liger-kernel-nightly 0.5.6.dev20250403190551__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (107) hide show
  1. liger_kernel/chunked_loss/__init__.py +1 -0
  2. liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
  3. liger_kernel/chunked_loss/dpo_loss.py +61 -3
  4. liger_kernel/chunked_loss/functional.py +2 -0
  5. liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
  6. liger_kernel/chunked_loss/fused_linear_ppo.py +35 -0
  7. liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
  8. liger_kernel/chunked_loss/grpo_loss.py +76 -5
  9. liger_kernel/chunked_loss/jsd_loss.py +25 -9
  10. liger_kernel/ops/__init__.py +141 -0
  11. liger_kernel/ops/backends/README.md +151 -0
  12. liger_kernel/ops/backends/__init__.py +13 -0
  13. liger_kernel/ops/backends/_ascend/__init__.py +5 -0
  14. liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
  15. liger_kernel/ops/backends/registry.py +61 -0
  16. liger_kernel/ops/cross_entropy.py +124 -64
  17. liger_kernel/ops/dyt.py +115 -180
  18. liger_kernel/ops/fused_add_rms_norm.py +416 -0
  19. liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
  20. liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
  21. liger_kernel/ops/geglu.py +3 -2
  22. liger_kernel/ops/group_norm.py +2 -1
  23. liger_kernel/ops/grpo_loss.py +312 -0
  24. liger_kernel/ops/jsd.py +2 -1
  25. liger_kernel/ops/kl_div.py +13 -6
  26. liger_kernel/ops/layer_norm.py +146 -78
  27. liger_kernel/ops/llama4_rope.py +225 -0
  28. liger_kernel/ops/multi_token_attention.py +207 -0
  29. liger_kernel/ops/poly_norm.py +390 -0
  30. liger_kernel/ops/rms_norm.py +283 -56
  31. liger_kernel/ops/rope.py +1 -1
  32. liger_kernel/ops/softmax.py +201 -0
  33. liger_kernel/ops/sparsemax.py +179 -0
  34. liger_kernel/ops/swiglu.py +1 -1
  35. liger_kernel/ops/tiled_mlp.py +136 -0
  36. liger_kernel/ops/utils.py +2 -0
  37. liger_kernel/transformers/__init__.py +205 -19
  38. liger_kernel/transformers/cross_entropy.py +9 -4
  39. liger_kernel/transformers/dyt.py +6 -4
  40. liger_kernel/transformers/experimental/__init__.py +5 -0
  41. liger_kernel/transformers/experimental/embedding.py +1 -1
  42. liger_kernel/transformers/fsdp.py +55 -0
  43. liger_kernel/transformers/functional.py +122 -20
  44. liger_kernel/transformers/fused_add_rms_norm.py +39 -0
  45. liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
  46. liger_kernel/transformers/fused_linear_jsd.py +1 -1
  47. liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
  48. liger_kernel/transformers/geglu.py +1 -1
  49. liger_kernel/transformers/group_norm.py +1 -1
  50. liger_kernel/transformers/grpo_loss.py +153 -0
  51. liger_kernel/transformers/jsd.py +1 -1
  52. liger_kernel/transformers/kl_div.py +1 -1
  53. liger_kernel/transformers/layer_norm.py +1 -1
  54. liger_kernel/transformers/llama4_rope.py +93 -0
  55. liger_kernel/transformers/model/falcon_h1.py +122 -0
  56. liger_kernel/transformers/model/gemma.py +50 -25
  57. liger_kernel/transformers/model/gemma2.py +55 -23
  58. liger_kernel/transformers/model/gemma3.py +117 -120
  59. liger_kernel/transformers/model/glm4.py +141 -0
  60. liger_kernel/transformers/model/glm4v.py +163 -0
  61. liger_kernel/transformers/model/glm4v_moe.py +172 -0
