megadetector 5.0.11__py3-none-any.whl → 5.0.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (201) hide show
  1. megadetector/api/__init__.py +0 -0
  2. megadetector/api/batch_processing/__init__.py +0 -0
  3. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  4. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
  6. megadetector/api/batch_processing/api_core/server.py +294 -0
  7. megadetector/api/batch_processing/api_core/server_api_config.py +98 -0
  8. megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
  9. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
  10. megadetector/api/batch_processing/api_core/server_job_status_table.py +152 -0
  11. megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
  12. megadetector/api/batch_processing/api_core/server_utils.py +92 -0
  13. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  14. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
  15. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  16. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
  17. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  18. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  19. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  20. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  21. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +126 -0
  22. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  23. megadetector/api/synchronous/__init__.py +0 -0
  24. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  25. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
  26. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -0
  27. megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
  28. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  29. megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
  30. megadetector/classification/__init__.py +0 -0
  31. megadetector/classification/aggregate_classifier_probs.py +108 -0
  32. megadetector/classification/analyze_failed_images.py +227 -0
  33. megadetector/classification/cache_batchapi_outputs.py +198 -0
  34. megadetector/classification/create_classification_dataset.py +627 -0
  35. megadetector/classification/crop_detections.py +516 -0
  36. megadetector/classification/csv_to_json.py +226 -0
  37. megadetector/classification/detect_and_crop.py +855 -0
  38. megadetector/classification/efficientnet/__init__.py +9 -0
  39. megadetector/classification/efficientnet/model.py +415 -0
  40. megadetector/classification/efficientnet/utils.py +610 -0
  41. megadetector/classification/evaluate_model.py +520 -0
  42. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  43. megadetector/classification/json_to_azcopy_list.py +63 -0
  44. megadetector/classification/json_validator.py +699 -0
  45. megadetector/classification/map_classification_categories.py +276 -0
  46. megadetector/classification/merge_classification_detection_output.py +506 -0
  47. megadetector/classification/prepare_classification_script.py +194 -0
  48. megadetector/classification/prepare_classification_script_mc.py +228 -0
  49. megadetector/classification/run_classifier.py +287 -0
  50. megadetector/classification/save_mislabeled.py +110 -0
  51. megadetector/classification/train_classifier.py +827 -0
  52. megadetector/classification/train_classifier_tf.py +725 -0
  53. megadetector/classification/train_utils.py +323 -0
  54. megadetector/data_management/__init__.py +0 -0
  55. megadetector/data_management/annotations/__init__.py +0 -0
  56. megadetector/data_management/annotations/annotation_constants.py +34 -0
  57. megadetector/data_management/camtrap_dp_to_coco.py +239 -0
  58. megadetector/data_management/cct_json_utils.py +395 -0
  59. megadetector/data_management/cct_to_md.py +176 -0
  60. megadetector/data_management/cct_to_wi.py +289 -0
  61. megadetector/data_management/coco_to_labelme.py +272 -0
  62. megadetector/data_management/coco_to_yolo.py +662 -0
  63. megadetector/data_management/databases/__init__.py +0 -0
  64. megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
  65. megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
  66. megadetector/data_management/databases/integrity_check_json_db.py +477 -0
  67. megadetector/data_management/databases/subset_json_db.py +115 -0
  68. megadetector/data_management/generate_crops_from_cct.py +149 -0
  69. megadetector/data_management/get_image_sizes.py +189 -0
  70. megadetector/data_management/importers/add_nacti_sizes.py +52 -0
  71. megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
