liger-kernel-nightly 0.5.6.dev20250403190551__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +35 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +25 -9
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +124 -64
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +3 -2
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +13 -6
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +283 -56
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +205 -19
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +50 -25
- liger_kernel/transformers/model/gemma2.py +55 -23
- liger_kernel/transformers/model/gemma3.py +117 -120
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +102 -25
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +36 -23
- liger_kernel/transformers/model/mixtral.py +45 -25
- liger_kernel/transformers/model/mllama.py +39 -22
- liger_kernel/transformers/model/olmo2.py +40 -20
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -177
- liger_kernel/transformers/model/qwen2.py +48 -21
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1678 -160
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +48 -5
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +36 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/METADATA +68 -38
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- liger_kernel/transformers/gema3_rms.py +0 -8
- liger_kernel_nightly-0.5.6.dev20250403190551.dist-info/RECORD +0 -82
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.utils import can_return_tuple
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerInternVLCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
# Copied from https://github.com/huggingface/transformers/blob/d888bd435d0c0eaabaabad5b33d52af518c7187c/src/transformers/models/internvl/modeling_internvl.py#L862
|
|
16
|
+
@can_return_tuple
|
|
17
|
+
def lce_forward(
|
|
18
|
+
self,
|
|
19
|
+
input_ids: torch.LongTensor = None,
|
|
20
|
+
pixel_values: Optional[torch.FloatTensor] = None,
|
|
21
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
22
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
23
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
24
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
25
|
+
vision_feature_layer: Optional[Union[int, List[int]]] = None,
|
|
26
|
+
vision_feature_select_strategy: Optional[str] = None,
|
|
27
|
+
labels: Optional[torch.LongTensor] = None,
|
|
28
|
+
use_cache: Optional[bool] = None,
|
|
29
|
+
output_attentions: Optional[bool] = None,
|
|
30
|
+
output_hidden_states: Optional[bool] = None,
|
|
31
|
+
return_dict: Optional[bool] = None,
|
|
32
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
33
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
34
|
+
image_sizes: Optional[torch.Tensor] = None,
|
|
35
|
+
skip_logits: Optional[bool] = None, # Added argument for liger-kernel
|
|
36
|
+
**lm_kwargs, # renamed from kwargs
|
|
37
|
+
) -> Union[Tuple, LigerInternVLCausalLMOutputWithPast]:
|
|
38
|
+
r"""
|
|
39
|
+
Example:
|
|
40
|
+
|
|
41
|
+
```python
|
|
42
|
+
>>> import torch
|
|
43
|
+
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
|
|
44
|
+
|
|
45
|
+
>>> torch_device = "cuda"
|
|
46
|
+
>>> processor = AutoProcessor.from_pretrained("OpenGVLab/InternVL3-1B-hf")
|
|
47
|
+
>>> model = AutoModelForImageTextToText.from_pretrained(
|
|
48
|
+
... "OpenGVLab/InternVL3-1B-hf", dtype=torch.bfloat16, device_map=torch_device
|
|
49
|
+
... )
|
|
50
|
+
|
|
51
|
+
>>> messages = [
|
|
52
|
+
... {
|
|
53
|
+
... "role": "user",
|
|
54
|
+
... "content": [
|
|
55
|
+
... {
|
|
56
|
+
... "type": "image",
|
|
57
|
+
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
|
|
58
|
+
... },
|
|
59
|
+
... {
|
|
60
|
+
... "type": "image",
|
|
61
|
+
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
|
|
62
|
+
... },
|
|
63
|
+
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
|
|
64
|
+
... ],
|
|
65
|
+
... },
|
|
66
|
+
... ]
|
|
67
|
+
|
|
68
|
+
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
|
|
69
|
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
|
|
70
|
+
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
|
|
71
|
+
The images depict the Statue of Liberty and the Golden Gate Bridge.