  62. liger_kernel/transformers/model/gpt_oss.py +211 -0
  63. liger_kernel/transformers/model/hunyuan_v1.py +134 -0
  64. liger_kernel/transformers/model/internvl.py +157 -0
  65. liger_kernel/transformers/model/llama.py +102 -25
  66. liger_kernel/transformers/model/llama4.py +121 -0
  67. liger_kernel/transformers/model/llava.py +111 -136
  68. liger_kernel/transformers/model/loss_utils.py +50 -12
  69. liger_kernel/transformers/model/mistral.py +36 -23
  70. liger_kernel/transformers/model/mixtral.py +45 -25
  71. liger_kernel/transformers/model/mllama.py +39 -22
  72. liger_kernel/transformers/model/olmo2.py +40 -20
  73. liger_kernel/transformers/model/olmo3.py +142 -0
  74. liger_kernel/transformers/model/output_classes.py +147 -0
  75. liger_kernel/transformers/model/paligemma.py +50 -14
  76. liger_kernel/transformers/model/phi3.py +47 -177
  77. liger_kernel/transformers/model/qwen2.py +48 -21
  78. liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
  79. liger_kernel/transformers/model/qwen2_vl.py +59 -108
  80. liger_kernel/transformers/model/qwen3.py +136 -0
  81. liger_kernel/transformers/model/qwen3_moe.py +152 -0
  82. liger_kernel/transformers/model/qwen3_next.py +146 -0
  83. liger_kernel/transformers/model/qwen3_vl.py +150 -0
  84. liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
  85. liger_kernel/transformers/model/smollm3.py +199 -0
  86. liger_kernel/transformers/model/smolvlm.py +158 -0
  87. liger_kernel/transformers/monkey_patch.py +1678 -160
  88. liger_kernel/transformers/multi_token_attention.py +64 -0
  89. liger_kernel/transformers/poly_norm.py +42 -0
  90. liger_kernel/transformers/qwen2vl_mrope.py +1 -1
  91. liger_kernel/transformers/rms_norm.py +48 -5
  92. liger_kernel/transformers/rope.py +45 -1
  93. liger_kernel/transformers/softmax.py +12 -0
  94. liger_kernel/transformers/sparsemax.py +16 -0
  95. liger_kernel/transformers/swiglu.py +39 -1
  96. liger_kernel/transformers/tiled_mlp.py +133 -0
  97. liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
  98. liger_kernel/transformers/tvd.py +1 -1
  99. liger_kernel/utils.py +36 -0
  100. {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/METADATA +68 -38
  101. liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
  102. liger_kernel/transformers/gema3_rms.py +0 -8
  103. liger_kernel_nightly-0.5.6.dev20250403190551.dist-info/RECORD +0 -82
  104. {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
  105. {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/NOTICE +0 -0
  106. {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +0 -0
  107. {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
@@ -9,14 +9,12 @@ import torch
9
9
  from torch.nn import CrossEntropyLoss
10
10
  from transformers.cache_utils import HybridCache
11
11
  from transformers.modeling_outputs import CausalLMOutputWithPast
12
- from transformers.models.gemma2.modeling_gemma2 import _CONFIG_FOR_DOC
13
- from transformers.models.gemma2.modeling_gemma2 import GEMMA2_INPUTS_DOCSTRING
14
- from transformers.utils import add_start_docstrings_to_model_forward
15
- from transformers.utils import replace_return_docstrings
16
12
  from transformers.utils.deprecation import deprecate_kwarg
17
13
 
