liger-kernel-nightly 0.5.6.dev20250403190551__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +35 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +25 -9
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +124 -64
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +3 -2
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +13 -6
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +283 -56
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +205 -19
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +50 -25
- liger_kernel/transformers/model/gemma2.py +55 -23
- liger_kernel/transformers/model/gemma3.py +117 -120
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +102 -25
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +36 -23
- liger_kernel/transformers/model/mixtral.py +45 -25
- liger_kernel/transformers/model/mllama.py +39 -22
- liger_kernel/transformers/model/olmo2.py +40 -20
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -177
- liger_kernel/transformers/model/qwen2.py +48 -21
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1678 -160
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +48 -5
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +36 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/METADATA +68 -38
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- liger_kernel/transformers/gema3_rms.py +0 -8
- liger_kernel_nightly-0.5.6.dev20250403190551.dist-info/RECORD +0 -82
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,55 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
from typing import Callable
|
|
3
|
+
|
|
4
|
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class _FSDPForwardRedirection:
|
|
8
|
+
"""
|
|
9
|
+
Modified based on
|
|
10
|
+
https://github.com/Lightning-AI/pytorch-lightning/blob/d3f9c83d6efa4f1def36aa6c199600946cdb9117/src/lightning/pytorch/strategies/strategy.py#L601-L648
|
|
11
|
+
Redirect a method call through FullyShardedDataParallel.forward so that the FSDP module's root pre-forward and
|
|
12
|
+
post-forward can be properly executed around the method call.
|
|
13
|
+
This is needed in cases where we call a submodule of a FSDP module. For instance, when we want to call only
|
|
14
|
+
the `LlamaModel` part out of a FSDP-wrapped `LlamaForCausalLM` to get the hidden states without involving
|
|
15
|
+
GPU-memory-heavy `lm_head` and cross entropy computation, doing this directly (i.e. `model.model.forward()`)
|
|
16
|
+
will not work because the first `nn.Embedding` layer is not independently wrapped as a FSDP module (because of
|
|
17
|
+
the transformer-based wrapping policy), and not calling it through FSDP root module forward will not all-gather
|
|
18
|
+
its parameter, thus resulting in "RuntimeError: 'weight' must be 2-D" error. Similarly, if we want to call just
|
|
19
|
+
the `lm_head` part of a model, we need this trick too to properly get its params all-gathered.
|
|
20
|
+
"""
|
|
21
|
+
|
|
22
|
+
def __call__(
|
|
23
|
+
self,
|
|
24
|
+
wrapper_module: FullyShardedDataParallel,
|
|
25
|
+
method: Callable,
|
|
26
|
+
*args: Any,
|
|
27
|
+
**kwargs: Any,
|
|
28
|
+
):
|
|
29
|
+
"""Reroutes a method call through the `wrapper_module`'s `forward` method.
|
|
30
|
+
Args:
|
|
31
|
+
wrapper_module: The module that has `original_module` wrapped.
|
|
32
|
+
original_module: The module that was wrapped inside `wrapper_module`.
|
|
33
|
+
method_name: The name of the method that should be called on the `original_module` after inputs get
|
|
34
|
+
redirected through the `wrapper_module`'s `forward` method.
|
|
35
|
+
*args: The positional arguments to the method `method_name`. They will get passed to a patched
|
|
36
|
+
`forward` method instead.
|
|
37
|
+
**kwargs: The keyword arguments to the method `method_name`. They will get passed to a patched
|
|
38
|
+
`forward` method instead.
