megadetector 5.0.11__py3-none-any.whl → 5.0.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of megadetector might be problematic. Click here for more details.

Files changed (201) hide show
  1. megadetector/api/__init__.py +0 -0
  2. megadetector/api/batch_processing/__init__.py +0 -0
  3. megadetector/api/batch_processing/api_core/__init__.py +0 -0
  4. megadetector/api/batch_processing/api_core/batch_service/__init__.py +0 -0
  5. megadetector/api/batch_processing/api_core/batch_service/score.py +439 -0
  6. megadetector/api/batch_processing/api_core/server.py +294 -0
  7. megadetector/api/batch_processing/api_core/server_api_config.py +98 -0
  8. megadetector/api/batch_processing/api_core/server_app_config.py +55 -0
  9. megadetector/api/batch_processing/api_core/server_batch_job_manager.py +220 -0
  10. megadetector/api/batch_processing/api_core/server_job_status_table.py +152 -0
  11. megadetector/api/batch_processing/api_core/server_orchestration.py +360 -0
  12. megadetector/api/batch_processing/api_core/server_utils.py +92 -0
  13. megadetector/api/batch_processing/api_core_support/__init__.py +0 -0
  14. megadetector/api/batch_processing/api_core_support/aggregate_results_manually.py +46 -0
  15. megadetector/api/batch_processing/api_support/__init__.py +0 -0
  16. megadetector/api/batch_processing/api_support/summarize_daily_activity.py +152 -0
  17. megadetector/api/batch_processing/data_preparation/__init__.py +0 -0
  18. megadetector/api/batch_processing/integration/digiKam/setup.py +6 -0
  19. megadetector/api/batch_processing/integration/digiKam/xmp_integration.py +465 -0
  20. megadetector/api/batch_processing/integration/eMammal/test_scripts/config_template.py +5 -0
  21. megadetector/api/batch_processing/integration/eMammal/test_scripts/push_annotations_to_emammal.py +126 -0
  22. megadetector/api/batch_processing/integration/eMammal/test_scripts/select_images_for_testing.py +55 -0
  23. megadetector/api/synchronous/__init__.py +0 -0
  24. megadetector/api/synchronous/api_core/animal_detection_api/__init__.py +0 -0
  25. megadetector/api/synchronous/api_core/animal_detection_api/api_backend.py +152 -0
  26. megadetector/api/synchronous/api_core/animal_detection_api/api_frontend.py +266 -0
  27. megadetector/api/synchronous/api_core/animal_detection_api/config.py +35 -0
  28. megadetector/api/synchronous/api_core/tests/__init__.py +0 -0
  29. megadetector/api/synchronous/api_core/tests/load_test.py +110 -0
  30. megadetector/classification/__init__.py +0 -0
  31. megadetector/classification/aggregate_classifier_probs.py +108 -0
  32. megadetector/classification/analyze_failed_images.py +227 -0
  33. megadetector/classification/cache_batchapi_outputs.py +198 -0
  34. megadetector/classification/create_classification_dataset.py +627 -0
  35. megadetector/classification/crop_detections.py +516 -0
  36. megadetector/classification/csv_to_json.py +226 -0
  37. megadetector/classification/detect_and_crop.py +855 -0
  38. megadetector/classification/efficientnet/__init__.py +9 -0
  39. megadetector/classification/efficientnet/model.py +415 -0
  40. megadetector/classification/efficientnet/utils.py +610 -0
  41. megadetector/classification/evaluate_model.py +520 -0
  42. megadetector/classification/identify_mislabeled_candidates.py +152 -0
  43. megadetector/classification/json_to_azcopy_list.py +63 -0
  44. megadetector/classification/json_validator.py +699 -0
  45. megadetector/classification/map_classification_categories.py +276 -0
  46. megadetector/classification/merge_classification_detection_output.py +506 -0
  47. megadetector/classification/prepare_classification_script.py +194 -0
  48. megadetector/classification/prepare_classification_script_mc.py +228 -0
