liger-kernel-nightly 0.5.6.dev20250403190551__py3-none-any.whl → 0.6.4.dev20251212103629__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- liger_kernel/chunked_loss/__init__.py +1 -0
- liger_kernel/chunked_loss/cosine_similarity_loss.py +136 -0
- liger_kernel/chunked_loss/dpo_loss.py +61 -3
- liger_kernel/chunked_loss/functional.py +2 -0
- liger_kernel/chunked_loss/fused_linear_distillation.py +13 -2
- liger_kernel/chunked_loss/fused_linear_ppo.py +35 -0
- liger_kernel/chunked_loss/fused_linear_preference.py +0 -1
- liger_kernel/chunked_loss/grpo_loss.py +76 -5
- liger_kernel/chunked_loss/jsd_loss.py +25 -9
- liger_kernel/ops/__init__.py +141 -0
- liger_kernel/ops/backends/README.md +151 -0
- liger_kernel/ops/backends/__init__.py +13 -0
- liger_kernel/ops/backends/_ascend/__init__.py +5 -0
- liger_kernel/ops/backends/_ascend/ops/__init__.py +15 -0
- liger_kernel/ops/backends/registry.py +61 -0
- liger_kernel/ops/cross_entropy.py +124 -64
- liger_kernel/ops/dyt.py +115 -180
- liger_kernel/ops/fused_add_rms_norm.py +416 -0
- liger_kernel/ops/fused_linear_cross_entropy.py +115 -22
- liger_kernel/ops/fused_neighborhood_attention.py +1022 -0
- liger_kernel/ops/geglu.py +3 -2
- liger_kernel/ops/group_norm.py +2 -1
- liger_kernel/ops/grpo_loss.py +312 -0
- liger_kernel/ops/jsd.py +2 -1
- liger_kernel/ops/kl_div.py +13 -6
- liger_kernel/ops/layer_norm.py +146 -78
- liger_kernel/ops/llama4_rope.py +225 -0
- liger_kernel/ops/multi_token_attention.py +207 -0
- liger_kernel/ops/poly_norm.py +390 -0
- liger_kernel/ops/rms_norm.py +283 -56
- liger_kernel/ops/rope.py +1 -1
- liger_kernel/ops/softmax.py +201 -0
- liger_kernel/ops/sparsemax.py +179 -0
- liger_kernel/ops/swiglu.py +1 -1
- liger_kernel/ops/tiled_mlp.py +136 -0
- liger_kernel/ops/utils.py +2 -0
- liger_kernel/transformers/__init__.py +205 -19
- liger_kernel/transformers/cross_entropy.py +9 -4
- liger_kernel/transformers/dyt.py +6 -4
- liger_kernel/transformers/experimental/__init__.py +5 -0
- liger_kernel/transformers/experimental/embedding.py +1 -1
- liger_kernel/transformers/fsdp.py +55 -0
- liger_kernel/transformers/functional.py +122 -20
- liger_kernel/transformers/fused_add_rms_norm.py +39 -0
- liger_kernel/transformers/fused_linear_cross_entropy.py +16 -5
- liger_kernel/transformers/fused_linear_jsd.py +1 -1
- liger_kernel/transformers/fused_neighborhood_attention.py +234 -0
- liger_kernel/transformers/geglu.py +1 -1
- liger_kernel/transformers/group_norm.py +1 -1
- liger_kernel/transformers/grpo_loss.py +153 -0
- liger_kernel/transformers/jsd.py +1 -1
- liger_kernel/transformers/kl_div.py +1 -1
- liger_kernel/transformers/layer_norm.py +1 -1
- liger_kernel/transformers/llama4_rope.py +93 -0
- liger_kernel/transformers/model/falcon_h1.py +122 -0
- liger_kernel/transformers/model/gemma.py +50 -25
- liger_kernel/transformers/model/gemma2.py +55 -23
- liger_kernel/transformers/model/gemma3.py +117 -120
- liger_kernel/transformers/model/glm4.py +141 -0
- liger_kernel/transformers/model/glm4v.py +163 -0
- liger_kernel/transformers/model/glm4v_moe.py +172 -0
- liger_kernel/transformers/model/gpt_oss.py +211 -0
- liger_kernel/transformers/model/hunyuan_v1.py +134 -0
- liger_kernel/transformers/model/internvl.py +157 -0
- liger_kernel/transformers/model/llama.py +102 -25
- liger_kernel/transformers/model/llama4.py +121 -0
- liger_kernel/transformers/model/llava.py +111 -136
- liger_kernel/transformers/model/loss_utils.py +50 -12
- liger_kernel/transformers/model/mistral.py +36 -23
- liger_kernel/transformers/model/mixtral.py +45 -25
- liger_kernel/transformers/model/mllama.py +39 -22
- liger_kernel/transformers/model/olmo2.py +40 -20
- liger_kernel/transformers/model/olmo3.py +142 -0
- liger_kernel/transformers/model/output_classes.py +147 -0
- liger_kernel/transformers/model/paligemma.py +50 -14
- liger_kernel/transformers/model/phi3.py +47 -177
- liger_kernel/transformers/model/qwen2.py +48 -21