|
|
72
|
+
```"""
|
|
73
|
+
|
|
74
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
75
|
+
output_hidden_states = (
|
|
76
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
77
|
+
)
|
|
78
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
79
|
+
vision_feature_layer = (
|
|
80
|
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
|
81
|
+
)
|
|
82
|
+
vision_feature_select_strategy = (
|
|
83
|
+
vision_feature_select_strategy
|
|
84
|
+
if vision_feature_select_strategy is not None
|
|
85
|
+
else self.config.vision_feature_select_strategy
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
outputs = self.model(
|
|
89
|
+
input_ids=input_ids,
|
|
90
|
+
pixel_values=pixel_values,
|
|
91
|
+
attention_mask=attention_mask,
|
|
92
|
+
position_ids=position_ids,
|
|
93
|
+
past_key_values=past_key_values,
|
|
94
|
+
inputs_embeds=inputs_embeds,
|
|
95
|
+
vision_feature_layer=vision_feature_layer,
|
|
96
|
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
|
97
|
+
use_cache=use_cache,
|
|
98
|
+
output_attentions=output_attentions,
|
|
99
|
+
output_hidden_states=output_hidden_states,
|
|
100
|
+
return_dict=return_dict,
|
|
101
|
+
cache_position=cache_position,
|
|
102
|
+
image_sizes=image_sizes,
|
|
103
|
+
**lm_kwargs,
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
# Copied from llava.py
|
|
107
|
+
hidden_states = outputs[0]
|
|
108
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
109
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
110
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
111
|
+
|
|
112
|
+
shift_labels = lm_kwargs.pop("shift_labels", None)
|
|
113
|
+
logits = None
|
|
114
|
+
loss = None
|
|
115
|
+
token_accuracy = None
|
|
116
|
+
|
|
117
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
118
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
119
|
+
|
|
120
|
+
if skip_logits is None:
|
|
121
|
+
# By default, if in training mode, don't materialize logits
|
|
122
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
123
|
+
|
|
124
|
+
if skip_logits:
|
|
125
|
+
result = LigerForCausalLMLoss(
|
|
126
|
+
hidden_states=kept_hidden_states,
|
|
127
|
+
lm_head_weight=self.lm_head.weight,
|
|
128
|
+
labels=labels,
|
|
129
|
+
shift_labels=shift_labels,
|
|
130
|
+
hidden_size=self.config.text_config.hidden_size,
|
|
131
|
+
**lm_kwargs,
|
|
132
|
+
)
|
|
133
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
134
|
+
|
|
135
|
+
else:
|
|
136
|
+
logits = self.lm_head(kept_hidden_states)
|
|
137
|
+
if labels is not None:
|
|
138
|
+
loss = self.loss_function(
|
|
139
|
+
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **lm_kwargs
|
|
140
|
+
)
|
|
141
|
+
|
|
142
|
+
if not return_dict:
|
|
143
|
+
output = (logits,) + outputs[1:]
|
|
144
|
+
output = (loss,) + output if loss is not None else output
|
|
145
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
146
|
+
return output
|
|
147
|
+
|
|
148
|
+
# Return custom output class with token_accuracy field
|
|
149
|
+
return LigerInternVLCausalLMOutputWithPast(
|
|
150
|
+
loss=loss,
|
|
151
|
+
logits=logits,
|
|
152
|
+
past_key_values=outputs.past_key_values,
|
|
153
|
+
hidden_states=outputs.hidden_states,
|
|
154
|
+
attentions=outputs.attentions,
|
|
155
|
+
image_hidden_states=outputs.image_hidden_states,
|
|
156
|
+
token_accuracy=token_accuracy,
|
|
157
|
+
)
|
|
@@ -7,23 +7,25 @@ from typing import Union
|
|
|
7
7
|
import torch
|
|
8
8
|
import torch.nn.functional as F
|
|
9
9
|
|
|
10
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
10
11
|
from torch.nn import CrossEntropyLoss
|
|
11
12
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
12
|
-
from transformers.models.llama.modeling_llama import _CONFIG_FOR_DOC
|
|
13
|
-
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING
|
|
14
|
-
from transformers.utils import add_start_docstrings_to_model_forward
|
|
15
|
-
from transformers.utils import replace_return_docstrings
|
|
16
13
|
from transformers.utils.deprecation import deprecate_kwarg
|
|
17
14
|
|
|
15
|
+
from liger_kernel.transformers.fsdp import _FSDPForwardRedirection
|
|
18
16
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