  49. megadetector/classification/run_classifier.py +287 -0
  50. megadetector/classification/save_mislabeled.py +110 -0
  51. megadetector/classification/train_classifier.py +827 -0
  52. megadetector/classification/train_classifier_tf.py +725 -0
  53. megadetector/classification/train_utils.py +323 -0
  54. megadetector/data_management/__init__.py +0 -0
  55. megadetector/data_management/annotations/__init__.py +0 -0
  56. megadetector/data_management/annotations/annotation_constants.py +34 -0
  57. megadetector/data_management/camtrap_dp_to_coco.py +239 -0
  58. megadetector/data_management/cct_json_utils.py +395 -0
  59. megadetector/data_management/cct_to_md.py +176 -0
  60. megadetector/data_management/cct_to_wi.py +289 -0
  61. megadetector/data_management/coco_to_labelme.py +272 -0
  62. megadetector/data_management/coco_to_yolo.py +662 -0
  63. megadetector/data_management/databases/__init__.py +0 -0
  64. megadetector/data_management/databases/add_width_and_height_to_db.py +33 -0
  65. megadetector/data_management/databases/combine_coco_camera_traps_files.py +206 -0
  66. megadetector/data_management/databases/integrity_check_json_db.py +477 -0
  67. megadetector/data_management/databases/subset_json_db.py +115 -0
  68. megadetector/data_management/generate_crops_from_cct.py +149 -0
  69. megadetector/data_management/get_image_sizes.py +189 -0
  70. megadetector/data_management/importers/add_nacti_sizes.py +52 -0
  71. megadetector/data_management/importers/add_timestamps_to_icct.py +79 -0
  72. megadetector/data_management/importers/animl_results_to_md_results.py +158 -0
  73. megadetector/data_management/importers/auckland_doc_test_to_json.py +373 -0
  74. megadetector/data_management/importers/auckland_doc_to_json.py +201 -0
  75. megadetector/data_management/importers/awc_to_json.py +191 -0
  76. megadetector/data_management/importers/bellevue_to_json.py +273 -0
  77. megadetector/data_management/importers/cacophony-thermal-importer.py +796 -0
  78. megadetector/data_management/importers/carrizo_shrubfree_2018.py +269 -0
  79. megadetector/data_management/importers/carrizo_trail_cam_2017.py +289 -0
  80. megadetector/data_management/importers/cct_field_adjustments.py +58 -0
  81. megadetector/data_management/importers/channel_islands_to_cct.py +913 -0
  82. megadetector/data_management/importers/eMammal/copy_and_unzip_emammal.py +180 -0
  83. megadetector/data_management/importers/eMammal/eMammal_helpers.py +249 -0
  84. megadetector/data_management/importers/eMammal/make_eMammal_json.py +223 -0
  85. megadetector/data_management/importers/ena24_to_json.py +276 -0
  86. megadetector/data_management/importers/filenames_to_json.py +386 -0
  87. megadetector/data_management/importers/helena_to_cct.py +283 -0
  88. megadetector/data_management/importers/idaho-camera-traps.py +1407 -0
  89. megadetector/data_management/importers/idfg_iwildcam_lila_prep.py +294 -0
  90. megadetector/data_management/importers/jb_csv_to_json.py +150 -0
  91. megadetector/data_management/importers/mcgill_to_json.py +250 -0
  92. megadetector/data_management/importers/missouri_to_json.py +490 -0
  93. megadetector/data_management/importers/nacti_fieldname_adjustments.py +79 -0
  94. megadetector/data_management/importers/noaa_seals_2019.py +181 -0
  95. megadetector/data_management/importers/pc_to_json.py +365 -0
  96. megadetector/data_management/importers/plot_wni_giraffes.py +123 -0
  97. megadetector/data_management/importers/prepare-noaa-fish-data-for-lila.py +359 -0
  98. megadetector/data_management/importers/prepare_zsl_imerit.py +131 -0
  99. megadetector/data_management/importers/rspb_to_json.py +356 -0
  100. megadetector/data_management/importers/save_the_elephants_survey_A.py +320 -0