- liger_kernel/transformers/model/qwen2_5_vl.py +62 -103
- liger_kernel/transformers/model/qwen2_vl.py +59 -108
- liger_kernel/transformers/model/qwen3.py +136 -0
- liger_kernel/transformers/model/qwen3_moe.py +152 -0
- liger_kernel/transformers/model/qwen3_next.py +146 -0
- liger_kernel/transformers/model/qwen3_vl.py +150 -0
- liger_kernel/transformers/model/qwen3_vl_moe.py +126 -0
- liger_kernel/transformers/model/smollm3.py +199 -0
- liger_kernel/transformers/model/smolvlm.py +158 -0
- liger_kernel/transformers/monkey_patch.py +1678 -160
- liger_kernel/transformers/multi_token_attention.py +64 -0
- liger_kernel/transformers/poly_norm.py +42 -0
- liger_kernel/transformers/qwen2vl_mrope.py +1 -1
- liger_kernel/transformers/rms_norm.py +48 -5
- liger_kernel/transformers/rope.py +45 -1
- liger_kernel/transformers/softmax.py +12 -0
- liger_kernel/transformers/sparsemax.py +16 -0
- liger_kernel/transformers/swiglu.py +39 -1
- liger_kernel/transformers/tiled_mlp.py +133 -0
- liger_kernel/transformers/trainer/orpo_trainer.py +1 -53
- liger_kernel/transformers/tvd.py +1 -1
- liger_kernel/utils.py +36 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/METADATA +68 -38
- liger_kernel_nightly-0.6.4.dev20251212103629.dist-info/RECORD +124 -0
- liger_kernel/transformers/gema3_rms.py +0 -8
- liger_kernel_nightly-0.5.6.dev20250403190551.dist-info/RECORD +0 -82
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/LICENSE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/NOTICE +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/WHEEL +0 -0
- {liger_kernel_nightly-0.5.6.dev20250403190551.dist-info → liger_kernel_nightly-0.6.4.dev20251212103629.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,179 @@
|
|
|
1
|
+
from typing import Tuple
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import triton
|
|
5
|
+
import triton.language as tl
|
|
6
|
+
|
|
7
|
+
from liger_kernel.ops.utils import calculate_settings
|
|
8
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@triton.jit
|
|
12
|
+
def _sparsemax_forward_kernel(
|
|
13
|
+
x_ptr,
|
|
14
|
+
x_stride_row,
|
|
15
|
+
sorted_x_ptr,
|
|
16
|
+
sorted_x_stride_row,
|
|
17
|
+
o_ptr,
|
|
18
|
+
o_stride_row,
|
|
19
|
+
n_cols,
|
|
20
|
+
BLOCK_SIZE: tl.constexpr,
|
|
21
|
+
num_warps: tl.constexpr,
|
|
22
|
+
):
|
|
23
|
+
pid_row = tl.program_id(0)
|
|
24
|
+
ptr_x_data_row = x_ptr + pid_row * x_stride_row
|
|
25
|
+
ptr_sorted_x_data_row = sorted_x_ptr + pid_row * sorted_x_stride_row
|
|
26
|
+
ptr_output_row = o_ptr + pid_row * o_stride_row
|
|
27
|
+
|
|
28
|
+
offs = tl.arange(0, BLOCK_SIZE)
|
|
29
|
+
mask = offs < n_cols
|
|
30
|
+
|
|
31
|
+
z_sorted_block = tl.load(
|
|
32
|
+
ptr_sorted_x_data_row + offs,
|
|
33
|
+
mask=mask,
|
|
34
|
+
other=-float("inf"),
|
|
35
|
+
cache_modifier=".ca",
|
|
36
|
+
).to(tl.float32)
|
|
37
|
+
|
|
38
|
+
z_valid = tl.where(mask, z_sorted_block, 0.0)
|
|
39
|
+
cssv = tl.cumsum(z_valid, 0)
|
|
40
|
+
|
|
41
|
+
r = (offs + 1).to(tl.float32)
|
|
42
|
+
safe_r = tl.where(mask, r, 1.0)
|
|
43
|
+
|
|
44
|
+
t_vec = (cssv - 1.0) / safe_r
|
|
45
|
+
|
|
46
|
+
support = (z_sorted_block > t_vec) & mask
|
|
47
|
+
|
|
48
|
+
k_int = tl.sum(support.to(tl.int32), 0)
|
|
49
|
+
k_clamped_int = tl.maximum(k_int, 1)
|
|
50
|
+
k = k_clamped_int.to(tl.float32)
|
|
51
|
+
|
|
52
|
+
s = tl.sum(tl.where(support, z_sorted_block, 0.0), 0)
|
|
53
|
+
|
|
54
|
+
tau = (s - 1.0) / k
|
|
55
|
+
|
|
56
|
+
x_block = tl.load(
|
|
57
|
+
ptr_x_data_row + offs,
|
|
58
|
+
mask=mask,
|
|
59
|
+
other=0.0,
|
|
60
|
+
cache_modifier=".ca",
|
|
61
|
+
).to(tl.float32)
|
|
62
|
+
|
|
63
|
+
y = tl.maximum(x_block - tau, 0.0)
|
|
64
|
+
|
|
65
|
+
tl.store(
|
|
66
|
+
ptr_output_row + offs,
|
|
67
|
+
y.to(ptr_output_row.dtype.element_ty),
|
|
68
|
+
mask=mask,
|
|
69
|
+
cache_modifier=".cs",
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