|
|
39
|
+
"""
|
|
40
|
+
assert isinstance(wrapper_module, FullyShardedDataParallel)
|
|
41
|
+
original_module = wrapper_module._fsdp_wrapped_module
|
|
42
|
+
original_forward = original_module.forward
|
|
43
|
+
|
|
44
|
+
def wrapped_forward(*_args: Any, **_kwargs: Any) -> Any:
|
|
45
|
+
# Unpatch ourselves immediately before calling the method `method_name`
|
|
46
|
+
# because itself may want to call the real `forward`
|
|
47
|
+
original_module.forward = original_forward # type: ignore[method-assign]
|
|
48
|
+
# Call the actual method e.g. `.training_step(...)`
|
|
49
|
+
out = method(*_args, **_kwargs)
|
|
50
|
+
return out
|
|
51
|
+
|
|
52
|
+
# Patch the original_module's forward so we can redirect the arguments back to the real method
|
|
53
|
+
original_module.forward = wrapped_forward # type: ignore[method-assign]
|
|
54
|
+
wrapper_output = wrapper_module(*args, **kwargs)
|
|
55
|
+
return wrapper_output
|
|
@@ -1,19 +1,35 @@
|
|
|
1
|
+
from dataclasses import dataclass
|
|
1
2
|
from typing import Optional
|
|
2
3
|
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
from liger_kernel.ops
|
|
6
|
-
from liger_kernel.ops
|
|
7
|
-
from liger_kernel.ops
|
|
8
|
-
from liger_kernel.ops
|
|
9
|
-
from liger_kernel.ops
|
|
10
|
-
from liger_kernel.ops
|
|
11
|
-
from liger_kernel.ops
|
|
12
|
-
from liger_kernel.ops
|
|
13
|
-
from liger_kernel.ops
|
|
14
|
-
from liger_kernel.ops
|
|
15
|
-
from liger_kernel.ops
|
|
16
|
-
from liger_kernel.ops
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
7
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
8
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
9
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
10
|
+
from liger_kernel.ops import LigerFusedLinearJSDFunction
|
|
11
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
12
|
+
from liger_kernel.ops import LigerGELUMulFunction
|
|
13
|
+
from liger_kernel.ops import LigerGroupNormFunction
|
|
14
|
+
from liger_kernel.ops import LigerJSDFunction
|
|
15
|
+
from liger_kernel.ops import LigerKLDivLossFunction
|
|
16
|
+
from liger_kernel.ops import LigerLayerNormFunction
|
|
17
|
+
from liger_kernel.ops import LigerMultiTokenAttentionFunction
|
|
18
|
+
from liger_kernel.ops import LigerPolyNormFunction
|
|
19
|
+
from liger_kernel.ops import LigerQwen2VLMRopeFunction
|
|
20
|
+
from liger_kernel.ops import LigerRMSNormFunction
|
|
21
|
+
from liger_kernel.ops import LigerRopeFunction
|
|
22
|
+
from liger_kernel.ops import LigerSiLUMulFunction
|
|
23
|
+
from liger_kernel.ops import LigerSoftmaxFunction
|
|
24
|
+
from liger_kernel.ops import LigerSparsemaxFunction
|
|
25
|
+
from liger_kernel.ops import LigerTVDLossFunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@dataclass
|
|
29
|
+
class CrossEntropyOutput:
|
|
30
|
+
loss: torch.Tensor
|
|
31
|
+
z_loss: Optional[torch.Tensor] = None
|
|
32
|
+
token_accuracy: Optional[torch.Tensor] = None
|
|
17
33
|
|
|
18
34
|
|
|
19
35
|
# conform to the function signature in https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html
|
|
@@ -30,8 +46,9 @@ def liger_cross_entropy(
|
|
|
30
46
|
lse_square_scale: float = 0.0,
|
|
31
47
|
softcap: Optional[float] = None,
|
|
32
48
|
return_z_loss: bool = False,
|
|
49
|
+
return_token_accuracy: bool = False,
|
|
33
50
|
):
|
|
34