  101. megadetector/data_management/importers/save_the_elephants_survey_B.py +329 -0
  102. megadetector/data_management/importers/snapshot_safari_importer.py +758 -0
  103. megadetector/data_management/importers/snapshot_safari_importer_reprise.py +665 -0
  104. megadetector/data_management/importers/snapshot_serengeti_lila.py +1067 -0
  105. megadetector/data_management/importers/snapshotserengeti/make_full_SS_json.py +150 -0
  106. megadetector/data_management/importers/snapshotserengeti/make_per_season_SS_json.py +153 -0
  107. megadetector/data_management/importers/sulross_get_exif.py +65 -0
  108. megadetector/data_management/importers/timelapse_csv_set_to_json.py +490 -0
  109. megadetector/data_management/importers/ubc_to_json.py +399 -0
  110. megadetector/data_management/importers/umn_to_json.py +507 -0
  111. megadetector/data_management/importers/wellington_to_json.py +263 -0
  112. megadetector/data_management/importers/wi_to_json.py +442 -0
  113. megadetector/data_management/importers/zamba_results_to_md_results.py +181 -0
  114. megadetector/data_management/labelme_to_coco.py +547 -0
  115. megadetector/data_management/labelme_to_yolo.py +272 -0
  116. megadetector/data_management/lila/__init__.py +0 -0
  117. megadetector/data_management/lila/add_locations_to_island_camera_traps.py +97 -0
  118. megadetector/data_management/lila/add_locations_to_nacti.py +147 -0
  119. megadetector/data_management/lila/create_lila_blank_set.py +558 -0
  120. megadetector/data_management/lila/create_lila_test_set.py +152 -0
  121. megadetector/data_management/lila/create_links_to_md_results_files.py +106 -0
  122. megadetector/data_management/lila/download_lila_subset.py +178 -0
  123. megadetector/data_management/lila/generate_lila_per_image_labels.py +516 -0
  124. megadetector/data_management/lila/get_lila_annotation_counts.py +170 -0
  125. megadetector/data_management/lila/get_lila_image_counts.py +112 -0
  126. megadetector/data_management/lila/lila_common.py +300 -0
  127. megadetector/data_management/lila/test_lila_metadata_urls.py +132 -0
  128. megadetector/data_management/ocr_tools.py +874 -0
  129. megadetector/data_management/read_exif.py +681 -0
  130. megadetector/data_management/remap_coco_categories.py +84 -0
  131. megadetector/data_management/remove_exif.py +66 -0
  132. megadetector/data_management/resize_coco_dataset.py +189 -0
  133. megadetector/data_management/wi_download_csv_to_coco.py +246 -0
  134. megadetector/data_management/yolo_output_to_md_output.py +441 -0
  135. megadetector/data_management/yolo_to_coco.py +676 -0
  136. megadetector/detection/__init__.py +0 -0
  137. megadetector/detection/detector_training/__init__.py +0 -0
  138. megadetector/detection/detector_training/model_main_tf2.py +114 -0
  139. megadetector/detection/process_video.py +702 -0
  140. megadetector/detection/pytorch_detector.py +341 -0
  141. megadetector/detection/run_detector.py +779 -0
  142. megadetector/detection/run_detector_batch.py +1219 -0
  143. megadetector/detection/run_inference_with_yolov5_val.py +917 -0
  144. megadetector/detection/run_tiled_inference.py +934 -0
  145. megadetector/detection/tf_detector.py +189 -0
  146. megadetector/detection/video_utils.py +606 -0
  147. megadetector/postprocessing/__init__.py +0 -0
  148. megadetector/postprocessing/add_max_conf.py +64 -0
  149. megadetector/postprocessing/categorize_detections_by_size.py +163 -0
  150. megadetector/postprocessing/combine_api_outputs.py +249 -0
  151. megadetector/postprocessing/compare_batch_results.py +958 -0
  152. megadetector/postprocessing/convert_output_format.py +396 -0
  153. megadetector/postprocessing/load_api_results.py +195 -0