@triton.jit
|
|
74
|
+
def _sparsemax_backward_kernel(
|
|
75
|
+
o_ptr, go_ptr, gi_ptr, stride, n_cols, BLOCK_SIZE: tl.constexpr, num_warps: tl.constexpr
|
|
76
|
+
):
|
|
77
|
+
row = tl.program_id(0)
|
|
78
|
+
o_row = o_ptr + row * stride
|
|
79
|
+
go_row = go_ptr + row * stride
|
|
80
|
+
gi_row = gi_ptr + row * stride
|
|
81
|
+
|
|
82
|
+
offs = tl.arange(0, BLOCK_SIZE)
|
|
83
|
+
|
|
84
|
+
supp_cnt = tl.zeros((), tl.float32)
|
|
85
|
+
go_sum = tl.zeros((), tl.float32)
|
|
86
|
+
|
|
87
|
+
for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
|
|
88
|
+
offs_iter = i * BLOCK_SIZE + offs
|
|
89
|
+
mask_iter = offs_iter < n_cols
|
|
90
|
+
o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
|
|
91
|
+
go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
|
|
92
|
+
supp = o_val > 0.0
|
|
93
|
+
go_sum += tl.sum(tl.where(supp, go_val, 0.0))
|
|
94
|
+
supp_cnt += tl.sum(supp.to(tl.float32))
|
|
95
|
+
|
|
96
|
+
for i in tl.range(0, tl.cdiv(n_cols, BLOCK_SIZE)):
|
|
97
|
+
offs_iter = i * BLOCK_SIZE + offs
|
|
98
|
+
mask_iter = offs_iter < n_cols
|
|
99
|
+
o_val = tl.load(o_row + offs_iter, mask=mask_iter, other=0.0, cache_modifier=".ca").to(tl.float32)
|
|
100
|
+
go_val = tl.load(go_row + offs_iter, mask=mask_iter, other=0.0).to(tl.float32)
|
|
101
|
+
supp = o_val > 0.0
|
|
102
|
+
gi_val = tl.where(
|
|
103
|
+
supp,
|
|
104
|
+
go_val - tl.cast(go_sum / tl.maximum(supp_cnt, 1e-6), gi_row.dtype.element_ty).to(tl.float32),
|
|
105
|
+
0.0,
|
|
106
|
+
)
|
|
107
|
+
tl.store(gi_row + offs_iter, gi_val.to(gi_row.dtype.element_ty), mask=mask_iter, cache_modifier=".wb")
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
def _sparsemax_forward(x: torch.Tensor, dim: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
111
|
+
if dim < 0:
|
|
112
|
+
dim += x.dim()
|
|
113
|
+
x_sw = x.transpose(dim, -1).contiguous()
|
|
114
|
+
n_cols = x_sw.size(-1)
|
|
115
|
+
n_rows = x_sw.numel() // n_cols
|
|
116
|
+
x_flat = x_sw.view(n_rows, n_cols)
|
|
117
|
+
x_sorted_flat = torch.sort(x_flat.float(), dim=-1, descending=True).values
|
|
118
|
+
|
|
119
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
120
|
+
out_flat = torch.empty_like(x_flat)
|
|
121
|
+
grid = (n_rows,)
|
|
122
|
+
_sparsemax_forward_kernel[grid](
|
|
123
|
+
x_flat,
|
|
124
|
+
x_flat.stride(0),
|
|
125
|
+
x_sorted_flat,
|
|
126
|
+
x_sorted_flat.stride(0),
|
|
127
|
+
out_flat,
|
|
128
|
+
out_flat.stride(0),
|
|
129
|
+
n_cols,
|
|
130
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
131
|
+
num_warps=num_warps,
|
|
132
|
+
)
|
|
133
|
+
|
|
134
|
+
y = out_flat.view_as(x_sw).transpose(dim, -1)
|
|
135
|
+
return y, out_flat
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def _sparsemax_backward(
|
|
139
|
+
grad_out: torch.Tensor,
|
|
140
|
+
out_flat: torch.Tensor,
|
|
141
|
+
dim: int,
|
|
142
|
+
) -> torch.Tensor:
|
|
143
|
+
grad_sw = grad_out.transpose(dim, -1).contiguous()
|
|
144
|
+
n_cols = grad_sw.size(-1)
|
|
145
|
+
n_rows = grad_sw.numel() // n_cols
|
|
146
|
+
go_flat = grad_sw.view(n_rows, n_cols)
|
|
147
|
+
|
|
148
|
+
BLOCK_SIZE, num_warps = calculate_settings(n_cols)
|
|
149
|
+
dx_flat = torch.empty_like(go_flat)
|
|
150
|
+
grid = (n_rows,)
|
|
151
|
+
_sparsemax_backward_kernel[grid](
|
|
152
|
+
out_flat,
|
|
153
|
+
go_flat,
|
|
154
|
+
dx_flat,
|
|
155
|
+
out_flat.stride(0),
|
|
156
|
+
n_cols,
|
|
157
|
+
BLOCK_SIZE=BLOCK_SIZE,
|
|
158
|
+
num_warps=num_warps,
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
dx = dx_flat.view_as(grad_sw).transpose(dim, -1)
|
|
162
|
+
return dx
|
|
163
|
+
|
|
164
|
+
|
|
165
|
+
class LigerSparsemaxFunction(torch.autograd.Function):
|
|
166
|
+
@staticmethod
|
|
167
|
+
@ensure_contiguous
|
|
168
|
+
def forward(ctx, x: torch.Tensor, dim: int):
|
|
169
|
+
y, out_flat = _sparsemax_forward(x, dim)
|
|
170
|
+
ctx.save_for_backward(out_flat)
|
|
171
|
+