18
14
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
19
15
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
16
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
17
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
20
18
 
21
19
  logger = logging.getLogger(__name__)
22
20
 
@@ -34,6 +32,8 @@ def lce_forward_deprecated(
34
32
  output_hidden_states: Optional[bool] = None,
35
33
  return_dict: Optional[bool] = None,
36
34
  cache_position: Optional[torch.LongTensor] = None,
35
+ skip_logits: Optional[bool] = None,
36
+ **kwargs,
37
37
  ) -> Union[Tuple, CausalLMOutputWithPast]:
38
38
  r"""
39
39
  Args:
@@ -80,6 +80,7 @@ def lce_forward_deprecated(
80
80
  output_hidden_states=output_hidden_states,
81
81
  return_dict=return_dict,
82
82
  cache_position=cache_position,
83
+ **kwargs,
83
84
  )
84
85
 
85
86
  hidden_states = outputs[0]
@@ -87,7 +88,14 @@ def lce_forward_deprecated(
87
88
  loss = None
88
89
  logits = None
89
90
 
90
- if self.training and (labels is not None):
91
+ if skip_logits and labels is None:
92
+ raise ValueError("skip_logits is True, but labels is None")
93
+
94
+ if skip_logits is None:
95
+ # By default, if in training mode, don't materialize logits
96
+ skip_logits = self.training and labels is not None
97
+
98
+ if skip_logits:
91
99
  shift_hidden_states = hidden_states[..., :-1, :].contiguous()
92
100
  shift_labels = labels[..., 1:].contiguous()
93
101
 
@@ -136,8 +144,6 @@ def lce_forward_deprecated(
136
144
 
137
145
 
138
146
  @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
139
- @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
140
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
141
147
  def lce_forward(
142
148
  self,
143
149
  input_ids: torch.LongTensor = None,
@@ -152,8 +158,9 @@ def lce_forward(
152
158
  return_dict: Optional[bool] = None,
153
159
  cache_position: Optional[torch.LongTensor] = None,
154
160
  logits_to_keep: Union[int, torch.Tensor] = 0,
155
- **loss_kwargs,
156
- ) -> Union[Tuple, CausalLMOutputWithPast]:
161
+ skip_logits: Optional[bool] = None,
162
+ **kwargs,
163
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
157
164
  r"""
158
165
  Args:
159
166
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
@@ -209,43 +216,68 @@ def lce_forward(
209
216
  output_hidden_states=output_hidden_states,
210
217
  return_dict=return_dict,
211
218
  cache_position=cache_position,
219
+ **kwargs,
212
220
  )
213
221
 
214
222
  hidden_states = outputs[0]
223
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
224
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
225
+ kept_hidden_states = hidden_states[:, slice_indices, :]
215
226
 
227
+ shift_labels = kwargs.pop("shift_labels", None)
216
228
  logits = None
217
229
  loss = None
218
- # if in training mode, don't materialize logits
219
- if self.training and (labels is not None):
220
- loss = LigerForCausalLMLoss(
221
- hidden_states=hidden_states,
230
+ token_accuracy = None
231
+
232
+ if skip_logits and labels is None and shift_labels is None:
233
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
234
+
235
+ if skip_logits is None:
236
+ # By default, if in training mode, don't materialize logits
237
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
238
+
239
+ # Compute loss
240
+ if skip_logits:
241
+ result = LigerForCausalLMLoss(
242
+ hidden_states=kept_hidden_states,
222
243
  lm_head_weight=self.lm_head.weight,
223
244
  labels=labels,
245
+ shift_labels=shift_labels,
224
246
  hidden_size=self.config.hidden_size,
225
- softcap=self.config.final_logit_softcapping,
226
- **loss_kwargs,
247
+ final_logit_softcapping=self.config.final_logit_softcapping,
248
+ **kwargs,
227
249
  )
250
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
228
251
 
229
- else: # if in inference mode materialize logits
230
- slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
231
- logits = self.lm_head(hidden_states[:, slice_indices, :])
252
+ else:
253
+ logits = self.lm_head(kept_hidden_states)
232
254
  if self.config.final_logit_softcapping is not None:
233
255
  logits = logits / self.config.final_logit_softcapping
234
256
  logits = torch.tanh(logits)
235
257
  logits = logits * self.config.final_logit_softcapping
236
258
 