  154. megadetector/postprocessing/md_to_coco.py +310 -0
  155. megadetector/postprocessing/md_to_labelme.py +330 -0
  156. megadetector/postprocessing/merge_detections.py +401 -0
  157. megadetector/postprocessing/postprocess_batch_results.py +1902 -0
  158. megadetector/postprocessing/remap_detection_categories.py +170 -0
  159. megadetector/postprocessing/render_detection_confusion_matrix.py +660 -0
  160. megadetector/postprocessing/repeat_detection_elimination/find_repeat_detections.py +211 -0
  161. megadetector/postprocessing/repeat_detection_elimination/remove_repeat_detections.py +83 -0
  162. megadetector/postprocessing/repeat_detection_elimination/repeat_detections_core.py +1631 -0
  163. megadetector/postprocessing/separate_detections_into_folders.py +730 -0
  164. megadetector/postprocessing/subset_json_detector_output.py +696 -0
  165. megadetector/postprocessing/top_folders_to_bottom.py +223 -0
  166. megadetector/taxonomy_mapping/__init__.py +0 -0
  167. megadetector/taxonomy_mapping/map_lila_taxonomy_to_wi_taxonomy.py +491 -0
  168. megadetector/taxonomy_mapping/map_new_lila_datasets.py +150 -0
  169. megadetector/taxonomy_mapping/prepare_lila_taxonomy_release.py +142 -0
  170. megadetector/taxonomy_mapping/preview_lila_taxonomy.py +590 -0
  171. megadetector/taxonomy_mapping/retrieve_sample_image.py +71 -0
  172. megadetector/taxonomy_mapping/simple_image_download.py +219 -0
  173. megadetector/taxonomy_mapping/species_lookup.py +834 -0
  174. megadetector/taxonomy_mapping/taxonomy_csv_checker.py +159 -0
  175. megadetector/taxonomy_mapping/taxonomy_graph.py +346 -0
  176. megadetector/taxonomy_mapping/validate_lila_category_mappings.py +83 -0
  177. megadetector/utils/__init__.py +0 -0
  178. megadetector/utils/azure_utils.py +178 -0
  179. megadetector/utils/ct_utils.py +612 -0
  180. megadetector/utils/directory_listing.py +246 -0
  181. megadetector/utils/md_tests.py +968 -0
  182. megadetector/utils/path_utils.py +1044 -0
  183. megadetector/utils/process_utils.py +157 -0
  184. megadetector/utils/sas_blob_utils.py +509 -0
  185. megadetector/utils/split_locations_into_train_val.py +228 -0
  186. megadetector/utils/string_utils.py +92 -0
  187. megadetector/utils/url_utils.py +323 -0
  188. megadetector/utils/write_html_image_list.py +225 -0
  189. megadetector/visualization/__init__.py +0 -0
  190. megadetector/visualization/plot_utils.py +293 -0
  191. megadetector/visualization/render_images_with_thumbnails.py +275 -0
  192. megadetector/visualization/visualization_utils.py +1536 -0
  193. megadetector/visualization/visualize_db.py +550 -0
  194. megadetector/visualization/visualize_detector_output.py +405 -0
  195. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/METADATA +1 -1
  196. megadetector-5.0.12.dist-info/RECORD +199 -0
  197. megadetector-5.0.12.dist-info/top_level.txt +1 -0
  198. megadetector-5.0.11.dist-info/RECORD +0 -5
  199. megadetector-5.0.11.dist-info/top_level.txt +0 -1
  200. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/LICENSE +0 -0
  201. {megadetector-5.0.11.dist-info → megadetector-5.0.12.dist-info}/WHEEL +0 -0
@@ -0,0 +1,329 @@
1
+ """
2
+
3
+ save_the_elephants_survey_B.py
4
+
5
+ Convert the .csv file provided for the Save the Elephants Survey B data set to a
6
+ COCO-camera-traps .json file
7
+
8
+ """
9
+
10
+ #%% Constants and environment
11
+
12
+ import pandas as pd
13
+ import os
14
+ import json
15
+ import uuid
16
+ import time
17
+ import humanfriendly
18
+ import numpy as np
19
+ from tqdm import tqdm
20
+
21
+ from megadetector.utils.path_utils import find_images
22
+ from megadetector.visualization import visualize_db
23
+ from megadetector.data_management.databases import integrity_check_json_db