|
|
19
17
|
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
18
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
19
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
20
|
+
from liger_kernel.utils import PEFT_AVAILABLE
|
|
20
21
|
|
|
21
22
|
if TYPE_CHECKING:
|
|
22
23
|
from transformers.cache_utils import Cache
|
|
23
24
|
|
|
25
|
+
if PEFT_AVAILABLE:
|
|
26
|
+
from peft.utils.other import ModulesToSaveWrapper
|
|
27
|
+
|
|
24
28
|
|
|
25
|
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
26
|
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
27
29
|
def lce_forward_deprecated(
|
|
28
30
|
self,
|
|
29
31
|
input_ids: torch.LongTensor = None,
|
|
@@ -37,6 +39,7 @@ def lce_forward_deprecated(
|
|
|
37
39
|
output_hidden_states: Optional[bool] = None,
|
|
38
40
|
return_dict: Optional[bool] = None,
|
|
39
41
|
cache_position: Optional[torch.LongTensor] = None,
|
|
42
|
+
skip_logits: Optional[bool] = None,
|
|
40
43
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
41
44
|
r"""
|
|
42
45
|
Copy paste llama forward but replace torch cross entropy with liger fused linear cross entropy
|
|
@@ -91,7 +94,15 @@ def lce_forward_deprecated(
|
|
|
91
94
|
loss = None
|
|
92
95
|
logits = None
|
|
93
96
|
|
|
94
|
-
if
|
|
97
|
+
# if in training mode, don't materialize logits
|
|
98
|
+
if skip_logits and labels is None:
|
|
99
|
+
raise ValueError("skip_logits is True, but labels is None")
|
|
100
|
+
|
|
101
|
+
if skip_logits is None:
|
|
102
|
+
# By default, if in training mode, don't materialize logits
|
|
103
|
+
skip_logits = self.training and labels is not None
|
|
104
|
+
|
|
105
|
+
if skip_logits:
|
|
95
106
|
shift_hidden_states = hidden_states[..., :-1, :].contiguous()
|
|
96
107
|
shift_labels = labels[..., 1:].contiguous()
|
|
97
108
|
|
|
@@ -137,8 +148,6 @@ def lce_forward_deprecated(
|
|
|
137
148
|
|
|
138
149
|
|
|
139
150
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
|
|
140
|
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
|
141
|
-
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
142
151
|
def lce_forward(
|
|
143
152
|
self,
|
|
144
153
|
input_ids: torch.LongTensor = None,
|
|
@@ -153,8 +162,9 @@ def lce_forward(
|
|
|
153
162
|
return_dict: Optional[bool] = None,
|
|
154
163
|
cache_position: Optional[torch.LongTensor] = None,
|
|
155
164
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
156
|
-
|
|
157
|
-
|
|
165
|
+
skip_logits: Optional[bool] = None,
|
|
166
|
+
**kwargs,
|
|
167
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
158
168
|
r"""
|
|
159
169
|
Args:
|
|
160
170
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
@@ -206,44 +216,111 @@ def lce_forward(
|
|
|
206
216
|
output_hidden_states=output_hidden_states,
|
|
207
217
|
return_dict=return_dict,
|
|
208
218
|
cache_position=cache_position,
|
|
219
|
+
**kwargs,
|
|
209
220
|
)
|
|
210
221
|
|
|
211
222
|
hidden_states = outputs[0]
|
|
223
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
224
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
225
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
212
226
|
|
|
213
227
|
if self.config.pretraining_tp > 1:
|
|
214
228
|
raise Exception("Liger Kernel does not support pretraining_tp!!")
|
|
215
229
|
|
|
230
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
216
231
|
logits = None
|
|
217
232
|
loss = None
|
|
233
|
+
token_accuracy = None
|
|
234
|
+
|
|
218
235
|
# if in training mode, don't materialize logits
|
|
219
|
-
if
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
236
|
+
if skip_logits and labels is None and shift_labels is None:
|
|
237
|
+
raise ValueError("skip_logits is True, but labels and shift_labels are None")
|
|
238
|
+
|
|
239
|
+
if skip_logits is None:
|
|
240
|
+
# By default, if in training mode, don't materialize logits
|
|
241
|
+
skip_logits = self.training and (labels is not None or shift_labels is not None)
|
|
242
|
+
|
|
243
|
+
# Compute loss
|
|
244
|
+
if skip_logits:
|
|
245
|
+
result = lce_maybe_trainable_lm_head(
|
|
246
|
+
self,
|
|
247
|
+
hidden_states=kept_hidden_states,
|
|
224
248
|
hidden_size=self.config.hidden_size,
