730 -0
  164. megadetector/postprocessing/subset_json_detector_output.py +696 -0
  165. megadetector/postprocessing/top_folders_to_bottom.py +223 -0
  166. megadetector/taxonomy_mapping/__init__.py +0 -0
  167. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  168. megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
  169. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
  170. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +590 -0
  171. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  172. megadetector/taxonomy_mapping/simple_image_download.py +219 -0
  173. megadetector/taxonomy_mapping/species_lookup.py +834 -0
  174. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  175. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  176. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  177. megadetector/utils/__init__.py +0 -0
  178. megadetector/utils/azure_utils.py +178 -0
  179. megadetector/utils/ct_utils.py +612 -0
  180. megadetector/utils/directory_listing.py +246 -0
  181. megadetector/utils/md_tests.py +968 -0
  182. megadetector/utils/path_utils.py +1044 -0
  183. megadetector/utils/process_utils.py +157 -0
  184. megadetector/utils/sas_blob_utils.py +509 -0
  185. megadetector/utils/split_locations_into_train_val.py +228 -0
  186. megadetector/utils/string_utils.py +92 -0
  187. megadetector/utils/url_utils.py +323 -0
  188. megadetector/utils/write_html_image_list.py +225 -0
  189. megadetector/visualization/__init__.py +0 -0
  190. megadetector/visualization/plot_utils.py +293 -0
  191. megadetector/visualization/render_images_with_thumbnails.py +275 -0
  192. megadetector/visualization/visualization_utils.py +1536 -0
  193. megadetector/visualization/visualize_db.py +550 -0
  194. megadetector/visualization/visualize_detector_output.py +405 -0
  195. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/METADATA +1 -1
  196. megadetector-5.0.12.dist-info/RECORD +199 -0
  197. megadetector-5.0.12.dist-info/top_level.txt +1 -0
  198. megadetector-5.0.11.dist-info/RECORD +0 -5
  199. megadetector-5.0.11.dist-info/top_level.txt +0 -1
  200. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/LICENSE +0 -0
  201. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,272 @@
1
+ """
2
+
3
+ labelme_to_yolo.py
4
+
5
+ Create YOLO .txt files in a folder containing labelme .json files.
6
+
7
+ """
8
+
9
+ #%% Imports
10
+
11
+ import os
12
+ import json
13
+
14
+ from multiprocessing.pool import Pool, ThreadPool
15
+ from functools import partial
16
+ from tqdm import tqdm
17
+
18
+ from megadetector.utils.path_utils import recursive_file_list
19
+
20
+
21
+ #%% Main function
22
+
23
+ def labelme_file_to_yolo_file(labelme_file,
24
+ category_name_to_category_id,
25
+ yolo_file=None,
26
+ required_token=None,
27
+ overwrite_behavior='overwrite'):
28
+ """
29
+ Convert the single .json file labelme_file to yolo format, writing the results to the text
30
+ file yolo_file (defaults to s/json/txt).
31
+
32
+ If required_token is not None and the dict in labelme_file does not contain the key [required_token],
33
+ this function no-ops (i.e., does not generate a YOLO file).
34
+
35
+ overwrite_behavior should be 'skip' or 'overwrite' (default).