237
259
  loss = None
238
- if labels is not None:
239
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
260
+ if labels is not None or shift_labels is not None:
261
+ loss = self.loss_function(
262
+ logits=logits,
263
+ labels=labels,
264
+ shift_labels=shift_labels,
265
+ vocab_size=self.vocab_size,
266
+ **kwargs,
267
+ )
240
268
 
241
269
  if not return_dict:
242
- output = (logits,) + outputs[1:]
243
- return (loss,) + output if loss is not None else output
270
+ output_tuple = (logits,) + outputs[1:]
271
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
272
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
273
+ return output_tuple
244
274
 
245
- return CausalLMOutputWithPast(
275
+ # Return custom output class with token_accuracy field
276
+ return LigerCausalLMOutputWithPast(
246
277
  loss=loss,
247
278
  logits=logits,
248
279
  past_key_values=outputs.past_key_values,
249
280
  hidden_states=outputs.hidden_states,
250
281
  attentions=outputs.attentions,
282
+ token_accuracy=token_accuracy,
251
283
  )
@@ -1,4 +1,3 @@
1
- from typing import List
2
1
  from typing import Optional
3
2
  from typing import Tuple
4
3
  from typing import Union
@@ -8,25 +7,17 @@ import torch.nn as nn
8
7
 
9
8
  from transformers.cache_utils import Cache
10
9
  from transformers.cache_utils import HybridCache
11
- from transformers.modeling_outputs import CausalLMOutputWithPast
12
- from transformers.models.gemma3.modeling_gemma3 import _CONFIG_FOR_DOC
13
- from transformers.models.gemma3.modeling_gemma3 import GEMMA3_INPUTS_DOCSTRING
14
- from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast
15
- from transformers.utils import add_start_docstrings_to_model_forward
16
- from transformers.utils import is_torchdynamo_compiling
17
10
  from transformers.utils import logging
18
- from transformers.utils import replace_return_docstrings
19
- from transformers.utils.deprecation import deprecate_kwarg
20
11
 
21
12
  from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss
22
13
  from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
14
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
15
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
16
+ from liger_kernel.transformers.model.output_classes import LigerGemma3CausalLMOutputWithPast
23
17
 
24
18
  logger = logging.get_logger(__name__)
25
19
 
26
20
 
27
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
28
- @add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
29
- @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
30
21
  def causal_forward(
31
22
  self,
32
23
  input_ids: torch.LongTensor = None,
@@ -41,8 +32,9 @@ def causal_forward(
41
32
  return_dict: Optional[bool] = None,
42
33
  cache_position: Optional[torch.LongTensor] = None,
43
34
  logits_to_keep: Union[int, torch.Tensor] = 0,
35
+ skip_logits: Optional[bool] = None,
44
36
  **loss_kwargs,
45
- ) -> Union[Tuple, CausalLMOutputWithPast]:
37
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
46
38
  r"""
47
39
  labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
48
40
  Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@@ -104,50 +96,65 @@ def causal_forward(
104
96
  # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
105
97
  slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
106
98
  kept_hidden_states = hidden_states[:, slice_indices, :]
99
+ shift_labels = loss_kwargs.pop("shift_labels", None)
107
100
  loss = None
108
101
  logits = None
109
- if self.training and (labels is not None):
110
- loss = LigerForCausalLMLoss(
102
+ token_accuracy = None
103
+
104
+ if skip_logits is None:
105
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
106
+
107
+ # Compute loss
108
+ if skip_logits:
109
+ result = LigerForCausalLMLoss(
111
110
  hidden_states=kept_hidden_states,
112
111
  lm_head_weight=self.lm_head.weight,
113
112
  labels=labels,
113
+ shift_labels=shift_labels,
114
114
  hidden_size=self.config.hidden_size,
115
- softcap=self.config.final_logit_softcapping,
115
+ final_logit_softcapping=self.config.final_logit_softcapping,
116
116
  **loss_kwargs,
117
117
  )
118
-
118
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
119
119
  else:
120
120
  logits = self.lm_head(kept_hidden_states)
121
121
  if self.config.final_logit_softcapping is not None:
122
122
  logits = logits / self.config.final_logit_softcapping
123
123
  logits = torch.tanh(logits)
124
124
  logits = logits * self.config.final_logit_softcapping
125
- if labels is not None:
126
- loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
125
+ if labels is not None or shift_labels is not None:
126
+ loss = self.loss_function(
127
+ logits=logits,
128
+ labels=labels,
129
+ shift_labels=shift_labels,
130
+ vocab_size=self.vocab_size,
131
+ **loss_kwargs,
132
+ )
127
133
 