|
|
225
|
-
|
|
249
|
+
labels=labels,
|
|
250
|
+
shift_labels=shift_labels,
|
|
251
|
+
**kwargs,
|
|
226
252
|
)
|
|
227
|
-
|
|
228
|
-
else:
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
if labels is not None:
|
|
253
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
254
|
+
else:
|
|
255
|
+
logits = self.lm_head(kept_hidden_states)
|
|
256
|
+
if labels is not None or shift_labels is not None:
|
|
232
257
|
loss = self.loss_function(
|
|
233
258
|
logits=logits,
|
|
234
259
|
labels=labels,
|
|
260
|
+
shift_labels=shift_labels,
|
|
235
261
|
vocab_size=self.config.vocab_size,
|
|
236
|
-
**
|
|
262
|
+
**kwargs,
|
|
237
263
|
)
|
|
238
264
|
|
|
239
265
|
if not return_dict:
|
|
240
266
|
output = (logits,) + outputs[1:]
|
|
241
|
-
|
|
267
|
+
output = ((loss,) + output) if loss is not None else output
|
|
268
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
269
|
+
return output
|
|
242
270
|
|
|
243
|
-
|
|
271
|
+
# Return custom output class with token_accuracy field
|
|
272
|
+
return LigerCausalLMOutputWithPast(
|
|
244
273
|
loss=loss,
|
|
245
274
|
logits=logits,
|
|
246
275
|
past_key_values=outputs.past_key_values,
|
|
247
276
|
hidden_states=outputs.hidden_states,
|
|
248
277
|
attentions=outputs.attentions,
|
|
278
|
+
token_accuracy=token_accuracy,
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
def lce_maybe_trainable_lm_head(self, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
283
|
+
lm_head = self.lm_head
|
|
284
|
+
|
|
285
|
+
# Unwrap the module if lm_head has been added as trainable module in PEFT LoRA configuration,
|
|
286
|
+
# i.e. listed in the modules_to_save field of LoraConfig, so the lm_head weights are read
|
|
287
|
+
# from the unwrapped module.
|
|
288
|
+
# See https://huggingface.co/docs/peft/package_reference/lora for reference.
|
|
289
|
+
if PEFT_AVAILABLE and isinstance(lm_head, ModulesToSaveWrapper):
|
|
290
|
+
lm_head = lm_head.modules_to_save.default
|
|
291
|
+
|
|
292
|
+
# If FSDP is used and lm_head is trainable, e.g., during full fine-tuning or with LoRA,
|
|
293
|
+
# reading the lm_head module weights and calling the kernel must be done within FSDP forward pass
|
|
294
|
+
# so the module entire parameters are summoned and kept in memory during the kernel execution.
|
|
295
|
+
if isinstance(lm_head, FullyShardedDataParallel):
|
|
296
|
+
return _FSDPForwardRedirection()(
|
|
297
|
+
lm_head,
|
|
298
|
+
_liger_for_causal_lm_loss,
|
|
299
|
+
lm_head.module,
|
|
300
|
+
hidden_states,
|
|
301
|
+
hidden_size,
|
|
302
|
+
labels,
|
|
303
|
+
shift_labels,
|
|
304
|
+
**loss_kwargs,
|
|
305
|
+
)
|
|
306
|
+
|
|
307
|
+
# FSDP is not used so we can read the lm_head weights and call the kernel directly
|
|
308
|
+
return _liger_for_causal_lm_loss(
|
|
309
|
+
lm_head=self.lm_head,
|
|
310
|
+
hidden_states=hidden_states,
|
|
311
|
+
hidden_size=hidden_size,
|
|
312
|
+
labels=labels,
|
|
313
|
+
shift_labels=shift_labels,
|
|
314
|
+
**loss_kwargs,
|
|
315
|
+
)
|
|
316
|
+
|
|
317
|
+
|
|
318
|
+
def _liger_for_causal_lm_loss(lm_head, hidden_states, hidden_size, labels, shift_labels, **loss_kwargs):
|
|
319
|
+
return LigerForCausalLMLoss(
|
|
320
|
+
hidden_states=hidden_states,
|
|
321
|
+
lm_head_weight=lm_head.weight,
|
|
322
|
+
labels=labels,
|
|
323
|
+
hidden_size=hidden_size,
|
|
324
|
+
shift_labels=shift_labels,
|
|
325
|
+
**loss_kwargs,
|
|
249
326
|
)
|
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
from typing import List
|
|
2
|
+
from typing import Optional
|
|
3
|
+
from typing import Tuple
|
|
4
|
+
from typing import Union
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
|
|
8
|
+
from transformers.cache_utils import Cache
|
|
9
|
+
|
|
10
|
+
from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
|
|
11
|
+
from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
|
|
12
|
+
from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def lce_forward(
|
|
16
|
+
self,
|
|
17
|
+
input_ids: torch.LongTensor = None,
|
|
18
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
19
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
20
|
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