ctx.dim = dim
|
|
172
|
+
return y
|
|
173
|
+
|
|
174
|
+
@staticmethod
|
|
175
|
+
@ensure_contiguous
|
|
176
|
+
def backward(ctx, grad_out: torch.Tensor):
|
|
177
|
+
(out_flat,) = ctx.saved_tensors
|
|
178
|
+
dx = _sparsemax_backward(grad_out, out_flat, ctx.dim)
|
|
179
|
+
return dx, None
|
liger_kernel/ops/swiglu.py
CHANGED
|
@@ -26,7 +26,7 @@ def _swiglu_forward_kernel(a_ptr, b_ptr, c_ptr, stride, n_cols: tl.constexpr, BL
|
|
|
26
26
|
# sigmoid requires type float32
|
|
27
27
|
a_row = tl.load(a_ptr + col_offsets, mask=mask, other=0).to(tl.float32)
|
|
28
28
|
b_row = tl.load(b_ptr + col_offsets, mask=mask, other=0)
|
|
29
|
-
c_row = silu(a_row) * b_row
|
|
29
|
+
c_row = silu(a_row).cast(b_row.dtype) * b_row
|
|
30
30
|
tl.store(c_ptr + col_offsets, c_row, mask=mask)
|
|
31
31
|
|
|
32
32
|
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
from typing import Callable
|
|
4
|
+
from typing import List
|
|
5
|
+
from typing import Optional
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
|
|
9
|
+
from liger_kernel.ops.utils import ensure_contiguous
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
class LigerTiledMLPFunction(torch.autograd.Function):
|
|
13
|
+
"""
|
|
14
|
+
Based on DeepSpeed's TiledMLP:
|
|
15
|
+
https://github.com/deepspeedai/DeepSpeed/blob/v0.18.2/deepspeed/runtime/sequence_parallel/ulysses_sp.py#L838
|
|
16
|
+
|
|
17
|
+
Perform a tiled MLP computation to massively reduce memory usage needed to compute MLP
|
|
18
|
+
when using very long sequence lengths.
|
|
19
|
+
|
|
20
|
+
This module re-computes `forward` in the `backward`. So the `forward` occurs twice each iteration.
|
|
21
|
+
And if you're using activation checkpointing it then occurs thrice.
|
|
22
|
+
|
|
23
|
+
Args:
|
|
24
|
+
fn: the function to call on sharded inputs (e.g., mlp.forward)
|
|
25
|
+
mlp_module: the MLP nn.Module object
|
|
26
|
+
x: the input to MLP.forward (hidden_states)
|
|
27
|
+
shards: how many shards to use
|
|
28
|
+
compute_params: a list of weights engaged in the compute
|
|
29
|
+
|
|
30
|
+
Returns:
|
|
31
|
+
the computed hidden_states
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
@staticmethod
|
|
35
|
+
@ensure_contiguous
|
|
36
|
+
def forward(
|
|
37
|
+
ctx,
|
|
38
|
+
fn: Callable,
|
|
39
|
+
mlp_module: torch.nn.Module,
|
|
40
|
+
x: torch.Tensor,
|
|
41
|
+
shards: int,
|
|
42
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
43
|
+
) -> torch.Tensor:
|
|
44
|
+
ctx.fn = fn
|
|
45
|
+
ctx.mlp_module = mlp_module
|
|
46
|
+
ctx.shards = shards
|
|
47
|
+
ctx.save_for_backward(x)
|
|
48
|
+
|
|
49
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
50
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=-2))
|
|
51
|
+
with torch.no_grad():
|
|
52
|
+
output_shards = [fn(mlp_module, x_shard) for x_shard in x_shards]
|
|
53
|
+
output_unsharded = torch.cat(output_shards, dim=-2)
|
|
54
|
+
|
|
55
|
+
return output_unsharded
|
|
56
|
+
|
|
57
|
+
@staticmethod
|
|
58
|
+
@ensure_contiguous
|
|
59
|
+
def backward(ctx, *grads) -> tuple:
|
|
60
|
+
fn = ctx.fn
|
|
61
|
+
(x,) = ctx.saved_tensors
|
|
62
|
+
mlp_module = ctx.mlp_module
|
|
63
|
+
shards = ctx.shards
|
|
64
|
+
|
|
65
|
+
x_requires_grad = x.requires_grad
|
|
66
|
+
x = x.detach()
|
|
67
|
+
# detach() unsets x.requires_grad, so restore it
|
|
68
|
+
x.requires_grad_(x_requires_grad)
|
|
69
|
+
|
|
70
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size] (moe experts)
|
|
71
|
+
hidden_size = x.shape[-1]
|
|
72
|
+
x_shape_orig = x.shape
|
|
73
|
+
|
|
74
|
+
# flatten bs+seqlen to avoid having stride issues when narrowing into seqlen w/ bs>1
|
|
75
|
+
x = x.view(-1, hidden_size)
|
|
76
|
+
incoming_grad = grads[0].view(-1, hidden_size)
|
|
77
|
+
x_grad = torch.zeros_like(x)
|
|
78
|
+
|
|
79
|
+
x_shards = list(torch.chunk(x, chunks=shards, dim=0))
|
|
80
|
+
|
|
81
|
+
for i, x_shard in enumerate(x_shards):