128
134
  if not return_dict:
129
- output = (logits,) + outputs[1:]
130
- return (loss,) + output if loss is not None else output
135
+ output_tuple = (logits,) + outputs[1:]
136
+ output_tuple = (loss,) + output_tuple if loss is not None else output_tuple
137
+ output_tuple = output_tuple + (token_accuracy,) if token_accuracy is not None else output_tuple
138
+ return output_tuple
131
139
 
132
- return CausalLMOutputWithPast(
140
+ # Return custom output class with token_accuracy field
141
+ return LigerCausalLMOutputWithPast(
133
142
  loss=loss,
134
143
  logits=logits,
135
144
  past_key_values=outputs.past_key_values,
136
145
  hidden_states=outputs.hidden_states,
137
146
  attentions=outputs.attentions,
147
+ token_accuracy=token_accuracy,
138
148
  )
139
149
 
140
150
 
141
- @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
142
- @add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING)
143
- @replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
144
151
  def multimodal_forward(
145
152
  self,
146
153
  input_ids: torch.LongTensor = None,
147
154
  pixel_values: torch.FloatTensor = None,
148
155
  attention_mask: Optional[torch.Tensor] = None,
149
156
  position_ids: Optional[torch.LongTensor] = None,
150
- past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
157
+ past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
151
158
  token_type_ids: Optional[torch.LongTensor] = None,
152
159
  cache_position: Optional[torch.LongTensor] = None,
153
160
  inputs_embeds: Optional[torch.FloatTensor] = None,
@@ -157,22 +164,14 @@ def multimodal_forward(
157
164
  output_hidden_states: Optional[bool] = None,
158
165
  return_dict: Optional[bool] = None,
159
166
  logits_to_keep: Union[int, torch.Tensor] = 0,
167
+ skip_logits: Optional[bool] = None,
160
168
  **lm_kwargs,
161
- ) -> Union[Tuple, Gemma3CausalLMOutputWithPast]:
169
+ ) -> Union[tuple, LigerGemma3CausalLMOutputWithPast]:
162
170
  r"""
163
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
164
- Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
165
- config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
166
- (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
167
-
168
- logits_to_keep (`int` or `torch.Tensor`, *optional*):
169
- If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
170
- `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
171
- token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
172
- If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
173
- This is useful when using packed tensor format (single dimension for batch and sequence length).
174
-
175
- Returns:
171
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
172
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
173
+ config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
174
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`.
176
175
 
177
176
  Example:
178
177
 
@@ -181,23 +180,37 @@ def multimodal_forward(
181
180
  >>> import requests
182
181
  >>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
183
182
 
184
- >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf")
185
- >>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf")
186
-
187
- >>> prompt = "answer en Where is the cow standing?"
188
- >>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png"
189
- >>> image = Image.open(requests.get(url, stream=True).raw)
190
-
191
- >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
192
-
183
+ >>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it")
184
+ >>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it")
185
+
186
+ >>> messages = [
187
+ ... {
188
+ ... "role": "system",
189
+ ... "content": [
190
+ ... {"type": "text", "text": "You are a helpful assistant."}
191
+ ... ]
192
+ ... },
193
+ ... {
194
+ ... "role": "user", "content": [
195
+ ... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"},
196
+ ... {"type": "text", "text": "Where is the cat standing?"},
197
+ ... ]
198
+ ... },
199
+ ... ]
200
+
201
+ >>> inputs = processor.apply_chat_template(
202
+ ... messages,
203
+ ... tokenize=True,
204
+ ... return_dict=True,
205
+ ... return_tensors="pt",
206
+ ... add_generation_prompt=True
207
+ ... )
193
208
  >>> # Generate
194
- >>> generate_ids = model.generate(**inputs, max_length=30)
209
+ >>> generate_ids = model.generate(**inputs)
195
210
  >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
196
- "answer en Where is the cow standing?\nbeach"
197
- ```"""
198
-
199
- if (input_ids is None) ^ (inputs_embeds is not None):
200
- raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
211
+ "user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to"
212
+ ```
213
+ """
201
214
 