  72. megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
  73. megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
  74. megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
  75. megadetector/data_management/importers/awc_to_json.py +191 -0
  76. megadetector/data_management/importers/bellevue_to_json.py +273 -0
  77. megadetector/data_management/importers/cacophony-thermal-importer.py +796 -0
  78. megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
  79. megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
  80. megadetector/data_management/importers/cct_field_adjustments.py +58 -0
  81. megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
  82. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
  83. megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
  84. megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
  85. megadetector/data_management/importers/ena24_to_json.py +276 -0
  86. megadetector/data_management/importers/filenames_to_json.py +386 -0
  87. megadetector/data_management/importers/helena_to_cct.py +283 -0
  88. megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
  89. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
  90. megadetector/data_management/importers/jb_csv_to_json.py +150 -0
  91. megadetector/data_management/importers/mcgill_to_json.py +250 -0
  92. megadetector/data_management/importers/missouri_to_json.py +490 -0
  93. megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
  94. megadetector/data_management/importers/noaa_seals_2019.py +181 -0
  95. megadetector/data_management/importers/pc_to_json.py +365 -0
  96. megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
  97. megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
  98. megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
  99. megadetector/data_management/importers/rspb_to_json.py +356 -0
  100. megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
  101. megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
  102. megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
  103. megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
  104. megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
  105. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
  106. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
  107. megadetector/data_management/importers/sulross_get_exif.py +65 -0
  108. megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
  109. megadetector/data_management/importers/ubc_to_json.py +399 -0
  110. megadetector/data_management/importers/umn_to_json.py +507 -0
  111. megadetector/data_management/importers/wellington_to_json.py +263 -0
  112. megadetector/data_management/importers/wi_to_json.py +442 -0
  113. megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
  114. megadetector/data_management/labelme_to_coco.py +547 -0
  115. megadetector/data_management/labelme_to_yolo.py +272 -0
  116. megadetector/data_management/lila/__init__.py +0 -0
  117. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
  118. megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
  119. megadetector/data_management/lila/create_lila_blank_set.py +558 -0
  120. megadetector/data_management/lila/create_lila_test_set.py +152 -0
  121. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  122. megadetector/data_management/lila/download_lila_subset.py +178 -0
  123. megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
  124. megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
  125. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  126. megadetector/data_management/lila/lila_common.py +300 -0
  127. megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
  128. megadetector/data_management/ocr_tools.py +874 -0
  129. megadetector/data_management/read_exif.py +681 -0
  130. megadetector/data_management/remap_coco_categories.py +84 -0
  131. megadetector/data_management/remove_exif.py +66 -0
  132. megadetector/data_management/resize_coco_dataset.py +189 -0
  133. megadetector/data_management/wi_download_csv_to_coco.py +246 -0
  134. megadetector/data_management/yolo_output_to_md_output.py +441 -0
  135. megadetector/data_management/yolo_to_coco.py +676 -0
  136. megadetector/detection/__init__.py +0 -0
  137. megadetector/detection/detector_training/__init__.py +0 -0
  138. megadetector/detection/detector_training/model_main_tf2.py +114 -0
  139. megadetector/detection/process_video.py +702 -0
  140. megadetector/detection/pytorch_detector.py +341 -0
  141. megadetector/detection/run_detector.py +779 -0