24
+
25
+ input_base = r'z:/ste_2019_08_drop'
26
+ # input_base = r'/mnt/blobfuse/wildlifeblobssc/ste_2019_08_drop'
27
+ input_metadata_file = os.path.join(input_base,'SURVEY B.xlsx')
28
+
29
+ output_base = r'f:/save_the_elephants/survey_b'
30
+ # output_base = r'/home/gramener/survey_b'
31
+ output_json_file = os.path.join(output_base,'ste_survey_b.json')
32
+ image_directory = os.path.join(input_base,'SURVEY B with False Triggers')
33
+
34
+ os.makedirs(output_base,exist_ok=True)
35
+ assert(os.path.isdir(image_directory))
36
+ assert(os.path.isfile(input_metadata_file))
37
+
38
+ # Handle all unstructured fields in the source data as extra fields in the annotations
39
+ mapped_fields = {'No. of Animals in Photo':'num_animals',
40
+ 'No. of new indiviauls (first sighting of new individual)':'num_new_individuals',
41
+ 'Number Adult Males (first sighting of new individual)':'num_adult_males',
42
+ 'Number Adult Females (first sighting of new individual)':'num_adult_females',
43
+ 'Number Adult Unknown (first sighting of new individual)':'num_adult_unknown',
44
+ 'Number Sub-adult Males (first sighting of new individual)':'num_subadult_males',
45
+ 'Number Sub-adult Females (first sighting of new individual)':'num_subadult_females',
46
+ 'Number Sub-adult Unknown (first sighting of new individual)':'num_subadult_unknown',
47
+ 'Number Juvenile (first sighting of new individual)':'num_juvenile',
48
+ 'Number Newborn (first sighting of new individual)':'num_newborn',
49
+ 'Activity':'activity',
50
+ 'Animal ID':'animal_id',
51
+ 'Specific Notes':'notes'}
52
+
53
+ # photo_type really should be an image property, but there are a few conflicts
54
+ # that forced me to handle it as an annotation proprerty
55
+ mapped_fields['Photo Type '] = 'photo_type'
56
+
57
+ #%% Read source data
58
+
59
+ input_metadata = pd.read_excel(input_metadata_file, sheet_name='9. CT Image')
60
+ input_metadata = input_metadata.iloc[2:]
61
+
62
+ print('Read {} columns and {} rows from metadata file'.format(len(input_metadata.columns),
63
+ len(input_metadata)))
64
+
65
+
66
+ #%% Map filenames to rows, verify image existence
67
+
68
+ #%% Map filenames to rows, verify image existence
69
+
70
+ start_time = time.time()
71
+
72
+ # Maps relative paths to row indices in input_metadata
73
+ filenames_to_rows = {}
74
+ filenames_with_multiple_annotations = []
75
+ missing_images = []
76
+
77
+ # Build up a map from filenames to a list of rows, checking image existence as we go
78
+ for i_row, fn in tqdm(enumerate(input_metadata['Image Name']), total=len(input_metadata)):
79
+ try:
80
+ # Ignore directories
81
+ if not fn.endswith('.JPG'):
82
+ continue
83
+
84
+ if fn in filenames_to_rows:
85
+ filenames_with_multiple_annotations.append(fn)
86
+ filenames_to_rows[fn].append(i_row)
87
+ else:
88
+ filenames_to_rows[fn] = [i_row]
89
+ image_path = os.path.join(image_directory, fn)
90
+ if not os.path.isfile(image_path):
91
+ missing_images.append(image_path)
92
+ except:
93
+ continue
94
+
95
+ elapsed = time.time() - start_time
96
+
97
+ print('Finished verifying image existence for {} files in {}, found {} filenames with multiple labels, {} missing images'.format(
98
+ len(filenames_to_rows), humanfriendly.format_timespan(elapsed),
99
+ len(filenames_with_multiple_annotations), len(missing_images)))
100
+
101
+ #%% Make sure the multiple-annotation cases make sense
102
+
103
+ if False:
104
+
105
+ #%%
106
+
107
+ fn = filenames_with_multiple_annotations[1000]
108
+ rows = filenames_to_rows[fn]
109
+ assert(len(rows) > 1)
110
+ for i_row in rows:
111
+ print(input_metadata.iloc[i_row]['Species'])
112
+
113
+ #%% Check for images that aren't included in the metadata file
114
+
115