21
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
22
|
+
labels: Optional[torch.LongTensor] = None,
|
|
23
|
+
use_cache: Optional[bool] = None,
|
|
24
|
+
output_attentions: Optional[bool] = None,
|
|
25
|
+
output_hidden_states: Optional[bool] = None,
|
|
26
|
+
return_dict: Optional[bool] = None,
|
|
27
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
28
|
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
|
29
|
+
**kwargs,
|
|
30
|
+
) -> Union[Tuple, LigerCausalLMOutputWithPast]:
|
|
31
|
+
r"""
|
|
32
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
33
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
34
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
35
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
36
|
+
|
|
37
|
+
Example:
|
|
38
|
+
|
|
39
|
+
```python
|
|
40
|
+
>>> from transformers import AutoTokenizer, Llama4ForCausalLM
|
|
41
|
+
|
|
42
|
+
>>> model = Llama4ForCausalLM.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
43
|
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama4/Llama4-2-7b-hf")
|
|
44
|
+
|
|
45
|
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
46
|
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
47
|
+
|
|
48
|
+
>>> # Generate
|
|
49
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
50
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
51
|
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
52
|
+
```"""
|
|
53
|
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
54
|
+
output_hidden_states = (
|
|
55
|
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
56
|
+
)
|
|
57
|
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
58
|
+
|
|
59
|
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
60
|
+
outputs = self.model(
|
|
61
|
+
input_ids=input_ids,
|
|
62
|
+
attention_mask=attention_mask,
|
|
63
|
+
position_ids=position_ids,
|
|
64
|
+
past_key_values=past_key_values,
|
|
65
|
+
inputs_embeds=inputs_embeds,
|
|
66
|
+
use_cache=use_cache,
|
|
67
|
+
output_attentions=output_attentions,
|
|
68
|
+
output_hidden_states=output_hidden_states,
|
|
69
|
+
return_dict=True,
|
|
70
|
+
cache_position=cache_position,
|
|
71
|
+
**kwargs,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
hidden_states = outputs[0]
|
|
75
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
76
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
77
|
+
kept_hidden_states = hidden_states[:, slice_indices, :]
|
|
78
|
+
|
|
79
|
+
shift_labels = kwargs.pop("shift_labels", None)
|
|
80
|
+
logits = None
|
|
81
|
+
loss = None
|
|
82
|
+
token_accuracy = None
|
|
83
|
+
|
|
84
|
+
# Compute loss
|
|
85
|
+
if self.training and (labels is not None or shift_labels is not None):
|
|
86
|
+
result = LigerForCausalLMLoss(
|
|
87
|
+
hidden_states=kept_hidden_states,
|
|
88
|
+
lm_head_weight=self.lm_head.weight,
|
|
89
|
+
labels=labels,
|
|
90
|
+
shift_labels=shift_labels,
|
|
91
|
+
hidden_size=self.config.hidden_size,
|
|
92
|
+
**kwargs,
|
|
93
|
+
)
|
|
94
|
+
loss, _, token_accuracy = unpack_cross_entropy_result(result)
|
|
95
|
+
|
|
96
|
+
else: # if in inference mode materialize logits
|
|
97
|
+
logits = self.lm_head(kept_hidden_states)
|
|
98
|
+
if labels is not None or shift_labels is not None:
|
|
99
|
+
loss = self.loss_function(
|
|
100
|
+
logits=logits,
|
|
101
|
+
labels=labels,
|
|
102
|
+
shift_labels=shift_labels,
|
|
103
|
+
vocab_size=self.config.vocab_size,
|
|
104
|
+
**kwargs,
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
if not return_dict:
|
|
108
|
+
output = (logits,) + outputs[1:]
|
|
109
|
+
output = ((loss,) + output) if loss is not None else output
|
|
110
|
+
output = output + (token_accuracy,) if token_accuracy is not None else output
|
|
111
|
+
return output
|
|
112
|
+
|
|
113
|
+
# Return custom output class with token_accuracy field
|
|
114
|
+
return LigerCausalLMOutputWithPast(
|
|
115
|
+
loss=loss,
|
|
116
|
+
logits=logits,
|
|
117
|
+
past_key_values=outputs.past_key_values,
|
|
118
|
+
hidden_states=outputs.hidden_states,
|
|
119
|
+
attentions=outputs.attentions,
|
|
120
|
+
token_accuracy=token_accuracy,
|
|
121
|
+
)
|