  142. megadetector/detection/run_detector_batch.py +1219 -0
  143. megadetector/detection/run_inference_with_yolov5_val.py +917 -0
  144. megadetector/detection/run_tiled_inference.py +934 -0
  145. megadetector/detection/tf_detector.py +189 -0
  146. megadetector/detection/video_utils.py +606 -0
  147. megadetector/postprocessing/__init__.py +0 -0
  148. megadetector/postprocessing/add_max_conf.py +64 -0
  149. megadetector/postprocessing/categorize_detections_by_size.py +163 -0
  150. megadetector/postprocessing/combine_api_outputs.py +249 -0
  151. megadetector/postprocessing/compare_batch_results.py +958 -0
  152. megadetector/postprocessing/convert_output_format.py +396 -0
  153. megadetector/postprocessing/load_api_results.py +195 -0
  154. megadetector/postprocessing/md_to_coco.py +310 -0
  155. megadetector/postprocessing/md_to_labelme.py +330 -0
  156. megadetector/postprocessing/merge_detections.py +401 -0
  157. megadetector/postprocessing/postprocess_batch_results.py +1902 -0
  158. megadetector/postprocessing/remap_detection_categories.py +170 -0
  159. megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
  160. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
  161. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
  162. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1631 -0
  163. megadetector/postprocessing/separate_detections_into_folders.py +730 -0
  164. megadetector/postprocessing/subset_json_detector_output.py +696 -0
  165. megadetector/postprocessing/top_folders_to_bottom.py +223 -0
  166. megadetector/taxonomy_mapping/__init__.py +0 -0
  167. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  168. megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
  169. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
  170. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +590 -0
  171. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  172. megadetector/taxonomy_mapping/simple_image_download.py +219 -0
  173. megadetector/taxonomy_mapping/species_lookup.py +834 -0
  174. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  175. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  176. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  177. megadetector/utils/__init__.py +0 -0
  178. megadetector/utils/azure_utils.py +178 -0
  179. megadetector/utils/ct_utils.py +612 -0
  180. megadetector/utils/directory_listing.py +246 -0
  181. megadetector/utils/md_tests.py +968 -0
  182. megadetector/utils/path_utils.py +1044 -0
  183. megadetector/utils/process_utils.py +157 -0
  184. megadetector/utils/sas_blob_utils.py +509 -0
  185. megadetector/utils/split_locations_into_train_val.py +228 -0
  186. megadetector/utils/string_utils.py +92 -0
  187. megadetector/utils/url_utils.py +323 -0
  188. megadetector/utils/write_html_image_list.py +225 -0
  189. megadetector/visualization/__init__.py +0 -0
  190. megadetector/visualization/plot_utils.py +293 -0
  191. megadetector/visualization/render_images_with_thumbnails.py +275 -0
  192. megadetector/visualization/visualization_utils.py +1536 -0
  193. megadetector/visualization/visualize_db.py +550 -0
  194. megadetector/visualization/visualize_detector_output.py +405 -0
  195. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/METADATA +1 -1
  196. megadetector-5.0.12.dist-info/RECORD +199 -0
  197. megadetector-5.0.12.dist-info/top_level.txt +1 -0
  198. megadetector-5.0.11.dist-info/RECORD +0 -5
  199. megadetector-5.0.11.dist-info/top_level.txt +0 -1
  200. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/LICENSE +0 -0
  201. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,289 @@
1
+ """
2
+
3
+ cct_to_wi.py
4
+
5
+ Converts COCO Camera Traps .json files to the Wildlife Insights
6
+ batch upload format.
7
+
8
+ **This is very much just a demo script; all the relevant constants are hard-coded
9
+ at the top of main().**
10
+
11
+ But given that caveat, it works. You need to set up all the paths in the "paths" cell
12
+ at the top of main().
13
+
14
+ Also see:
15
+
16
+ * https://github.com/ConservationInternational/Wildlife-Insights----Data-Migration
17
+ * https://data.naturalsciences.org/wildlife-insights/taxonomy/search
18
+
19
+ """
20
+
21
+ #%% Imports
22
+
23
+ import os
24
+ import json
25
+ import pandas as pd
26
+ from collections import defaultdict
27
+
28
+
29
+ #%% Main wrapper
30
+
31
+ def main():
32
+ """
33
+ Converts COCO Camera Traps .json files to the Wildlife Insights
34
+ batch upload format; to use this, you need to modify all the paths in the "Paths"
35
+ cell.