36
+ """
37
+
38
+ result = {}
39
+ result['labelme_file'] = labelme_file
40
+ result['status'] = 'unknown'
41
+
42
+ assert os.path.isfile(labelme_file), 'Could not find labelme .json file {}'.format(labelme_file)
43
+ assert labelme_file.endswith('.json'), 'Illegal labelme .json file {}'.format(labelme_file)
44
+
45
+ if yolo_file is None:
46
+ yolo_file = os.path.splitext(labelme_file)[0] + '.txt'
47
+
48
+ if os.path.isfile(yolo_file):
49
+ if overwrite_behavior == 'skip':
50
+ result['status'] = 'skip-exists'
51
+ return result
52
+ else:
53
+ assert overwrite_behavior == 'overwrite', \
54
+ 'Unrecognized overwrite behavior {}'.format(overwrite_behavior)
55
+
56
+ with open(labelme_file,'r') as f:
57
+ labelme_data = json.load(f)
58
+
59
+ if required_token is not None and required_token not in labelme_data:
60
+ result['status'] = 'skip-no-required-token'
61
+ return result
62
+
63
+ im_height = labelme_data['imageHeight']
64
+ im_width = labelme_data['imageWidth']
65
+
66
+ yolo_lines = []
67
+
68
+ for shape in labelme_data['shapes']:
69
+
70
+ assert shape['shape_type'] == 'rectangle', \
71
+ 'I only know how to convert rectangles to YOLO format'
72
+ assert shape['label'] in category_name_to_category_id, \
73
+ 'Category {} not in category mapping'.format(shape['label'])
74
+ assert len(shape['points']) == 2, 'Illegal rectangle'
75
+ category_id = category_name_to_category_id[shape['label']]
76
+
77
+ p0 = shape['points'][0]
78
+ p1 = shape['points'][1]
79
+
80
+ # Labelme: [[x0,y0],[x1,y1]] (arbitrarily sorted) (absolute coordinates)
81
+ #
82
+ # YOLO: [class, x_center, y_center, width, height] (normalized coordinates)
83
+ minx_abs = min(p0[0],p1[0])
84
+ maxx_abs = max(p0[0],p1[0])
85
+ miny_abs = min(p0[1],p1[1])
86
+ maxy_abs = max(p0[1],p1[1])
87
+
88
+ if (minx_abs >= (im_width-1)) or (maxx_abs <= 0) or \
89
+ (miny_abs >= (im_height-1)) or (maxy_abs <= 0):
90
+ print('Skipping invalid shape in {}'.format(labelme_file))
91
+ continue
92
+
93
+ # Clip to [0,1]... it's not obvious that the YOLO format doesn't allow bounding
94
+ # boxes to extend outside the image, but YOLOv5 and YOLOv8 get sad about boxes
95
+ # that extend outside the image.
96
+ maxx_abs = min(maxx_abs,im_width-1)
97
+ maxy_abs = min(maxy_abs,im_height-1)
98
+ minx_abs = max(minx_abs,0.0)
99
+ miny_abs = max(miny_abs,0.0)
100
+
101
+ minx_rel = minx_abs / (im_width-1)
102
+ maxx_rel = maxx_abs / (im_width-1)
103
+ miny_rel = miny_abs / (im_height-1)
104
+ maxy_rel = maxy_abs / (im_height-1)
105
+
106
+ assert maxx_rel >= minx_rel
107
+ assert maxy_rel >= miny_rel
108
+
109
+ xcenter_rel = (maxx_rel + minx_rel) / 2.0
110
+ ycenter_rel = (maxy_rel + miny_rel) / 2.0
111
+ w_rel = maxx_rel - minx_rel
112
+ h_rel = maxy_rel - miny_rel
113
+
114
+ yolo_line = '{} {:.3f} {:.3f} {:.3f} {:.3f}'.format(category_id,
115
+ xcenter_rel, ycenter_rel, w_rel, h_rel)
116
+ yolo_lines.append(yolo_line)
117
+
118
+ # ...for each shape
119
+
120
+ with open(yolo_file,'w') as f:
121
+ for s in yolo_lines:
122
+ f.write(s + '\n')
123
+
124
+ result['status'] = 'converted'
125
+ return result
126
+
127
+
128
+ def labelme_folder_to_yolo(labelme_folder,
129
+ category_name_to_category_id=None,
130
+ required_token=None,
131
+ overwrite_behavior='overwrite',
132
+ relative_filenames_to_convert=None,
133
+ n_workers=1,
134
+ use_threads=True):
135
+ """
136
+ Given a folder with images and labelme .json files, convert the .json files
137
+ to YOLO .txt format. If category_name_to_category_id is None, first reads
138
+ all the labels in the folder to build a zero-indexed name --> ID mapping.
139
+
140
+ If required_token is not None and a labelme_file does not contain the key [required_token],
141
+ it won't be converted. Typically used to specify a field that indicates which files have
142
+ been reviewed.
143
+
144
+ If relative_filenames_to_convert is not None, this should be a list of .json (not image)
145
+ files that should get converted, relative to the base folder.
146
+
147
+ overwrite_behavior should be 'skip' or 'overwrite' (default).