202
215
  output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
203
216
  output_hidden_states = (
@@ -205,81 +218,40 @@ def multimodal_forward(
205
218
  )
206
219
  return_dict = return_dict if return_dict is not None else self.config.use_return_dict
207
220
 
208
- is_training = token_type_ids is not None and labels is not None
209
-
210
- # Replace image id woth PAD if the image token if OOV, to avoid index-errors
211
- if input_ids is not None and self.config.image_token_index >= self.vocab_size:
212
- special_image_mask = input_ids == self.config.image_token_index
213
- llm_input_ids = input_ids.clone()
214
- llm_input_ids[special_image_mask] = 0
215
- else:
216
- llm_input_ids = input_ids
217
-
218
- if inputs_embeds is None:
219
- inputs_embeds = self.get_input_embeddings()(llm_input_ids)
220
-
221
- if cache_position is None:
222
- past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
223
- cache_position = torch.arange(
224
- past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
225
- )
226
-
227
- if position_ids is None:
228
- position_ids = cache_position.unsqueeze(0) + 1 # Gemma3 positions are 1-indexed
229
-
230
- # Merge text and images
231
- if pixel_values is not None:
232
- image_features = self.get_image_features(pixel_values)
233
-
234
- if input_ids is None:
235
- special_image_mask = inputs_embeds == self.get_input_embeddings()(
236
- torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device)
237
- )
238
- else:
239
- special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
240
- special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
241
-
242
- if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
243
- image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
244
- raise ValueError(
245
- f"Number of images does not match number of special image tokens in the input text. "
246
- f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} "
247
- "tokens from image embeddings."
248
- )
249
- image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
250
- inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
251
-
252
- # mask out pad-token-ids in labels for BC
253
- if labels is not None and self.pad_token_id in labels:
254
- logger.warning_once(
255
- "`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. "
256
- "You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.",
257
- )
258
- labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels)
259
-
260
- causal_mask = self._update_causal_mask(
261
- attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training
262
- )
263
- outputs = self.language_model.model(
264
- attention_mask=causal_mask,
221
+ outputs = self.model(
222
+ input_ids=input_ids,
223
+ pixel_values=pixel_values,
224
+ token_type_ids=token_type_ids,
225
+ attention_mask=attention_mask,
265
226
  position_ids=position_ids,
266
227
  past_key_values=past_key_values,
267
228
  inputs_embeds=inputs_embeds,
268
229
  use_cache=use_cache,
230
+ labels=labels,
269
231
  output_attentions=output_attentions,
270
232
  output_hidden_states=output_hidden_states,
271
233
  return_dict=return_dict,
272
234
  cache_position=cache_position,
273
- logits_to_keep=logits_to_keep,
274
235
  **lm_kwargs,
275
236
  )
276
237
 
238
+ shift_labels = lm_kwargs.pop("shift_labels", None)
277
239
  hidden_states = outputs[0]
240
+
241
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
242
+ kept_hidden_states = hidden_states[:, slice_indices, :]
243
+
278
244
  loss = None
279
245
  logits = None
246
+ token_accuracy = None
247
+ if skip_logits and labels is None:
248
+ raise ValueError("skip_logits is True, but labels is None")
280
249
 