36
+ """
37
+
38
+ #%% Paths
39
+
40
+ # A COCO camera traps file with information about this dataset
41
+ input_file = r'c:\temp\camera_trap_images_no_people\bellevue_camera_traps.2020-12-26.json'
42
+
43
+ # A .json dictionary mapping common names in this dataset to dictionaries with the
44
+ # WI taxonomy fields: common_name, wi_taxon_id, class, order, family, genus, species
45
+ taxonomy_file = r'c:\temp\camera_trap_images_no_people\bellevue_camera_traps_to_wi.json'
46
+
47
+ # The folder where the .csv template files live
48
+ templates_dir = r'c:\temp\wi_batch_upload_templates'
49
+
50
+ # The folder to which you want to write WI-formatted .csv files
51
+ output_base = r'c:\temp\wi_output'
52
+
53
+
54
+ #%% Path validation
55
+
56
+ assert os.path.isfile(input_file)
57
+ assert os.path.isfile(taxonomy_file)
58
+ assert os.path.isdir(templates_dir)
59
+ os.makedirs(output_base,exist_ok = True)
60
+
61
+
62
+ #%% Constants
63
+
64
+ projects_file_name = 'Template Wildlife Insights Batch Upload - Projectv1.0.csv'
65
+ deployments_file_name = 'Template Wildlife Insights Batch Upload - Deploymentv1.0.csv'
66
+ images_file_name = 'Template Wildlife Insights Batch Upload - Imagev1.0.csv'
67
+ cameras_file_name = 'Template Wildlife Insights Batch Upload - Camerav1.0.csv'
68
+
69
+ assert all([os.path.isfile(os.path.join(templates_dir,fn)) for fn in \
70
+ [projects_file_name,deployments_file_name,images_file_name,cameras_file_name]])
71
+
72
+
73
+ #%% Project information
74
+
75
+ project_info = {}
76
+ project_info['project_name'] = 'Bellevue Camera Traps'
77
+ project_info['project_id'] = 'bct_001'
78
+ project_info['project_short_name'] = 'BCT'
79
+ project_info['project_objectives'] = 'none'
80
+ project_info['project_species'] = 'Multiple'
81
+ project_info['project_species_individual'] = ''
82
+ project_info['project_sensor_layout'] = 'Convenience'
83
+ project_info['project_sensor_layout_targeted_type'] = ''
84
+ project_info['project_bait_use'] = 'No'
85
+ project_info['project_bait_type'] = 'None'
86
+ project_info['project_stratification'] = 'No'
87
+ project_info['project_stratification_type'] = ''
88
+ project_info['project_sensor_method'] = 'Sensor Detection'
89
+ project_info['project_individual_animals'] = 'No'
90
+ project_info['project_admin'] = 'Dan Morris'
91
+ project_info['project_admin_email'] = 'cameratraps@lila.science'
92
+ project_info['country_code'] = 'USA'
93
+ project_info['embargo'] = str(0)
94
+ project_info['initiative_id'] = ''
95
+ project_info['metadata_license'] = 'CC0'
96
+ project_info['image_license'] = 'CC0'
97
+
98
+ project_info['project_blank_images'] = 'No'
99
+ project_info['project_sensor_cluster'] = 'No'
100
+
101
+ camera_info = {}
102
+ camera_info['project_id'] = project_info['project_id']
103
+ camera_info['camera_id'] = '0000'
104
+ camera_info['make'] = ''
105
+ camera_info['model'] = ''
106
+ camera_info['serial_number'] = ''
107
+ camera_info['year_purchased'] = ''
108
+
109
+ deployment_info = {}
110
+
111
+ deployment_info['project_id'] = project_info['project_id']
112
+ deployment_info['deployment_id'] = 'test_deployment'
113
+ deployment_info['subproject_name'] = 'test_subproject'
114
+ deployment_info['subproject_design'] = ''
115
+ deployment_info['placename'] = 'yard'