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
51
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
35
52
|
input,
|
|
36
53
|
target,
|
|
37
54
|
weight,
|
|
@@ -41,10 +58,13 @@ def liger_cross_entropy(
|
|
|
41
58
|
reduction,
|
|
42
59
|
softcap,
|
|
43
60
|
return_z_loss,
|
|
61
|
+
return_token_accuracy,
|
|
44
62
|
)
|
|
45
|
-
|
|
63
|
+
|
|
64
|
+
if not return_z_loss and not return_token_accuracy:
|
|
46
65
|
return loss
|
|
47
|
-
|
|
66
|
+
|
|
67
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
48
68
|
|
|
49
69
|
|
|
50
70
|
def liger_fused_linear_cross_entropy(
|
|
@@ -59,8 +79,11 @@ def liger_fused_linear_cross_entropy(
|
|
|
59
79
|
reduction: str = "mean",
|
|
60
80
|
softcap: Optional[float] = None,
|
|
61
81
|
return_z_loss: bool = False,
|
|
82
|
+
accum_dtype=None,
|
|
83
|
+
use_token_scaling: bool = False,
|
|
84
|
+
return_token_accuracy: bool = False,
|
|
62
85
|
):
|
|
63
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
86
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
64
87
|
input,
|
|
65
88
|
weight,
|
|
66
89
|
target,
|
|
@@ -72,10 +95,15 @@ def liger_fused_linear_cross_entropy(
|
|
|
72
95
|
reduction,
|
|
73
96
|
softcap,
|
|
74
97
|
return_z_loss,
|
|
98
|
+
accum_dtype,
|
|
99
|
+
use_token_scaling,
|
|
100
|
+
return_token_accuracy,
|
|
75
101
|
)
|
|
76
|
-
|
|
102
|
+
|
|
103
|
+
if not return_z_loss and not return_token_accuracy:
|
|
77
104
|
return loss
|
|
78
|
-
|
|
105
|
+
|
|
106
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
79
107
|
|
|
80
108
|
|
|
81
109
|
def liger_fused_linear_jsd(
|
|
@@ -159,6 +187,68 @@ def liger_kl_div(
|
|
|
159
187
|
)
|
|
160
188
|
|
|
161
189
|
|
|
190
|
+
def liger_sparsemax(
|
|
191
|
+
input,
|
|
192
|
+
dim: int = -1,
|
|
193
|
+
):
|
|
194
|
+
return LigerSparsemaxFunction.apply(input, dim)
|
|
195
|
+
|
|
196
|
+
|
|
197
|
+
def liger_multi_token_attention(
|
|
198
|
+
scores,
|
|
199
|
+
weight,
|
|
200
|
+
bias=None,
|
|
201
|
+
stride: int = 1,
|
|
202
|
+
padding: int = 0,
|
|
203
|
+
dilation: int = 1,
|
|
204
|
+
groups: int = 1,
|
|
205
|
+
sparse: bool = False,
|
|
206
|
+
):
|
|
207
|
+
"""
|
|
208
|
+
Functional interface for multi-token attention.
|
|
209
|
+
|
|
210
|
+
Args:
|
|
211
|
+
scores: Input tensor of shape (B, C_in, L, L)
|
|
212
|
+
weight: Convolution weight tensor of shape (C_out, C_in // groups, K, K)
|
|
213
|
+
bias: Optional bias tensor of shape (C_out,)
|
|
214
|
+
stride: Stride for the convolution (default: 1)
|
|
215
|
+
padding: Padding for the convolution (default: 0)
|
|
216
|
+
dilation: Dilation factor for the convolution (default: 1)
|
|
217
|
+
groups: Number of groups for the convolution (default: 1)
|
|
218
|
+
sparse: Specifies if input tensors are expected to be sparse (default: False)
|
|
219
|
+
Returns:
|
|
220
|
+
Output tensor after applying multi-token attention.
|
|
221
|
+
"""
|
|
222
|
+
return LigerMultiTokenAttentionFunction.apply(scores, weight, bias, stride, padding, dilation, groups, sparse)
|
|
223
|
+
|
|
224
|
+
|
|
225
|
+
def liger_fused_neighborhood_attention(
|
|
226
|
+
query,
|
|
227
|
+
key,
|
|
228
|
+
value,
|
|
229
|
+
kernel_size: int = 7,
|
|
230
|
+
dilation: int = 1,
|
|
231
|
+
scale: float = None,
|
|
232
|
+
):
|
|
233
|
+
"""
|
|
234
|
+
Liger fused neighborhood attention.