281
- if self.training and (labels is not None):
282
- shift_hidden_states = hidden_states[..., :-1, :]
250
+ if skip_logits is None:
251
+ skip_logits = self.training and (labels is not None)
252
+
253
+ if skip_logits:
254
+ shift_hidden_states = kept_hidden_states[..., :-1, :]
283
255
  shift_labels = labels[..., 1:]
284
256
 
285
257
  hidden_device = shift_hidden_states.device
@@ -298,9 +270,11 @@ def multimodal_forward(
298
270
  shift_labels = shift_labels.view(-1).to(hidden_device)
299
271
 
300
272
  lce = LigerFusedLinearCrossEntropyLoss()
301
- loss = lce(self.language_model.lm_head.weight, shift_hidden_states, shift_labels)
273
+ result = lce(self.lm_head.weight, shift_hidden_states, shift_labels)
274
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
275
+
302
276
  else:
303
- logits = self.language_model.lm_head(hidden_states)
277
+ logits = self.lm_head(kept_hidden_states)
304
278
  if labels is not None:
305
279
  # Upcast to float if we need to compute the loss to avoid potential precision issues
306
280
  logits = logits.float()
@@ -321,15 +295,38 @@ def multimodal_forward(
321
295
  flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
322
296
  flat_labels = shift_labels.view(-1).to(shift_logits.device)
323
297
  loss = loss_fct(flat_logits, flat_labels)
298
+ elif shift_labels is not None:
299
+ # Upcast to float if we need to compute the loss to avoid potential precision issues
300
+ logits = logits.float()
301
+ shift_logits = logits[..., :-1, :]
302
+ if attention_mask is not None:
303
+ # we use the input attention mask to shift the logits and labels, because it is 2D.
304
+ # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
305
+ shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
306
+ shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
307
+ shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
308
+ else:
309
+ shift_logits = shift_logits.contiguous()
310
+ shift_labels = shift_labels.contiguous()
311
+ # Flatten the tokens
312
+ loss_fct = nn.CrossEntropyLoss()
313
+
314
+ flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
315
+ flat_labels = shift_labels.view(-1).to(shift_logits.device)
316
+ loss = loss_fct(flat_logits, flat_labels)
317
+
324
318
  if not return_dict:
325
319
  output = (logits,) + outputs[1:]
326
- return (loss,) + output if loss is not None else output
320
+ output = (loss,) + output if loss is not None else output
321
+ output = output + (token_accuracy,) if token_accuracy is not None else output
322
+ return output
327
323
 