116
+ deployment_info['longitude'] = '47.6101'
117
+ deployment_info['latitude'] = '-122.2015'
118
+ deployment_info['start_date'] = '2016-01-01 00:00:00'
119
+ deployment_info['end_date'] = '2026-01-01 00:00:00'
120
+ deployment_info['event_name'] = ''
121
+ deployment_info['event_description'] = ''
122
+ deployment_info['event_type'] = ''
123
+ deployment_info['bait_type'] = ''
124
+ deployment_info['bait_description'] = ''
125
+ deployment_info['feature_type'] = 'None'
126
+ deployment_info['feature_type_methodology'] = ''
127
+ deployment_info['camera_id'] = camera_info['camera_id']
128
+ deployment_info['quiet_period'] = str(60)
129
+ deployment_info['camera_functioning'] = 'Camera Functioning'
130
+ deployment_info['sensor_height'] = 'Chest height'
131
+ deployment_info['height_other'] = ''
132
+ deployment_info['sensor_orientation'] = 'Parallel'
133
+ deployment_info['orientation_other'] = ''
134
+ deployment_info['recorded_by'] = 'Dan Morris'
135
+
136
+ image_info = {}
137
+ image_info['identified_by'] = 'Dan Morris'
138
+
139
+
140
+ #%% Read templates
141
+
142
+ def parse_fields(templates_dir,file_name):
143
+
144
+ with open(os.path.join(templates_dir,file_name),'r') as f:
145
+ lines = f.readlines()
146
+ lines = [s.strip() for s in lines if len(s.strip().replace(',','')) > 0]
147
+ assert len(lines) == 1, 'Error processing template {}'.format(file_name)
148
+ fields = lines[0].split(',')
149
+ print('Parsed {} columns from {}'.format(len(fields),file_name))
150
+ return fields
151
+
152
+ projects_fields = parse_fields(templates_dir,projects_file_name)
153
+ deployments_fields = parse_fields(templates_dir,deployments_file_name)
154
+ images_fields = parse_fields(templates_dir,images_file_name)
155
+ cameras_fields = parse_fields(templates_dir,cameras_file_name)
156
+
157
+
158
+ #%% Compare dictionary to template lists
159
+
160
+ def compare_info_to_template(info,template_fields,name):
161
+
162
+ for s in info.keys():
163
+ assert s in template_fields,'Field {} not specified in {}_fields'.format(s,name)
164
+ for s in template_fields:
165
+ assert s in info.keys(),'Field {} not specified in {}_info'.format(s,name)
166
+
167
+
168
+ def write_table(file_name,info,template_fields):
169
+
170
+ assert len(info) == len(template_fields)
171
+
172
+ project_output_file = os.path.join(output_base,file_name)
173
+ with open(project_output_file,'w') as f:
174
+
175
+ # Write the header
176
+ for i_field,s in enumerate(template_fields):
177
+ f.write(s)
178
+ if i_field != len(template_fields)-1:
179
+ f.write(',')
180
+ f.write('\n')
181
+
182
+ # Write values
183
+ for i_field,s in enumerate(template_fields):
184
+ f.write(info[s])
185
+ if i_field != len(template_fields)-1:
186
+ f.write(',')
187
+ f.write('\n')
188
+
189
+
190
+ #%% Project file
191
+
192
+ compare_info_to_template(project_info,projects_fields,'project')
193
+ write_table(projects_file_name,project_info,projects_fields)
194
+
195
+
196
+ #%% Camera file
197
+
198
+ compare_info_to_template(camera_info,cameras_fields,'camera')
199
+ write_table(cameras_file_name,camera_info,cameras_fields)
200
+
201
+
202
+ #%% Deployment file
203
+
204
+ compare_info_to_template(deployment_info,deployments_fields,'deployment')
205