|
|
235
|
+
|
|
236
|
+
paper: https://arxiv.org/pdf/2504.16922
|
|
237
|
+
|
|
238
|
+
Args:
|
|
239
|
+
query: Query tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
240
|
+
key: Key tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
241
|
+
value: Value tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
242
|
+
kernel_size: Size of the neighborhood window (default: 7)
|
|
243
|
+
dilation: Dilation factor for the neighborhood (default: 1)
|
|
244
|
+
scale: Scaling factor for attention scores (default: rsqrt(head_dim))
|
|
245
|
+
|
|
246
|
+
Returns:
|
|
247
|
+
Output tensor of shape [batch_size, num_heads, seq_len, head_dim]
|
|
248
|
+
"""
|
|
249
|
+
return LigerFusedNeighborhoodAttentionFunction.apply(query, key, value, kernel_size, dilation, scale)
|
|
250
|
+
|
|
251
|
+
|
|
162
252
|
def liger_tvd(
|
|
163
253
|
input,
|
|
164
254
|
target,
|
|
@@ -187,6 +277,14 @@ def liger_rms_norm(X, W, eps, offset: float = 0.0, casting_mode: str = "llama",
|
|
|
187
277
|
return LigerRMSNormFunction.apply(X, W, eps, offset, casting_mode, in_place)
|
|
188
278
|
|
|
189
279
|
|
|
280
|
+
def liger_poly_norm(X, W, B, eps=1e-6, in_place=True):
|
|
281
|
+
return LigerPolyNormFunction.apply(X, W, B, eps, in_place)
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
def liger_fused_add_rms_norm(X, R, W, eps, offset: float = 0.0, casting_mode: str = "llama", in_place: bool = True):
|
|
285
|
+
return LigerFusedAddRMSNormFunction.apply(X, R, W, eps, offset, casting_mode, in_place)
|
|
286
|
+
|
|
287
|
+
|
|
190
288
|
def liger_rope(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
191
289
|
return LigerRopeFunction.apply(q, k, cos, sin, position_ids, unsqueeze_dim)
|
|
192
290
|
|
|
@@ -195,5 +293,9 @@ def liger_swiglu(a, b):
|
|
|
195
293
|
return LigerSiLUMulFunction.apply(a, b)
|
|
196
294
|
|
|
197
295
|
|
|
296
|
+
def liger_softmax(x):
|
|
297
|
+
return LigerSoftmaxFunction.apply(x)
|
|
298
|
+
|
|
299
|
+
|
|
198
300
|
def liger_dyt(x, alpha, gamma, beta):
|
|
199
301
|
return LigerDyTFunction.apply(x, alpha, gamma, beta)
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import torch.nn as nn
|
|
3
|
+
|
|
4
|
+
from liger_kernel.ops import LigerFusedAddRMSNormFunction
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class LigerFusedAddRMSNorm(nn.Module):
|
|
8
|
+
def __init__(
|
|
9
|
+
self,
|
|
10
|
+
hidden_size,
|
|
11
|
+
eps=1e-6,
|
|
12
|
+
offset=0.0,
|
|
13
|
+
casting_mode="llama",
|
|
14
|
+
init_fn="ones",
|
|
15
|
+
in_place=False,
|
|
16
|
+
):
|
|
17
|
+
super().__init__()
|
|
18
|
+
assert init_fn in [
|
|
19
|
+
"ones",
|
|
20
|
+
"zeros",
|
|
21
|
+
], f"init_fn must be either 'ones' or 'zeros', got {init_fn}"
|
|
22
|
+
self.weight = nn.Parameter(torch.ones(hidden_size) if init_fn == "ones" else torch.zeros(hidden_size))
|
|
23
|
+
self.variance_epsilon, self.offset, self.casting_mode, self.in_place = (eps, offset, casting_mode, in_place)
|
|
24
|
+
|
|
25
|
+
def forward(self, hidden_states, residual):
|
|
26
|
+
return LigerFusedAddRMSNormFunction.apply(
|
|
27
|
+
hidden_states,
|
|
28
|
+
residual,
|
|
29
|
+
self.weight,
|
|
30
|
+
self.variance_epsilon,
|
|
31
|
+
self.offset,
|
|
32
|
+
self.casting_mode,
|
|
33
|
+
self.in_place,
|
|
34
|
+
)
|
|
35
|
+
|
|
36
|
+
def extra_repr(self):
|
|
37
|
+
return (