+ # Enumerate all images
116
+ image_full_paths = find_images(image_directory, bRecursive=True)
117
+
118
+ unannotated_images = []
119
+
120
+ for iImage, image_path in tqdm(enumerate(image_full_paths),total=len(image_full_paths)):
121
+ relative_path = os.path.relpath(image_path,image_directory)
122
+ if relative_path not in filenames_to_rows:
123
+ unannotated_images.append(relative_path)
124
+
125
+ print('Finished checking {} images to make sure they\'re in the metadata, found {} unannotated images'.format(
126
+ len(image_full_paths),len(unannotated_images)))
127
+
128
+
129
+ #%% Create CCT dictionaries
130
+
131
+ images = []
132
+ annotations = []
133
+ categories = []
134
+
135
+ image_ids_to_images = {}
136
+
137
+ category_name_to_category = {}
138
+
139
+ # Force the empty category to be ID 0
140
+ empty_category = {}
141
+ empty_category['name'] = 'empty'
142
+ empty_category['id'] = 0
143
+ category_name_to_category['empty'] = empty_category
144
+ categories.append(empty_category)
145
+ next_category_id = 1
146
+
147
+ start_time = time.time()
148
+ # i_image = 0; image_name = list(filenames_to_rows.keys())[i_image]
149
+ for image_name in tqdm(list(filenames_to_rows.keys())):
150
+
151
+ # Example filename:
152
+ #
153
+ # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2\100EK113\EK001382.JPG'
154
+ # 'Site 1_Oloisukut_1\Oloisukut_A11_UP\Service_2.1\100EK113\EK001382.JPG'
155
+ img_id = image_name.replace('\\','/').replace('\n','').replace('/','_').replace(' ','_')
156
+
157
+ row_indices = filenames_to_rows[image_name]
158
+
159
+ # i_row = row_indices[0]
160
+ for i_row in row_indices:
161
+
162
+ row = input_metadata.iloc[i_row]
163
+ assert(row['Image Name'] == image_name)
164
+ try:
165
+ timestamp = row['Date'].strftime("%d/%m/%Y")
166
+ except:
167
+ timestamp = ""
168
+ # timestamp = row['Date']
169
+ station_label = row['Camera Trap Station Label']
170
+ photo_type = row['Photo Type ']
171
+ if isinstance(photo_type,float):
172
+ photo_type = ''
173
+ photo_type = photo_type.strip().lower()
174
+
175
+ if img_id in image_ids_to_images:
176
+
177
+ im = image_ids_to_images[img_id]
178
+ assert im['file_name'] == image_name
179
+ assert im['station_label'] == station_label
180
+
181
+ # There are a small handful of datetime mismatches across annotations
182
+ # for the same image
183
+ # assert im['datetime'] == timestamp
184
+ if im['datetime'] != timestamp:
185
+ print('Warning: timestamp conflict for image {}: {},{}'.format(
186
+ image_name,im['datetime'],timestamp))
187
+
188
+ else:
189
+
190
+ im = {}
191
+ im['id'] = img_id
192
+ im['file_name'] = image_name
193
+ im['datetime'] = timestamp
194
+ im['station_label'] = station_label
195
+ im['photo_type'] = photo_type
196
+
197
+ image_ids_to_images[img_id] = im
198
+ images.append(im)
199
+
200
+ species = row['Species']
201
+
202
+ if (isinstance(species,float) or \
203
+ (isinstance(species,str) and (len(species) == 0))):
204
+ category_name = 'empty'
205
+ elif species.startswith('?'):
206
+ category_name = 'unknown'
207
+ else:
208
+ category_name = species
209
+
210
+ # Special cases based on the 'photo type' field
211
+ if 'vehicle' in photo_type:
212
+ category_name = 'vehicle'
213
+ # Various spellings of 'community'
214
+ elif 'comm' in photo_type:
215
+ category_name = 'human'
216
+ elif 'camera' in photo_type or 'researcher' in photo_type:
217
+ category_name = 'human'
218
+ elif 'livestock' in photo_type:
219
+ category_name = 'livestock'
220
+ elif 'blank' in photo_type:
221
+ category_name = 'empty'
222
+ elif 'plant movement' in photo_type:
223
+ category_name = 'empty'
224
+
225
+ category_name = category_name.strip().lower()
226
+
227
+ # Have we seen this category before?