+ write_table(deployments_file_name,deployment_info,deployments_fields)
206
+
207
+
208
+ #%% Images file
209
+
210
+ # Read .json file with image information
211
+ with open(input_file,'r') as f:
212
+ input_data = json.load(f)
213
+
214
+ # Read taxonomy dictionary
215
+ with open(taxonomy_file,'r') as f:
216
+ taxonomy_mapping = json.load(f)
217
+
218
+ url_base = taxonomy_mapping['url_base']
219
+ taxonomy_mapping = taxonomy_mapping['taxonomy']
220
+
221
+ # Populate output information
222
+ # df = pd.DataFrame(columns = images_fields)
223
+
224
+ category_id_to_name = {cat['id']:cat['name'] for cat in input_data['categories']}
225
+
226
+ image_id_to_annotations = defaultdict(list)
227
+
228
+ annotations = input_data['annotations']
229
+
230
+ # annotation = annotations[0]
231
+ for annotation in annotations:
232
+ image_id_to_annotations[annotation['image_id']].append(
233
+ category_id_to_name[annotation['category_id']])
234
+
235
+ rows = []
236
+
237
+ # im = input_data['images'][0]
238
+ for im in input_data['images']:
239
+
240
+ row = {}
241
+
242
+ url = url_base + im['file_name'].replace('\\','/')
243
+ row['project_id'] = project_info['project_id']
244
+ row['deployment_id'] = deployment_info['deployment_id']
245
+ row['image_id'] = im['id']
246
+ row['location'] = url
247
+ row['identified_by'] = image_info['identified_by']
248
+
249
+ category_names = image_id_to_annotations[im['id']]
250
+ assert len(category_names) == 1
251
+ category_name = category_names[0]
252
+
253
+ taxon_info = taxonomy_mapping[category_name]
254
+
255
+ assert len(taxon_info.keys()) == 7
256
+
257
+ for s in taxon_info.keys():
258
+ row[s] = taxon_info[s]
259
+
260
+ # We don't have counts, but we can differentiate between zero and 1
261
+ if category_name == 'empty':
262
+ row['number_of_objects'] = 0
263
+ else:
264
+ row['number_of_objects'] = 1
265
+
266
+ row['uncertainty'] = None
267
+ row['timestamp'] = im['datetime']; assert isinstance(im['datetime'],str)
268
+ row['highlighted'] = 0
269
+ row['age'] = None
270
+ row['sex'] = None
271
+ row['animal_recognizable'] = 'No'
272
+ row['individual_id'] = None
273
+ row['individual_animal_notes'] = None
274
+ row['markings'] = None
275
+
276
+ assert len(row) == len(images_fields)
277
+ rows.append(row)
278
+
279
+ df = pd.DataFrame(rows)
280
+
281
+ df.to_csv(os.path.join(output_base,images_file_name),index=False)
282
+
283
+ # ...main()
284
+
285
+
286
+ #%% Command-line driver
287
+
288
+ if __name__ == '__main__':
289
+ main()
@@ -0,0 +1,272 @@
1
+ """
2
+
3
+ coco_to_labelme.py
4
+
5
+ Converts a COCO dataset to labelme format (one .json per image file).
6
+
7
+ If you want to convert YOLO-formatted data to labelme format, use yolo_to_coco, then
8
+ coco_to_labelme.
9
+
10
+ """
11
+
12
+ #%% Imports and constants
13
+
14
+ import os
15
+ import json
16
+
17
+ from tqdm import tqdm
18
+ from collections import defaultdict
19
+
20
+ from megadetector.visualization.visualization_utils import open_image
21
+
22
+
23
+ #%% Functions
24
+
25
+ def get_labelme_dict_for_image_from_coco_record(im,annotations,categories,info=None):
26
+ """
27
+ For the given image struct in COCO format and associated list of annotations, reformats the
28
+ detections into labelme format.