|
|
38
|
+
f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}, offset={self.offset}, in_place={self.in_place}"
|
|
39
|
+
)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerFusedLinearCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,9 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
accum_dtype: Optional[torch.dtype] = None,
|
|
20
|
+
use_token_scaling: bool = False,
|
|
21
|
+
return_token_accuracy: bool = False,
|
|
18
22
|
):
|
|
19
23
|
super().__init__()
|
|
20
24
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -24,7 +28,7 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
24
28
|
"mean",
|
|
25
29
|
"sum",
|
|
26
30
|
"none",
|
|
27
|
-
}, f"reduction must be
|
|
31
|
+
}, f"reduction must be 'mean' or 'sum' or 'none'. Got: {reduction}"
|
|
28
32
|
assert softcap is None or softcap > 0, f"softcap must greater than 0.0 or None. Got: {softcap}"
|
|
29
33
|
self.ce_weight = ce_weight
|
|
30
34
|
self.ignore_index = ignore_index
|
|
@@ -33,9 +37,12 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
33
37
|
self.reduction = reduction
|
|
34
38
|
self.softcap = softcap
|
|
35
39
|
self.return_z_loss = return_z_loss
|
|
40
|
+
self.accum_dtype = accum_dtype
|
|
41
|
+
self.use_token_scaling = use_token_scaling
|
|
42
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
43
|
|
|
37
44
|
def forward(self, lin_weight, _input, target, bias=None):
|
|
38
|
-
loss, z_loss = LigerFusedLinearCrossEntropyFunction.apply(
|
|
45
|
+
loss, z_loss, token_accuracy = LigerFusedLinearCrossEntropyFunction.apply(
|
|
39
46
|
_input,
|
|
40
47
|
lin_weight,
|
|
41
48
|
target,
|
|
@@ -47,7 +54,11 @@ class LigerFusedLinearCrossEntropyLoss(torch.nn.Module):
|
|
|
47
54
|
self.reduction,
|
|
48
55
|
self.softcap,
|
|
49
56
|
self.return_z_loss,
|
|
57
|
+
self.accum_dtype,
|
|
58
|
+
self.use_token_scaling,
|
|
59
|
+
self.return_token_accuracy,
|
|
50
60
|
)
|
|
51
|
-
if not self.return_z_loss:
|
|
61
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
52
62
|
return loss
|
|
53
|
-
|
|
63
|
+
|
|
64
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
|
@@ -0,0 +1,234 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Optional
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
|
|
8
|
+
from liger_kernel.ops import LigerFusedNeighborhoodAttentionFunction
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class LigerFusedNeighborhoodAttention(nn.Module):
|
|
12
|
+
"""
|
|
13
|
+
Liger Fused Neighborhood Attention Module.
|
|
14
|
+
|
|
15
|
+
Paper: https://arxiv.org/pdf/2504.16922
|
|
16
|
+
|
|
17
|
+
Fused Neighborhood attention restricts the attention mechanism to a local neighborhood
|
|
18
|
+
around each position, reducing computational complexity from O(n²) to O(n*k)
|
|
19
|
+
where k is the neighborhood size.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
hidden_size (int): The hidden dimension size
|
|
23
|
+
num_heads (int): Number of attention heads
|
|
24
|
+
kernel_size (int): Size of the neighborhood window (default: 7)
|
|
25
|
+
dilation (int): Dilation factor for the neighborhood (default: 1)
|
|
26
|
+
bias (bool): Whether to use bias in linear projections (default: True)
|
|
27
|
+
dropout (float): Dropout probability (default: 0.0)
|
|
28
|
+
scale (Optional[float]): Scaling factor for attention scores.