328
- return Gemma3CausalLMOutputWithPast(
324
+ return LigerGemma3CausalLMOutputWithPast(
329
325
  loss=loss,
330
326
  logits=logits,
331
327
  past_key_values=outputs.past_key_values,
332
328
  hidden_states=outputs.hidden_states,
333
329
  attentions=outputs.attentions,
334
- image_hidden_states=image_features if pixel_values is not None else None,
330
+ image_hidden_states=outputs.image_hidden_states,
331
+ token_accuracy=token_accuracy,
335
332
  )
@@ -0,0 +1,141 @@
1
+ from typing import List
2
+ from typing import Optional
3
+ from typing import Tuple
4
+ from typing import Union
5
+
6
+ import torch
7
+
8
+ from transformers.utils.deprecation import deprecate_kwarg
9
+
10
+ from liger_kernel.transformers.model.loss_utils import LigerForCausalLMLoss
11
+ from liger_kernel.transformers.model.loss_utils import unpack_cross_entropy_result
12
+ from liger_kernel.transformers.model.output_classes import LigerCausalLMOutputWithPast
13
+
14
+
15
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
16
+ def lce_forward(
17
+ self,
18
+ input_ids: torch.LongTensor = None,
19
+ attention_mask: Optional[torch.Tensor] = None,
20
+ position_ids: Optional[torch.LongTensor] = None,
21
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
22
+ inputs_embeds: Optional[torch.FloatTensor] = None,
23
+ labels: Optional[torch.LongTensor] = None,
24
+ use_cache: Optional[bool] = None,
25
+ output_attentions: Optional[bool] = None,
26
+ output_hidden_states: Optional[bool] = None,
27
+ return_dict: Optional[bool] = None,
28
+ cache_position: Optional[torch.LongTensor] = None,
29
+ logits_to_keep: Union[int, torch.Tensor] = 0,
30
+ skip_logits: Optional[bool] = None,
31
+ **kwargs,
32
+ ) -> Union[Tuple, LigerCausalLMOutputWithPast]:
33
+ r"""
34
+ Args:
35
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
36
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
37
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
38
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
39
+
40
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
41
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
42
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
43
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
44
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
45
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
46
+
47
+ Returns:
48
+
49
+ Example:
50
+
51
+ ```python
52
+ >>> from transformers import AutoTokenizer, Glm4ForCausalLM
53
+
54
+ >>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
55
+ >>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
56
+
57
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
58
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
59
+
60
+ >>> # Generate
61
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
62
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
63
+ 'Hey, are you conscious? Can you talk to me?\nI’m not sure if you’re conscious of this, but I’m'
64
+ ```
65
+ """
66
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
67
+ output_hidden_states = (
68
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
69
+ )
70
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
71
+
72
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
73
+ outputs = self.model(
74
+ input_ids=input_ids,
75
+ attention_mask=attention_mask,
76
+ position_ids=position_ids,
77
+ past_key_values=past_key_values,
78
+ inputs_embeds=inputs_embeds,
79
+ use_cache=use_cache,
80
+ output_attentions=output_attentions,
81
+ output_hidden_states=output_hidden_states,
82
+ return_dict=return_dict,
83
+ cache_position=cache_position,
84
+ **kwargs,
85
+ )
86
+
87
+ hidden_states = outputs[0]
88
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
89
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
90
+ kept_hidden_states = hidden_states[:, slice_indices, :]
91
+
92
+ shift_labels = kwargs.pop("shift_labels", None)
93
+ logits = None
94
+ loss = None
95
+ token_accuracy = None
96
+
97
+ if skip_logits and labels is None and shift_labels is None:
98
+ raise ValueError("skip_logits is True, but labels and shift_labels are None")
99
+
100
+ if skip_logits is None:
101
+ # By default, if in training mode, don't materialize logits
102
+ skip_logits = self.training and (labels is not None or shift_labels is not None)
103
+
104
+ # Compute loss
105
+ if skip_logits:
106
+ result = LigerForCausalLMLoss(
107
+ hidden_states=kept_hidden_states,
108
+ lm_head_weight=self.lm_head.weight,
109
+ labels=labels,
110
+ shift_labels=shift_labels,
111
+ hidden_size=self.config.hidden_size,
112
+ **kwargs,
113
+ )
114
+ loss, _, token_accuracy = unpack_cross_entropy_result(result)
115
+
116
+ else:
117
+ logits = self.lm_head(kept_hidden_states)
118
+ if labels is not None or shift_labels is not None:
119
+ loss = self.loss_function(
120
+ logits=logits,
121
+ labels=labels,
122
+ shift_labels=shift_labels,
123
+ vocab_size=self.config.vocab_size,
124
+ **kwargs,
125
+ )
126
+
127
+ if not return_dict:
128
+ output = (logits,) + outputs[1:]
129
+ output = ((loss,) + output) if loss is not None else output
130
+ output = output + (token_accuracy,) if token_accuracy is not None else output
131
+ return output
132
+
133
+ # Return custom output class with token_accuracy field
134
+ return LigerCausalLMOutputWithPast(
135
+ loss=loss,
136
+ logits=logits,
137
+ past_key_values=outputs.past_key_values,
138
+ hidden_states=outputs.hidden_states,
139
+ attentions=outputs.attentions,
140
+ token_accuracy=token_accuracy,
141
+ )