228
+ if category_name in category_name_to_category:
229
+ category_id = category_name_to_category[category_name]['id']
230
+ else:
231
+ category_id = next_category_id
232
+ category = {}
233
+ category['id'] = category_id
234
+ category['name'] = category_name
235
+ category_name_to_category[category_name] = category
236
+ categories.append(category)
237
+ next_category_id += 1
238
+
239
+ # Create an annotation
240
+ ann = {}
241
+ ann['id'] = str(uuid.uuid1())
242
+ ann['image_id'] = im['id']
243
+ ann['category_id'] = category_id
244
+
245
+ # fieldname = list(mapped_fields.keys())[0]
246
+ for fieldname in mapped_fields:
247
+ target_field = mapped_fields[fieldname]
248
+ val = row[fieldname]
249
+ if isinstance(val,float) and np.isnan(val):
250
+ val = ''
251
+ else:
252
+ val = str(val).strip()
253
+ ann[target_field] = val
254
+
255
+ annotations.append(ann)
256
+
257
+ # ...for each row
258
+
259
+ # ...for each image
260
+
261
+ print('Finished creating CCT dictionaries in {}'.format(
262
+ humanfriendly.format_timespan(elapsed)))
263
+
264
+
265
+ #%% Create info struct
266
+
267
+ info = {}
268
+ info['year'] = 2019
269
+ info['version'] = 1
270
+ info['description'] = 'Save the Elephants Survey B'
271
+ info['contributor'] = 'Save the Elephants'
272
+
273
+
274
+ #%% Write output
275
+
276
+ json_data = {}
277
+ json_data['images'] = images
278
+ json_data['annotations'] = annotations
279
+ json_data['categories'] = categories
280
+ json_data['info'] = info
281
+ json.dump(json_data, open(output_json_file, 'w'), indent=2)
282
+
283
+ print('Finished writing .json file with {} images, {} annotations, and {} categories'.format(
284
+ len(images),len(annotations),len(categories)))
285
+
286
+
287
+ #%% Validate output
288
+
289
+ from megadetector.data_management.databases import integrity_check_json_db
290
+
291
+ options = integrity_check_json_db.IntegrityCheckOptions()
292
+ options.baseDir = image_directory
293
+ options.bCheckImageSizes = False
294
+ options.bCheckImageExistence = False
295
+ options.bFindUnusedImages = False
296
+
297
+ sortedCategories, data = integrity_check_json_db.integrity_check_json_db(output_json_file,options)
298
+
299
+
300
+ #%% Preview labels
301
+
302
+ from megadetector.visualization import visualize_db
303
+ from megadetector.data_management.databases import integrity_check_json_db
304
+
305
+ viz_options = visualize_db.DbVizOptions()
306
+ viz_options.num_to_visualize = 1000
307
+ viz_options.trim_to_images_with_bboxes = False
308
+ viz_options.add_search_links = True
309
+ viz_options.sort_by_filename = False
310
+ viz_options.parallelize_rendering = True
311
+ html_output_file,image_db = visualize_db.visualize_db(db_path=output_json_file,
312
+ output_dir=os.path.join(output_base,'preview'),
313
+ image_base_dir=image_directory,
314
+ options=viz_options)
315
+ os.startfile(html_output_file)
316
+
317
+
318
+ #%% Scrap
319
+
320
+ if False:
321
+
322
+ pass
323
+
324
+ #%% Find unique photo types
325
+
326
+ annotations = image_db['annotations']
327
+ photo_types = set()
328
+ for ann in tqdm(annotations):
329
+ photo_types.add(ann['photo_type'])