|
|
29
|
+
If None, uses 1/sqrt(head_dim) (default: None)
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(
|
|
33
|
+
self,
|
|
34
|
+
hidden_size: int,
|
|
35
|
+
num_heads: int,
|
|
36
|
+
kernel_size: int = 7,
|
|
37
|
+
dilation: int = 1,
|
|
38
|
+
bias: bool = True,
|
|
39
|
+
dropout: float = 0.0,
|
|
40
|
+
scale: Optional[float] = None,
|
|
41
|
+
):
|
|
42
|
+
super().__init__()
|
|
43
|
+
|
|
44
|
+
if hidden_size % num_heads != 0:
|
|
45
|
+
raise ValueError(f"hidden_size ({hidden_size}) must be divisible by num_heads ({num_heads})")
|
|
46
|
+
|
|
47
|
+
if kernel_size <= 0:
|
|
48
|
+
raise ValueError(f"kernel_size ({kernel_size}) must be positive")
|
|
49
|
+
|
|
50
|
+
if kernel_size % 2 == 0:
|
|
51
|
+
raise ValueError(f"kernel_size ({kernel_size}) must be odd")
|
|
52
|
+
|
|
53
|
+
if dilation < 1:
|
|
54
|
+
raise ValueError(f"dilation ({dilation}) must be positive")
|
|
55
|
+
|
|
56
|
+
self.hidden_size = hidden_size
|
|
57
|
+
self.num_heads = num_heads
|
|
58
|
+
self.head_dim = hidden_size // num_heads
|
|
59
|
+
self.kernel_size = kernel_size
|
|
60
|
+
self.dilation = dilation
|
|
61
|
+
self.scale = scale if scale is not None else 1.0 / math.sqrt(self.head_dim)
|
|
62
|
+
self.dropout_p = dropout
|
|
63
|
+
|
|
64
|
+
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
65
|
+
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
66
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
67
|
+
|
|
68
|
+
self.out_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
69
|
+
|
|
70
|
+
if dropout > 0.0:
|
|
71
|
+
self.dropout = nn.Dropout(dropout)
|
|
72
|
+
else:
|
|
73
|
+
self.dropout = None
|
|
74
|
+
|
|
75
|
+
def forward(
|
|
76
|
+
self,
|
|
77
|
+
hidden_states: torch.Tensor,
|
|
78
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
79
|
+
) -> torch.Tensor:
|
|
80
|
+
"""
|
|
81
|
+
Forward pass of the fused neighborhood attention module.
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
|
85
|
+
attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
|
|
89
|
+
"""
|
|
90
|
+
if attention_mask is not None:
|
|
91
|
+
raise NotImplementedError("Attention mask is not yet supported in LigerFusedNeighborhoodAttention")
|
|
92
|
+
|
|
93
|
+
batch_size, seq_len, hidden_size = hidden_states.shape
|
|
94
|
+
|
|
95
|
+
query = self.q_proj(hidden_states)
|
|
96
|
+
key = self.k_proj(hidden_states)
|
|
97
|
+
value = self.v_proj(hidden_states)
|
|
98
|
+
|
|
99
|
+
query = query.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
100
|
+
key = key.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
101
|
+
value = value.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
102
|
+
|
|
103
|
+
attn_output = LigerFusedNeighborhoodAttentionFunction.apply(
|
|
104
|
+
query, key, value, self.kernel_size, self.dilation, self.scale
|
|
105
|
+
)
|
|
106
|
+
|
|
107
|
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, hidden_size)
|
|
108
|
+
|
|
109
|
+
if self.dropout is not None:
|
|
110
|
+
attn_output = self.dropout(attn_output)
|
|
111
|
+
|
|
112
|
+
output = self.out_proj(attn_output)
|
|
113
|
+
|
|
114
|
+
return output
|
|
115
|
+
|
|
116
|
+
def extra_repr(self) -> str:
|
|
117
|
+
return (
|
|
118
|
+
f"hidden_size={self.hidden_size}, num_heads={self.num_heads}, "
|
|
119
|
+
f"head_dim={self.head_dim}, kernel_size={self.kernel_size}, "
|
|
120
|
+
f"dilation={self.dilation}, scale={self.scale}, dropout={self.dropout_p}"
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class LigerFusedNeighborhoodAttentionLayer(nn.Module):
|
|
125
|
+
"""
|
|
126
|
+
A complete neighborhood attention layer with layer norm and residual connection.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
hidden_size (int): The hidden dimension size
|
|
130
|
+