|
|
82
|
+
x_shard.requires_grad_(x_requires_grad)
|
|
83
|
+
|
|
84
|
+
# if seqlen is not exactly divisible by shards the last step will be shorter than shard_step
|
|
85
|
+
shard_step = x_shards[i].shape[0]
|
|
86
|
+
shard_offset = i * x_shards[0].shape[0]
|
|
87
|
+
|
|
88
|
+
x_shard.grad = x_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
89
|
+
incoming_grad_shard = incoming_grad.narrow(0, shard_offset, shard_step).view_as(x_shard)
|
|
90
|
+
|
|
91
|
+
with torch.enable_grad():
|
|
92
|
+
output = fn(mlp_module, x_shard)
|
|
93
|
+
torch.autograd.backward(output, incoming_grad_shard)
|
|
94
|
+
|
|
95
|
+
# unflatten
|
|
96
|
+
x_grad = x_grad.view(x_shape_orig)
|
|
97
|
+
|
|
98
|
+
return (None, None, x_grad, None, None)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def apply_tiled_mlp(
|
|
102
|
+
fn: Callable,
|
|
103
|
+
mlp_module: torch.nn.Module,
|
|
104
|
+
x: torch.Tensor,
|
|
105
|
+
num_shards: Optional[int] = None,
|
|
106
|
+
compute_params: Optional[List[torch.nn.Parameter]] = None,
|
|
107
|
+
) -> torch.Tensor:
|
|
108
|
+
"""
|
|
109
|
+
Apply tiled MLP computation for memory efficiency.
|
|
110
|
+
|
|
111
|
+
Args:
|
|
112
|
+
fn: the function to call on sharded inputs (e.g., lambda module, x: module(x))
|
|
113
|
+
mlp_module: the MLP nn.Module object
|
|
114
|
+
x: the input tensor with shape [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
115
|
+
num_shards: number of shards to use. If None, automatically calculated as ceil(seqlen / hidden_size)
|
|
116
|
+
compute_params: list of parameters for DeepSpeed ZeRO optimization
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
output tensor with the same shape as input
|
|
120
|
+
"""
|
|
121
|
+
if num_shards is None:
|
|
122
|
+
# x.shape could be [bs, seqlen, hidden_size] or [seqlen, hidden_size]
|
|
123
|
+
hidden_size = x.shape[-1]
|
|
124
|
+
seqlen = x.shape[-2]
|
|
125
|
+
num_shards = math.ceil(seqlen / hidden_size)
|
|
126
|
+
|
|
127
|
+
# Ensure num_shards is at least 1
|
|
128
|
+
num_shards = max(1, num_shards)
|
|
129
|
+
|
|
130
|
+
return LigerTiledMLPFunction.apply(
|
|
131
|
+
fn,
|
|
132
|
+
mlp_module,
|
|
133
|
+
x,
|
|
134
|
+
num_shards,
|
|
135
|
+
compute_params,
|
|
136
|
+
)
|
liger_kernel/ops/utils.py
CHANGED
|
@@ -78,6 +78,8 @@ def get_amp_custom_fwd_bwd() -> Callable:
|
|
|
78
78
|
functools.partial(torch.amp.custom_fwd, device_type=device),
|
|
79
79
|
functools.partial(torch.amp.custom_bwd, device_type=device),
|
|
80
80
|
)
|
|
81
|
+
if hasattr(torch, "npu") and getattr(torch.npu, "amp", None) is not None:
|
|
82
|
+
return torch.npu.amp.custom_fwd, torch.npu.amp.custom_bwd
|
|
81
83
|
return torch.cuda.amp.custom_fwd, torch.cuda.amp.custom_bwd
|
|
82
84
|
|
|
83
85
|
|
|
@@ -1,32 +1,218 @@
|
|
|
1
|
-
|
|
1
|
+
import importlib
|
|
2
|
+
|
|
3
|
+
from typing import TYPE_CHECKING
|
|
4
|
+
|
|
5
|
+
# Always-safe imports (independent of 'transformers')
|
|
2
6
|
from liger_kernel.transformers.cross_entropy import LigerCrossEntropyLoss # noqa: F401
|
|
3
7
|
from liger_kernel.transformers.dyt import LigerDyT # noqa: F401
|
|
8
|
+
from liger_kernel.transformers.fused_add_rms_norm import LigerFusedAddRMSNorm # noqa: F401
|
|
4
9
|
from liger_kernel.transformers.fused_linear_cross_entropy import LigerFusedLinearCrossEntropyLoss # noqa: F401
|
|
5
10
|
from liger_kernel.transformers.fused_linear_jsd import LigerFusedLinearJSD # noqa: F401
|
|
6
11
|
from liger_kernel.transformers.geglu import LigerGEGLUMLP # noqa: F401
|
|
7
12
|
from liger_kernel.transformers.jsd import LigerJSD # noqa: F401
|
|
13
|
+
from liger_kernel.transformers.kl_div import LigerKLDIVLoss # noqa: F401
|
|
8
14
|
from liger_kernel.transformers.layer_norm import LigerLayerNorm # noqa: F401
|
|
9
|
-
from liger_kernel.transformers.
|
|
10
|
-
from liger_kernel.transformers.
|
|
11
|
-
from liger_kernel.transformers.