148
+
149
+ returns a dict with:
150
+ 'category_name_to_category_id', whether it was passed in or constructed
151
+ 'image_results': a list of results for each image (converted, skipped, error)
152
+
153
+ """
154
+
155
+ if relative_filenames_to_convert is not None:
156
+ labelme_files_relative = relative_filenames_to_convert
157
+ assert all([fn.endswith('.json') for fn in labelme_files_relative]), \
158
+ 'relative_filenames_to_convert contains non-json files'
159
+ else:
160
+ labelme_files_relative = recursive_file_list(labelme_folder,return_relative_paths=True)
161
+ labelme_files_relative = [fn for fn in labelme_files_relative if fn.endswith('.json')]
162
+
163
+ if required_token is None:
164
+ valid_labelme_files_relative = labelme_files_relative
165
+ else:
166
+ valid_labelme_files_relative = []
167
+
168
+ # fn_relative = labelme_files_relative[-1]
169
+ for fn_relative in labelme_files_relative:
170
+
171
+ fn_abs = os.path.join(labelme_folder,fn_relative)
172
+
173
+ with open(fn_abs,'r') as f:
174
+ labelme_data = json.load(f)
175
+ if required_token not in labelme_data:
176
+ continue
177
+
178
+ valid_labelme_files_relative.append(fn_relative)
179
+
180
+ print('{} of {} files are valid'.format(len(valid_labelme_files_relative),
181
+ len(labelme_files_relative)))
182
+
183
+ del labelme_files_relative
184
+
185
+ if category_name_to_category_id is None:
186
+
187
+ category_name_to_category_id = {}
188
+
189
+ for fn_relative in valid_labelme_files_relative:
190
+
191
+ fn_abs = os.path.join(labelme_folder,fn_relative)
192
+ with open(fn_abs,'r') as f:
193
+ labelme_data = json.load(f)
194
+ for shape in labelme_data['shapes']:
195
+ label = shape['label']
196
+ if label not in category_name_to_category_id:
197
+ category_name_to_category_id[label] = len(category_name_to_category_id)
198
+ # ...for each file
199
+
200
+ # ...if we need to build a category mapping
201
+
202
+ image_results = []
203
+
204
+ n_workers = min(n_workers,len(valid_labelme_files_relative))
205
+
206
+ if n_workers <= 1:
207
+ for fn_relative in tqdm(valid_labelme_files_relative):
208
+
209
+ fn_abs = os.path.join(labelme_folder,fn_relative)
210
+ image_result = labelme_file_to_yolo_file(fn_abs,
211
+ category_name_to_category_id,
212
+ yolo_file=None,
213
+ required_token=required_token,
214
+ overwrite_behavior=overwrite_behavior)
215
+ image_results.append(image_result)
216
+ # ...for each file
217
+ else:
218
+ if use_threads:
219
+ pool = ThreadPool(n_workers)
220
+ else:
221
+ pool = Pool(n_workers)
222
+
223
+ valid_labelme_files_abs = [os.path.join(labelme_folder,fn_relative) for \
224
+ fn_relative in valid_labelme_files_relative]
225
+
226
+ image_results = list(tqdm(pool.imap(
227
+ partial(labelme_file_to_yolo_file,
228
+ category_name_to_category_id=category_name_to_category_id,
229
+ yolo_file=None,
230
+ required_token=required_token,
231
+ overwrite_behavior=overwrite_behavior),
232
+ valid_labelme_files_abs),
233
+ total=len(valid_labelme_files_abs)))
234
+
235
+ assert len(valid_labelme_files_relative) == len(image_results)
236
+
237
+ print('Converted {} labelme .json files to YOLO'.format(
238
+ len(valid_labelme_files_relative)))
239
+
240
+ labelme_to_yolo_results = {}
241
+ labelme_to_yolo_results['category_name_to_category_id'] = category_name_to_category_id
242
+ labelme_to_yolo_results['image_results'] = image_results
243
+
244
+ return labelme_to_yolo_results
245
+
246
+ # ...def labelme_folder_to_yolo(...)
247
+
248
+
249
+ #%% Interactive driver
250
+
251
+ if False:
252
+
253
+ pass
254
+
255
+ #%%
256
+
257
+ labelme_file = os.path.expanduser('~/tmp/labels/x.json')
258
+ required_token = 'saved_by_labelme'
259
+ category_name_to_category_id = {'animal':0}
260
+ labelme_folder = os.path.expanduser('~/tmp/labels')
261
+
262
+ #%%
263
+
264
+ category_name_to_category_id = \
265
+ labelme_folder_to_yolo(labelme_folder,
266
+ category_name_to_category_id=category_name_to_category_id,
267
+ required_token=required_token,
268
+ overwrite_behavior='overwrite')
269
+
270
+ #%% Command-line driver
271
+
272
+ # TODO
File without changes
@@ -0,0 +1,97 @@
1
+ """
2
+
3
+ add_locations_to_island_camera_traps.py
4
+
5
+ The Island Conservation Camera Traps dataset had unique camera identifiers embedded
6
+ in filenames, but not in the proper metadata fields. This script copies that information
7
+ to metadata.