num_heads (int): Number of attention heads
|
|
131
|
+
kernel_size (int): Size of the neighborhood window (default: 7)
|
|
132
|
+
dilation (int): Dilation factor for the neighborhood (default: 1)
|
|
133
|
+
bias (bool): Whether to use bias in linear projections (default: True)
|
|
134
|
+
dropout (float): Dropout probability (default: 0.0)
|
|
135
|
+
layer_norm_eps (float): Epsilon for layer normalization (default: 1e-5)
|
|
136
|
+
scale (Optional[float]): Scaling factor for attention scores (default: None)
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
def __init__(
|
|
140
|
+
self,
|
|
141
|
+
hidden_size: int,
|
|
142
|
+
num_heads: int,
|
|
143
|
+
kernel_size: int = 7,
|
|
144
|
+
dilation: int = 1,
|
|
145
|
+
bias: bool = True,
|
|
146
|
+
dropout: float = 0.0,
|
|
147
|
+
layer_norm_eps: float = 1e-5,
|
|
148
|
+
scale: Optional[float] = None,
|
|
149
|
+
):
|
|
150
|
+
super().__init__()
|
|
151
|
+
|
|
152
|
+
self.attention = LigerFusedNeighborhoodAttention(
|
|
153
|
+
hidden_size=hidden_size,
|
|
154
|
+
num_heads=num_heads,
|
|
155
|
+
kernel_size=kernel_size,
|
|
156
|
+
dilation=dilation,
|
|
157
|
+
bias=bias,
|
|
158
|
+
dropout=dropout,
|
|
159
|
+
scale=scale,
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
|
163
|
+
|
|
164
|
+
if dropout > 0.0:
|
|
165
|
+
self.dropout = nn.Dropout(dropout)
|
|
166
|
+
else:
|
|
167
|
+
self.dropout = None
|
|
168
|
+
|
|
169
|
+
def forward(
|
|
170
|
+
self,
|
|
171
|
+
hidden_states: torch.Tensor,
|
|
172
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
173
|
+
) -> torch.Tensor:
|
|
174
|
+
"""
|
|
175
|
+
Forward pass with residual connection and layer normalization.
|
|
176
|
+
|
|
177
|
+
Args:
|
|
178
|
+
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size]
|
|
179
|
+
attention_mask (Optional[torch.Tensor]): Attention mask (currently not supported)
|
|
180
|
+
|
|
181
|
+
Returns:
|
|
182
|
+
torch.Tensor: Output tensor of shape [batch_size, seq_len, hidden_size]
|
|
183
|
+
"""
|
|
184
|
+
normed_hidden_states = self.layer_norm(hidden_states)
|
|
185
|
+
|
|
186
|
+
attn_output = self.attention(normed_hidden_states, attention_mask)
|
|
187
|
+
|
|
188
|
+
if self.dropout is not None:
|
|
189
|
+
attn_output = self.dropout(attn_output)
|
|
190
|
+
|
|
191
|
+
output = hidden_states + attn_output
|
|
192
|
+
|
|
193
|
+
return output
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class LigerFusedNeighborhoodAttentionConfig:
|
|
197
|
+
"""
|
|
198
|
+
Configuration class for Fused Neighborhood Attention.
|
|
199
|
+
|
|
200
|
+
This can be used to easily configure neighborhood attention parameters
|
|
201
|
+
for different model architectures.
|
|
202
|
+
"""
|
|
203
|
+
|
|
204
|
+
def __init__(
|
|
205
|
+
self,
|
|
206
|
+
hidden_size: int = 768,
|
|
207
|
+
num_heads: int = 12,
|
|
208
|
+
kernel_size: int = 7,
|
|
209
|
+
dilation: int = 1,
|
|
210
|
+
bias: bool = True,
|
|
211
|
+
dropout: float = 0.0,
|
|
212
|
+
layer_norm_eps: float = 1e-5,
|
|
213
|
+
scale: Optional[float] = None,
|
|
214
|
+
):
|
|
215
|
+
self.hidden_size = hidden_size
|
|
216
|
+
self.num_heads = num_heads
|
|
217
|
+
self.kernel_size = kernel_size
|
|
218
|
+
self.dilation = dilation
|
|
219
|
+
self.bias = bias
|
|
220
|
+
self.dropout = dropout
|
|
221
|
+
self.layer_norm_eps = layer_norm_eps
|
|
222
|
+
self.scale = scale
|
|
223
|
+
|
|
224
|
+
def to_dict(self):
|
|
225
|
+
return {
|
|
226
|
+
"hidden_size": self.hidden_size,
|
|
227
|
+
"num_heads": self.num_heads,
|
|
228
|
+
"kernel_size": self.kernel_size,
|
|
229
|
+
"dilation": self.dilation,
|
|
230
|
+
"bias": self.bias,
|
|
231
|
+
"dropout": self.dropout,
|
|
232
|
+
"layer_norm_eps": self.layer_norm_eps,
|
|
233
|
+
"scale": self.scale,
|
|
234
|
+
}
|