|
|
12
|
-
from liger_kernel.transformers.
|
|
13
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
14
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
15
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
16
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
17
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
18
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
19
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
20
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
21
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
22
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
23
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
24
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
25
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
26
|
-
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
15
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_text_rotary_pos_emb # noqa: F401
|
|
16
|
+
from liger_kernel.transformers.llama4_rope import liger_llama4_vision_rotary_pos_emb # noqa: F401
|
|
17
|
+
from liger_kernel.transformers.multi_token_attention import LigerMultiTokenAttention # noqa: F401
|
|
18
|
+
from liger_kernel.transformers.poly_norm import LigerPolyNorm # noqa: F401
|
|
27
19
|
from liger_kernel.transformers.rms_norm import LigerRMSNorm # noqa: F401
|
|
28
20
|
from liger_kernel.transformers.rope import liger_rotary_pos_emb # noqa: F401
|
|
21
|
+
from liger_kernel.transformers.softmax import LigerSoftmax # noqa: F401
|
|
22
|
+
from liger_kernel.transformers.sparsemax import LigerSparsemax # noqa: F401
|
|
29
23
|
from liger_kernel.transformers.swiglu import LigerBlockSparseTop2MLP # noqa: F401
|
|
30
24
|
from liger_kernel.transformers.swiglu import LigerPhi3SwiGLUMLP # noqa: F401
|
|
25
|
+
from liger_kernel.transformers.swiglu import LigerQwen3MoeSwiGLUMLP # noqa: F401
|
|
31
26
|
from liger_kernel.transformers.swiglu import LigerSwiGLUMLP # noqa: F401
|
|
27
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledGEGLUMLP # noqa: F401
|
|
28
|
+
from liger_kernel.transformers.tiled_mlp import LigerTiledSwiGLUMLP # noqa: F401
|
|
32
29
|
from liger_kernel.transformers.tvd import LigerTVDLoss # noqa: F401
|
|
30
|
+
|
|
31
|
+
# Static-only imports for IDEs and type checkers
|
|
32
|
+
if TYPE_CHECKING:
|
|
33
|
+
from liger_kernel.transformers.auto_model import AutoLigerKernelForCausalLM # noqa: F401
|
|
34
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel # noqa: F401
|
|
35
|
+
from liger_kernel.transformers.monkey_patch import _apply_liger_kernel_to_instance # noqa: F401
|
|
36
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_falcon_h1 # noqa: F401
|
|
37
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma # noqa: F401
|
|
38
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma2 # noqa: F401
|
|
39
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3 # noqa: F401
|
|
40
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gemma3_text # noqa: F401
|
|
41
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4 # noqa: F401
|
|
42
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v # noqa: F401
|
|
43
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_glm4v_moe # noqa: F401
|
|
44
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_gpt_oss # noqa: F401
|
|
45
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_granite # noqa: F401
|
|
46
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_dense # noqa: F401
|
|
47
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_hunyuan_v1_moe # noqa: F401
|
|
48
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_internvl # noqa: F401
|
|
49
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama # noqa: F401
|
|
50
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llama4 # noqa: F401
|
|
51
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_llava # noqa: F401
|
|
52
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mistral # noqa: F401
|
|
53
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mixtral # noqa: F401
|
|
54
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_mllama # noqa: F401
|
|
55
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo2 # noqa: F401
|
|
56
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_olmo3 # noqa: F401
|
|
57
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_paligemma # noqa: F401
|
|
58
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_phi3 # noqa: F401
|
|
59
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2 # noqa: F401
|
|
60
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_5_vl # noqa: F401
|
|
61
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen2_vl # noqa: F401
|
|
62
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3 # noqa: F401
|
|
63
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_moe # noqa: F401
|
|
64
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_next # noqa: F401
|
|
65
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl # noqa: F401
|
|
66
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_qwen3_vl_moe # noqa: F401
|
|
67
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smollm3 # noqa: F401
|
|
68
|
+
from liger_kernel.transformers.monkey_patch import apply_liger_kernel_to_smolvlm # noqa: F401
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
# Check if 'transformers' is installed
|
|
72
|
+
try:
|
|
73
|
+
import transformers # noqa: F401
|
|
74
|
+
|
|
75
|
+
_TRANSFORMERS_AVAILABLE = True
|
|
76
|
+
except ImportError:
|
|
77
|
+
_TRANSFORMERS_AVAILABLE = False
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def is_transformers_available() -> bool:
|
|
81
|
+
"""
|
|
82
|
+
Returns True if the 'transformers' package is available.
|
|
83
|
+
Useful for conditional logic in downstream code.
|
|
84
|
+
"""
|
|
85
|
+
return _TRANSFORMERS_AVAILABLE
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def __getattr__(name: str):
|
|
89
|
+
"""
|
|
90
|
+
Handles lazy access to transformer-dependent attributes.
|
|
91
|
+
If 'transformers' is not installed, raises a user-friendly ImportError.
|
|
92
|
+
"""
|
|
93
|
+
if not _TRANSFORMERS_AVAILABLE:
|
|
94
|
+
raise ImportError(
|
|
95
|
+
f"The attribute '{name}' requires the 'transformers' library, which is not installed.\n"
|
|
96
|
+
f"Please install it with `pip install transformers` to use this functionality."