8
+
9
+ """
10
+
11
+ #%% Imports and constants
12
+
13
+ import os
14
+ import json
15
+ from tqdm import tqdm
16
+
17
+ input_fn = os.path.expanduser('~/lila/metadata/island_conservation.json')
18
+ output_fn = os.path.expanduser('~/tmp/island_conservation.json')
19
+ preview_folder = os.path.expanduser('~/tmp/island_conservation_preview')
20
+ image_directory = os.path.expanduser('~/data/icct/public/')
21
+
22
+
23
+ #%% Read input file
24
+
25
+ with open(input_fn,'r') as f:
26
+ d = json.load(f)
27
+
28
+ d['info']
29
+ d['info']['version'] = '1.01'
30
+
31
+
32
+ #%% Find locations
33
+
34
+ images = d['images']
35
+
36
+ locations = set()
37
+
38
+ for i_image,im in tqdm(enumerate(images),total=len(images)):
39
+ tokens_fn = im['file_name'].split('/')
40
+ tokens_id = im['id'].split('_')
41
+ assert tokens_fn[0] == tokens_id[0]
42
+ assert tokens_fn[1] == tokens_id[1]
43
+ location = tokens_fn[0] + '_' + tokens_fn[1]
44
+ im['location'] = location
45
+ locations.add(location)
46
+
47
+ locations = sorted(list(locations))
48
+
49
+ for s in locations:
50
+ print(s)
51
+
52
+
53
+ #%% Write output file
54
+
55
+ with open(output_fn,'w') as f:
56
+ json.dump(d,f,indent=1)
57
+
58
+
59
+ #%% Validate .json files
60
+
61
+ from megadetector.data_management.databases import integrity_check_json_db
62
+
63
+ options = integrity_check_json_db.IntegrityCheckOptions()
64
+ options.baseDir = image_directory
65
+ options.bCheckImageSizes = False
66
+ options.bCheckImageExistence = True
67
+ options.bFindUnusedImages = True
68
+
69
+ sorted_categories, data, error_info = integrity_check_json_db.integrity_check_json_db(output_fn, options)
70
+
71
+
72
+ #%% Preview labels
73
+
74
+ from megadetector.visualization import visualize_db
75
+
76
+ viz_options = visualize_db.DbVizOptions()
77
+ viz_options.num_to_visualize = 2000
78
+ viz_options.trim_to_images_with_bboxes = False
79
+ viz_options.add_search_links = False
80
+ viz_options.sort_by_filename = False
81
+ viz_options.parallelize_rendering = True
82
+ viz_options.classes_to_exclude = ['test']
83
+ html_output_file, image_db = visualize_db.visualize_db(db_path=output_fn,
84
+ output_dir=preview_folder,
85
+ image_base_dir=image_directory,
86
+ options=viz_options)
87
+
88
+ from megadetector.utils import path_utils
89
+ path_utils.open_file(html_output_file)
90
+
91
+
92
+ #%% Zip output file
93
+
94
+ from megadetector.utils.path_utils import zip_file
95
+
96
+ zip_file(output_fn, verbose=True)
97
+ assert os.path.isfile(output_fn + '.zip')
@@ -0,0 +1,147 @@
1
+ """
2
+
3
+ add_locations_to_nacti.py
4
+
5
+ As of 10.2023, NACTI metadata only has very coarse location information (e.g. "Florida"),
6
+ but camera IDs are embedded in filenames. This script pulls that information from filenames
7
+ and adds it to metadata.