29
+
30
+ Args:
31
+ im (dict): image dict, as loaded from a COCO .json file; 'height' and 'width' are required
32
+ annotations (list): a list of annotations that refer to this image (this function errors if
33
+ that's not the case)
34
+ categories (list): a list of category in dicts in COCO format ({'id':x,'name':'s'})
35
+ info (dict, optional): a dict to store in a non-standard "custom_info" field in the output
36
+
37
+ Returns:
38
+ dict: a dict in labelme format, suitable for writing to a labelme .json file
39
+ """
40
+
41
+ image_base_name = os.path.basename(im['file_name'])
42
+
43
+ output_dict = {}
44
+ if info is not None:
45
+ output_dict['custom_info'] = info
46
+ output_dict['version'] = '5.3.0a0'
47
+ output_dict['flags'] = {}
48
+ output_dict['shapes'] = []
49
+ output_dict['imagePath'] = image_base_name
50
+ output_dict['imageHeight'] = im['height']
51
+ output_dict['imageWidth'] = im['width']
52
+ output_dict['imageData'] = None
53
+
54
+ # Store COCO categories in case we want to reconstruct the original IDs later
55
+ output_dict['coco_categories'] = categories
56
+
57
+ category_id_to_name = {c['id']:c['name'] for c in categories}
58
+
59
+ if 'flags' in im:
60
+ output_dict['flags'] = im['flags']
61
+
62
+ # ann = annotations[0]
63
+ for ann in annotations:
64
+
65
+ assert ann['image_id'] == im['id'], 'Annotation {} does not refer to image {}'.format(
66
+ ann['id'],im['id'])
67
+
68
+ if 'bbox' not in ann:
69
+ continue
70
+
71
+ shape = {}
72
+ shape['label'] = category_id_to_name[ann['category_id']]
73
+ shape['shape_type'] = 'rectangle'
74
+ shape['description'] = ''
75
+ shape['group_id'] = None
76
+
77
+ # COCO boxes are [x_min, y_min, width_of_box, height_of_box] (absolute)
78
+ #
79
+ # labelme boxes are [[x0,y0],[x1,y1]] (absolute)
80
+ x0 = ann['bbox'][0]
81
+ y0 = ann['bbox'][1]
82
+ x1 = ann['bbox'][0] + ann['bbox'][2]
83
+ y1 = ann['bbox'][1] + ann['bbox'][3]
84
+
85
+ shape['points'] = [[x0,y0],[x1,y1]]
86
+ output_dict['shapes'].append(shape)
87
+
88
+ # ...for each detection
89
+
90
+ return output_dict
91
+
92
+ # ...def get_labelme_dict_for_image()
93
+
94
+
95
+ def coco_to_labelme(coco_data,image_base,overwrite=False,bypass_image_size_check=False,verbose=False):
96
+ """
97
+ For all the images in [coco_data] (a dict or a filename), write a .json file in
98
+ labelme format alongside the corresponding relative path within image_base.
99
+ """
100
+
101
+ # Load COCO data if necessary
102
+ if isinstance(coco_data,str):
103
+ with open(coco_data,'r') as f:
104
+ coco_data = json.load(f)
105
+ assert isinstance(coco_data,dict)
106
+
107
+
108
+ ## Read image sizes if necessary
109
+
110
+ if bypass_image_size_check:
111
+
112
+ print('Bypassing size check')
113
+
114
+ else:
115
+
116
+ # TODO: parallelize this loop
117
+
118
+ print('Reading/validating image sizes...')
119
+
120
+ # im = coco_data['images'][0]
121
+ for im in tqdm(coco_data['images']):
122
+
123
+ # Make sure this file exists
124
+ im_full_path = os.path.join(image_base,im['file_name'])
125
+ assert os.path.isfile(im_full_path), 'Image file {} does not exist'.format(im_full_path)
126
+
127
+ # Load w/h information if necessary
128
+ if 'height' not in im or 'width' not in im:
129
+
130
+ try:
131
+ pil_im = open_image(im_full_path)
132
+ im['width'] = pil_im.width
133
+ im['height'] = pil_im.height
134
+ except Exception:
135
+ print('Warning: cannot open image {}'.format(im_full_path))
136
+ if 'failure' not in im:
137
+ im['failure'] = 'Failure image access'
138
+
139
+ # ...if we need to read w/h information
140
+
141
+ # ...for each image
142
+
143
+ # ...if we need to load image sizes
144
+
145
+
146
+ ## Generate labelme files
147
+
148
+ print('Generating .json files...')