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
if name == "AutoLigerKernelForCausalLM":
|
|
100
|
+
module = importlib.import_module("liger_kernel.transformers.auto_model")
|
|
101
|
+
return getattr(module, name)
|
|
102
|
+
|
|
103
|
+
monkey_patch_symbols = {
|
|
104
|
+
"_apply_liger_kernel",
|
|
105
|
+
"_apply_liger_kernel_to_instance",
|
|
106
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
107
|
+
"apply_liger_kernel_to_gemma",
|
|
108
|
+
"apply_liger_kernel_to_gemma2",
|
|
109
|
+
"apply_liger_kernel_to_gemma3",
|
|
110
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
111
|
+
"apply_liger_kernel_to_glm4",
|
|
112
|
+
"apply_liger_kernel_to_glm4v",
|
|
113
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
114
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
115
|
+
"apply_liger_kernel_to_granite",
|
|
116
|
+
"apply_liger_kernel_to_internvl",
|
|
117
|
+
"apply_liger_kernel_to_llama",
|
|
118
|
+
"apply_liger_kernel_to_llava",
|
|
119
|
+
"apply_liger_kernel_to_llama4",
|
|
120
|
+
"apply_liger_kernel_to_mistral",
|
|
121
|
+
"apply_liger_kernel_to_mixtral",
|
|
122
|
+
"apply_liger_kernel_to_mllama",
|
|
123
|
+
"apply_liger_kernel_to_olmo2",
|
|
124
|
+
"apply_liger_kernel_to_olmo3",
|
|
125
|
+
"apply_liger_kernel_to_paligemma",
|
|
126
|
+
"apply_liger_kernel_to_phi3",
|
|
127
|
+
"apply_liger_kernel_to_qwen2",
|
|
128
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
129
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
130
|
+
"apply_liger_kernel_to_qwen3",
|
|
131
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
132
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
133
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
134
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
135
|
+
"apply_liger_kernel_to_smollm3",
|
|
136
|
+
"apply_liger_kernel_to_smolvlm",
|
|
137
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
138
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
if name in monkey_patch_symbols:
|
|
142
|
+
module = importlib.import_module("liger_kernel.transformers.monkey_patch")
|
|
143
|
+
return getattr(module, name)
|
|
144
|
+
|
|
145
|
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
# Shared symbols in all environments
|
|
149
|
+
__all__ = [
|
|
150
|
+
"is_transformers_available",
|
|
151
|
+
"LigerCrossEntropyLoss",
|
|
152
|
+
"LigerDyT",
|
|
153
|
+
"LigerFusedLinearCrossEntropyLoss",
|
|
154
|
+
"LigerFusedLinearJSD",
|
|
155
|
+
"LigerGEGLUMLP",
|
|
156
|
+
"LigerJSD",
|
|
157
|
+
"LigerLayerNorm",
|
|
158
|
+
"LigerFusedAddRMSNorm",
|
|
159
|
+
"LigerPolyNorm",
|
|
160
|
+
"LigerRMSNorm",
|
|
161
|
+
"liger_rotary_pos_emb",
|
|
162
|
+
"liger_llama4_text_rotary_pos_emb",
|
|
163
|
+
"liger_llama4_vision_rotary_pos_emb",
|
|
164
|
+
"LigerBlockSparseTop2MLP",
|
|
165
|
+
"LigerPhi3SwiGLUMLP",
|
|
166
|
+
"LigerQwen3MoeSwiGLUMLP",
|
|
167
|
+
"LigerSwiGLUMLP",
|
|
168
|
+
"LigerTiledGEGLUMLP",
|
|
169
|
+
"LigerTiledSwiGLUMLP",
|
|
170
|
+
"LigerTVDLoss",
|
|
171
|
+
"LigerKLDIVLoss",
|
|
172
|
+
"LigerMultiTokenAttention",
|
|
173
|
+
"LigerSoftmax",
|
|
174
|
+
"LigerSparsemax",
|
|
175
|
+
]
|
|
176
|
+
|
|
177
|
+
# Add transformer-dependent symbols only if available
|
|
178
|
+
if _TRANSFORMERS_AVAILABLE:
|
|
179
|
+
__all__.extend(
|
|
180
|
+
[
|
|
181
|
+
"AutoLigerKernelForCausalLM",
|
|
182
|
+
"_apply_liger_kernel",
|
|
183
|
+
"_apply_liger_kernel_to_instance",
|
|
184
|
+
"apply_liger_kernel_to_falcon_h1",
|
|
185
|
+
"apply_liger_kernel_to_gemma",
|
|
186
|
+
"apply_liger_kernel_to_gemma2",
|
|
187
|
+
"apply_liger_kernel_to_gemma3",
|
|
188
|
+
"apply_liger_kernel_to_gemma3_text",
|
|
189
|
+
"apply_liger_kernel_to_glm4",
|
|
190
|
+
"apply_liger_kernel_to_glm4v",
|
|
191
|
+
"apply_liger_kernel_to_glm4v_moe",
|
|
192
|
+
"apply_liger_kernel_to_gpt_oss",
|
|
193
|
+
"apply_liger_kernel_to_granite",
|
|
194
|
+
"apply_liger_kernel_to_internvl",