8
+
9
+ """
10
+
11
+ #%% Imports and constants
12
+
13
+ import os
14
+ import json
15
+ import shutil
16
+
17
+ from tqdm import tqdm
18
+ from collections import defaultdict
19
+
20
+ input_file = r'd:\lila\nacti\nacti_metadata.json.1.13\nacti_metadata.json'
21
+ output_file = r'g:\temp\nacti_metadata.1.14.json'
22
+
23
+
24
+ #%% Read metadata
25
+
26
+ with open(input_file,'r') as f:
27
+ d = json.load(f)
28
+
29
+ assert d['info']['version'] == 1.13
30
+
31
+
32
+ #%% Map images to locations (according to the metadata)
33
+
34
+ file_name_to_original_location = {}
35
+
36
+ # im = dataset_labels['images'][0]
37
+ for im in tqdm(d['images']):
38
+ file_name_to_original_location[im['file_name']] = im['location']
39
+
40
+ original_locations = set(file_name_to_original_location.values())
41
+
42
+ print('Found {} locations in the original metadata:'.format(len(original_locations)))
43
+ for loc in original_locations:
44
+ print('[{}]'.format(loc))
45
+
46
+
47
+ #%% Map images to new locations
48
+
49
+ def path_to_location(relative_path):
50
+
51
+ relative_path = relative_path.replace('\\','/')
52
+ if relative_path in file_name_to_original_location:
53
+ location_name = file_name_to_original_location[relative_path]
54
+ if location_name == 'San Juan Mntns, Colorado':
55
+ # "part0/sub000/2010_Unit150_Ivan097_img0003.jpg"
56
+ tokens = relative_path.split('/')[-1].split('_')
57
+ assert tokens[1].startswith('Unit')
58
+ location_name = 'sanjuan_{}_{}_{}'.format(tokens[0],tokens[1],tokens[2])
59
+ elif location_name == 'Lebec, California':
60
+ # "part0/sub035/CA-03_08_13_2015_CA-03_0009738.jpg"
61
+ tokens = relative_path.split('/')[-1].split('_')
62
+ assert tokens[0].startswith('CA-') or tokens[0].startswith('TAG-')
63
+ location_name = 'lebec_{}'.format(tokens[0])
64
+ elif location_name == 'Archbold, FL':
65
+ # "part1/sub110/FL-01_01_25_2016_FL-01_0040421.jpg"
66
+ tokens = relative_path.split('/')[-1].split('_')
67
+ assert tokens[0].startswith('FL-')
68
+ location_name = 'archbold_{}'.format(tokens[0])
69
+ else:
70
+ assert location_name == ''
71
+ tokens = relative_path.split('/')[-1].split('_')
72
+ if tokens[0].startswith('CA-') or tokens[0].startswith('TAG-') or tokens[0].startswith('FL-'):
73
+ location_name = '{}'.format(tokens[0])
74
+
75
+ else:
76
+
77
+ location_name = 'unknown'
78
+
79
+ # print('Returning location {} for file {}'.format(location_name,relative_path))
80
+
81
+ return location_name
82
+
83
+ file_name_to_updated_location = {}
84
+ updated_location_to_count = defaultdict(int)
85
+ for im in tqdm(d['images']):
86
+
87
+ updated_location = path_to_location(im['file_name'])
88
+ file_name_to_updated_location[im['file_name']] = updated_location
89
+ updated_location_to_count[updated_location] += 1
90
+
91
+ updated_location_to_count = {k: v for k, v in sorted(updated_location_to_count.items(),
92
+ key=lambda item: item[1],
93
+ reverse=True)}
94
+
95
+ updated_locations = set(file_name_to_updated_location.values())
96
+
97
+ print('Found {} updated locations in the original metadata:'.format(len(updated_locations)))
98
+ for loc in updated_location_to_count:
99
+ print('{}: {}'.format(loc,updated_location_to_count[loc]))
100
+
101
+
102
+ #%% Re-write metadata
103
+
104
+ for im in d['images']:
105
+ im['location'] = file_name_to_updated_location[im['file_name']]
106
+ d['info']['version'] = 1.14
107
+
108
+ with open(output_file,'w') as f:
109
+ json.dump(d,f,indent=1)
110
+
111
+
112
+ #%% For each location, sample some random images to make sure they look consistent
113
+
114
+ input_base = r'd:\lila\nacti-unzipped'
115
+ assert os.path.isdir(input_base)
116
+
117
+ location_to_images = defaultdict(list)
118
+
119
+ for im in d['images']:
120
+ location_to_images[im['location']].append(im)
121
+
122
+ n_to_sample = 10
123
+ import random
124
+ random.seed(0)
125
+ sampling_folder_base = r'g:\temp\nacti_samples'
126
+
127
+ for location in tqdm(location_to_images):
128
+
129
+ images_this_location = location_to_images[location]
130
+ if len(images_this_location) > n_to_sample:
131
+ images_this_location = random.sample(images_this_location,n_to_sample)
132
+
133
+ for i_image,im in enumerate(images_this_location):
134
+
135
+ fn_relative = im['file_name']
136
+ source_fn_abs = os.path.join(input_base,fn_relative)
137
+ assert os.path.isfile(source_fn_abs)
138
+ ext = os.path.splitext(fn_relative)[1]
139
+ target_fn_abs = os.path.join(sampling_folder_base,'{}/{}'.format(
140
+ location,'image_{}{}'.format(str(i_image).zfill(2),ext)))
141
+ os.makedirs(os.path.dirname(target_fn_abs),exist_ok=True)
142
+ shutil.copyfile(source_fn_abs,target_fn_abs)
143
+
144
+ # ...for each image
145
+
146
+ # ...for each location
147
+