149
+
150
+ image_id_to_annotations = defaultdict(list)
151
+ for ann in coco_data['annotations']:
152
+ image_id_to_annotations[ann['image_id']].append(ann)
153
+
154
+ n_json_files_written = 0
155
+ n_json_files_error = 0
156
+ n_json_files_exist = 0
157
+
158
+ # Write output
159
+ for im in tqdm(coco_data['images']):
160
+
161
+ # Skip this image if it failed to load in whatever system generated this COCO file
162
+ skip_image = False
163
+
164
+ # Errors are represented differently depending on the source
165
+ for error_string in ('failure','error'):
166
+ if (error_string in im) and (im[error_string] is not None):
167
+ if verbose:
168
+ print('Warning: skipping labelme file generation for failed image {}'.format(
169
+ im['file_name']))
170
+ skip_image = True
171
+ n_json_files_error += 1
172
+ break
173
+ if skip_image:
174
+ continue
175
+
176
+ im_full_path = os.path.join(image_base,im['file_name'])
177
+ json_path = os.path.splitext(im_full_path)[0] + '.json'
178
+
179
+ if (not overwrite) and (os.path.isfile(json_path)):
180
+ if verbose:
181
+ print('Skipping existing file {}'.format(json_path))
182
+ n_json_files_exist += 1
183
+ continue
184
+
185
+ annotations_this_image = image_id_to_annotations[im['id']]
186
+ output_dict = get_labelme_dict_for_image_from_coco_record(im,
187
+ annotations_this_image,
188
+ coco_data['categories'],
189
+ info=None)
190
+
191
+ n_json_files_written += 1
192
+ with open(json_path,'w') as f:
193
+ json.dump(output_dict,f,indent=1)
194
+
195
+ # ...for each image
196
+
197
+ print('\nWrote {} .json files (skipped {} for errors, {} because they exist)'.format(
198
+ n_json_files_written,n_json_files_error,n_json_files_exist))
199
+
200
+ # ...def coco_to_labelme()
201
+
202
+
203
+ #%% Interactive driver
204
+
205
+ if False:
206
+
207
+ pass
208
+
209
+ #%% Configure options
210
+
211
+ coco_file = \
212
+ r'C:\\temp\\snapshot-exploration\\images\\training-images-good\\training-images-good_from_yolo.json'
213
+ image_folder = os.path.dirname(coco_file)
214
+ overwrite = True
215
+
216
+
217
+ #%% Programmatic execution
218
+
219
+ coco_to_labelme(coco_data=coco_file,image_base=image_folder,overwrite=overwrite)
220
+
221
+
222
+ #%% Command-line execution
223
+
224
+ s = 'python coco_to_labelme.py "{}" "{}"'.format(coco_file,image_folder)
225
+ if overwrite:
226
+ s += ' --overwrite'
227
+
228
+ print(s)
229
+ import clipboard; clipboard.copy(s)
230
+
231
+
232
+ #%% Opening labelme
233
+
234
+ s = 'python labelme {}'.format(image_folder)
235
+ print(s)
236
+ import clipboard; clipboard.copy(s)
237
+
238
+
239
+ #%% Command-line driver
240
+
241
+ import sys,argparse
242
+
243
+ def main():
244
+
245
+ parser = argparse.ArgumentParser(
246
+ description='Convert a COCO database to labelme annotation format')
247
+
248
+ parser.add_argument(
249
+ 'coco_file',
250
+ type=str,
251
+ help='Path to COCO data file (.json)')
252
+
253
+ parser.add_argument(
254
+ 'image_base',
255
+ type=str,
256
+ help='Path to images (also the output folder)')
257
+
258
+ parser.add_argument(
259
+ '--overwrite',
260
+ action='store_true',
261
+ help='Overwrite existing labelme .json files')
262
+
263
+ if len(sys.argv[1:]) == 0:
264
+ parser.print_help()
265
+ parser.exit()
266
+
267
+ args = parser.parse_args()
268
+
269
+ coco_to_labelme(coco_data=args.coco_file,image_base=args.image_base,overwrite=args.overwrite)
270
+
271
+ if __name__ == '__main__':
272
+ main()