|
|
195
|
+
"apply_liger_kernel_to_llama",
|
|
196
|
+
"apply_liger_kernel_to_llava",
|
|
197
|
+
"apply_liger_kernel_to_llama4",
|
|
198
|
+
"apply_liger_kernel_to_mistral",
|
|
199
|
+
"apply_liger_kernel_to_mixtral",
|
|
200
|
+
"apply_liger_kernel_to_mllama",
|
|
201
|
+
"apply_liger_kernel_to_olmo2",
|
|
202
|
+
"apply_liger_kernel_to_olmo3",
|
|
203
|
+
"apply_liger_kernel_to_paligemma",
|
|
204
|
+
"apply_liger_kernel_to_phi3",
|
|
205
|
+
"apply_liger_kernel_to_qwen2",
|
|
206
|
+
"apply_liger_kernel_to_qwen2_5_vl",
|
|
207
|
+
"apply_liger_kernel_to_qwen2_vl",
|
|
208
|
+
"apply_liger_kernel_to_qwen3",
|
|
209
|
+
"apply_liger_kernel_to_qwen3_moe",
|
|
210
|
+
"apply_liger_kernel_to_qwen3_next",
|
|
211
|
+
"apply_liger_kernel_to_qwen3_vl",
|
|
212
|
+
"apply_liger_kernel_to_qwen3_vl_moe",
|
|
213
|
+
"apply_liger_kernel_to_smollm3",
|
|
214
|
+
"apply_liger_kernel_to_smolvlm",
|
|
215
|
+
"apply_liger_kernel_to_hunyuan_v1_dense",
|
|
216
|
+
"apply_liger_kernel_to_hunyuan_v1_moe",
|
|
217
|
+
]
|
|
218
|
+
)
|
|
@@ -2,7 +2,8 @@ from typing import Optional
|
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
4
|
|
|
5
|
-
from liger_kernel.ops
|
|
5
|
+
from liger_kernel.ops import LigerCrossEntropyFunction
|
|
6
|
+
from liger_kernel.transformers.functional import CrossEntropyOutput
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class LigerCrossEntropyLoss(torch.nn.Module):
|
|
@@ -15,6 +16,7 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
15
16
|
reduction: str = "mean",
|
|
16
17
|
softcap: Optional[float] = None,
|
|
17
18
|
return_z_loss: bool = False,
|
|
19
|
+
return_token_accuracy: bool = False,
|
|
18
20
|
):
|
|
19
21
|
super().__init__()
|
|
20
22
|
assert (label_smoothing >= 0) and (label_smoothing <= 1), (
|
|
@@ -33,9 +35,10 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
33
35
|
self.reduction = reduction
|
|
34
36
|
self.softcap = softcap
|
|
35
37
|
self.return_z_loss = return_z_loss
|
|
38
|
+
self.return_token_accuracy = return_token_accuracy
|
|
36
39
|
|
|
37
40
|
def forward(self, _input: torch.Tensor, target: torch.Tensor):
|
|
38
|
-
loss, z_loss = LigerCrossEntropyFunction.apply(
|
|
41
|
+
loss, z_loss, token_accuracy = LigerCrossEntropyFunction.apply(
|
|
39
42
|
_input,
|
|
40
43
|
target,
|
|
41
44
|
self.weight,
|
|
@@ -45,7 +48,9 @@ class LigerCrossEntropyLoss(torch.nn.Module):
|
|
|
45
48
|
self.reduction,
|
|
46
49
|
self.softcap,
|
|
47
50
|
self.return_z_loss,
|
|
51
|
+
self.return_token_accuracy,
|
|
48
52
|
)
|
|
49
|
-
if not self.return_z_loss:
|
|
53
|
+
if not self.return_z_loss and not self.return_token_accuracy:
|
|
50
54
|
return loss
|
|
51
|
-
|
|
55
|
+
|
|
56
|
+
return CrossEntropyOutput(loss=loss, z_loss=z_loss, token_accuracy=token_accuracy)
|
liger_kernel/transformers/dyt.py
CHANGED
|
@@ -1,20 +1,22 @@
|
|
|
1
1
|
import torch
|
|
2
2
|
import torch.nn as nn
|
|
3
3
|
|
|
4
|
-
from liger_kernel.ops
|
|
4
|
+
from liger_kernel.ops import LigerDyTFunction
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
class LigerDyT(nn.Module):
|
|
8
|
-
def __init__(self, hidden_size, init_alpha=0.5):
|
|
8
|
+
def __init__(self, hidden_size, beta=True, init_alpha=0.5):
|
|
9
9
|
super().__init__()
|
|
10
10
|
self.hidden_size = hidden_size
|
|
11
11
|
self.init_alpha = init_alpha
|
|
12
12
|
self.alpha = nn.Parameter(torch.ones(1) * init_alpha)
|
|
13
13
|
self.gamma = nn.Parameter(torch.ones(hidden_size))
|
|
14
|
-
self.beta =
|
|
14
|
+
self.beta = None
|
|
15
|
+
if beta:
|
|
16
|
+
self.beta = nn.Parameter(torch.zeros(hidden_size))
|
|
15
17
|
|
|
16
18
|
def forward(self, x):
|
|
17
19
|
return LigerDyTFunction.apply(x, self.alpha, self.gamma, self.beta)
|
|
18
20
|
|
|
19
21
|
def extra_repr(self):
|
|
20
|
-
return f"{self.hidden_size}, init_alpha={self.init_alpha}"
|
|
22
|
+
return f"{self.hidden_size}, init_alpha={self.init_alpha}, beta={self.beta}"
|